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Abstract
American options can be priced by solving linear complementary problems (LCPs) with
parabolic partial(-integro) differential operators under stochastic volatility and jump-diffusion
models like Heston, Merton, and Bates models. These operators are discretized using finite
difference methods leading to a so-called full order model (FOM). Here reduced order mod-
els (ROMs) are derived employing proper orthogonal decomposition (POD) and non negative
matrix factorization (NNMF) in order to make pricing much faster within a given model pa-
rameter variation range. The numerical experiments demonstrate orders of magnitude faster
pricing with ROMs.

Keywords: reduced order model, option pricing, American option, linear complementary problem

1 Introduction

European options can be exercised only at expiry while American options can be exercised
anytime until expiry. Due to this additional flexibility the American options can be more
valuable and in order to avoid arbitrage the value must be always at least the same as the final
payoff function. The seminal paper [6] by Black and Scholes models the value of underlying
asset as a geometrical Brownian motion with a constant volatility. Since then it has become
evident that more generic models are required for this value. Merton proposed adding log-
normally distributed jumps to this model [19]. Heston [12] made the volatility to be a mean
reverting stochastic process. Bates [4] combined the Heston stochastic volatility model and
Merton jump-diffusion model.

The European options can be priced by solving a parabolic partial(-integro) differential
equation. The American options lead to LCPs with the same operator. These operators are two
dimensional with a stochastic volatility and one dimensional otherwise. The potential integral
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part of the model results from the jumps. For American options finite difference discretizations
lead to solving a discrete LCP at each time step. Efficient numerical methods for American
options have been considered in [11, 13] for stochastic volatility models and in [9, 17, 25, 26, 28]
for jump-diffusion models. Methods for the combined Bates model have been developed in
[3, 27, 28, 31].

Unfortunately, high-fidelity simulations are still too expensive for many practical applica-
tions and reduced order modeling (ROM) is a promising tool for significantly alleviating com-
putational costs [1, 5]. Most existing ROM approaches are based on projection. In projection-
based reduced order modeling the state variables are approximated in a low-dimensional sub-
space. Basis for this subspace are typically constructed by Proper Orthogonal Decomposition
(POD) [29] of a set of high-fidelity solution snapshots. In the case where the governing equa-
tions include a constraint equation it is often beneficial to construct a basis that satisfies these
constraints a priori [7]. For example, in the case of non-negativity constraints, a non-negative
basis can be constructed via non-negative matrix factorization (NNMF) [2]. Finally, projecting
the high-fidelity model using a Galerkin or Petrov-Galerkin projection yields ROMs capable of
delivering new solutions at a fraction of the computational costs of the high-fidelity model.

For pricing European options ROMs have been developed in [8, 23]. Only recently ROMs
have been applied for pricing American options in [7, 10].

A common problem associated to option pricing is the calibration of model parameters to
correspond to the market prices of options. This is typically formulated as a least squares -type
optimization problem. The calibration is computationally expensive as it requires pricing a large
number of options with varying parameters. The use of ROMs to reduce this computational
cost has been studied in [20, 22, 21].

2 Full Order Models

Under the Merton model the price u of a European option can be obtained by solving the
one-dimensional PIDE

∂u

∂τ
=

1

2
σ2
ss

2 ∂
2u

∂s2
+ (r − μξ)s

∂u

∂s
− (r + μ)u+ μ

∫ ∞

0

u(sy, τ)p(y)dy =: LMu, (1)

where s ≥ 0 is the value of the underlying asset, τ = T − t is the time to expiry, σs is the
volatility, r is the interest rate, μ is the jump intensity, and p is the log-normal jump distribution
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The relative expected jump is ξ = exp
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2δ
2
)− 1. The Black–Scholes model is obtained by

setting the jump intensity μ to zero. Under the Bates model the price u of a European option
can be obtained by solving the two-dimensional PIDE
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(3)

where v ≥ 0 is the variance, θ is its mean level, κ is the rate of mean reversion, σv is the
volatility of variance, and ρ is the correlation between the asset value and the variance. The
Heston model is obtained by setting the jump intensity μ to zero.
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In the following, put options are considered. Their value at the expiry is given by the pay-off
function g(s) = max{K − s, 0}. Thus, the initial condition reads

u(s) = g(s) and u(s, v) = g(s) (4)

for one-dimensional and two-dimensional models, respectively.
Due early exercise possibility the price u of an American option satisfies the LCP

∂u
∂τ − Lu = λ, u ≥ g, λ ≥ 0, λ(u− g) = 0, (5)

where the operator L is either LM or LB depending on the model and λ is a Lagrange multiplier;
see [14], for example. For computing an approximate solution the infinite domain is truncated
at s = smax and v = vmax, where smax and vmax are sufficiently large so that the error due to
truncation is negligible. Dirichlet boundary conditions for American put options are

u = K at s = 0 and u = 0 at s = smax, (6)

on the left and right boundaries, respectively. Under the stochastic volatility models, the
Neumann boundary condition ∂u

∂v = 0 is posed at v = vmax. At v = 0 it is not necessary to
pose a boundary condition. For the numerical solution, the LCP is formulated for w = u − g
instead of u as the positivity constraint w ≥ 0 is more easily treated. This leads to the LCP

∂w
∂τ − Lw = λ+ Lg, w ≥ 0, λ ≥ 0, λw = 0. (7)

A quadratic penalty formulation is obtained by choosing the Lagrange multiplier to be

λ = − 1
ε max {−w, 0}w. (8)

This leads to the nonlinear P(I)DE

∂w
∂τ − Lw + 1

ε max {−w, 0}w = Lg. (9)

For the interval [0, smax], a grid is defined by si, i = 0, 1, 2, . . . , Ns. The spatial partial
derivatives with respect to s are discretized using central finite difference

∂w
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]
, (11)

where Δsi = si+1−si. Similarly for the interval [0, vmax], a grid is defined vj , j = 0, 1, 2, . . . , Nv.
The spatial partial derivatives with respect to v are discretized using the above central finite

difference. A nine-point finite difference stencil for ∂2w
∂s∂v is obtained by employing the central

finite differences in both directions. The integrals can be discretized using a second-order
accurate quadrature formula. Here the linear interpolation is used for w between grid points
and exact integration; see [24], for details. Under the Merton model the discretization of the
integral leads to a full matrix while under the Bates model it leads to full diagonal blocks.

Under models without jumps the time discretization is performed by taking the first time
steps using the implicit Euler method and after using the second-order accurate BDF2 method.
Under jump models the integral is treated explicitly. In the first time step using the explicit
Euler method and in the following time steps using the linear extrapolation based on the two
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previous time steps. This IMEX-BDF2 method is described in [26]. With the explicit treatment
of the integral it is not necessary to solve systems with dense matrices. At the time (k+1)Δτ ,
the grid point values contained in the vector wk+1 are obtained by solving the system

(
I+ 2

3ΔτD+ 1
ε diag

(
max

{−wk+1, 0
}))

wk+1

=
(
4
3w

k − 1
3w

k−1
)
+ΔτJ

(
4
3w

k − 2
3w

k−1
)
+ 2

3Δτ f ,
(12)

where the matrices J andD corresponds to the terms due to the jumps and the rest, respectively.
The vector f contains the grid point values of Lg. The operator diag(·) gives a diagonal
matrix with the diagonal entries defined by the argument vector. The maximum is taken
componentwise. The system (12) can be expressed more compactly as

(
A+ 1

ε diag
(
max

{−wk+1, 0
}))

wk+1 = rk+1 (13)

with suitably defined A and rk+1. The discrete counterpart of the Lagrange multiplier λ in (8)
reads

λk+1 = − 1
ε diag

(
max

{−wk+1, 0
})

wk+1. (14)

3 Reduced Order Models

Let U ∈ R
N×n be basis for w. The reduced solution w = Uwr is governed by

(
UTAU+ 1

εU
T diag

(
max

{−Uwk+1
r , 0

})
U
)
wk+1

r = UT rk+1. (15)

The product UT diag
(
max

{−Uwk+1
r , 0

})
U is the only product in (15) that cannot be pre-

computed offline. Since the cost of evaluating this product scales with the size of the full-order
model, Eq. (15) does not offer major computational savings.

Let Uλ ∈ R
N×nλ be basis for max

{−Uwk+1
r , 0

}
. The basis Uλ is assumed to be non

negative, that is, all components of Uλ are non negative. Thus, we assume

Uλhr ≈ max
{−Uwk+1

r , 0
}
. (16)

Performing a Galerkin projection yields

UT
λUλhr ≈ UT

λ max
{−Uwk+1

r , 0
}
. (17)

Unfortunately, Equation (17) still does not yield a computationally efficient model because
UT

λ max
{−Uwk+1

r , 0
} �= max

{−UT
λUwk+1

r , 0
}
can not be precomputed offline.

To achieve computational speed-up, a Petrov-Galerkin projection is performed using a bi-
nary selection matrix.

Consider a binary matrix P ∈ {0, 1}N×m whose columns correspond to the ij column of
the identify matrix, P:,ij = I:,ij and where the index ij corresponds to the location of the
maximum component of the jth column of Uλ. Since Uλ > 0 and hr > 0, the full solution
max

{−Uwk+1
r , 0

}
is positive if and only if PTUλhr > 0. With the assumption outlined

in (16), it follows that

PTUλhr ≈ PT max
{−Uwk+1

r , 0
}
. (18)

and finally

PT max
{−Uwk+1

r , 0
}
= max

{−PTUwk+1
r , 0

}
. (19)
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Thus, the final form of the ROM is as follows

(
Ar +

1
εC

T diag
(
max

{−Cwk+1
r , 0

})
C
)
wk+1

r = rk+1
r , (20)

where Ar = UTAU, C = PTU, and rr = UT r. All components in Equation (20) scale with
the size of the reduced-order model.

The basisU ∈ R
N×n, andUλ ∈ R

N×nλ are constructed by solving a low-rank approximation
problem for a set of solution snapshot. A solution snapshot, or simply a snapshot, is defined
as a state vector wk computed as the solution of (12) for some instance of its parameters. A
solution matrix is defined as a matrix whose columns are individual snapshots.

To construct U ∈ R
N×n, the following optimization problem is solved

minimize
U∈RN×n,V∈Rn×K

‖X−UV‖2F , (21)

where K is the number of solution snapshots. Hence, the basis U is comprised of the first n
left singular vectors of the snapshot matrix X and V = ΣWT , where Σ is the diagonal matrix
of the first n singular values of Σ, and W is the matrix of its first n right singular vectors.

To construct Uλ ∈ R
N×nλ , the following constrained optimization problem is solved

minimize
Uλ∈R

N×nλ ,Vλ∈R
nλ×K

‖Xλ −UλVλ‖2F ,

subject to Uλ ≥ 0

Vλ ≥ 0

(22)

where Xλ ∈ R
N×K is the snapshot matrix comprised of the projected constraint violation

max
{−UTUwk, 0

}
. Unlike problem (21), problem (22) does not have a closed form solu-

tion. Consequently, this problem is usually solved using an iterative method that typically
converges to a local minimum. Examples of such methods are the original multiplicative up-
dating rule [18], the alternating non-negativity least-squares method [15], and block coordinate
descent algorithms [16].

4 Numerical Experiments

All numerical examples price an American put option with the strike price K = 100 and the ex-
piry T = 0.5. Only at the money option is considered, that is, the value of u at s = K is sought.
Under the stochastic volatility models the value of u is computed at the variance v = θ. The full
order models are discretized using quadratically refined spatial grids similar to ones employed

by the FD-NU method in [30]. The s-grid is defined by si =
[(

i
αNs

− 1
) ∣∣∣ i

αNs
− 1

∣∣∣+ 1
]
K,

i = 0, 2, . . . , Ns with α = 3
8 . For the stochastic volatility models the variance grid is defined

by vj =
(

j
Nv

)2

vmax with vmax = 1. The uniform time steps are given by Δτ = 1
Nτ

T . In the

experiments the number of spatial and temporal steps are chosen to be Ns = 128, Nv = 64,
and Nτ = 32. With this choice and the employed parameter ranges the absolute discretization
error is about 10−2 or less.

The snapshot matrix X is given by all vectors wk, k = 1, 2, . . . , Nτ , in all training runs. For
these training runs each model parameter is sampled at its extreme values and at the midpoint
between them. Thus, with two, five, and eight model parameters there are 32 = 9, 35 = 243,
and 38 = 6561 training runs, respectively. In the predictive ROM simulations, each parameter
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Figure 1: Under the Black–Scholes model the error with respect to the the reduced basis size
n = nλ

has two values which are the midpoint values between the values used in the training. Thus,
with two, five, and eight model parameters there are 22 = 4, 35 = 32, and 28 = 256 prediction
runs, respectively. The sizes of the two reduced basis given by n and nλ are chosen to be the
same. The measured error is the absolute difference between the prices given by the reduced
order model and the full order model.

4.1 Black–Scholes Model

The model parameters for the Black–Scholes model are varied in the range:

(r, σs) ∈ [0.025, 0.035]× [0.35, 0.45]. (23)

The value of the option varies roughly in the range [9.06, 12.04]. Figure 1 shows the reduction
of the maximum and mean errors with the growth of the reduced basis sizes n = nλ.

4.2 Merton Model

The model parameters for the Merton model are varied in the range:

(r, σs, μ, δ, γ) ∈ [0.025, 0.035]× [0.35, 0.45]× [0.15, 0.25]× [0.3, 0.5]× [−0.7, −0.3]. (24)

The value of the option varies roughly in the range [9.65, 14.08]. Figure 2 shows the reduction
of the maximum and mean errors with the growth of the reduced basis sizes n = nλ.

4.3 Heston Model

The model parameters for the Heston model are varied in the range:

(r, κ, θ, σv, ρ) ∈ [0.025, 0.035]× [3, 5]× [0.352, 0.452]× [0.35, 0.45]× [−0.75, −0.25]. (25)
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Figure 2: Under the Merton model the error with respect to the the reduced basis size n = nλ
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Figure 3: Under the Heston model the error with respect to the the reduced basis size n = nλ

The value of the option varies roughly in the range [8.87, 11.98]. Figure 3 shows the reduction
of the maximum and mean errors with the growth of the reduced basis sizes n = nλ.

4.4 Bates Model

The model parameters for the Bates model are varied in the range:

(r, κ, θ, σv, ρ, μ, δ, γ) ∈ [0.025, 0.035]× [3, 5]× [0.352, 0.452]× [0.35, 0.45]×
[−0.75, −0.25]× [0.15, 0.25]× [0.3, 0.5]× [−0.7, −0.3]. (26)

Reduced Order Models for Pricing Options Balajewicz and Toivanen

740



0 5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

10
0

10
1

n,n
lambda

P
ric

e 
er

ro
r,

 a
bs

(p
ric

e R
O

M
 −

 p
ric

e F
O

M
)

 

 

max error
mean error

Figure 4: Under the Bates model the error with respect to the the reduced basis size n = nλ

Table 1: CPU times in seconds for on-line computations.
FOM ROM

Model # DOF CPU time # DOF CPU time speed-up
Black–Scholes 127 0.037 16 0.034 1.1
Merton 127 0.039 16 0.034 1.1
Heston 8255 7.52 40 0.044 171
Bates 8255 7.42 40 0.044 169

The value of the option varies roughly in the range [9.53, 14.07]. Figure 4 shows the reduction
of the maximum and mean errors with the growth of the reduced basis sizes n = nλ.

4.5 Computational Speed-up

For each problem considered, the speed-up factor delivered by its ROM for the online com-
putations is reported in Table 1. All models are solved in MATLAB on a Intel Xeon 2.6GHz
CPU and all CPU times were measured using the tic-toc function on a single computational
thread via the -singleCompThread start-up option. A ROM is integrated in time using the
same scheme and time-step used to solve its corresponding FOM; see Section 2 for details. The
online speed-up is calculated by evaluating the ratio between the time-integration of the FOM
and the time-integration of the ROM.

5 Conclusions

Reduced order models (ROMs) were constructed for pricing American options under jump-
diffusion and stochastic volatility models. They are based on a penalty formulation of the linear
complementarity problem. The finite difference discretized differential operator and the penalty
term are projected using basis resulting from a proper orthogonal decomposition and a non
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negative matrix factorization. In numerical experiments, from two to eight model parameters
are varied in a given range. For the one-dimensional Black–Scholes and Merton models about
16 ROM basis vectors were enough to reach 0.1% accuracy. For the two-dimensional Heston
and Bates models about 40 basis vectors were needed to reach the same accuracy. For these
two-dimensional models the computational speed-up was about 170 when the full order model
(FOM) and ROM have roughly the same 0.1% accuracy level. The solution of the FOM and
the ROM for two-dimensional models required about 7.5 and 0.044 seconds, respectively. With
the one-dimensional models the speed-up was negligible. Particularly the results with the Bates
model and eight parameters varying are impressive. A potential application for these ROMs is
fast and accurate calibration of the model parameters based on market data.
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