
Janne Poikolainen

AUTHORIZED AUTHENTICATION EVALUATION
FRAMEWORK FOR CONSTRAINED

ENVIRONMENTS

UNIVERSITY OF JYVÄSKYLÄ
DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION SYSTEMS

2016

ABSTRACT

Poikolainen, Janne
Authorized Authentication Evaluation Framework for Constrained
Environments
Jyväskylä: University of Jyväskylä, 2016, 95 p.
Information Systems Science, Master’s Thesis
Supervisors: Semenov, Alexander & Mazhelis, Oleksiy

The Internet today is growing not only by size, but it is spreading to new
areas. New ways to gather more data and control devices are developed in
many application areas from smart homes and cities, surrounding
environments in cities as well as agricultural settings to industrial settings. This
growth is due to miniaturization and the dropping costs. In order to deploy IoT
applications in truly pervasive manner the physical size and cost of the devices
should remain small. This means especially that in order to keep the cost low
some of the device capabilities will be having constraints even when
technologies evolve and the price might drop. The compromise is always going
to be between narrower deployments with more capable devices and wider
deployments with less capable devices.

Wireless communication is in many cases the most economic way and for
this reason Wireless Sensor Networks (WSN's) have been used in industrial
settings for some time now. The same networking technologies can be used in
constrained IoT devices. Many of the current WSN deployments are based on
proprietary technologies and do not offer a secure end-to-end communication.
Instead they provide the data for the Internet through gateways translating the
WSN communication. The communication security is based on settings
provided in the time of provisioning the devices.

End-to-end connectivity and security can be realized by using IP-based
protocols developed for constrained devices. But dynamic access control for
these environments is still more or less an open question. A dynamic
authorized authentication mechanism would make the systems even more
integratable and easily maintainable. This paper deals with the problem field of
conducting dynamic authorized authentication in constrained environments.
The main artifact of this study is a framework that identifies both the
constraints and security objectives for realizing authorized authentication in
constrained environments.

Keywords: Access control, Internet of Things, Constrained Environments,
Authorized Authentication

TIIVISTELMÄ

Poikolainen, Janne
Autorisoidun authentikoinnin arviointikehys rajoitettuihin ympäristöihin
Jyväskylä: Jyväskylän yliopisto, 2015, 95 s.
Tietojärjestelmätiede, pro gradu-tutkielma
Ohjaajat: Semenov, Alexander & Mazhelis Oleksiy

Internetin kasvu ei perustu tällä hetkellä vain uusien solmujen määrään, vaan
Internet on levittäytymässä aivan uusille alueille. Viimeaikoina erilaiset tavat
kerätä tietoa ja ohjata laitteita uusin tavoin ovat yleistyneet esimerkiksi
teollisuudessa, kaupunkiympäristöjen melun ja saasteiden seurannassa. Lisäksi
käsitteet älykoti tai -kaupunki alkavat olla yleisesti tunnettuja. Nykyinen kasvu
näiden teknologioiden käytössä perustuu pitkälti laitteiden koon
pienenemiseen ja hintojen laskuun. Jotta Esineiden Internet pystyy kasvamaan
merkittävällä tavalla, laitteiden fyysisten kokojen ja hintojen tulisi pysyä
matalalla tasolla tai laskea edelleen. Pieni koko ja hinta tarkoittaa kuitenkin
usein rajoituksia laitteiden ominaisuuksille. Vaihtoehtoina tuleekin luultavasti
aina olemaan rajoittuneempien laitteiden laajempi käyttö tai kyvykkäämpien
laitteiden kapeampi käyttöönotto.

Langattomat yhteydet ovat usein edullisin tapa toteuttaa verkko-
ominaisuuksia erilaisille laitteille. Tästä syystä langattomia sensoriverkkoja on
käytetty teollisuudessa jo pidemmän aikaa. Samat verkkoteknologiat sopivat
myös käytettäväksi Esineiden Internetin laitteille. Suuri osa nykyisistä
langattomista sensoriverkoista käyttää kuitenkin kaupallisia verkkostandardeja,
jotka eivät ole yhteensopivia Internet teknologioiden kanssa. Tästä syystä
tämän tyyppisillä järjestelmillä ei saavuteta päästä-päähän yhteyttä Internetissä
ja rajoitetussa ympäristössä sijaitsevien laitteiden välille. Tämä tarkoittaa myös
sitä, että viestinnän turvaamista ei voida toteuttaa päästä-päähän, vaan viestit
puretaan ja suojataan uudelleen, kun ne poistuvat tai tulevat rajoitettuun
verkkoon.

Ratkaisuiksi näihin yhteensopivuus ongelmiin on kehitetty IP-pohjaisia
protokollia, jotka ovat tarpeeksi kevyitä rajoitetuille laitteille. Yhteyden
luomiseen kahden rajoitetun laitteen välille dynaamisesti standardoitua
ratkaisua ei kuitenkaan vielä ole. Dynaaminen ratkaisu rajoitettujen laitteden
välisen liikenteen turvaamiseen tekisi järjestelmistä entistä paremmin
integroitavia ja helpommin ylläpidettäviä. Tämä tutkielma käsitteleekin juuri
niitä ongelmia, jotka tulisi ratkaista, jotta rajoitettujen laitteiden dynaamiseen
autorisointiin voitaisiin löytää yleisesti hyväksytty menetelmä. Tutkielman
artefakti on arviointikehys, joka tunnistaa laitteiden rajoitteet ja
turvallisuustavoitteet tällaiselle ratkaisulle.

Asiasanat: Esineiden Internet, Rajoitetut Ympäristöt, Autorisoitu Autentikointi

FIGURES

Figure 1: The design process and structure of the main artifact..................19
Figure 2: Smart objects and other key technologies (Vasseur & Dunkels,

2010)..22
Figure 3: Overall architecture (Gerdes et al., 2015a)......................................35
Figure 4: Information flow (Gerdes et al., 2015a)...37
Figure 5: Agent sequence (Farrell et al., 2000)...46
Figure 6: Pull sequence (Farrell et al., 2000)..46
Figure 7: Push sequence (Farrell et al., 2000)...47
Figure 8: DCAF authentication steps (Gerdes et al., 2015c)..........................53
Figure 9: ABFAB authentication steps (Tschofenig et al., 2014)...................57
Figure 10: Client, Server and the Border router shown in Cooja Network 64
Figure 11: Cooja mote output log..66
Figure 12: Cooja PowerTracker tool...67
Figure 13: Client power consumption..69
Figure 14: Server power consumption...70

TABLES

TABLE 1 Classes of Constrained Devices..29
TABLE 2 Classes of energy limitation..30
TABLE 3 Constraint summary..32
TABLE 4 Architecture objective summary..37
TABLE 5 Security objectives for a computer-related system........................39
TABLE 6 Security objectives for IoT...40
TABLE 7 Security objective summary..47
TABLE 8 Use case security requirements..60
TABLE 9 Powertrace parameters..66
 TABLE 10 Time elapsed in key functions...68
 TABLE 11 Client power consumption in different sequences.....................71
 TABLE 12 Server power consumption in different sequences....................71
TABLE 13 Framework overview...73
TABLE 14 Dependencies between use case requirements and framework

objectives..80

INDEX

1 INTRODUCTION..9
1.1 Motivation..11
1.2 Objectives and expected results..11
1.3 Research questions..12
1.4 The structure of this study...13

2 RESEARCH METHODS...14
2.1 Design Science Research Method..15
2.2 Requirements engineering...17
2.3 Research process of this study...18

3 SMART OBJECT TECHNOLOGIES...21
3.1 Wireless Sensor networks..23
3.2 Legacy protocols for smart objects...23

3.2.1 ZigBee...23
3.2.2 ZWave..24

3.3 Lightweight IP-based protocols..24
3.3.1.1 6LowPAN..24
3.3.2 RPL..25
3.3.3 CoAP...26

4 CONSTRAINED ENVIRONMENTS..27
4.1 Classes of constrained devices..28

4.1.1 Classifications based on energy limitation....................................29
4.2 Constrained networks..31

4.2.1 Constrained-node network...31
4.2.2 Summary..31

5 ARCHITECTURE FOR AUTHORIZATION IN CONSTRAINED
ENVIRONMENTS..33

5.1 Actors and their tasks...33
5.1.1 Constrained level actors...34
5.1.2 Less-constrained level actors...34
5.1.3 The principal level actors...35
5.1.4 Possible role combinations..36

5.2 Information flows..36
5.3 Summary..37

6 SECURITY CONCERNS...39
6.1 Communication security..40
6.2 Authorized authentication...42

6.2.1 Identity based access control...42

6.2.2 Authorization base access control..44
6.2.3 Capability based access control..44

6.3 Authentication message sequence models..45
6.4 Summary..47

7 PROPOSED PROTOCOLS...49
7.1 DCAF...49

7.1.1 DCAF objectives..49
7.1.2 Architecture...50
7.1.3 Protocol...51

7.2 ABFAB..53
7.2.1 ABFAB Objectives...54
7.2.2 Architecture...54
7.2.3 Protocol...55

8 USE CASE...58

9 EXPERIMENT DESIGN..61
9.1 Contiki...61
9.2 Cooja..62
9.3 Powertrace..63
9.4 DCAF setup..64

9.4.1 Constrained actors..64
9.4.2 Less constrained actors..65
9.4.3 Running the experiment..65

10 RESULTS...68
10.1 Time consumption data..68
10.2 Power consumption data...69

11 EVALUATION...73
11.1 Constraints...74

11.1.1 Memory constraints..74
11.1.2 Processing power..74
11.1.3 Available power and energy...74
11.1.4 Network, interface, physical and cost constraints.....................75

11.2 Architecture related security objectives...75
11.2.1 Delegation of demanding tasks..76
11.2.2 Validation of actors...76
11.2.3 Autonomous functionality..76
11.2.4 End-to-end security..77

11.3 Security objectives...77
11.3.1 Resource security..78
11.3.2 Message security...78
11.3.3 Access control architecture..79
11.3.4 Message sequence for three party authentication......................79

11.4 Use case security requirements...80

11.4.1 Integrity & authenticity of sensor data..80
11.4.2 Confidentiality of sensor data...81
11.4.3Authorization by resource and requesting party basis..............81
11.4.4Autonomous authorization..82
11.4.5Temporary access permissions..82
11.4.6End-to-end security...83

11.5 Evaluation of the main artifact..83

12 CONCLUSIONS...85

1 Introduction

Internet of Things (IoT) is a paradigm describing how objects possessing
networking and collaborative abilities have become more ubiquitous and
continue to will do so in more pervasive way in the future. This paradigm also
predicts that in the near future an increasing amount of information produced
for the Internet will not be produced by humans. These visions are based on the
continuing development in communication technology and electronics that will
not only bring the cost of the technology down, but also bring networking and
collaborative abilities to more and more things in our environment. These
things include anything from household items to home automation and smart
city infrastructure to industrial applications.

Especially the communication between machines often takes place in a
more constrained environment than the Internet. In practice a constrained
environment can mean constraints on network capacity, processing power or
available memory of the things or all of these together. An example of the cause
for these constraints is a high packet loss in the networks due to the frequencies
used. Due to the constraints these devices are not able to use normal Internet
protocols for communication, securing their transmissions or authorization.
Constraints that prevent protocol use can come from too big overhead of
network packets or too low processing power and memory for using such
things as public keys.

In addition to the constraints mentioned the power consumption of these
devices should remain low, since many of these devices can be battery
powered. The battery consumption should remain low since usually the devices
are expected to function for years with out the need for a battery change. The
dominating consideration when energy consumption is concerned is the
network bandwidth usage. This is due to the fact that radio communications
usually consumes a big portion of the devices total energy consumption.

These edges of the future Internet will be constructed of smart objects
gathering data from and in some cases also acting in the physical world. These
devices only handle very simple tasks, such as provide sensor data on
temperature or humidity readings or trigger events such as move an actuator.
The most economical way to handle such simple tasks is to use simple devices

to keep the cost of the devices and their deployment low. The balance between
cost and device abilities means that the devices will always have certain
constraints.

Despite the constraints the devices have they still need to be able to
function in a secure manner due to privacy concerns. Much of the data collected
these devices is potentially sensitive in nature. The devices may be collecting
data from everyday life such as home utility consumption. This kind of scenario
can infringe the users privacy by allowing and eavesdropper to conclude
whether the user is home or not. For this reason it is not enough to secure the
data only when it leaves the local network, but an end-to-end solution for
securing the communication is needed. (Kothmayr, Schmitt, Hu, Brünig, &
Carle, 2013)

Currently most solutions gathering data this way are unable to deliver
end-to-end security, due to the networking protocols they use. These protocols
are not inter-operable with normal Internet nodes, but use translating gateways
to communicate to the Internet. These gateways not only translate the incoming
and outgoing network packages, but are also in charge of applying security on
the transmissions too. In this kind of setting where the constrained networks
protocols are incompatible with the common Internet protocols, end-to-end
security can only be achieved within the network.

One solution for this problem is to use IP-based protocols. A protocol
stack light enough to be used in constrained environments has been around for
some years and described by IETF Request For Comments documents. This
stack consist of IPv6 for Low Power and Lossy Networks (6LoWPAN),
Constrained Application Protocol (CoAP) and IPv6 Routing Protocol for Low-
Power and Lossy Networks (RPL). These protocols enable end-to-end
communication between constrained nodes and normal Internet nodes through
a border router. This communication can also be secured end-to-end using
Datagram Transport Layer Security (DTLS).

End-to-end security ability is not the only thing using IP-protocol stack
has to offer compared to other protocols. End-to-end communication ability
removes many barriers on how these small devices can be used and integrated
in other systems and even the Internet. It provides more seamless
integrateability, maintainability and possibility to develop more future proof
and evolvable systems. For example better integrateability enables easier way
for communication between systems from multiple vendors and areas. This
could mean such things as integrating a lighting system of a building with
ventilation and heating systems functionalities would be a matter of
configuring what data is shared between these systems. Compared to the state
of such systems are today, this would mean substantial gains on many areas
where siloed systems co-exist side by side but unable to communicate.

As mentioned above using IP-protocol stack and end-to-end security is
possible using existing protocols in the constrained environments. But the open
question that still remains is how the devices could establish a secure
communications channel between them selves with out a previous security
context. Currently there is no consensus on a protocol for establishing a secure
context between two constrained devices. A consensus is needed in order to

provide this the ability to constrained devices in universal way. So a common
mechanism for authorized authentication between the devices needs to be
decided on and standardized. The major challenge on realizing such a system is
how to compose such a protocol within the limits set by environment
constraints.

1.1 Motivation

Several protocols have been proposed as a standard for providing authorized
authentication in the constrained environments. But at the time of this writing
none of them have reached the level of proposed standard. Motivation for this
study is to help the process of protocol selection by identifying a set of
properties required to realize a solution. An evaluation framework would help
the process by combining the constraints the protocols have to submit to and
how they effect on security objectives it needs to meet. The major contribution
of this study is to provide an overall picture on the problem world of selecting a
universally accepted dynamic authorized authentication protocol for
constrained environments.

1.2 Objectives and expected results

The objective of this study is to identify the critical features the solution for
authorized authentication in constrained environments has to possess and build
an evaluation framework that would capture these features. First objective is
that this framework is able to identify the constraints. Second objective is to
categorize the constraints in order to verify accepted limits for different levels
of security possible. The third objective is to define adequate security objectives
for a proposed solution. The constraints and security objectives together will
form a framework to capture the perquisites for a authorized authentication
that can operate under the environment constraints and do so in a secure
manner.

 After the framework is developed it is applied to two protocols proposed
for authorized authentication solution for constrained networks. To gain further
knowledge how well one of these protocols is able to meet the environment
constraints, it is evaluated further by conducting a simulated experiment.
Experiment results are used with protocol definitions to assess the ability of
these protocols to cope with environment constraints. Next the security
objectives of the framework are tested against the protocol specifications to
define if the security objectives match the protocol properties. Based on the
analysis between the objectives and protocol properties, the objectives are
operationalized against a use case to determine the dependencies between the
objectives and use case requirements.

 After these steps the framework is evaluated on how well it was able to
capture the constraints and how well did the security objectives were able to set
basis for different areas of a distributed system.

The expected result of this study is the creation of an artifact, a framework
for authorized authentication evaluation. This framework would be able to
identify the environment constraints, objectives for secure distributed system
and so act as a guideline for protocol selection.

1.3 Research questions

Based on the objectives of this study first the framework needs to identify the
constraints posed by the environment. Since the purpose of such a mechanism
is security, objectives for a secure system need to be identified also. The
identification of constraints and their effect on the mechanism should give
answers to the first research question of this study which is:

RQ 1: What are the prerequisites for establishing authorized
authentication mechanism between two devices when one or both have
constrained capabilities?

The identifying different constraints answer to the first sub-question:

RQ 1.1: What kind of constraints do the devices have?

After the constraints are identified it would be helpful to have a taxonomy for
the different constraints, which brings us to to the next sub-question:

RQ 1.2: How the device constraints should be classified?

To understand what the identified constraints mean when choosing a
mechanism the third research question needs to be answered:

RQ 1.3: Which constraints have effect on choosing the mechanism?

After the constraints and their effect on choosing the mechanism are
understood, the requirements for a system can be identified. This formed as the
second research question of this study:

RQ 2: What are the requirements for a system supporting authorized
authentication between two constrained devices?

Based on the requirements, a system fulfilling them can be described, so there
fore RQ 2 has a sub-question:

RQ 2.1: What kind of system could satisfy these requirements?

1.4 The structure of this study

First the research method for this study is determined and the objectives and
expected results are described in further detail in the following chapter. Then
then some central concepts are introduced in chapter 3 to help the reader to
continue to the more specific subjects. The first of these is the definition of
constrained environments in chapter 4, which is expanded with an architecture
for authorization in constrained environments in chapter 5. Chapter 6 discusses
the security concerns of distributed systems in a general level. This is followed
by introducing two protocols proposed as a solution for authorized
authentication in constrained environments in chapter 7 and a use case for a
system requiring these features is given in chapter 8. Chapters 9 & 10 consist of
describing the empirical experiment included in this study and portraying its
results. The results for both the literary review conducted in the first part of this
study and the experiment are evaluated in chapter 11.

2 Research methods

The field of IT-research is a study of artificial as opposed to natural phenomena.
As natural science aims to understand reality, design science attempts to create
things that serve human purposes. Since design science is technology-
orientated, its products are assessed by value or utility criteria, such as does it
work? or is it and improvement? Rather than producing general theoretical
knowledge, design science produces and applies knowledge of situations or
tasks in order to produce successful artifacts. (March & Smith, 1995)

The design science is fundamentally a problem solving paradigm that has
it's roots in engineering. Design Science creates and evaluates IT-artifacts
intended to solve identified organizational problems. The artifacts are
represented in a structured form such as software, formal logic, rigorous
mathematics or informal natural language descriptions. The further evaluation
a new artifact can be placed in an organizational contexts, which gives the
opportunity to apply empirical and qualitative methods. (Hevner, March, Park,
& Ram, 2004)

Both behavioral science and design science paradigms are needed to
ensure the relevance and effectiveness of information system research, even
though the paradigms have different philosophies. The behavioral science
paradigm seeks to find ”what is true” as the design science paradigm seeks to
create ”what is effective”. While one can argue that utility relies on truth, the
discovery of truth may not provide application to this utility. In this setting
design science paradigm can be seen as a proactive agent. It focuses on creating
and evaluating artifacts that enable organizations to address important
information related tasks. On the other hand behavioral science paradigm is
reactive with the respect that it takes technology as a given and focuses on
developing theories to explain phenomena related to the acquisition,
implementation, management and use of technologies. (Hevner et al., 2004)

Hevner et al. (2004) identify seven guidelines for design science in
information systems research. These guidelines are: design as an artifact,
problem relevance, design evaluation, research contributions, research rigor,
design as a search process and communication of research. These guidelines
dictate that knowledge and understanding of a design problem and its possible

solutions are acquired by creating an innovative purposeful artifact for a
specified problem domain. And to make sure that the artifact has utility value
for the specified problem, evaluation of the artifact is very important. The
artifact must also be innovative and solve an unsolved problem or solve a
known problem more efficiently to contribute novel research information. To
meet research rigor guideline the artifact must be rigorously defined, formally
represented, coherent and internally consistent. The process of creating and the
artifact it self can enable a search process where the problem is processed and
an effective solution is found. Finally the result of the research must be
communicated effectively to both technical and managerial audience. (Hevner
et al., 2004)

2.1 Design Science Research Method

The seven guidelines presented by Hevner et al. (2004) among other works on
the area have been refined as a Design Science Research Method (DSRM)
proposed by Peffers et al. (2007).

The DSRM framework is aimed to be a commonly accepted and
consensus building framework for Design Science research. To accomplish this
they based their work on well-accepted elements described in prior research
and current thought to determine the appropriate elements for what the DS
researchers did or should do. The result of their synthesis was a process model
consisting of six activities in a nominal sequence, that are described next.
(Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007)

Activity 1: Problem identification and motivation. The aim of this activity
is to define a specific research problem and justify the value of the solution. The
problem definition is used for artifact development that is aimed to provide a
solution. Depending on the complexity of the case it may be useful to atomize
the problem conceptually to help capturing it's complex features. The solution
value justification serves two purposes: it provides motivation and helps to
understand the reasoning of the researcher's understanding of the problem. The
motivation part of this activity is intended to help both the researcher and the
audience to pursue the solution and accept the results. The required resources
for this activity include appropriate knowledge of the state of the problem and
the importance of it's solution.

Activity 2: Define the objectives for a solution. This activity indicates the
objectives of a solution based on the problem identification and knowledge of
possible and feasible options. The given objectives can be qualitative or
quantitative. Qualitative objectives can be such as in which terms a desirable
solution would be better than current ones. Quantitative objectives can describe
for example how a new artifact is expected to support solutions to novel
problems not yet addressed. The objectives should be inferred rationally from
the problem identification. This activity requires knowledge of the state of
problems and current solutions, if any exist, also the efficiency of the current
solutions.

 Activity 3: Design and development. This activity deals with artifact
creation. Artifacts can be broadly defined constructs, models, methods or
instantiations (Hevner et al., 2004). Conceptually an artifact in design research
can be any designed object that embeds the research contribution in it's design.
This activity determines the artifact's functionality, architecture and creates the
actual artifact. This activity moves from objectives to design and development.
The resources required for this transition include knowledge of the theory that
can be applied in a solution.

Activity 4: Demonstration. This activity demonstrates the use of an artifact
to solve one or more instances of a problem. This activity could involve using
the artifact in experimentation, simulation, case study, proof or some other
appropriate activity. Resources required for this demonstration include
effective knowledge on how an artifact can be used to solve a problem.

Activity 5: Evaluation. During this activity observations and
measurements are made to determine how well the artifact supports a solution
to the problem. The measurements and other observed results extracted form
the use of the artifact are then compared to the objectives of a solution. This
requires knowledge of relevant metrics and analysis techniques. Evaluation can
take many forms depending on the nature of the problem and artifact.
Evaluation can include comparison of the artifacts functionality to the solution
objectives, quantitative performance measures, results of satisfaction surveys,
client feedback, simulations or quantifiable measures of system performance.
Conceptually the evaluation could include any appropriate empirical evidence
or logical proof. At the end of this activity the researchers can decide if they
want to iterate back to activity 3 to try to improve the effectiveness of the
artifact or to continue on to communication. The nature of the research venue
may dictate if the iteration is feasible or not.

Activity 6: Communication. In this activity the problem and it's
importance, artifact, artifacts utility and novelty, rigor of the artifacts design
and the artifacts effectiveness are published. The structure of DSRM process can
be used to structure a scholarly research publication. As the nominal structure
of and empirical research process (problem definition, literature review,
hypothesis, development, data collection, analysis, results, discussion and
conclusion) is a common structure for empirical research papers.
Communication requires knowledge of the disciplinary culture.

The DSRM process is structured in a nominally sequential order. However
it does not expect that researchers would always proceed through the activities
in sequential order. In reality the researchers can start at almost any step and
move outward. The nominal sequence is based in a problem-centered approach
that starts with activity 1. This sequence is natural for research ideas that are
resulted from observation of a problem or from suggested future research. To
an objective-centered solution the first activity is 2. Objective-centered research
can be derived from an industry or research need that can be addressed by
artifact creation. A design- and development-centered approach starts with
activity 3. It could result from an existing artifact that has not been formally
examined as a solution for and explicit problem domain in which it could be
used. An artifact could have been used in a different problem or it could have

come from another research domain. A client-/context-initiated solution starts
from activity 4 and it may be based on observing a working practical solution.
This means that the researchers work backward to apply rigor to the process
retroactively. This kind of approach could be initiated from a consulting case.
(Peffers et al., 2007)

2.2 Requirements engineering

Since the main artifact of this study is a evaluation framework for a software
solution running on tightly specified hardware, requirements engineering
principals apply on operationalization of the framework security objectives. The
framework identifies the security objectives for a solution, which are then
operationalized using use case requirements defined in chapter 8.

Requirements engineering can be defined as a coordinated set of
activities for exploring, evaluating, documenting, consolidating, revising and
adapting the properties of a new or revised system. The goal of a software
project is to build a machine that is intended to solve a problem and so
improve the world. (Van Lamsweerde, 2009)

When considering the behavior of the new system a decision has to be
made on which parts of the world are considered as parts of the problem and
therefore need to be analyzed. Pervasive views going into very small details are
impractical, so a subset of real-world elements considered relevant is chosen to
define the system context. (Haley, Laney, Moffett, & Nuseibeh, 2008)
A process of building a machine needs to investigate the problem world in two
versions of the same system: the system-as-is and the system-to-be. These states
are the system as it existed before the machine was built and how it should be
when the machine is built and operational. The project is initiated because the
system-as-is has problems, deficiencies or limitations, which the system-to-be is
intended to address based on technology opportunities. The problem world can
be divided in three dimensions: why, what and who. (Van Lamsweerde, 2009)

The why dimension aims to identify and make explicit the objectives and
reasons for a new version of a system. The objectives need to be identified in
regards to the limitations of the system-as-is and the opportunities to be
exploited. In order to do so first a through domain knowledge must be acquired
and in the basis of the knowledge alternative options and technology options
must be evaluated. The objectives of system-to-be should also satisfy the
possible conflicting viewpoints, interests or perceptions in the problem world.
(Van Lamsweerde, 2009)

The what-dimension identifies the functional services needed to satisfy the
objectives identified in the why-dimension. Functional services need to meet
constraints and assumptions such as performance, security, usability,
interoperability and cost. These constraints and assumptions may be identified
from usage scenarios envisioned for the system-to-be or agreed system
objectives. (Van Lamsweerde, 2009)

The who-dimension assigns the responsibilities derived from the
objectives, services and constraints defined in why- and what-dimensions for
the components of the system-to-be. These components include human actors,
devices and software. The goal is select the assignments so, that the risk of not
achieving system objectives, services or constraints is minimized. (Van
Lamsweerde, 2009)

There are two main types of statements involved in requirements
engineering: descriptive and prescriptive statements. Descriptive statements
state system properties that are true regardless of the system behavior and the
properties stated by prescriptive statements are dependent on the system
behavior. It is essential to make distinction between descriptive and
prescriptive statements since prescriptive statements may be changed or altered
and the descriptive statements may not be changed or altered. (Van
Lamsweerde, 2009)

Requirements themselves can also be categorized in two groups:
functional- and non-functional requirements. Functional requirements address
the 'what' aspects described above and refer to the services the software should
provide and non-functional requirements define the constraints how the
services should be provided. (Van Lamsweerde, 2009) Quality requirements
include among others the security attributes which are in central role in this
study.

Security requirements can be defined as constraints on the systems
functional requirements, instead of themselves being functional requirements.
Security requirements are prescriptive requirements like functional
requirements, since they provide a specification to achieve desired effect.
Security requirements are realized using security objectives. A single security
requirement can operationalize one or more security objectives. On the basis of
security objectives operationalized to security requirements, satisfaction
arguments can be formed to show the system is able to respect the security
requirements. (Haley et al., 2008)

2.3 Research process of this study

The DSRM framework is used as the basis for research process of this study.
This study has started with a problem-centered approach so the nominal order
of DSRM starting from activity 1 applies. The different parts of the research are
divided in the six activities as follows:

Activity 1, Problem identification and motivation: The research problem
was first identified in the introduction chapter. Motivation for the research was
provided in an individual sub chapter 1.1. The initial problem identification and
motivation provided in the introduction chapter are supplemented by
describing the smart object paradigm and existing legacy and IP-based
protocols in chapter 3.

Activity 2, Define the objectives for a solution: The objective for this study
is defined in the introduction chapter 1.2. The objective is to construct a
framework for evaluating protocols proposed to authorized authentication in
constrained environments. The objectives are formed into concrete research
questions in chapter 1.3.

When compared to current solutions on the problem this study evaluates,
the key property is dynamicity . Current solutions to authorization in the
constrained environments are not dynamic in a sense that in most cases the
devices are configured when they are commissioned and rarely or never
reconfigured

When current solutions similar to the main artifact of this study are
considered. A framework that would capture both the constraints and security
objectives in this manner does not exist. A literary review was conducted as a
part of this study to combine features from previous research, so building a
more holistic view of the problem world.

Activity 3, Design and development: The main artifact of this study will be
developed based on the literary review conducted in chapters 4, 5 and 6. First
part of the framework identifies the constraints and provides classifications for
memory and power consumption constraints. This chapter also provides
answers to the sub research questions 1.1 and 1.2. The second part of the
framework is the security objectives derived from IETF architecture for
authorization for constrained environments. This architectures purpose is to
describe not only actors and functional requirements, but also some security
objectives for designing a authorization solution for constrained environments.
The third part deals with common security considerations when building a
distributed system. This part identifies the different parts of a secure system
and brings more security related objectives to the framework. Figure 1
illustrates the design process and structure of the framework.

Figure 1: The design process and structure of the main artifact

Activity 4, Demonstration: The use of the artifact is demonstrated by

assessing two proposed protocols described in chapter 7. Both protocols are
assessed in specification level. In addition one of the protocols is experimented
with in a simulated environment. During the simulated experiment described
in chapter 9 data is gathered to determine how well this protocol handles
certain constraints. The data is presented in chapter 10. After the experiment the
framework is applied to the protocols by discussing what kind of solutions they
bring to different areas of the framework in chapters 11.1, 11.2 and 11.3. Next
the framework security objectives are operationalized to use case requirements

and linked to the previous discussions on protocols in chapter 11.4. The
experiment completes the answer to research question 1 by answering the
remaining sub-question 1.3. Research question 2 and it's sub-question 2.1 is
answered by applying the framework to a use case.

Activity 5, Evaluation: The basis for the evaluating the artifact is provided
by the demonstration activity, where framework is applied to the protocols and
use case. In the evaluation activity is conducted in chapter 11.5 where
framework it self is assessed on how well it is able to capture the features of the
proposed protocols and provide objectives for the use case requirements.

Activity 6: Communication. The results of this study including the artifact
it self will be published as a masters thesis for University of Jyväskylä and it is
published in electronic form in jyx.jyu.fi digital archive.

3 Smart object technologies

Smart objects is a good umbrella term for the devices addressed in this study. A
technical definition for a smart object is and item equipped with some form of
sensor or actuator, microprocessor, communication device and a power source.
The first two of the defined traits allow the smart object to interact with the
physical world, with the microprocessor the smart object can transform the
captured data or control an actuator and it can communicate it's sensor
readings or receive commands with the communication device. (Vasseur &
Dunkels, 2010)

Smart objects can be used to sense simple physical properties such as
light, temperature or air humidity. They can also be used to sense more
complex variables like air pollution or when an industrial machine needs
service or is about to brake down. Smart objects can also effect the physical
world by using different types of actuators. An actuator in this context can
mean anything from simple tasks like switching on a small led or as complex as
adjusting the heating in a particular part of a building. A single smart object can
be very useful, but their real strength comes from their ability to communicate.
This enables different functionalities to be combined by smart objects
communicating with each other. This could be something like a switch on a
door that communicates to other nearby smart objects to turn on the lights,
adjust the heating and other functionalities in a house. (Vasseur & Dunkels,
2010)

Another way to define a smart object is based on their behavior. The
behavior of a smart object is based on where and what kind of task it is used. A
smart object in a container logistics application for example behaves differently
than a smart object used to control a smart home functionality. Another
important point is that smart object should be designed future proof in some
level, since it is impossible to know exactly how they are used in the future.
However this does not change the two behavioral properties common to all
smart objects: interaction with the physical world and communication. (Vasseur
& Dunkels, 2010)

The third definition of smart objects comes from user interaction. Because
smart objects have a dual nature as physical and digital entities, they bring

forward the fact that Internet of Things cannot be viewed only as a technical
system, but it has to be considered as a human centered interactive system. For
this reason smart object design has to be expanded beyond hardware and
software and include interaction design and social aspects as well. (Kortuem,
Kawsar, Fitton, & Sundramoorthy, 2010)

The smart objects are quickly emerging as a technology, never the less
there are still are some challenges both node and network levels. At the node
level the challenges that have to be addressed are physical size, cost and power
consumption. At the network level the challenges come from the scale of nodes
in a smart object networks, power consumption and memory constraints. The
challenges in the smart object technology it self are standardization and
interoperability. As the technology will be produced by many different parties
standardization is in a essential role. Interoperability is also essential to
integrate smart object devices in the existing IT ecosystem. (Vasseur & Dunkels,
2010)

Historically the origins of smart objects come from the separate strands
of development of computing and telephony. Smart objects can be seen as the
middle ground between computing and telephony as it borrows features from
both. The culture of engineering evolvable systems comes from the computing
heritage and the telephony heritage gives the smart objects the principal of
connecting disparate systems managed by different organizations. Other areas
that have influenced and are related to smart objects are embedded systems,
ubiquitous and pervasive computing, mobile telephony, telemetry, wireless
sensor networks, mobile computing and computer networking. All the smart
object related areas are illustrated in Figure 2 Some of these have industrial
background and others have emerged from academic research communities.
The relating factors with all the aforementioned areas are that they deal with
computationally assisted communication between physical items, wireless
communication or involve interaction between the virtual and physical world.
(Vasseur & Dunkels, 2010)

Figure 2: Smart objects and other key technologies (Vasseur & Dunkels, 2010)

3.1 Wireless Sensor networks

The concept of Wireless Sensor Networks (WSN's) is very similar to that of
smart objects, with the difference that smart objects are less focused on data
gathering. On the other hand WSN's are based on the idea that small wireless
sensors are capable to collect and transmit information from the physical
environment. WSN's are composed of small sensor nodes that transmit
information to a base-station and also help each other to relay the information if
the base station is out of reach for some sensors. (Vasseur & Dunkels, 2010)

The research field of WSN's has been very active since the early 2000s.
The research community has developed many important mechanisms,
algorithms and abstractions targeting the special requirements of small
interconnected devices. Such as mechanisms for power-saving, since a typical
wireless sensors are battery powered and have a long lifetime requirement.
Another important mechanism is the WSN's ability to autonomously configure
them selves to a network for transporting sensor readings. (Vasseur & Dunkels,
2010)

 The lowering cost of sensor technology has made WSN's applicable in
many many scenarios. But today WSN's are characterized by high
heterogeneity because they consist of different proprietary and non-proprietary
solutions. Closed proprietary systems are connectivity islands with limited
communication to the external world through application specific gateways.
This wide range of incompatible solutions is delaying a large scale deployment
of these technologies and creating a virtual wide sensor network that would be
capable to integrate all existing sensor networks. (Mainetti, Patrono, & Vilei,
2011) Next two of these legacy protocols for smart objects are described shortly.

3.2 Legacy protocols for smart objects

3.2.1 ZigBee

ZigBee is a proprietary wireless communication specification based on IEEE
802.15.4 radio link layer and it is owned by the ZigBee alliance. The 802.15.4
standard provides a low bit rate and low duty cycle optimized physical and
link layer solution, but sensor and control applications also need a mesh
networking layer and a standard syntax for application layer messages. The
alliance was formed in 2002 to build these missing standard layers needed to

enable a multi vendor mesh network on top of 802.15.4 radio links. (Hersent,
Boswarthick, & Elloumi, 2011)

The ZigBee architecture consist of five layers: physical (PHY), medium
access control (MAC), network (NWK), application support (APS) and
application framework (AF) layers. In addition to the five layers the
architecture includes a cross-layer entity called ZigBee Device Object (ZDO).
PHY and MAC layers are adopted from IEEE 802.15.4 radio standard and not
defined by ZigBee specification. (Vasseur & Dunkels, 2010)

Even though the ZigBee stack layers correspond loosely to the those of the
IP Stack, it is still incompatible with the IP architecture. This causes problems if
ZigBee networks are deployed together with IP-based services and applications.
The only way to communicate between ZigBee network and IP-based services is
to use a gateway as an interpreter between the two networks. For this reason
and to reduce cost of integrating ZigBee networks with IP networks, the ZigBee
Alliance announced in 2009 that ZigBee will start move towards IP-based
infrastructure. (Vasseur & Dunkels, 2010)

3.2.2 ZWave

Z-Wave is a proprietary protocol architecture intended for automation in
residential and light commercial environments. The architecture is developed
by ZenSys and promoted by the Z-Wave Alliance. Z-Wave was developed for
reliable transmission of short messages between a control unit and one or more
nodes within a network. Z-wave architecture defines it's own physical, MAC,
transfer, routing and application layers. There are two types of devices in a Z-
Wave network: controllers and slaves. Z-Wave functionality is based on the
controllers to poll or send commands to the slaves. The slaves then either reply
to the controllers or execute given commands. (Mainetti et al., 2011)

3.3 Lightweight IP-based protocols

The use of IP protocol stack for smart objects has many advantages such as
interoperability evolvability and scalability. The interoperability of IP comes
from it's initial design, that enabled it to work on top of different link layers.
The evolvability is due to the end-to-end principle that IP architecture is based
on. But when small constrained devices are concerned it needs to be light
enough to meet node level constraints. (Vasseur & Dunkels, 2010) Next the
building blocks for an IP-stack intended to constrained environments use is
described.

3.3.1.1 6LowPAN

6LoWPAN is a new set of IETF standards for Ipv6 over low-power
wireless area networks, that is predicted to be a key technology for Wireless

Embedded Internet. The abbreviation WPAN is inherited from IEEE 802.15.4
standard and it originally stood for wireless personal area network. This term is
no longer descriptive for the wide range of applications for 6LoWPAN. A more
descriptive term nowadays is low-power wireless area network (LoWPAN).
(Shelby & Bormann, 2009)

IPv6 enables smart objects to be connected to other IP-based networks,
without intermediate entities like translation gateways or proxies. Since
LoWPANs have constraints such as limited packet size among others, the use of
IPv6 requires and adaptation layer that performs header compression,
fragmentation and address auto-configuration. This adaptation layer between
IPv6 and 802.15.4 standard has been defined by IETF 6LoWPAN Working
group. 6LoWPAN can be used in applications where embedded devices need to
communicate with Internet-based services using open standards that are able to
scale across large network infrastructures and have mobility. (Mainetti et al.,
2011)

The 6LoWPAN architecture consists of LOWPANs connected to other IP
networks via edge routers. The edge routes route traffic in and out the
LOWPANs and handle 6LoWPAN compression, NeighborDiscovery and IPv4
connectivity mechanisms for the nodes within the LoWPAN. All LoWPAN
nodes are identified by unique IPv6 addresses and are capable of sending and
receiving IPv6 packets. The nodes use User Datagram Protocol (UDP) as
transport protocol and in most cases support ICMPv6 traffic such as ping. The
routing in 6LoWPAN networks can be realized with IPv6 Routing Protocol for
Low power and lossy networks (RPL). (Mainetti et al., 2011)

3.3.2 RPL

RPL was specified and developed to achieve a reliable communication and high
delivery ratio and at the same time to be energy efficient, so it can run on nodes
that have limited energy and memory capabilities. Since many devices in Low
Power and Lossy Networks (LLNs) are battery powered it is important to limit
the amount of sent control messages in the network. Many routing protocols
broadcast control packets at a fixed time interval which wastes energy when the
network is in a stable condition. For this reason RPL dynamically adapts the
sending rate of routing control messages. Routing messages are rarely
generated in a network with stable links and more frequently generated on a
network in which the topology changes frequently. (Tsvetkov, 2011)

RPL is based on a distance vector routing and network devices running
the protocol are connected in a way that no cycles are present. To achieve this a
Destination Orientated Directed Acyclic Graph (DODAG) is built. The graph is
routed at a single destination called DODAG root. The graph is constructed
using an Objective Function (OF) defining how the routing metrics are
computed. The node position relative to the DODAG root is called a rank. The
rank of a node increase when they move away from the root and decrease when
they move towards the root. The rank of the nodes within a network is then
used avoid routing loops. (Tsvetkov, 2011)

RPL allows building a logical routing topology over an existing physical
infrastructure, enabling network optimization for different application
scenarios and deployments. Optimization can be done by constructing a
DODAG that considers expected number of transmissions or battery powered
nodes in certain parts of the network. (Tsvetkov, 2011)

3.3.3 CoAP

Constrained Application Protocol (CoAP) is an application layer protocol
optimized for resource constrained networks. It consists of a subset of the
Hyper Text Transport Protocol functionalities, that have been redesigned for
low processing power and energy consumption constraints of small embedded
devices. CoAP is built on top of UDP and it uses a fixed length binary header of
only 4 bytes followed by compact binary options. (Mainetti et al., 2011)
Constrained networks such as 6LoWPAN support the fragmentation of Ipv6
packets to small link layer frames. This causes significant reduction in packet
delivery probability. For this reason one of the leading design goals of CoAP
has been keeping the message overhead small to limit the need for
fragmentation. (Shelby, Hartke, & Bormann, 2014)

CoAP provides a request/response interaction model for application
endpoints, supports built-in discovery of services and key web concepts such
as URIs and Internet media types. It also meets the special requirements of the
constrained environments such as multicast support, low overhead and
simplicity. Since CoAP is based on a sub-set of HTTP functionalities it is also
easily interfaceable with HTTP. (Shelby et al., 2014)

The differences between HTTP and CoAP interaction models come from
the typical machine-to-machine interaction where one single CoAP
implementation acts in both client and server roles. CoAP request is similar to
HTTP request sent by a client requesting an action using a method code, on a
resource identified by URI from the server. The server then responses with a
response code and depending on the request also a resource representation may
be included. (Shelby et al., 2014)

CoAP deals with the request/response interchanges asynchronously over
a datagram orientated transport such as UDP, using a layer of messages that
support optional reliability. For this goal CoAP defines four types of messages:
confirmable, non-confirmable, acknowledgement and reset. Requests and
responses can be carried in confirmable or non-confirmable messages and in
addition responses can be carried piggybacked in acknowledgement messages
as well. (Shelby et al., 2014)

4 Constrained environments

This chapter gives definitions to what do the terms constrained device and
constrained node mean. It also describes and classifies the different constraints
and doing so provides the first part for the main artifact of this study.

Constrained devices such as sensors or smart objects with limited CPU,
memory and power resources are still able to connect to a network. The
network it self can be constrained or challenged, with unreliable or lossy
channels, based on wireless technologies with limited bandwidth, dynamic
topology and relying on a gateway or proxy to connect to the Internet.
(Herberg, Romascanu, Ersue, & Schoenwaelder, 2015) An alternative term for a
constrained device when the properties of a network node are in focus is a
constrained node. (Keranen, Ersue, & Bormann, 2014)

The need for constrained nodes can be justified as how the Internet of
Things could be scaled in the future. The scaling of Internet of Things has two
aspects:

• Scaling up of Internet technologies to large number of inexpensive
nodes, while

• Scaling down the characteristics of the nodes and networks they form to
make the scaling up economically and physically viable solution. This
need for scaling down on characteristics leads to “constrained nodes”.

A good way to define the term “constrained node” is to contrast it's
characteristics to a more familiar Internet nodes. A constrained node lacks some
characteristics that are taken for granted in the case of Internet nodes, due to
constraints on available energy and physical constraints such as size and
weight. This means that the nodes have tight upper bounds on state buffers,
code space and processing cycles. Since both processing and transmitting
require energy, the optimization of network bandwidth usage and power
consumption used in processing are dominating consideration on all
requirements. This is not a rigorous definition, but it clearly sets constrained
nodes apart from server systems, personal computers and powerful mobile
devices such as smartphones. (Keranen et al., 2014)

The constraints of the nodes can be divided into five subcategories:

1. Maximum code complexity (Read only memory/Flash)
2. Size of state and buffers (Random access memory)
3. Amount of computation ability in a period of time (processing power)
4. Available power and energy
5. Lack of user interface and accessibility during deployment (ability to set

keys update software etc.) (Keranen et al., 2014)

The power efficiency demand affects the hardware and software design as
well as network architectures and protocol designs of constrained nodes.
Because communication consumes power it is crucial that the communication
patterns are designed so that they use available resources efficiently. The
software design is also limited by the often scarce amount of memory, so the
software of constrained nodes not only needs to be power efficient, but must
have a small memory footprint. These resource constraints that limit the node
level have their effect on the network level also. This leads to demands on
network protocol design to minimize the amount of network related
information each node has to keep and number of transmissions each node has
to make. (Vasseur & Dunkels, 2010)

When constrained nodes form a network, it often leads to constraints on
the networks themselves. However the networks can have constraints not
related to the nodes. For this reason the terms “constrained networks” and
“constrained-node networks” have to be independently distinguished.
(Keranen et al., 2014)

The next two chapters give more detailed descriptions on constrained
devices and networks. These chapters also provide classifications for memory
and power constraints.

4.1 Classes of constrained devices

Since a overwhelming variety of Internet-connected devices can be
envisioned and even existing today, some kind of classification of constrained
devices is needed. Bormann, Ersue & Keränen suggested a three tier
classification in their IETF document that reached RFC status in 2014 and has
been referred since as a baseline classification. This classification is illustrated in
Table 1. They based their classification on distinguishable clusters of
commercially available chips and design cores available for constrained devices
at the time of writing the document. These boundaries of these classes are
expected to move over time, but not as fast as in larger scale of computing.
Moore's law tends to be less effective in embedded space and the gains made
available by increasing transistor count and density will likely be invested in
reduction of cost and power than in increases in computing power. (Keranen et
al., 2014)

TABLE 1 Classes of Constrained Devices

Name Data size (RAM) Code size (ROM/Flash)

Class 0, C0 < 10 kB < 100 kB

Class 1, C1 ~ 10 kB ~ 100 kB

Class 2, C2 ~ 50 kB ~ 250 kB

Class 0 devices are very constrained sensors, with so severe memory and
processing constraints that they are unable to communicate directly with the
Internet in a secure manner. Class 0 devices need the help of larger devices
acting as proxies, gateways or servers to participate in Internet
communications. Generally they cannot be secured or managed
comprehensively in the traditional sense, but they will likely be preconfigured
and will be rarely reconfigured, if at all. (Keranen et al., 2014)

Class 1 devices are quite constrained in code space and processing
capabilities. They are not able to employ a full Internet protocol stack and not
able to communicate to other nodes using HTTP, Transport Layer Security
(TLS), other related security protocols and XML-based data representations.
Instead Class 1 devices are capable enough to use a protocols stack designed for
constrained nodes including CoAP over UDP and special implementations of
Datagram Transport Layer Security (DTLS). This enables them to communicate
without the help from a gateway node, so they can be integrated as fully
developed peers of an IP-network. But their state memory, code space and often
also power expenditure set limits to protocol and application solutions.
(Keranen et al., 2014)

Class 2 devices are less constrained and so capable of supporting most of
the protocol stacks of normal Internet nodes. However even in this level the
devices can often benefit from lightweight and energy-efficient protocol usage
and from consuming less bandwidth. The use of protocol stack defined for
more constrained devices on Class 2 device leaves more resources available for
applications, since they will be using fewer resources for networking. This
might also reduce development costs and increase interoperability. Devices
significantly beyond minimum level of Class 2 are less demanding on the
protocols used, but can still be constrained by a limited energy supply.
(Keranen et al., 2014)

4.1.1 Classifications based on energy limitation

As mentioned earlier the available power and energy is also a limiting factor for
constrained devices. The power and energy available to a device can differ from
kilowatts to microwatts and from unlimited to hundreds of microjoules. Watts
determine the sustainable average power available for the device over the time
of it is functioning. Joules determine the total electrical energy available before
the energy source is exhausted. Devices can be limited both in available energy
and available power. Bormann, Ersue & Keränen (2014) describe a four level

classification for energy limitations that is illustrated in Table 2. (Keranen et al.,
2014)

TABLE 2 Classes of energy limitation

Name Type of energy limitation Power source example

E0 Event energy-limited Event-based harvesting

E1 Period energy-limited Periodically replaced or recharged battery

E2 Lifetime energy-limited Non-replaceable primary battery

E9 No limitations to available energy Mains-powered

Devices classified as E0 have limited amount of energy available for a
specific event, such as a button press in an energy-harvesting light switch. E1
classified devices have a energy limitation based on a specific period. Examples
of this kind of devices are a solar powered device with limited energy stored for
night, device that is manually connected to a charger or a device that needs it's
battery replaced in certain intervals. E2 device has an total energy limitation for
its usable lifetime and it may be discarded when its non-replaceable primary
battery runs out. When no relevant limitations to energy exist the device is
classified as E9. (Keranen et al., 2014)

In the case of wireless devices the radio transmissions cause a big portion
of the total energy consumption of the device. The parameters of the radio
transmissions influence the power consumption during transmission and
reception. These parameters include the available spectrum, desired range and
the bit rate. The duration and number of transmission and reception including
waiting for incoming messages influence the total energy consumption of a
device. Depending on the energy source and communication frequency
different strategies for power usage and network connectivity may be used.
(Keranen et al., 2014)

There are three strategies in the device level for power usage and they can
be described as follows.

Always-on: No need for power saving measures, so the device can stay on
and connected to the network all the time.

Normally-off: The device sleeps long periods and reconnects to the
network when it wakes up. In this strategy the main area of optimization is to
minimize the effort needed for the reattachment process and resulting
application communications. If the device needs to communicate infrequently,
the increase in energy expenditure during reattachment may be acceptable.

Low-power: This strategy is suitable when devices need to operate on
small amount of power, but still need to communicate in relatively frequent
basis. This strategy requires that low-power solutions are also available in the
hardware and and link-layer mechanisms. These devices retain their attachment
to the network in some form, despite they may have a relatively short sleep
period between transmissions. This strategy minimizes the power usage

needed for reestablishing communications. An example of this strategy is duty
cycling where components are switched on and off in a regular cycle.

4.2 Constrained networks

Bormann, Ersue & Keränen (2014) define a “constrained network” as a network
where some of the characteristics taken for granted with link layers in common
user in the Internet are not attainable. These constraints include:

• Low bit rate/throughput including limitations from duty cycling.
• High packet loss and packet loss variability, that causes low delivery

rate.
• Highly asymmetric link characteristics.
• Using larger packets causes high packet loss due to link-layer

fragmentation.
• Limits on reachability of nodes over time, since devices may power off

and be able to communicate for brief periods of time.
• Lack of or severe constraints on advanced services such as IP-multicast.

The term constrained network is used when at least some of the nodes in
the network have some of these characteristics. The reasons behind the
constraints may be one or several of the following:

• Network cost constraints
• Node constraints, this concerns constrained-node networks.
• Physical constraints, such as power constraints, environmental

constraints, media constraints etc.
• Regulatory constraints, such as limits on spectrum availability and

radiated power in a region of the world or industry such as explosion
safety.

• Technology constraints, such as heritage lower-speed technologies still
operational.

4.2.1 Constrained-node network

Constrained-Node Network is a network composed of significant part of
constrained nodes, which give the network constrained characteristics, so a
constrained-node network is always a constrained network. It may also have
other constraints in addition of consisting of constrained nodes. (Keranen et al.,
2014)

4.2.2 Summary

In summary constrained environments can have constraints from two main
sources: the devices them selves and the from the network they use. The
constraints described in this chapter are gathered in Table 3. These constraints
are the first building block for the main artifact of this study.

TABLE 3 Constraint summary

Constraint Description

Maximum code
complexity

ROM/Flash constraints limit the size of algorithms needed for
computing complex tasks such as asymmetric keys. The minimum
amount of ROM for secure communication is ~100 kB. This constraint is
described by the three classes of devices based on available ROM and
RAM. By this classification the amount of ROM and RAM need to be
considered together (see next constraint on this table).

Size of state and
buffers

RAM constraints limit the size of keys and other state buffers needed to
hold in the working memory. The minimum amount or RAM for
secure communication is considered to be ~10 kB.

Processing
power

Amount of computation ability in a period of time effects to the latency
of complex calculations and may render too complex calculations
demanded from the constrained nodes non applicable.

Available
power and
energy

Transmitting is identified as the dominating factor on energy
consumption. For this reason the network transmissions required from
energy constrained nodes should be minimized. The level of power
saving measures is dictated by the available energy.

Network
constraints

Throughput, delivery rate and node reachability are the considerations
that need to be taken into account. Since network constraints can also
effect the security mechanisms used.

Lack of user
interfaces

Sets limits to accessibility during deployment and ability to set keys
and update software during the device lifetime.

Physical
constraints

Size and weight of the device.

Cost The cost of a constrained distributed system is also a constraint to
consider when building a business case around an application.

This chapter also describes two ways the for classifying the device

constraints. The first classification is made based on available memory and
second based on power and energy limitations. These classifications can be
found from Tables 1 and 2.

The device constraints pose several limits to choosing an authorized
authentication mechanism design. First the memory constraints limit the size of
used algorithms and encryption keys. Second the processing power also limits
the applicability of more complex algorithms. And third the demand for
energy efficiency brings a need for minimizing the number of transmissions.

In addition to three groups of device constraints, the network constraints
and lack of user interfaces should also be considered. Network constraints can
cause larger latency for requests and other network related challenges that can
effect the authentication mechanism. The lack of user interfaces needs to be
taken into consideration when the constrained devices are deployed. For

example all necessary keying material to initial secure connections have to be
set when the devices are deployed.

The physical size and cost of the devices are very much dependent on the
other device properties. For example a larger on board battery capacity is in
many cases the key factor to the devices physical size and cost is heavily
effected by processor and memory capacity.

5 Architecture for authorization in constrained
environments

This chapter is based on IETF Authentication and Authorization for
Constrained Environments (ACE) working group architecture. It provides
objectives on specific features that need to be taken into account when a
authorized authentication mechanism is designed to be used in a constrained
environment. The objectives presented in this chapter provide the second part
for the main artifact of this study.

Since constrained nodes have limitations they may not be able to perform
all necessary tasks required by the complex security mechanisms. As a solution
to this problem it is proposed that more demanding tasks are assigned to other
less constrained entities to achieve the required security level in constrained
scenarios. The functionalities need to be grouped by their demands on the
platform i.e. can they be assigned to a constrained level device or a less-
constrained level device. In this chapter the architecture for authentication and
authorization in constrained environments in this manner is described and the
needed elements and relationships of between functionalities are identified.
(Gerdes, Seitz, Selander, & Bormann, 2015a)

First some assumptions for this architecture needs to be made in a general
level. The primary aim of the architecture is to control and protect a resource-
based interaction between two potentially constrained endpoints. One endpoint
is not limited to hosting the functionalities belonging to just one actor. Client is
determined as an endpoint that requests an access to a resource that is hosted
on another endpoint called the resource server. These two endpoints may not
have a security setup readily available, so one has to be established. (Gerdes et
al., 2015a)

5.1 Actors and their tasks

Actors in this architecture should be considered as a concept to understand the
security requirements for constrained devices. Actors are not synonymous to

devices, but a single device or piece of software can include the functionalities
of several actors. The actors consist of a set of tasks they perform. Actors are
grouped to three levels: principal, less-constrained and constrained levels.
Another defining factor is the actors security domain that can be different
between actors. For example if the client and resource reside in different
security domains. (Gerdes et al., 2015a)

5.1.1 Constrained level actors

First lets look into the constrained level actors client and resource server and
define their tasks. Both client and resource server need to have an ability to
communicate in a secure way and validate each others authorizations to
perform the tasks needed for the transaction. The client has to validate that the
resource server is an authorized endpoint for the resource it wants to access. On
the other end resource server needs to validate that the client requesting a
resource has an authorization to do so.(Gerdes et al., 2015a)

5.1.2 Less-constrained level actors

Less-Constrained level actors task is to assist the constrained level actors by
relieving them from computationally intensive and memory demanding tasks
such as managing keys for numerous endpoints. On the Client side this actor is
called Client Authorization Server (CAS) and on the Resource Server side actor
is called Authorization Server (AS). These less-constrained actors belong to the
same security domain and function under the same principal as their
constrained counterparts. They act on behalf of their principals and as
authorities for claims about the constrained level actors residing in the other
security domain. (Gerdes et al., 2015a)

The Client Authorization Servers function is to authenticate the Resource
Server and determine if it is an authorized server for the Resource in question.
The tasks to achieve this are to validate that entity attributes, mediate the
authorization information between Requesting Party and the Client and handle
the negotiation process needed for secure communication in behalf of the
Client. (Gerdes et al., 2015a)

The Authorization Servers main function is to authenticate a Client on
behalf of the Resource Server and determine the Clients permissions to the
different Resources. The sub tasks are similar with the client side: validate the
entity attributes, mediate authorization information between Resource Owner
and Resource Server and handle the secure communication establishing
process. (Gerdes et al., 2015a)

Many use cases for constrained devices portray a scenario where
principals are not present at the time of communication, can't communicate
directly or prefer the device to communicate autonomously for some other
reason. In such cases the principal requires an agent to maintain the policies set
for the endpoint interaction it governs. Namely Authorization Server must be
able to act on behalf of the Resource owner handling access request on behalf of

Resource Server and Client Authorization server making resource request and
handling their responses on behalf of the Client. (Gerdes et al., 2015a)

5.1.3 The principal level actors

On the principal level the client and resource server are controlled by an
individual or a company. The principal controlling the client is called
Requesting Party (RqP) and resource server and the actual resource are
controlled by Resource Owner (RO). Requesting Party and Resource Owner are
in charge of specifying security policies to the constrained level actors and
therefore by definition Client and Requesting Party belong to the same security
domain as do Resource Server and Resource Owner. Requesting Party
configures C for authorization information for allowed sources for a resource
and the Resource Owner configures the Resource Server for authorization
information for accessing a Resource. (Gerdes et al., 2015a)

As said the principal level actors make the authorization decisions and
specify them to the less-constrained level actors by encapsulating them in to
security policies. These policies are then enforced by the constrained level
actors. Security objectives in the principal level that are valid for any scenario
can be divided into two types on basis that they concern the Client or Resource
Server side. The first concerns the resource server side: all entities that gain
access or knowledge of a Resource have to be authorized by the Resource
Owner. The Client side security objective is: Client conducts exchanges,
including requesting data or accepting a response only from resources
authorized by the Requesting Party. (Gerdes et al., 2015a)

The architecture described above and it's three levels are illustrated in
Figure 3. Note that the vertical arrows in this figure are not representative of
information flows but illustrate exerted control or provided support. Nor do the
arrows indicate a necessary connection during communication. As described
previously the principal level actors are not always present and in such cases
the authorization servers act autonomously.

Figure 3: Overall architecture (Gerdes et al., 2015a)

5.1.4 Possible role combinations

Elements described here are purely architectural. Depending on
implementation and the device capabilities, several elements can reside in a
single device or even a single piece of software. For example if Client or
Resource Server are located in a powerful enough device their functionalities
can be combined with their Authorization Servers. (Gerdes et al., 2015a)

Another good example of combining the functionalities of two actors is a
situation where the Client and Resource Server have the same principal i.e.
Requesting Party is the same individual or company as Resource Owner. In this
kind of situation Client and server side authorization servers can be combined
as one entity if desired. (Gerdes et al., 2015a)

5.2 Information flows

When reviewing the information flows the architecture focuses on we need to
take note of the fact that the message flow may pass unprotected paths. The
interaction between principal level actors is not a concern since existing
mechanisms can be employed. The critical points in the message flow are the
messages between constrained nodes and constrained nodes and their less
constrained counterparts. These messages can after all contain permissions,
client and server attributes, conditions on resources, not to mention keys and
credentials. This control information may also be rather asymmetric in the client
and server side. (Gerdes et al., 2015a)

The architecture assumes that the necessary credentials are provided for
the control information flows between constrained and their less-constrained
counterparts and it needs to be part of a solution. The problem statement for
authorization in constrained environments is derived from the information
flows and can be summarized by three major points:

1. Less-constrained nodes control the interaction between potentially
constrained nodes on behalf of their principals.

2. The interaction needs to be secured between endpoints in end-to-end
manner, including scenarios with intermediary nodes, including
necessary key establishment.

3. Transferring control information needs to be secured in an end-to-end
manner, including scenarios with intermediary nodes. This may require
employment of pre-established keying material. (Gerdes et al., 2015a)

The first potential information flow is a push sequence initiated by Client,
first acquiring credentials using CAS and presenting them to RS is presented in
Figure 4.

Figure 4: Information flow (Gerdes et al., 2015a)

But the architecture does not imply that this would be the only possibility.
It states “Authorization information is transferred from AS to RS using Agent,
Push or Pull mechanisms” (Gerdes et al., 2015a). This implies that another
potential information flows would be possible. Such as a pull sequence. Again
initiated by C, but using RS as intermediary for authorization with AS, which
then communicates to CAS.

5.3 Summary

The architecture is intended to be used as a framework for designing
authorized authentication mechanisms for constrained environments. It does
not pose tight restrictions on such things as authorization sequence or in which
actual device the different elements of the mechanism reside. The architecture
can so be seen as a set of objectives on how to realize such mechanism. Table 4
summarizes the objectives gathered from the architecture. These objectives are
the second building block for the main artifact of this study.

TABLE 4 Architecture objective summary

Objective Description

Delegation of demanding
tasks

Demanding tasks are assigned to other less constrained
entities. Functionalities should be grouped by their
demands on the platform to determine if they should be
assigned to a constrained level device or a less-constrained
level device.

Validation of actors • The client has to validate that the resource server is
an authorized endpoint for the resource it wants to
access.

• Resource server needs to validate that the client
requesting a resource has an authorization to do so.

• The Client Authorization Server needs to validate
that the Resource Server is an authorized server for
the Resource.

• The Authorization Servers needs to validate the
Client on behalf of the Resource Server and
determine the Clients permissions to the Resource.

Autonomous functionality • Less-constrained nodes control the interaction
between potentially constrained nodes on behalf of
their principals.

• Authorization Server must be able to act on behalf
of the Resource owner handling access request on
behalf of Resource Server.

• Client Authorization server making resource
request and handling their responses on behalf of
the Client.

End-to-end security The interaction needs to be secured between endpoints in
end-to-end manner, including scenarios with intermediary
nodes, including necessary key establishment and control
information.

6 Security concerns

This chapter deals with common security concerns for a distributed system that
need to be achieved even in constrained environments. It also discusses the
different options on choosing an authentication sequence and authentication
method. This chapter provides the third part for the main artifact of this study.

Constrained devices are designed to be small, inexpensive and easily
integratable. By this definition they are meant to be used in various
environments. They can be in control of important functions and have access to
large amount of valuable data. In this kind of scenario the need to protect from
unauthorized access is self-evident, but there are other scenarios to take into
consideration. Even gathering seemingly innocuous data and information of
functions can lead to insights of a system that can be used to gain some level of
control. Another scenario could be that the devices themselves are not the
primary target, but they are used as an intrusion point to infiltrate the network
and used to attack other more valuable devices. Because constrained devices
have limited capabilities they can be the weakest link in a network and hence an
attractive target. (Selander, Mani, Kumar, Seitz, & Gerdes, 2015)

First objectives for a secure and reliable conduct for a distributed system
has to be defined. Pfleeger & Pfleeger (2002) address the security goals of a
computer-related system with three aspects. These aspects are confidentiality,
integrity and availability described in Table 5.

TABLE 5 Security objectives for a computer-related system

Objective Description

Confidentiality Ensuring that assets are accessed only by authorized parties.
Access includes not only reading privileges, but also viewing,
printing and knowledge of the existence of an asset.

Integrity Only authorized parties have the ability to modify the assets.
Modification includes writing, changing, changing status,
deleting and creation.

Availability All authorized parties have access to the assets, at the time
they need it.

These three objectives are considered as hallmarks of solid security. Their
first appearance in literature is found as early as 1972 in James P. Anderson's
essay in computer security (Anderson, 1972). These properties are referenced as
the C-I-A triad or the security triad. (Pfleeger, Pfleeger, & Margulies, 2015)
These properties define how resources should be secured.

Nguyena, Laurentb & Oualhaa (2015) propose five objectives in their
definition for security objectives of IoT: confidentiality, integrity,
authentication, authorization and freshness. These properties are centered on
data shared between devices and they address message security
(confidentiality, integrity, authentication and freshness) and access rights
(authorization). (Nguyen, Laurent, & Oualha, 2015) These objectives are
summarized in Table 6.

TABLE 6 Security objectives for IoT

Objective Description

Confidentiality Exchanged messages in the IoT may need to be protected.
An attacker should not gain knowledge about the messages
exchanged between a sensor node and any other Internet
entity.

Integrity The alteration of messages should be detected by the
receiver.

Authentication The receiver should be able also to verify the origin of the
exchanged messages.

Authorization IoT devices should be able to verify whether certain entities
are authorized to access their measured data. At the
network layer, only authorized devices should be able to
access the IoT network. Unauthorized devices should not
be able to route their messages over the IoT devices,
because it may deplete their energy.

Freshness This property ensures that no older messages are replayed.
This is important to secure the communication channel
against replay attacks.

Both taxonomies can be seen congruent by content, but the grouping of
the objectives take different perspectives. The second taxonomy adds more IoT
specific features dealing with more message centric issues. Such as alteration
detection and origin verification for the messages. It also acknowledges the
possibility of replay attacks as a separate property. These issues can be dealt
with securing the communication between devices and enforcing authorized
authentication. Next chapters describe different methods for communication
and resource security.

6.1 Communication security

There are alternatives on how communication security can be achieved. These
alternatives include session based security at the transport layer, object security
at the application layer or hybrid solutions that utilize both session-based and
object security. Session-based security offers security, integrity and
confidentiality protection for the whole application layer exchange. But it may
not be able to provide end-to-end security over multiple hops. It also requires
usage of a handshake protocol that has high memory and power demands that
can be too expensive for constrained devices. Object security is a more flexible
communication model, but it's problem is that it can not provide confidentiality
for the message headers. Hybrid solutions can be built so that key exchange is
handled with secure data objects, but session-based security is used for resource
access. (Gerdes et al., 2015a)

In addition to attacks focusing on monitoring and altering the data transit
constrained devices are specially vulnerable for Denial of Service (DoS) attacks.
These attacks can result not only temporary failure in a service, but also more
permanent failures, for example draining the battery by repeated flooding with
connection attempts. For these reasons authorization solutions should take into
account such things as power usage, number and size of authorization
messages needed, protocol code size and memory requirements. (Selander et
al., 2015)

There are several proposed techniques for securing IP-based constrained
network traffic that utilize 6LoWPAN and CoAP. CoAP standard defines a
binding for Datagram Transport Layer Security (DTLS), but this solution is
based on a setting up the security information during the provisioning phase.
(Shelby et al., 2014)

DTLS is a common Internet protocol, so it does not consider the needs of
constrained devices by design and use a heavyweight, protocol like this in a
constrained environment propose certain problems. One of them is the 127 byte
Maximum Transmission Unit (MTU) of 802.15.4 standard which 6LowPAN
stack uses as data link and transmission layer. For a constrained device sending
and receiving messages is much more expensive than local processing, so for
this reason it is proposed that 6LoWPAN compression is used also for DTLS
headers and messages to minimize number of messages needed. The
6LoWPAN standard defines header compression and fragmentation schemes to
overcome the small MTU. For compression the standard defines an IP Header
Compression (IPHC) for the IP-header and also a Next Header Compression
(NHC) for the IP extension headers and the UDP header. These compression
mechanisms can be used to compress security protocols as well. (Raza,
Trabalza, & Voigt, 2012)

DTLS can be applied in an end-to-end manner. An end-to-end security
protocol can provide security regardless of the underlying network
infrastructure. DTLS protocol is placed between transport and application
layers, so it does not rely on infrastructure provider to support the security
mechanism. The security establishment is left to the two communicating

applications. DTLS assumes an unreliable transport, but it is still possible to use
DTLS over a reliable transport such as TCP. (Kothmayr et al., 2013)

6.2 Authorized authentication

The terms authentication and authorization together define access rights and
”who can do what” for given object. Authentication addresses the who part of
the equation and authorization binds the who and permission to the object in
question, so defining if permission is granted or denied. Authentication is in
most cases done using credentials. Types of credentials can vary from long
-lived generic authorizations and some more specific credentials directed to
authorize specific actions. In some cases satisfactory level of authenticated
authorization can be achieved by static authorization and there may be no need
to change the credentials after manufacturing or deployment. But many use
cases demand for more flexible and fine-grained access control policies.
(Gerdes et al., 2015a)

There are also privacy considerations to take in to account. Since in many
cases the purpose of constrained devices is to collect data from or affect their
surroundings in the physical world. Collected data can often be associated with
individuals. Privacy protection and a guarantee is needed that only authorized
entities with prior consent from resource owner are allowed to access the data
and trigger actions. (Selander et al., 2015)

These requirements for authorized authentication can be divided into
smaller pieces to better understand what is needed to achieve this goal. So next
authentication and authorization and their prerequisites are dealt with.

The key part of authentication is identity. So what is the definition of
identity and since we are in the digital realm, more precise term we are looking
for is digital identity. Both ITU (ITU-T, 2009a) and IETF (Shirey, 2007)
documentation define similar characteristics for the term. They both define
identity to be a set of characteristics presented as attribute values, that are
sufficient to positively identify an entity within context. An entity in both
definitions is left as an ambiguous term that can be applied to a user or other
system entity such as a device or a piece of software.

Authorization is defined in the IETF Internet Security Glossary (Shirey,
2007) as ”An approval that is granted to a system entity to access a system
resource” or ”A process for granting approval to a system entity to access a
system resource”. ITU-T-800 (ITU-T, 1991) definition is quite similar it states
that authorization is: ”The granting of rights, which includes the granting of
access based on access rights”.

There are plethora of different architectures for handling access control
with different mechanisms to handle authentication and authorization. Few of
them are described in the next chapters.

6.2.1 Identity based access control

The digital identity is always based on finite number of attributes and should
not considered as a holistic identity of an entity. Holistic identity is a theoretical
issue with indefinite number of attributes and it should be considered as an
theoretical issue. (ITU-T, 2009a)

We are always dealing with a subset of attributes of an entity when digital
identity is being authenticated. In many cases a full set of attributes is not even
necessary to achieve sufficient level of identification. The necessary level of
identification information always dependent on the context. But in any case
sufficient identity information to uniquely recognize an entity within a context
to the extent that is necessary for the relevant applications is needed. So even
generic attributes, such as location or liaison to an organization can be enough
to identify an entity to adequate extent. (Chadwick, 2009)

This brings us to the question how identities are handled in information
systems. The process of handling identity attributes is called identity
management. ITU defines identity management as a set of functions and
capabilities such as administration, management and maintenance, discovery,
communication exchanges, correlation and binding, policy enforcement,
authentication and assertions. These functions and capabilities are the
mechanisms used in assurance of identity information and the identity of an
entity and so enabling security applications. (ITU-T, 2009a)

In the system level there are different ways to deal with identity
management. In a centralized system an entity presents its identifier and some
form of authentication such as password or authentication token. The
authentication acts as a proof that the entity is entitled to be known by its
identifier. If the system accepts this authentication it associates the entity with
the given identifier, including all attributes linked to this identifier and grants
the entity access to the system. In a distributed system each local system has its
own set of identifiers, so an accessing entity needs to have credentials to every
local system in order to access them. (Chadwick, 2009)

Single sign on (SSO) is there fore desirable solution for fighting
complexity in distributed systems. First designs to achieve SSO were based on
public key infrastructure (PKI) that allocated each user a globally unique
identifier. This identifier would be known by all local systems in a distributed
system and used to grant access. The weakness of this kind of system was that
everyone had to know everyone else's globally unique identifier and this raised
obvious security concerns. (Chadwick, 2009)

The next breakthrough was when it was realized that there was no need to
use global identifiers. Instead the identifiers could remain local to the system
that allocated them. This was achieved using a federation between local and
remote systems for authorization. In federated systems authorization is granted
based on identity attributes, rather than globally unique identifiers. The service
provider can verify an entity based on identity attributes provided by trusted
authoritative sources. These systems are known as federated identity
management systems. (Chadwick, 2009)

A federation is defined in ITU document X.1250 (ITU-T, 2009b) as ”An
association of users, service providers and identity providers”. This means that
a group of service providers have formed an association and trust between
themselves and are willing to exchange messages. Further more if these
messages are also used to exchange authentication and authorization
credentials between systems. So allowing access to another system using
credentials verified by another federated system, we have federated identity
management (FIM). FIM enables SSO, but it also brings other benefits, such as
offloading the load of managing user attributes and easier scalability.
(Chadwick, 2009)

But even though FIM systems give the ability to SSO and simplify things
compared to locally administrated access control, it still has its shortcomings.
These problems originate from the fact that only the identity is federated and
the authorization of resources is left remote system.

6.2.2 Authorization base access control

In an Identity Based Access Control (IBAC) described in the previous chapter
an entity request a resource from a service and includes a proof of identity with
the request. The service that was called submits this information to its policy
engine to determine the authorizations, so the service bases its access decision
on this authorization not the provided identity. (Karp, 2006)

In an Authorization Based Access Control the only thing that changes is
that the local policy engine used to determine the authorizations before a
resource request to the service. The calling entity then presents the appropriate
authorizations to the service along with the resource request. This way the only
function left to the remote system is to verify that the authorizations presented
haven't been forged. (Karp, 2006)

Authorization based access control has many advantages and the major
one is that each domain only needs handle the information about its own
principals. The user entities only authenticate to their own domains, which
makes system updates and authorization formats simpler and makes the
systems more scalable. This architecture also makes the systems more secure
and private, since the systems only needs to interpret the contents of the
authorizations and no organizational information leaks between domains.
System manageability becomes easier because authorization delegation is much
simpler between entities. (Karp, 2006)

6.2.3 Capability based access control

Traditional access control models that are based on authorization lists or group
authorizations have big challenges when they are used in large distributed
systems. This problem comes from the requirement of a consistent definition of
complex access policies. To overcome this inherent complexity of traditional
access control models, some alternative approaches have been studied. One of

these approaches is Capability Based Access Control (CapBAC). (Hernández-
Ramos, Jara, Marın, & Skarmeta, 2013)

A capability based authorization was first proposed to address the
dynamicity and scalability issues in an environment where services are
independently made available by service providers. The proposal was made by
Skinner (Skinner, 2009) as a part of Digital Ecosystem (DE) environment
promoted by SUN. DE environment provides facilities for searching services by
their characteristics and accessing them based on the needs of the user. The
proposal intended to add basic services specific mechanism for the user to gain
an access token to a service the user needs, but has never used before. DE
environment does not assume environment wide access control mechanisms or
federated identity management to be used. The environment description
implies that each service is potentially autonomous and users needs could be
highly dynamic, so a more permanent link was not necessarily needed.
(Gusmeroli, Piccione, & Rotondi, 2013)

A capability is a communicable token of authority that is unforgeable and
associated to a set of access rights. The name is devised from the capability the
token gives to a process for interaction with an object in predetermined way. In
this model an entity has to present an authorization capability, by proving it
has the ownership of a token to the service provider for gaining access to
resources. Compared to access control list models where the service provider
verifies the authorization rights to each requested resource for each requester.
This approach brings benefits in the form of simplified delegating of access
rights, capability revocation and information granularity. Delegation support
means that a subject can grant rights to another subject and also grant the rights
for further delegation. Delegations can concern the whole set of rights granted
to the original subject or only part of them. Capability revocation can be done
by properly authorized subjects at any time. Information granularity means that
a capability can specify the level of granted rights dynamically and there fore
refine the level data access granted by a capability token. (Gusmeroli et al.,
2013)

In capability based systems access control policies and authorization
procedure simpler from the service point of view. Since the entity that wishes to
access a resource sends a token together with the request, the receiving entity
already knows the right level of permissions the requester has been granted.
(Hernández-Ramos et al., 2013)

There are also some challenges facing capability based authorization. First
is the large amount of capabilities needed to issue and requesting them when a
resource is accessed. The second is to standardize the use of capability tokens
for cross-domain use. The first problem can be mitigated by setting up services
for granting capability policies, that can also generate on the fly access for
properly identified and authorized users. (Gusmeroli et al., 2013)

6.3 Authentication message sequence models

There are three message sequence models to consider when a secure
communication link needs to be set between a client and a service providing a
resource. These sequence models are described next. The models are derived
from AAA Security Framework specification (Farrell et al., 2000), but for
continuity the names used for the actors are from ACE WG architecture.

Agent sequence: The acts as an agent between the Client and Resource
Server. The Authorization Server receives a request form the Client and
forwards the authorization and configuration to the Resource server. In this
model the Authorization Server after receiving a request authenticates and
applies authorization policies for the client and for the particular service it has
requested. (Farrell et al., 2000) Agent sequence is presented in Figure 5.

Figure 5: Agent sequence (Farrell et al., 2000)

Pull sequence: The Client sends a request to the Resource Server, which
forwards it to the Authorization Server. Authorization server returns an
response to the Resource Server after validating the Client and request. If the
request is accepted the Resource Server is ready to provide the requested
service. (Farrell et al., 2000) Pull sequence is presented in Figure 6.

Figure 6: Pull sequence (Farrell et al., 2000)

Push sequence: The Client requests a certificate or a ticket verifying it has
authorization to access the service. After obtaining the ticket the Client makes a
request for a service and includes the ticket with the request. After receiving the
ticket the Resource Server is ready to provide the requested service. (Farrell et
al., 2000) Push sequence is presented in Figure 7.

Figure 7: Push sequence (Farrell et al., 2000)

The same message sequences are possible in a simple scenario where all
the actors are part of the same security domain, as well as in roaming scenarios.
The scenarios involving different security domains are a little bit more
complicated, but the main prerequisite is that the client has to have a
relationship with an Authorization Server able to verify its authorization for the
service.

6.4 Summary

The security aspects for a distributed systems need to be considered even when
the system includes constrained devices. Constrained environments also have
some specific security issues. Such as they are specially vulnerable for denial of
service and replay attacks on the counts of limited processing and networking
capabilities and also because such attacks can shorten the lifetime of battery
powered devices considerably. The main security objectives identified in this
chapter are gathered to Table 7. These security objectives are the third building
block for the main artifact of this study.

TABLE 7 Security objective summary

Objective Description

Resource confidentiality The access for the resources should only be possible to
authorized parties. Access includes reading and viewing,
but also actions requested from the node in question.
Confidentiality of a resource could be extended to so far as
only authorized parties should even have knowledge of the
resource.

Resource integrity Only authorized parties should have the ability to modify
the resources. Modification includes writing, changing,
changing status, deleting and creation.

Resource availability All authorized parties have access to the resources, when
needed.

Message confidentiality The exchanged messages need to be protected. A possibly
malicious third party should not gain knowledge of the
message contents or any other information about the
messages exchanged between nodes or between nodes and
entities in the Internet.

Message integrity The alteration of messages should be detected by the
receiver.

Message authentication The receiver should be able to verify the origin of the
received messages.

Message freshness and
authorization

The replaying of old messages should be prevented to
secure the communication channel against replay attack.
At the network layer, only authorized devices should be
able to access the IoT network. Unauthorized devices
should not be able to route their messages over the IoT
devices, because it may deplete their energy

Access control method Identity management for systems including constrained
devices should consider the access control method to be
used. This kind of distributed systems will benefit from
federated identity and authorization management.

Message sequence for
authentication

Message sequence used between the constrained actors and
their less constrained counterparts can have effect on the
level of identifying the actors.

First three objectives derived from the C-I-A triad concern the
authorization issues of resources. These objectives set the requirements for
authorized resource access that form resource security.

The next four objectives describe the different secure communication. This
includes confidentiality, integrity and authenticity of the messages which are
generic requirements for any type of distributed system. The message freshness

and authorization considers the vulnerability to replay and flooding attacks,
which is have a larger potential effect in constrained environments.

Access control method and authentication message sequence are
architectural decisions that need to be considered when building a authorized
authentication mechanism for constrained environments. For example list based
access control in large distributed system will raise the complexity and inflict
too much strain on the actors enforcing it. For this reason using some of the
federated approaches to access control is advisable, specially when access
control is enforced by a constrained device.

Message sequence for authentication objective adds more definition to the
validation of all the actors objective presented in architecture based objectives.
The architecture based objective identifies the need to identify the actors based
on the functions they need to accomplish. As selected message sequence effects
such things as the ability of actors to verify each others identities and the
demand for connectivity of different actors. These features are different
between sequences. For example if a push sequence is used and Client and
Server have their own authorization servers. In this kind of authentication
sequence the Client negotiates its authorization trough authorization server in
its own security domain. This means the authorization server in charge of the
resource has no direct way to authenticate the Client directly. The difference
with the other two sequences described is, that in both agent and pull
sequences the Client credentials are available at least in some level to the
authorization server in charge.

7 Proposed protocols

This chapter describes two protocols that have been proposed for authorized
authentication in constrained environments in past ACE Working Group
proceedings. Other protocols have been proposed also, such as OAuth 2.0
which is currently on the standards track (Erdtman, Seitz, Wahlstroem,
Selander, & Tschofenig, 2016). These two protocols were selected since they
have different approaches to the problem and so provide basis for evaluating
the evaluation framework.

7.1 DCAF

Delegated CoAP Authentication and Authorization Framework (DCAF)
relieves the constrained devices form the load of handling public key based
authentication and authorization. These resource consuming tasks are
delegated to authorization servers that handle these tasks behalf of their
constrained counterparts. DCAF is designed to be used with CoAP application
protocol and DTLS is used to secure transmission of authorization information
between constrained devices enabling end-to-end security. (Gerdes, Bergmann,
& Bormann, 2014)

7.1.1 DCAF objectives

The objectives of DCAF are twofold, consisting of communication scenario and
authorization related tasks. The communication scenario describes the basic
interaction of devices and concerns only the basic actors. Authorization related
tasks describe the security related requirements set for the message exchange.
Basic functional scenario for DCAF is a communication between a Client (C)
and Resource Server (RS) is:

1. C wants to access a Resource (R) on a RS.
2. C and RS do not necessarily have an existing security relationship.
3. C and/or RS are Level 1 Constrained devices.

4. Unauthorized entities should not gain knowledge or access to R
5. Confidentiality and integrity of R are needed and authenticity of

messages concerning R must be assured. (Gerdes et al., 2014)
Authentication and authorization in the context of DCAF include several
attributes to validate. The authorization related tasks include:

1. Attribute binding: a verifiable attribute must be bound to a verifier such
as a key. This handled by an attribute binding authority, checking that
the attributes of the entity possessing a verifier match the ones it claims
to have. If the attributes are correct the authority provides endorsement
information to be used by other entities to validate the binding.

2. Verifier validation: when an entity needs to authenticate another entity it
checks the attribute-verifier binding using an endorsement from the
claim validation authority.

3. Authentication: An entity or the source of information must be
authenticated using the verifier.

After authentication the following tasks for authorization must be performed:
4. Configuration of authorization information: the owner needs to

configure the authorization information.
5. Obtaining authorization information: the authorization information

needs to be made available to the entity enforcing the authorization.
6. Authorization validation: Entity attributes validated by authentication

need to be mapped to the authorization information.
7. Authorization enforcement: the results of the authorization validation

determine is the access to a resource granted or denied. (Gerdes et al.,
2014)

7.1.2 Architecture

DCAF architecture matches the ACE Working Group architecture elements. The
tasks identified in the previous chapter are divided to three levels based on the
capabilities of the entities. These levels are as in ACE WG architecture:
constrained-, principal- and less-constrained level.

The constrained level entities should be relieved from all complicated task
if possible. These tasks are delegated to more powerful entities on the upper
levels. For security reasons some tasks have to be performed in the constrained
level. These tasks are: authentication of received information and enforcing
authorization including validation. These tasks are the same ones described in
previous chapter. The authentication tasks in question are: verifier validation
and authentication (2 & 3). And authorization tasks: authorization validation
and enforcement (6 & 7). (Gerdes et al., 2014)

The naming of constrained level actors is a little bit different than the
naming in ACE WG documents that adopted OAuth naming conventions.
Client (C) remains the same, but the Resource Server is called simply Server (S)
in DCAF specification. (Gerdes, Bergmann, & Bormann, 2015c)

The principal level actor naming in DCAF is also a bit different. The client
side principals is called the Client Overseeing Principal (COP) instead of

Requesting party and the server side principal is called the Resource
Overseeing Principal (ROP) instead of Resource Owner. The responsibilities
and specification of these actors are the same regardless of the naming. (Gerdes
et al., 2015c) The principals are in charge of authorization configuration in
behalf of their constrained counterparts. Namely configuration of authorization
information, as defined in the previous chapter (4). (Gerdes et al., 2014)

The differences in less constrained level actor naming in DCAF
specification compared to ACE WG concern both actors. Client Authorization
Server is named Client Authentication Manager (CAM) and Authorization
Server is named Server Authorization Manager (SAM). (Gerdes et al., 2015c)

Devices in the less constrained level are at least C2 level devices such as
smartphones or laptops. They must also provide user interfaces for
configuration of authorization information etc. But their main tasks and the
ones concerning the authentication and authorization process are attribute
binding (1) and obtaining authorization information (5). The latter means that
they preprocess information from their owners, to make it usable for the
constrained devices. (Gerdes et al., 2014)

DCAF makes the same assumptions on the interaction and placement of
the actors as the ACE WG architecture. CAM belongs to the same security
domain with the C and COP and SAM belongs to the same domain as R, S and
ROP. (Gerdes et al., 2014)

7.1.3 Protocol

As mentioned the key property of DCAF is to relieve constrained nodes from
resource intensive tasks such as validating certificate chains or parsing large
data structures. This is achieved by offloading these tasks to more powerful
nodes within the same security domain. The security objectives dictate that a
secure channel between constrained and less-constrained nodes is required.
DCAF does not force any specific means of communication security, but draws
on the properties of DTLS since they are well understood in constrained
environments. So the described approach assumes that communication is
secured with DTLS when at least one of the endpoints is constrained. (Gerdes et
al., 2014)

As described in the previous chapters the C and S have their less
constrained level devices CAM and SAM. These entities share a symmetric key
within their respective security domains and use them to establish the initial
secure channel needed. DCAF only assumes that this trust relationship is
established and gives no specification how the key provisioning mechanism for
this relationship should work. These secure channels are used to provide
dynamic authenticated authorization mechanism for the constrained devices.
This means the tasks is appointed to the less-constrained devices. More
specifically providing attribute binding information (1) and authorization
information (5). (Gerdes et al., 2014)

Protocol flow begins when C needs to access a specific R served by S. C
needs to requests an access ticket and to do this uses it's own designated CAM.

CAM relays the request to one of the Server Authorization Manager in charge
of S. SAM determines the authorization level by the authorization policies
configured by Resource Overseeing Principal. If C is allowed to access the
resource, SAM generates a DTLS pre-shared key (PSK) for the communication
between C and S and wraps it into an access ticket. The ticket may also contain
detailed access permissions in a way that SAM and S can interpret them. This
ticket is then relayed to C via CAM and after presenting the ticket to S, C and S
can establish a secure communication channel. (Gerdes et al., 2014)

 If C does not have SAM information on the S it has two options. C can
send an initial unauthorized resource request to S. S denies the request and
sends the address of the SAM in charge of it back to C. The other option is to
look up the desired resource in a resource directory, that lists server resources.
Once the address of SAM is known C can use CAM to send a request for
authorization to the S in question. But CAM has to approve the request first. If
it does CAM and SAM authenticate each other and their authorization to act on
behalf of their constrained devices. After the authorization between the less-
constrained devices SAM can do the authentication and ticketing procedure for
C. An illustration of DCAF protocol flow is presented in Figure 6. (Gerdes et al.,
2014)

DCAF access tokens consist of two parts: the face and verifier. The verifier
holds the DTLS PSK for C and S communication, so it must be transmitted over
a secure channel. The ticket face is generated for S and used as a PSK-identity of
C in the ClientKeyExchange message during the DTLS handshake between C
and S. The PSK-identity contains sufficient information for S to authorize C and
validate that the ticket face in particular the authorization information and
timestamp were generated by SAM. This eliminates the need for additional
message exchange. A ticket may also contain a lifetime, so S keeps the ticket
face as long it is valid. (Gerdes et al., 2014)

The mutual authentication between C and S is based on the ticket face and
verifier. S authentication of C is based on C proving that it is in possession of
the ticket verifier, namely the DTLS PSK generated by SAM. C can determine
S's authenticity because only S is able to derive the DTLS PSK from the PSK-
identity field of the ticket face. Only SAM and S can generate the same DTLS
PSK based on the PSK-identity and to ensure this they use an keyed-hash
message authentication code with a shared key. For resource saving reasons the
hash function used is the one used in the cipher suite for their DTLS connection
and for agility the function is signaled within the ticket face.(Gerdes et al., 2014)

Figure 8: DCAF authentication steps (Gerdes et al., 2015c)

7.2 ABFAB

Application Bridging for Federated Access Beyond Web (ABFAB) has it's roots
on a project called Moonshot that had goals for extending the benefits and
developing single unifying technology for federated identities for non web
based services. ABFAB is based on widely used security mechanisms and
protocols such as Authentication, Authorization and Accounting (AAA)
framework, Extensible Authentication Protocol (EAP), Generic Security Services
Application Program Interface (GSS-API), Remote Authentication Dial-In User
Service (RADIUS) and Security Assertion Markup Language (SAML). It uses
EAP for end user authentication and keying material derivation like many other
implementations of AAA authentication processes. For high level
authentication it uses SAML since it is also a widely deployed standard for
expressing end user's identity information. RADIUS is used, even though any
AAA protocol could be used. Again this is because of it's wide deployment and
high acceptance. (Perez-Mendez, Pereniguez-Garcia, Marin-Lopez, Lopez-
Millan, & Howlett, 2014)

The benefits of federated access management are single or simplified sign-
on (SSO), data minimization, less need of user participation and flexible
provisioning. (Tschofenig, Hartman, Lear, Schaad, & Howlett, 2014)

SSO provides the ability for an Internet service to delegate access
management responsibilities to an organization that already has a long-term
relationship with the Client. This is also desirable from the Relying Party's
point of view, because in many cases it does not want these responsibilities. The
benefits for the Client is that it requires fewer credentials. (Tschofenig et al.,
2014)

Data minimization is due to the fact that the often the Relying Party does
not need to know the identity of a Client to reach an access management
decision. In most cases it is adequate to only gain knowledge of specific
attributes about the Client, such as that the Client is affiliated with an
organization or has a certain role or entitlement. In some cases it might be
adequate if the Relying Party only knows a pseudonym of the Client.
(Tschofenig et al., 2014)

The need for Client interaction is reduced by the fact just mentioned that
the identification is based on the Client attributes held by the Identity Provider.
Prior to releasing the attributes to the RP, the IdP checks configurations and
policies to determine if the attributes should be released. In this decision point
there is no need for direct Client participation. (Tschofenig et al., 2014)

Provisioning of the attributes is flexible and in the cases the Relying Party
needs to know more about a Client than an affiliation or pseudonym, some
federated access management Identity Providers have the ability to provide the
information on request or unsolicited. (Tschofenig et al., 2014)

7.2.1 ABFAB Objectives

The main focus of ABFAB is a functionality on non-web-based environment
and protocols where HTTP is not used. Despite the trend to layer protocols on
top of HTTP, there are still numerous protocols that do not use HTTP -base
transport. Many of such protocol lack a native authentication and authorization
framework. (Tschofenig et al., 2014)

Other ABFAB design objectives are:
• All parties taking part to a transaction are authenticated, but not

necessarily identified and the Client is authorized for resource specific
access.

• Authentication is independent from the application protocol used. This
allows for multiple authentication methods with minimal changes to the
application.

• The architecture does not imply sharing of long term private keys
between Client and Relying Party.

• System is scalable to large number of identity providers, relying parties
and clients.

• System is based on existing standards and components and operational
practices. (Tschofenig et al., 2014)

7.2.2 Architecture

The ABFAB architecture consist of three main entities: Client, Relying Party
(RP) and Identity Provider (IdP). Client represents an entity that needs to access
a service hosted by RP. RP acts as a service provider in control for the service
the client wishes to access. IdP is the entity in charge of verifying the clients
credentials and distribution of authorization information to the RP. (Perez-
Mendez et al., 2014)

In addition of elements the architecture describes how these elements are
interconnected and the protocols used in these connections. An application
protocol provides the service for the eventual communication between the
Client and RP, but ABFAB architecture does not assume any particular
protocol. As a part of the access control procedure a GSS-API security context
must be established between the Client and RP, in which the Client acts as GSS
Initiator and the RP as GSS Acceptor. The GSS context authenticates the Client
and provides the Client identity information used for authorization purposes to
the RP. (Perez-Mendez et al., 2014)

The GSS-API handles the high level abstraction of the access control
process, but the actual authentication process is carried out by executing EAP.
The EAP authentication process is a part of the GSS context establishment and it
enables a federated operation as it involves IdP in the process. The client acts as
EAP peer, the IdP as an EAP server and RP as EAP authenticator. EAP packets
are transported between the Client and RP GSS-API Mechanism for the
Extensible Authentication Protocol (GSSEAP) defined by ABFAB WG specially
for this purpose. GSSEAP specifies the means for transporting EAP transport
on GSS tokens and using key material exported by the EAP method in GSS
security services. (Perez-Mendez et al., 2014)

Finally ABFAB specifies that RADIUS is used as an AAA protocol
between RP and IdP. This provides the federation substrate, in other words
implementing trust relationships to form a federation. The AAA protocol has
two functions: it conveys EAP packets between RP and IdP and transports
Client's identity attributes from IdP to RP. This information is represented by
SAML statements. (Perez-Mendez et al., 2014)

7.2.3 Protocol

An ABFAB workflow example of a client attempting to connect to a server
to access data or perform a some type of transaction has the following
prerequisites and steps. An illustration of ABFAB protocol flow is illustrated in
Figure 7. (Tschofenig et al., 2014)

1. Client Configuration: The IdP has pre-configured the client with a
Network Access Identifier (NAI). The client is also configured with the
necessary keys, certificates, passwords or other information needed to run the
EAP protocols between it and IdP.

2. Authentication mechanism selection: The Client is configured to use
GSS-EAP as a GSS-API mechanism for authentication and authorization.

3. Client provides an NAI to RP: The Client starts an application
protocol for transport to the RP and begins the GSS-EAP authentication. RP
sends an EAP request message in response nested in the GSS-EAP protocol
asking for the Client's name. The Client sends an EAP response with an NAI
name form containing at the minimum the realm portion of it's full NAI.

4. Discovery of federated IdP: The RP determines which IdP to contact
based on policy and the realm portion of the Client NAI. For this it uses pre-
configured information or a federation proxy.

5. Request from Relying Party to IdP: When the RP finds out the IdP or
and agent of the IdP in question, it sends a RADIUS access request to the IdP,
including an encapsulated EAP response from the Client. In this point the RP
probably has no idea of the clients identity. RP sends it's identity to the IdP in
AAA attributes and it may include a SAML Attribute Request in a AAA
attribute. The AAA network checks that the identity RP claims is valid.

6. IdP begins EAP with the client: IdP sends an EAP message to the
Client with an EAP method to be used. In this stage IdP should accept a realm
only request to protect the client's name.

7. The EAP protocol is run: Several EAP messages are passed between
the client and the IdP. The content and number of the messages depend on the
selected EAP method. If the IdP is not able to authenticate the client, it sends an
EAP failure message to the RP. A part of the EAP protocol is that the Client
sends a channel bindings message to the IdP. In this message the Client
identifies the RP it is attempting to authenticate. The IdP checks between the
channel binding data received from the Client and RP using the AAA protocol.
If the bindings do not match this also constitutes a failure and IdP sends an EAP
failure message to the RP.

8. Successful EAP Authentications: The IdP and Client have mutually
authenticated each other and hold two cryptographic keys. A Master Session
Key (MSK) and an Extended MSK (EMSK). The Client has also a level of
assurance about the RP's identity. Based on the channel binding data and the
naming information check from the AAA framework conducted by IdP .

9. Local IdP Policy Check: The IdP checks the local authorization policy
to determine if the given transaction or service is permitted between the Client
and RP. If the action is permitted IdP releases the attributes to RP, if not it sends
an EAP failure message to the RP and Client.

10. IdP provides the RP with the MSK: IdP sends a positive result EAP
message and EAP MSK to the RP. Optionally it sends a set of Client AAA
attributes as one or more SAML assertions.

11. RP Processes Results: After receiving the result from the IdP, RP
should have enough information to either grant or refuse the resource access
request. Depending on the authorization level it may have specific
authorization identity information concerning the Client. If the RP needs
additional attributes from the IdP, it can make a new SAML request to the IdP.
The RP will apply the results in an application specific way.

12. RP returns results to the client: When the RP has received a
response it informs the Client of the result. If all the checks has gone well all
parties are authenticated. The Client can complete the authentication of the RP
by using the EAP MSK and proceed with appropriate authorization level.

Figure 9: ABFAB authentication steps (Tschofenig et al., 2014)

8 Use case

IETF has specified several use cases to identify and address problems on
authentication and authorization in constrained environments. The application
areas vary from logistics and smart metering to health monitoring and
entertainment. These use cases assume that communication architecture
between the devices is Representational State Transfer (REST) based and
although most conclusions are generic it is assumed that Constrained
Application Protocol (CoAP) is used. REST architecture means that a device acts
as a server, offering resources and these resources can be accessed by clients.
Resources accessed can be sensor data or control of actuators. In some cases the
communication happens through intermediaries such as gateways or proxies
and the processes also can happen without human intervention (M2M
communication). (Selander et al., 2015)

Each use case presents a general description of an application
environment and one or more specific use cases, as well as a list of relevant
authorization problems to the application area. Definitions are needed for many
communication issues such as how do the devices find each other or which
device initiates the conversation. These requirements vary between use cases
and there can be a need for multiple communication schemes. (Selander et al.,
2015)

For this work a logistics use case was selected, dealing with container
monitoring. The reason for selecting this use case over others is that it brings
many different authorization scenarios, since it deals with a mobile system in
various transport modes.

The motivation for this use case arises from the need of storing perishable
goods in a constant temperature and adequate ventilation. There are also
multiple stakeholders interested in the real-time information on the state of the
goods. For example a transporter needs to prioritize the handling goods by
their expiration date and vendors need to fulfill their delivery obligations.
Wireless sensor systems make this kind of continuous tracking of
environmental variables possible. (Selander et al., 2015)

This use case describes a logistics chain for bananas grown in south
America that are transported for the German market. Bananas are shipped to

Germany and picked up by trucks that deliver them to the fruit vendors
ripening facility. After ripening a supermarket chain buys the bananas and
transports them to multiple stores by trucks. The fruit vendor equips the
banana boxes with sensors as a quality management measure. The bananas are
monitored consistently through the whole chain and system records abnormal
fluctuations in sensor values. The temperature and ventilation information
sensors are also used to control the climate control system of the transport
container and ripening facility. In the ripening facility the sensors monitor the
ripeness of the bananas, so that ripe bananas can be identified and sold before
they spoil. (Selander et al., 2015)

The second functionality in the banana box sensors is identifying and
locating the goods meant for a specific customer during loading and unloading.
The use case also gives additional parameters on logistics data confidentiality. It
defines that personnel is only allowed to see data for the time of loading or
unloading and information about the state of the goods needs to be confidential
in these situations. Another issue concerning data confidentiality and
ownership is that after the ripe bananas are sold to the supermarket chain, the
ownership of the sensors is transferred to the buyer. (Selander et al., 2015)

Networking problems in this use case include environmental problem
concerning the radio connection between the nodes and also a Internet
connectivity problem. The radio connection problem is due to high water
content of the bananas, that can cause problems on direct communication
between nodes and messages need to be forwarder over multiple hops. The
Internet connectivity problem during the journey may be solved using relay
stations owned by the transport company. (Selander et al., 2015)

From previous user story eleven authorization problems summarized:
1. Different authorizations need to be granted to the resources of the

banana box sensors owned by the fruit vendor and container systems
owned by the container owner.

2. Fruit vendor requires the integrity and authenticity for the sensor
data to ensure the quality of the product and climate control
functionality.

3. The container owner requirement for sensor data integrity and
authenticity for climate control input.

4. Fruit vendor requirement for sensor data confidentiality for state of
the goods and location to protect against attacks to the data by a
competitors.

5. Different protection needed by the fruit vendor to protect sensor data
and logistics data residing in the same endpoint.

6. Data integrity and authenticity requirement of the fruit vendor and
logistics personnel for locating the goods and ensuring that the goods
are treated and delivered correctly.

7. Authorization process has to work even if the fruit vendor and
logistics personnel are at the time of access unable to take part on the
process.

8. Temporary access grants need to be issued in order to avoid giving
out permanent access to parties who may no longer be involved with
the process. This concerns all actors.

9. Security objectives need to be intact even if messages are forwarded
over multiple hops. This concerns all actors.

10. Authorization policies have to be enforced even if the devices do not
have access to the Internet at the time.

11. Need to revoke authorization on a malfunctioning sensor by fruit
vendors and container owners.

These problems can be derived to security requirements for an authorized
authentication mechanism. The requirements are presented in Table 8. Each
requirement is based on one or more problems. The corresponding problems
for every requirement are shown in brackets after the requirement name.

TABLE 8 Use case security requirements

Requirement Description

Integrity & authenticity of
sensor data (2,3,6)

Quality of monitored recordings and identification data
need to be attained, in order to serve climate control and
communication to logistics applications.

Confidentiality of sensor
data (4)

Transmitting data on product quality and location needs to
be secured against third parties, that might benefit from
this information.

Authorization by resource
and requesting party basis
(1,5)

Several different resources can reside in a single endpoint
and different authorizations need to be granted for
different parties. For this reason authorization needs to be
configured on resource and requesting party basis.

Autonomous authorization
(7,10)

Resource server has to be able to enforce authorization
even when resource owners are not able to intervene or
there is no Internet connectivity at the time of
authorization. In addition the connectivity problems
caused by high water content of the cargo may call for
autonomous capabilities from individual devices.

Temporary access
permissions (8,11)

Mechanism for temporary permissions and/or revoking
permissions is needed. In order to avoid situations where
personnel no longer involved with the process have access
to the system or when resource servers having
malfunctioning sensors need their access to be revoked.

End-to-end security (9) Security objectives need to be achieved, even if messages
between endpoints are forwarded over multiple hops.

The empirical experiment is an implementation of this use case. It portrays
a scenario where a Client from another security domain such as logistics
company wants to gain access to temperature data from the banana boxes
owned by the fruit vendor.

9 Experiment design

The empirical part of this study is and experiment conducted using DCAF
protocol implementation. The objective of this experiment is to gain further
knowledge on how well DCAF protocol functions in a constrained environment
and the effect it has on the power consumption of the devices. The results of the
experiment are used when the framework objectives are evaluated in chapter
11.1. Since these protocols are in the development phase this was the only
implementation of such a protocol implementation to be found at the time of
conducting the study. The experiment is setup so, that the constrained actors
are simulated and less constrained actors are running as separate processes in
the host machine. The actors communicate using IPv6 networking through a
border router connecting the simulated actors and the actors running on the
host machine. Next the different parts of the experiment are described in
greater detail.

9.1 Contiki

The simulation environment used in this study is Cooja, which simulates
devices running Contiki operating system.

Contiki is an operating system developed for constrained environments. It
has been ported to a number of micro-controller architectures including Texas
Instruments MSP430 and the Atmel AVR, which both are very popular and
inexpensive (Dunkels, Grönvall, & Voigt, 2004).

Contiki is based on an event driven kernel, to reduce the size of the
system. On top of the event driven kernel Contiki uses an application library
that provides preemptive multi-threading. The library is optionally linked with
applications requiring multi-threading features. This design was adopted to
avoid the usage difficulties and problems of handling long running
computations with state-machine driven programming of an event-driven
system. (Dunkels et al., 2004)

A Contiki system consist of two parts: a core and loaded programs. The
core contains the kernel, base services and some parts of the language run-time
and support libraries. Shared functionalities are implemented as shared
libraries and run as services. The programs can be loading and unloading
individually at runtime and services can be updated or replaced individually.
This gives a Contiki system a flexible structure. (Dunkels et al., 2004)

9.2 Cooja

Due to the distributed nature of sensor networks, developing applications for
them is often times a difficult and time consuming task. This is caused by a
longer compile-run-debug cycle, since compiled programs need to be
transferred onto a set of sensor nodes for debugging and testing. This process
can be simplified by using a simulator which enables the development of
algorithms, system behavior study and interaction observations in a controlled
environment. (Osterlind, Dunkels, Eriksson, Finne, & Voigt, 2006)

Cooja is a Java-based simulator for simulating networks of devices
running the Contiki operating system. In a network simulation each node can
be of different type, not only by running different software, but also by
simulated hardware. Cooja is flexible as far as any many parts of the simulator
can be easily replaced or extended with additional functionality. For example
simulated radio medium, node hardware or plug-ins for input/output can be
extended. (Osterlind et al., 2006)

Contiki programs can be executed in two different ways in Cooja: native
code running directly on the host CPU or running in an instruction level
emulator (Osterlind et al., 2006). Examples of these emulators are MSPSim for
TI MSP430 (Eriksson et al., 2009) and Avrora for the Atmel AVR platforms
(Titzer, Lee, & Palsberg, 2005). Non Contiki nodes can also be simulated. These
include nodes implemented in Java and nodes running another operating
system. All these approaches have their own advantages and disadvantages.
Java-nodes do not run deployable code, but they enable faster simulations and
are useful for tasks such as distributed algorithm development. Using emulated
nodes a set of more fine-grained execution details can be captured, compared to
Java or native code based nodes. Native code simulations run deployable code,
but are more efficient than emulated node simulations. Using deployable code
makes it possible to simulate and deploy the same code without any
modifications. This minimizes the time needed to move from simulations to
hardware deployments. (Osterlind et al., 2006)

There are also advantages in combining different abstraction levels in one
simulation. Good example of this is a large simulated networks where only few
nodes need to be simulated at the hardware level and others can be
implemented at Java level. The advantage of this approach is the faster
simulation comparing to using all emulated nodes, but still receiving the fine-
grained execution details from the emulated nodes. (Osterlind et al., 2006)

Hardware peripherals of the simulated nodes are called interfaces.
Interfaces enable the simulator to detect and trigger events such as incoming
radio traffic. They also represent node properties such as positions in the
environment that the actual node is not aware of. Interactions between the
simulation and simulated nodes are done through plugins, such as simulation
control that enables a user to start or pause the simulation. Both interfaces and
plugins can be used to add custom functionality to simulations. (Osterlind et al.,
2006)

For user interaction Cooja has a Graphical User Interface (GUI), which
allows the placement of sensor nodes, modifying sensor inputs and disturbing
network communication by increasing the noise level among other things
(Kugler, Nordhus, & Eskofier, 2013). The GUI also presents information on
different aspects of the simulation such as radio traffic, reception areas and
mote logs. Cooja can also provide estimates on mote energy consumption
(Kugler et al., 2013). In this study the power consumption estimates are
gathered by Powertrace.

9.3 Powertrace

Powertrace is a run-time power profiling mechanism based on power state
tracking to estimate power consumption of nodes running Contiki. It breaks
down the power consumption to energy capsules and aggregates them to
higher-level activities. It allows inspecting both energy behavior in node-level
and network-level. (Dunkels, Eriksson, Finne, & Tsiftes, 2011)

Powertrace has a linear power model, which means that instantaneous
power is estimated as the sum of all active power states. Component energy is
derived from the time that the system spends in each power state. Components
in this case are such as the CPU, radio transceiver, on board Flash and sensors.
Examples of the power states are CPU in active mode or sleep mode and radio
in listening mode or transmission mode. Device drivers are instrumented to
record a time stamp when a component enters a new state and when it leaves
the state, time difference is calculated and added to the corresponding capsule.
(Dunkels et al., 2011)

The power state tracking is done entirely in software, so no additional
hardware is needed. The advantages of a software-based approach are that it is
not affected by environmental factors, such as temperature and humidity that
affect the energy consumption of a physical system. It also yields the same
result on different batches of the same hardware, which is not always true when
hardware-based method is used. (Dunkels et al., 2011)

9.4 DCAF setup

As mentioned the DCAF experiment consists of constrained devices running
Contiki that are simulated in Cooja environment and two processes running on
the host machine. The processes running on the host machine represent the less
constrained actors Server Authorization Manager (SAM) and Client
Authorization Manager (CAM). The constrained nodes are Client (C) and
Resource Server (RS).

9.4.1 Constrained actors

Client and Server are compiled as emulated Wismote-devices and added to the
simulation. The RPL Border Router is also compiled to the same platform. The
actors are positioned in the simulation so, that they do not have a network path
between them, because they are out of each others radio range. So all the
communication between the Client and Server is relayed by the RPL Border
Router. This setup was chosen so that the energy consumption of the actors can
be compared more accurately. The constrained network is displayed in Figure
10. Cooja network view does not have an option to show a name of the node
and node type can only be displayed by color. But in this picture node number
1 is the RPL Border Router, node number 2 is the Resource Server and node
number 3 is the Client. The green area around the Server node represents its
radio range and shows that only the Border Router is within the Servers radio
range.

Figure 10: Client, Server and the Border router shown in Cooja Network

When the simulation is started the RPL Border Router starts to form the
network. The IPv6 addresses the nodes get is consistent with the node numbers.
Node number 1 address is aaaa::200:0:0:1, node number 2 address is

aaaa::200:0:0:2 and so on. To enable communication to an external network first
the Border Router needs to have an open server serial socket configured. When
the simulation is running a bridge between the RPL network and the external
network can be created with the Tunslip utility provided in Contiki.

9.4.2 Less constrained actors

The less constrained actors are run from the command line of the host machine.
CAM has nothing to configure. SAM can be configured with JSON files in the
program folder or through a web-interface. To make a working DCAF
authorization the less constrained actors need to have a set of CA-Certificates.
When these Certificates are created CAM can be added to the SAM list of
authorized CAM's. Individual CAM's are identified by SHA1-fingerprints
provided by their certificates.

New servers can be added from the SAM web-interface, by giving a host
name or IP address, secret and one or more resources and methods they
support (GET, POST, PUT, DELETE). To establish a connection between the
SAM and a RS, the RS has to be commissioned by SAM. This can be done from
the web-interface also. In order to establish this connection there needs to be a
mutual secret configured in the adding phase and the same secret also needs to
be configured for RS. After commissioning SAM can be used to create access
rules for the RS.

A rule is created by selecting a CAM that the rule is given, expiration date
and one or more resources with their allowed methods. In addition special
conditions for each rule can be given. When a rule is in place CAM can
negotiate an access ticket from SAM and relay it to one of it's Clients. When a
ticket is granted it can be viewed from a list in the SAM web-interface where a
list of granted and revoked tickets can be found. A granted ticket can be
revoked from the list view of granted tickets.

The less constrained actors communicate with their constrained
counterparts through the RPL Border Router and Tunslip. Both are configured
to aaaa::1 IPv6 address. CAM listens to port 5684 and SAM listens to port 8080.

9.4.3 Running the experiment

Running the experiment begins with starting the Cooja simulation. When the
simulation is started the RPL Border Router starts to form the network inside
the simulation. Next Tunslip is started to form a bridge to the external network,
namely to the host machine. When Tunslip output shows that it has formed the
bridge to the simulation for the less constrained actors, SAM and CAM can be
started in separate terminal windows.

The DCAF procedure is initiated by the Client by a 30 second timer. This
timer is in place so that the RPL Border Router has enough time to form the
network and there is also enough time to start Tunslip, SAM and CAM
processes. The first message sent by Client is an unauthorized resource request
to the Resource Server. The Resource Server enforces access control and replies

to this message with an unauthorized resource request code and includes SAM
information with the message. After the Client receives the SAM information it
starts DTLS handshake with CAM to establish a DTLS connection. When the
secure connection is established, the Client can send an access ticket request to
CAM requesting access to the RS. CAM receives the message and forms a DTLS
connection with SAM and forwards the ticket request. SAM then checks it's
settings if a rule for the requested resource is set for the CAM requesting it. If a
rule is set SAM sends an access ticket to CAM which relays it to the Client. Now
the Client has an access ticket to the resource it wants to access in the RS. The
Client starts a DTLS handshake with the Resource Server to form a secure
connection between the two. After the handshake is done the Client can send
authorized resource requests for the resource as long as the access ticket is
valid.

Cooja provides lots of information on the running simulation in for of logs
and time lines. In this experiment the most important log is the Mote output log
shown in Figure 11. This log is important because it does not only show the
debug messages from the motes and network log generated by the RPL Border
Router, but it also logs the Powertrace messages used for power estimation.
This log view has an exclude filter which helps to filter out messages to help
analyzing the messages.

Figure 11: Cooja mote output log

The Powertrace messages can be gathered form the log and processed in
another application. The message contain values for power consumption both
aggregated during the whole simulation and per cycle. Table 9 explains the
structure of this example message:

4626 P 0.0 17 24061 1158216 1298 1148635 0 0 8381 59730 680 67432 0 0 (radio 97.-
7240% / 100.00% tx 0.10% / 0.99% listen 97.-7251% / 99.00%)

TABLE 9 Powertrace parameters

Value Parameter Description

4626 clock_time Clock time

0.0 rimeaddr Rime address

17 seqno Sequence number

24061 all_cpu Accumulated CPU energy consumption

1158216 all_lpm Accumulated Low Power Mode energy consumption

1298 all_transmit Accumulated transmission energy consumption

1148635 all_listen Accumulated listen energy consumption

0 all_idle_transmit Accumulated idle transmission energy consumption

0 all_idle_listen Accumulated idle listen energy consumption

8381 cpu Latest cycle CPU energy consumption.

59730 lpm Latest cycle Low Power Mode energy consumption

680 transmit Latest cycle transmission energy consumption

67432 listen Latest cycle listen energy consumption

0 idle_transmit Latest cycle idle transmission energy consumption

0 idle_listen Latest cycle listen energy consumption

The values the Powertrace prints out are not actual power usage values,
but a sum of all power states as explained in the chapter about Powertrace. The
actual power consumption needs to be calculated from these values, because it
is dependent on the hardware of the device. The power consumption in
milliwatts can be calculated with the following formula (Han, Cao, Alinia, &
Crespi, 2015):

Power consumption=
Powertrace value∗Current∗Voltage

RTIMERSECOND∗Runtime

Where power trace value is the value from the Powertrace log. Current is
the current consumption of the component, CPU, CPU in Low Power Mode,
Transmit (TX) or Receive (RX). These values can be obtained from the device
datasheets, which in the case of Wismote are MSP430 (Texas Instruments, 2014)
and CC2520 (Texas Instruments, 2007). The values of Currents are 2,2 mA and
0.00169 mA, 33.6 mA and 18.5 mA for CPU, LPM, TX and RS respectively.

Voltage value in the formula is the supply voltage of the system.
RTIMERSECOND value is the number of ticks per second in the system, which
for Wismote is 32768 and Runtime is the seconds between log events which in
this experiment is 2 seconds.

Total radio usage can also followed with the PowerTracker tool provided
by Cooja shown in Figure 12.

Figure 12: Cooja PowerTracker tool

10 Results

This chapter presents the results extracted from the experiment. The first
chapter presents the time consumption of different parts of DCAF authorization
sequence. The data was gathered from mote outputs after each simulation was
run. The second chapter deals with power consumption data gathered from
Powertrace outputs, which was then calculated to actual power consumption
readings in mW. The results are evaluated more throughly and their
positioning in the evaluation framework is discussed in chapter 11.

10.1 Time consumption data

Time data was gathered from the logs that are written as the Client and Server
initiate different parts of the DCAF authorization sequence. To analyze how
much time each part consumes, the total time of the authorization sequence was
divided in smaller parts and average times for these parts were calculated. The
parts include: unauthorized request flight time, Client-CAM DTLS handshake,
ticket request flight time, Client-Server DTLS handshake, authorized request
flight time and the total time used in DCAF authorization sequence. Average
times for different parts and also minimum and maximum times are presented
in Table 10.

The table shows that the most time consuming part of the authorization
sequence is the DTLS handshake between the Client and Server. Time spent on
this sequence also had the biggest variance. The time taken on the DTLS
handshake is caused by the hash function the Server needs to run to validate
the access ticket provided by the Client. But although this part of the
mechanism takes time it saves energy, because no further transmissions is
needed to establish the DTLS connection.
Other parts the variance was smaller, including the DTLS handshake between
Client and CAM. Request response sequences between the constrained actors
gave totally congruent values.

 TABLE 10 Time elapsed in key functions

Sequence Average time (sec) Min (sec) Max (sec)

Unauthorized request flight time 0,036 0,036 0,036

Client-CAM DTLS handshake 1,682 1,612 1,726

Ticket request flight time 0,336 0,256 0,389

Client-Server DTLS handshake 5,362 4,558 8,572

Authorized request flight time 0,051 0,051 0,051

DCAF authorization sequence total 7,502 6,623 10,576

10.2 Power consumption data

The power consumption of the constrained nodes was logged as described in
the previous chapter. The readings were then converted to milliwatts to analyze
power consumption on different stages of the experiment. Client and Server
were analyzed separately. A graphs of power consumption of the Client and
Server are visualized in Figures 13 and 14 respectively.

Figure 13: Client power consumption

Figure 14: Server power consumption

Since the nodes in the experimental setup do not use duty cycling, in other
words the radio is always on, the listening of radio transmissions (RX) values
remained constant. Since RX values would not bring any additional information
so the values were ignored in the analysis. The graphs and tables display CPU
and Transmission (TX) values, where the CPU value consists of both active and
Low Power Mode CPU values.

 Both graphs clearly show the power consumption peaks starting at
approximately 30 second mark. This peak is the authorization sequence
initiated by the Client. Transmissions seen before the sequence are ICMP traffic
when the RPL Border Router forms the network and the nodes negotiate paths
within the network. The smaller peak after the authorization sequence is a
authorized resource request from the Client, that the Server replies with an
appropriate resource response.

The graphs clearly show that the Client peak power usage on
transmissions is substantially higher compared to the Server. This is due to
bigger number of transmissions the Client has to do during the authorization
sequence. The authorization sequence from the Servers point of view consists of
two request-response sequences and a DTLS handshake. The first request is
unauthorized and so denied and SAM information is sent to the Client. During
the second resource-response sequence the Client has an access ticket. So it can
initiate DTLS handshake with the Server and after the secure connection is
established it can send an authorized resource request. The Client on the other
hand consumes much more energy on transmissions during the authorization
sequence, because it also needs to negotiate a secure connection with CAM and
send an access ticket request, in addition to communication with the Server.
This amounts to two times higher Client peak power usage on transmissions
compared to the Server.

The CPU power usage peak values between the Client and the Server do
not differ as much as the transmission values. But when the graphs are
compared, they show that the Server has a higher peak on CPU usage than in
transmissions. During the DCAF authorization sequence the Client negotiates
two secure DTLS connections when the Server only needs to negotiate one. This
suggests that the DTLS handshake it self does not amount to very large CPU
power usage when the keys are provided for the constrained actor.

The power consumption was further analyzed by separating different
events and calculating how much energy was consumed during these events.
The events taken into further analysis were network negotiation sequence,
authorization sequence and the authorized request-response sequence. These
values were then compared to the power consumption when the system was in
idle state and the total power consumption of the experiment.

The experiment was conducted five times and averages derived from the
values gathered were used as approximations of power usage in each sequence.
The power consumption values for each sequence were gathered from the
aggregated power consumption values for each component separately. The
start and end of each state was determined form the node log events and the
closest aggregate value from the end of the sequence was subtracted from the
closest aggregate value from the start of the sequence. After gathering the data
on all experiments, the average values were collected together. This information
is provided in Table 11 for the Client and Table 12 for the server.

 TABLE 11 Client power consumption in different sequences

Sequence CPU (mW) TX (mW) CPU+TX (mW)

Authorization 2,4831 3,3546 5,8377

Network negotiation 0,1453 0,1046 0,2499

Authorized request response 0,1757 0,1507 0,3265

Idle (2 seconds) 0,0980 0 0,0980

Total 4,9714 4,4565 9,4279

 TABLE 12 Server power consumption in different sequences

Sequence CPU (mW) TX (mW) CPU+TX (mW)

Authorization 2,0521 1,1819 3,2340

Network negotiation 0,2495 0,1046 0,3541

Authorized request response 0,1845 0,1418 0,3263

Idle (2 seconds) 0,0974 0 0,0974

Total 4,4590 2,1718 6,6307

This data supports the findings made from the graph data. The Client
uses more than two times more power to transmissions during the DCAF
authorization cycle compared to the Server. The CPU values on the other hand
do not differ so much between the two based on this data as the graph also
suggested. On the idle and authorized request-response sequences the total
CPU+TX power usage between the Client and the Server hardly differs at all.

From this data an estimate can be calculated for how many times this
sequence could be conducted if the nodes would be powered by batteries. The
battery life can be calculated with a formula (Han et al., 2015):

Battery life=
Battery capacity x Current

Power usage

Where battery capacity is the mAh of the battery used, for example a
typical alkaline AA battery this value is 2500 mAh. Current is the current
drawn from the battery and power usage is the power usage of an event in mW.
If two AA batteries are used which both have an output of 1,5 Volts they
conveniently supply the current needed. If this formula is applied to the power
usage of the CPU and TX during a Clients DCAF authorization sequence, which
is 5,84 mW this formula would provide the number of authorization sequences
possible:

2500mAh x 1,5V∗2
5,84

=1285

For the Server this formula produces the value 2319 sequences.

11 Evaluation

In this chapter the framework objectives constructed in chapters 4, 5, & 6 are
applied to the results of the empirical part and protocol specifications in chapter
7. This will identify protocol features that can provide solutions to the
constraints and security objectives identified by the framework. To make the
following the different parts of this chapter easier, an overview of all
framework components is displayed in Table 13.

TABLE 13 Framework overview

Constraints

Maximum code complexity

Size of state and buffers

Processing power

Available power and energy

Network constraints

Lack of user interfaces

Physical constraints

Cost

Architecture based security
objectives

Delegation of demanding tasks

Validation of actors

Autonomous functionality

End-to-end security

Security objectives

Resource confidentiality

Resource integrity

Resource availability

Message confidentiality

Message integrity

Message authentication

Message freshness and authorization

Access control architecture

Message sequence for three party authentication

The results of the experiment described in the previous chapter are
mapped into the framework in the next chapter 11.1. The following chapters
11.2 discuss how the architecture based objectives are met. The third chapter
11.3 assesses the security properties of the protocols by the framework security
objectives. The fourth chapter 11.4 identifies the dependencies between use case
requirements framework objectives. And finally chapter 11.5 evaluates the
framework it self.

11.1 Constraints

This chapter discusses the constraints identified by the framework and how
well they match the implications of constraints observed during the experiment.

11.1.1 Memory constraints

Based on the experiment and documentation DCAF it can handle the the
memory constraints of a Class 1 device in both ROM and RAM. In practice this
means that the Contiki operating system and the needed libraries needed for
CoAP and securing the transmissions with DTLS fit in ~100kB of ROM
available. The available RAM also seems to be adequate to run DCAF
authentication sequence. But considering the memory footprint of the needed
libraries and operating system they can not be supported with a Class 0 device.
This supports the minimum classification identified in the framework.

11.1.2 Processing power

Processing power demand of DCAF authorization sequence can be assessed
based on the logged times for different tasks in the experiment results. When
the log was inspected the most time consuming part of the whole sequence was
the DTLS handshake between Client and Resource Server. The handshake was
responsible for more than two thirds of the total time consumption of the entire
sequence. This gives direction on the latency increase that can be expected in a
mechanism where constrained devices are required to handle more complex
calculations. This design decision can be justified with a lower power
consumption compared to the alternatives, such as requesting the
Authorization Manager to verify the credentials. The effects of increased latency
depend on the application and they should be considered when decisions are
made between lower latency of tasks versus lower power consumption.

11.1.3 Available power and energy

This brings us to the power consumption during the experiment, that can be
used to estimate the available power and energy needed to conduct the DCAF
authorization sequence. The first thing the results show is that the Client energy
consumption on transmissions is significantly larger compared to the Resource
Server. On Average the Client power consumption on transmitting was three
times the value recorded from the Resource Server during the authorization
sequence.

CPU power consumption readings between the Client and Resource
Server did not have such a dramatic difference. The CPU power consumption
difference between the actors was under twenty percent. What is noticeable the
Client CPU power consumption was higher than the Servers, even though the
Server conducted the calculation based on the access ticket during the Client-
Server handshake.

Both actors show the highest peaks on both CPU and transmission power
consumption during the authorization sequence. The Client being the more
active party in this sequence seems to have larger power demand on both CPU
and transmissions. The Client after all has to perform a DTLS handshake with
the Client Authorization Manager and send a ticket request, in addition to the
handshake and messages sent and negotiated with the Server. This brings
further implications to the notion that increased computation does not have
dramatic effect on power consumption.

The Clients larger power consumption on transmissions reflects why the
minimizing of transmissions is an important objective. It also shows what kind
of gains can be achieved by optimizing the number of transmissions over
computation required from the constrained actors. This was identified in the
framework under available power and energy objectives.

Since only DCAF was experimented with only speculations can be made
on ABFAB authorization sequence power consumption. Based on the
specification ABFAB does delegate more tasks to the Identity Provider, but the
sequence includes more transmissions between the constrained actors and the
Identity Provider. The total number of messages also vary depending on such
things as the EAP-method used. This would suggest that ABFAB would have a
larger energy footprint on the constrained devices than DCAF.

11.1.4 Network, interface, physical and cost constraints

Network constraints did not play a significant role in the experiment. Duty
cycling and higher packet loss situations were not tested, because the
experimental setup was not prepared to handle these situations. The lack of
user interfaces, physical constraints and cost could not be assessed in a
simulation based experiment. Settings and changes to the constrained actors
could be easily made by compiling new versions in the simulation and physical
constraints and cost are both zero in a simulation. In a real world deployment of
a constrained environment these factors can play a significant role.

11.2 Architecture related security objectives

In this chapter the framework architecture related security objectives are
evaluated by comparing them to the protocol specifications of DCAF and
ABFAB. The delegation of demanding tasks to less constrained devices, as it is
the key architecture objective, is discussed first.

11.2.1 Delegation of demanding tasks

Both protocols do delegate the more demanding tasks to less constrained actors.
In DCAF this means the authorization managers CAM and SAM and in ABFAB
the identity provider. The protocol architectures and mechanisms of the
protocols different. DCAF delegates the key negotiation to CAM and SAM, but
the access control is enforced by the Resource Server. Where as ABFAB
delegates the whole access decision making process to the Identity Provider
that returns the results to the Relying party. From this point of view ABFAB
delegates more tasks to the less constrained actor. But on the other hand
ABFAB requires more transmissions from the constrained actors, so it shifts the
demand from processing to power consumption. But since no experiment on
ABFAB was conducted this can not be verified.

11.2.2 Validation of actors

When DCAF protocol is used the the Client and Client Authorization Manager
are able to verify that the Resource server in the level that it is associated with
SAM. This is because only SAM and Resource server can produce the same Pre-
shared key based from the ticket-face information.

How ever the validation needed by the Server Authorization Manager and
Resource Server about the Client differs between the two protocols. The
differences between the protocols are due to the different message sequences
they use. This matter is discussed in more detail in the following chapter
dealing with the three party authentication sequence.

11.2.3 Autonomous functionality

The third objective concerning autonomous functionality is yet another aspect
that separates the two protocols. The authentication and authorization of
ABFAB requires real-time interaction between the AAA-server and the Service.
So the scenario where the Relying Party is unconnected at the time of
authorization is not possible. The Relying Party has to have a connection to the
Identity Provider at the time of authorization. AAA-servers are normally used
in server environments, in which remote systems can connect over the Internet.
For this reason it is assumed that the Relying Party has to have an Internet
Connection and connection to a local network is not enough. On the other hand

since in a push sequence type of authorization the Relying Party is handling the
connections to the Identity Provider This takes some load off the Client, since it
only needs to be able to connect to the Relying Party, and not directly to the
Identity Provider.

DCAF can tolerate temporary network unavailability situations, since the
Resource Server can enforce access control even if it would not have connection
to the Server Authorization Manager at the time of communication. Client can
provide all the necessary information after Client Authorization Manager has
negotiated a DCAF ticket on its behalf from the Server Authorization Manager.
The only problem regarding Resource Server connectivity is the ability to
revoke tickets. If the Resource Server does not have connection to SAM, tickets
can not be revoked. DCAF Client on the other hand needs a connection to
Client Authorization Manager which in turn needs to have connection to the
Server Authorization Manager at the time when authorization sequence is
executed.

11.2.4 End-to-end security

The objective for secure end-to-end communication more specific to constrained
environments. It realizes that the constrained devices need to communicate
with entities that can reside outside their own network and identifies the need
for securing these connections. When legacy protocols are used the gateway is
responsible for interpreting a message coming from a constrained node,
translating it to Internet package and transmitting it further. In this kind on
system the security features also have to applied at the gateway for all outgoing
and incoming messages. For this reason protocols using translating-gateway
breaks the end-to-end security objective.

When using a IP-based communication is, that this translation phase is not
needed, since the protocols are compatible. This enables that the transmission
can be secured from endpoint-to-endpoint, even if one resides in a constrained
node network and the other is a common Internet node. As an example DTLS it
is not dependent on any specific network infrastructure and can be applied in
an end-to-end manner. This feature is one of the strengths of using IP-protocols
in constrained environments. The ability to provide end-to-end security can be
seen as a side product of compatible protocols between constrained nodes and
even node in the Internet. This does not only enable this security feature, but
also possibilities build more integratable and evolvable systems. Other matters
of message security are discussed in the next chapter.

11.3 Security objectives

This chapter evaluates how well the framework security objectives are enable to
capture the different properties of the two proposed protocols. Most of these

properties can be assessed based on the specifications so also ABFAB can also
be discussed.

11.3.1 Resource security

The security objectives concerning resource confidentiality, integrity and
availability are realized through the authorization procedures. DCAF Resource
Servers preserve the resource confidentiality and integrity by enforcing access
control to their resources. The access rules can be set for all RESTful methods
individually. This said confidentiality of a resource is based on enforcing the
rules for GET method and integrity is realized by enforcing the rules for POST,
PUT and DELETE. Availability of resources for all authorized parties is also
realized through enforcing the access rules, that enable all parties access to the
resources they possess a valid access ticket. The confidentiality and integrity
are enforced with the possibility to a define lifetime and possibility to revoke
granted tickets. This also simplifies the access management.

ABFAB provides the same basic features on resource confidentiality,
integrity and availability by enforcing access control. But since ABFAB is a used
in many different environments and its roots are in larger systems, the
specification does not go to details on constrained environment
implementations, such as the resolution of access control in RESTful
environment.

11.3.2 Message security

Message security objectives confidentiality, integrity and authentication are
dependent on the encryption of messages. When message confidentiality
concerning the message contents is achieved in the transport level, it is
reasonably hard for third parties to gain knowledge of it. This is the case with
DCAF which uses DTLS to encrypt messages between actors. The only
unencrypted message in the sequence is the optional unauthorized resource
request and response messages between Client and Resource Server. This
message is optional, so if SAM identity is already known this message is not
used. The response message contains the URI of SAM in charge of the Resource
Server. This information is not critical in the wrong hands since SAM is a less
constrained device capable of using necessary methods to secure it self. Even
using a transport layer security does not provide total confidentiality of
messages in a wireless environment. While message contents can be secured a
third party can still gather information about the transmissions even if
encryption holds. Eavesdropping on a wireless network can always reveal such
things as number of transmissions and other activity.

Message integrity in this context means the receivers ability to detect
message alteration is a side product of using transport layer security. If a
message is altered during transmission by a third party, the receiver can detect
this when decrypting the message. Provided of course the third party does not
have the encryption key for the transmission.

Message origin can be authenticated in similar way. When two parties
negotiate a DTLS connection between each other they exchange encryption keys
to encrypt the transmissions. Message comes in through a DTLS encrypted
transmission the origin can therefore only be from the other party which the
connection has been formed.

One possibility for achieving message freshness mentioned in the
framework is with DTLS replay detection. Replay detection is an optional
feature of DTLS, since packet duplication is not always malicious. The
technique used is the same one as in IPSec, based on maintaining a bitmap
window of received records. This is used to silently discard all records
previously received or too old to fit in the window. (Rescorla & Modadugu,
2012)

ABFAB does not specify or restrict the usage of any specific application
protocol or specific transport security. So the same examples of how to achieve
message confidentiality, integrity, authenticity and freshness apply to ABFAB.

11.3.3 Access control architecture

When access control architecture is concerned DCAF uses a capability based
access control model in the constrained level. This has several advantages
compared to other approaches, such as the Resource Server has no need to store
client privilege information. Those kind of approaches would work only on
very small deployments, due to limited storage capacity for user information.
The architecture does not limit on combining actors if they reside within a same
domain. Similarly the architecture does not mention limitations on combining
the authorization managers to other systems. So they could be integrated to
other systems as long as they perform the specified tasks.

 On the constrained level ABFAB uses identity based access control. Since
ABFAB is based on AAA-framework it assumes framework services are
present. But if an existing AAA-infrastructure exists, an ABFAB
implementation of constrained devices can be integrated seamlessly. This
solution would realize a system wide uniform authorization management,
where access control configuration for all parts can be done in a centralized
way.

11.3.4 Message sequence for three party authentication

As mentioned in the previous chapter validation of the Client between the
protocols bares difference. DCAF has a disadvantage inherent to message
sequence it uses so the protocol is based on trust between the two authorization
managers. This means that the Server Authorization Manager has no direct
means to validate the origins of a resource request. Sever Authorization
Manager can only trust the Client Authorization Manager for not giving out or
disclosing authorization tickets that are used as session keys. (Gerdes et al.,
2015c)

ABFAB has different set of features relating to this same problem. ABFAB
architecture it is able to authenticate any of the actors, including the client. This
is due to the push sequence used in the authentication messaging. So the
Relying Party can authenticate the Client in an adequate level that depends on
the policies set for it and the Identity Provider. This is based on the trust based
on the federation substrate mechanism.

11.4 Use case security requirements

In this chapter the frameworks security objectives are operationalized by use
case requirements presented in chapter 8. Most of the use case requirements
operationalize more than one framework objectives. Few of the framework
objectives also have dependencies to multiple requirements. The only two
objectives that did not have clear dependency to any of the use case
requirements were message freshness and access control architecture. Table 14
presents the dependencies found between use case requirements and
framework objectives.

TABLE 14 Dependencies between use case requirements and framework objectives
Requirement Framework objective

Integrity & authenticity of sensor data Resource integrity

Message integrity

Message authentication

Confidentiality of sensor data Message confidentiality

Authorization by resource and requesting party
basis

Validation of actors

Message sequence for three party authentication

Resource confidentiality

Resource integrity

Resource availability

Autonomous authorization
Delegation of demanding tasks

Autonomous functionality

Temporary access permissions Resource confidentiality

Resource integrity

End-to-end security End-to-end security

Based on these dependencies a system that would satisfy these
requirements can be envisioned. The main categories of properties this kind of
system needs to possess in the highest level are resource and message security.

The rest of this chapter discusses these dependencies in more detail and ways to
meet the requirements.

11.4.1 Integrity & authenticity of sensor data

The first functional requirement extracted form the use case requiring integrity
and authenticity of sensor data operationalize objectives from both resource
and message security. This is due to the fact that quality of monitored readings
can be effected by both tampering the resources them selves or messages
exchanged between the server and client. This requirement operationalizes
integrity objectives for both resources and messages messages. In addition it
operationalizes authentication objective for messages. As described in the
previous chapter resource integrity can be achieved by enforcing access control,
in this case the access rights to change the resources. Message integrity is
achieved through using a secure channel for communication between the server
and client requesting the data. So to put this in the use case context the quality
of monitored readings and identification data served for the climate control and
logistics applications can be achieved through enforcing the access control and
using a secure communications channel.

11.4.2 Confidentiality of sensor data

The description of the second functional requirement “Confidentiality of sensor
data” focuses purely on securing the transmitted data, so it operationalizes only
one message security objective, which is message confidentiality. As discussed
in the previous chapter message confidentiality is also a matter of using a
secure channel for communication. The solution for this requirement can be
formulated: data transmissions containing quality and location information can
be secured by using a secure communications channel for transmissions.

11.4.3 Authorization by resource and requesting party basis

Authorization by resource and requesting party basis is a matter of
operationalization of all objectives concerning resource security. Namely
confidentiality, integrity and availability of resources. But this requirement also
operationalize two more objectives concerning actor validation. The
architecture based objectives define the baseline objective for validation of
actors, which is then made more specific by the objective concerning the
message sequence used.

This issue is discussed in the previous chapter in the context of the
protocols. The requirement it self has two dimensions. First it acknowledges
that one node can serve more than one resources and different resources are
required to have their unique set of access rights. This rules out the possibility
of using a node wide global access control. How ever this requirement does not

impose the need for explicit access control, where the rights to a resource are
determined in method level, such as read and write privileges. The second
dimension is the authentication dimension. A requesting party can be realized
as a specific user or a group of users. Where the single user can be authenticated
in different levels of identity attributes. In any case this requirement can be
fulfilled by resource security objectives namely enforcing access control. So the
solution for this requirement is: authorization by resource and requesting party
basis can be achieved by enforcing fine-grained access control.

11.4.4 Autonomous authorization

Autonomous authorization requirement in the use case requires the system has
the ability to enforce authorization also in such situations where there is no
Internet connectivity or the resource owners cannot take part in the process.

This requirement has a strong dependency on autonomous functionality
objective. But it also has a dependency on delegation of demanding tasks
objective, which can influence this requirement through the selected delegation
approach. This is due to larger demand on connectivity when more task are
delegated away from the constrained actors. For these reasons this requirement
operationalizes both of these objectives.

 This matter can also be divided into two parts. The system needs to be
able to function without intervention from the resource owners and it has to be
able to function without Internet connection. In order to achieve the first part
the system has needs to support adequate level of configurability, to be able to
full fill this responsibility with out the need for actions from the resource
owner. For the second part of being able to function with limited connectivity
one solution is to use capability based authentication, where the resource server
can enforce access control even when it does not have connectivity to it less
constrained counterparts.

11.4.5 Temporary access permissions

This requirement operationalizes the resource confidentiality and integrity
objectives. These objectives were also operationalized by previous requirements
concerning resource security.

A solution for this requirement dictates a need for a way to set a lifetimes
for a permissions and the ability from access control to enforce them. The
matter of revoking granted tickets requires a similar mechanism. Enforcing
these features have some differences between authorization methods in
constrained environments. These differences can be caused by such things as
limited connectivity.

Life time of an access permission is pretty straight forward, since the
server has knowledge of this starting from the initial authorization negotiated.
Even with limited connectivity the enforcing party has knowledge when the
authorization is no longer valid.

The revoking of a once granted access permission in a limited connectivity
situation on the other hand can pose a problem. An example of this would be a
situation, where a resource server has limited connectivity and capability based
authentication is used. A client possesses a access ticket for a resource, which is
then revoked. The problem arises when the information of the revocation needs
to be transmitted to the resource server. The server has has no connection
present for its less constrained counterpart and therefore no knowledge that the
access ticket has been revoked. The solution for this requirement in any case fall
down to configuring and enforcing access control in the level of detail needed.

11.4.6 End-to-end security

End-to-end security has a strong dependency on the framework objective of the
same name, which it there fore operationalizes.

End-to-end security requirement expand the requirement for sensor data
confidentiality to state that transmission should be secured from endpoint-to-
endpoint. This matter was discussed earlier as a part of architecture objectives
and it can be solved by using a security protocol able to crossing the necessary
borders on negotiating a secure communications channel. When constrained
environments are concerned the borders can include different transport
mediums and underlying network protocols. This rules out systems that use
translating gateways since they break the end-to-end security when the other
endpoint resides outside of their own network. The solution fulfilling this
objective to use transport level security able to use any underlying network
such as DTLS.

11.5 Evaluation of the main artifact

Based on the evaluations done previously in this chapter the framework
seemed to be able capture the different features needed for an authorized
authentication mechanism to be used in constrained environments. All three
levels, namely constraints, architecture objectives and security objectives served
the a purpose of bringing unique features to strengthen the framework.

The constraints level identified the different constraints and provided
taxonomies on memory and power constraints. The memory taxonomy enables
the identification of minimum ability the devices need for safe conduct. It also
shows the level where normal Internet protocols can be used. The constraint
level inspection identified and verified several effects the constraints can cause.
These effect included such things as latency due to low processing ability or
rising total power consumption due to large number of transmissions. These
were tested with an experiment, which showed processor usage and
transmitting have effects on device power consumption and latency.
Transmitting being the dominant factor on power consumption and processing
on increased latency.

The architecture level objectives enabled the identification of several
differences in the protocol functionalities, such as difference in delegation
strategies, ability to identify all the actors and autonomous functionality. These
differences bring decision points on which property to optimize over another.
These decisions are such as optimizing power consumption over processing
required from the constrained nodes or possible latency gains over autonomous
functionality. In addition to these the the architecture level identifies what kind
of gains on security can be achieved by end-to-end security.

The security objective level identified two main areas for realizing a secure
distributed system. These areas are resource and message security, both having
sub areas. The framework was enable to identify these areas as objectives and
therefore the protocols could be evaluated based on the mechanisms they
provide to each objective.

When the framework security objectives derived from the architecture and
security concerns were operationalized as requirements of a logistics use case,
dependencies for most objectives could be found. Requirements concerning
resource and message security had dependencies on objectives identified at the
security concerns level. Some of the requirements having dependencies on
security level were supplemented by objectives from the architecture level. But
there were two requirements that operationalized only architecture level
objectives. These were the requirements for autonomous authorization and end-
to-end security. These requirements are more constrained environment specific
so they could not be identified by the common security objectives for
distributed systems. Overall the framework provided one or more objectives for
every requirement in the use case.

12 Conclusions

This study was conducted using the Design Science Research Method which is
essentially a problem solving paradigm consisting of six activities. In the first
activity the problem was identified as a lack of dynamic authorized
authentication mechanism enable to function in constrained environments.

Based on the problem identification activity the objective for this study
was set to create an artifact, an authorized authentication evaluation framework
for constrained environments. The framework was to be developed to identify
the environment constraints, prerequisites for a secure distributed system and
how these two can coexist in a single system.

The framework development activity already gave answers to the first two
sub-research questions: RQ 1.1 What kind of constraints do the devices have?
and RQ 1.2 How the device constraints should be classified?

In the demonstration activity the framework was used to evaluate the
properties of two protocols. This provided answers to the rest of the research
questions: RQ 1.3 Which constraints have effect on choosing the mechanism?
and first of the main research questions: RQ 1:What are the prerequisites for
establishing authorized authentication mechanism between two devices when
one or both have constrained capabilities? Then framework security objectives
were operationalized to use case requirements to provide answers to the second
main research question: RQ 2: What are the requirements for a system
supporting authorized authentication between two constrained devices? and
its sub question: RQ 2.1 What kind of system could satisfy these requirements?

With all the research questions answered the evaluation activity
concentrated on evaluating the framework on its ability to capture the
properties it was designed to capture. The final activity of the process is
communicating the results which is this document.

To justify the value of the this research terminology from requirements
engineering can be used, even though the main artifact is not a machine per se.
The problem world could be described as follows. The first state of the problem
world system-as-is in this case is a situation where no framework for evaluating
dynamic authorized authentication protocols exists. The system-to-be state is

the situation where a such a framework exists. The why-dimension limitations
on identifying constraints and security objectives and their dependencies is
harder to do with system-as-is. The opportunity to be exploited to make this
process easier. The what-dimension identifies a framework for evaluating
authorized authentication solutions as a service needed to satisfy the objectives
identified in the why-dimension. The who-dimension assigns the
responsibilities defined in the why- and what-dimensions to the artifact.

Evaluation of the main artifact in the previous chapter showed that it was
able to identify perquisites to realize authorized authentication in constrained
environments at least when this use case and these two protocols are evaluated.
A good subject to a future research would be to add more use cases and
proposed protocols to determine if the resolution of the framework would be
adequate to evaluate them.

The requirements which in this case were the solutions ability to meet the
constraints posed by the environment constraints were identified by the first
level of the framework that specified the areas of constraints to be evaluated.
The evaluation was based on protocol specifications and an experiment where
DCAF authorization sequence was studied. The experiment showed that the
constraints identified in the framework, namely, power consumption and
processing power had the effects predicted. The results showed that the
number of transmissions the constrained node has to perform, increases its
power usage substantially. The processing required from a constrained node
did not show similar effect on node power consumption.

This is a crucial decision point when a mechanism for authorization is
chosen. This decision is between delegating more tasks away from constrained
devices and minimizing the transmissions needed. From the power
consumption point of view it can sometimes be wise to optimize to the direction
of less transmissions over processing assigned to the constrained actors. But if
the power consumption is not an issue in a particular system, the decision could
be the opposite. This could be the case if the optimizing need to be done in the
direction of fast operation. Such as a user application where long response
times are not accepted, since people tend to get anxious when a action takes
more than a few seconds. Other constraints identified in the framework could
not be evaluated in this extent based on the experiment or the protocols being
reviewed.

After all this said about the power footprint of the authorization
sequences, based on the experiment the power usage can still be considered
reasonable. Comparing the power consumption readings with the capacity of
an ordinary battery showed that DCAF authorization sequence could be run
more than thousand times before the batteries run out. Since an authorization
sequences are not that frequent in normal situations this suggests that an
acceptable battery life can be achieved.

The first stage of evaluating the security related objectives identified by
the framework was applying them to the specifications of the two proposed
protocols DCAF and ABFAB. This stage showed that the framework objectives
seemed to capture protocol features quite well. The objectives for the main
aspects of security which are securing resources and transmissions had good

enough resolution to identify the technologies needed for a solution. The
framework was also enable to differentiate the protocols on several features and
there fore supply answers on questions about the effect different approaches on
authorized authentication can cause. A good example of these difference is the
effect a delegation strategy has to autonomous functionality. When more tasks
are delegated to the less constrained actors it can mean decrease in ability to
autonomous functionality. The architecture based requirements only specified
that the other actors need to be able to function without the supervision from
the principal level actors. The ability of a constrained actor to function with
limited connectivity to its less constrained counterpart can in some cases be
advantageous in its own right. One such situation can be envisioned based on
the logistics use case. If a resource server does not have connection to it's
authorization manager, due to radio signals being dampened by the high water
content cargo. If the system uses capability based authorization, this server
would still be able to validate tickets and enforce access control in this extent.

When the frameworks security related objectives were operationalized to a
use case the primary security objectives turned out to be the objectives
demanding for resource and transmission security. These objectives were
operationalize by the four out of six use case requirements defining the need for
confidentiality, integrity and availability to resources and confidentiality,
integrity and authenticity to the messages. These requirements can be seen as
some what essential, since they define the base line requirements for secure
conduct.

The higher-level objectives for resource security were complemented by
operationalizing more fine-grained objectives concerning validation level of
actors and end-to-end security. These objectives are the security objectives
derived from the ACE architecture document, that describe more constrained
environment specific security objectives. Only two out of six requirements were
operationalized by these objectives alone. Both of these requirements can be
seen more or less constrained environment specific, since they specified the
need for autonomous authorization and end-to-end security capabilities. These
kind of objectives get less attention in Internet systems since connectivity and
protecting transmissions are pretty much taken for granted.

 This use case showed that most of the requirements for authorized
authentication in constrained environments can be achieved by common
security objectives for distributed systems. The security requirements them
selves do not change when moving from a larger less constrained system to a
more constricted one. The major difference for the requirements comes from
how to realize these requirements with constrained resources. For this a set of
more finer-grained objectives requirements can be a big help. But as the results
of this study have shown even a battery powered device with Class 1 memory
constraints, can fulfill the security objectives described by the framework
reasonably well.

REFERENCES

Anderson, J. P. (1972). Computer Security Technology Planning Study. Volume
2. DTIC Document. Retrieved from http://oai.dtic.mil/oai/oai?
verb=getRecord&metadataPrefix=html&identifier=AD0772806

Chadwick, D. W. (2009). Federated identity management. In Foundations of
security analysis and design V (pp. 96–120). Springer. Retrieved from
http://link.springer.com/chapter/10.1007/978-3-642-03829-7_3

Dunkels, A., Eriksson, J., Finne, N., & Tsiftes, N. (2011). Powertrace: Network-
level power profiling for low-power wireless networks. Retrieved from
http://soda.swedish-ict.se/4112/

Dunkels, A., Grönvall, B., & Voigt, T. (2004). Contiki-a lightweight and flexible
operating system for tiny networked sensors. In Local Computer
Networks, 2004. 29th Annual IEEE International Conference on (pp. 455–
462). IEEE. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=1367266

Erdtman, S., Seitz, L., Wahlstroem, E., Selander, G., & Tschofenig, H. (2016,
October 25). Authorization for the Internet of Things using OAuth 2.0.
Retrieved March 28, 2016, from https://tools.ietf.org/html/draft-ietf-
ace-oauth-authz-01

Eriksson, J., Österlind, F., Finne, N., Tsiftes, N., Dunkels, A., Voigt, T., …
Marrón, P. J. (2009). COOJA/MSPSim: interoperability testing for
wireless sensor networks. In Proceedings of the 2nd International
Conference on Simulation Tools and Techniques (p. 27). ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering). Retrieved from http://dl.acm.org/citation.cfm?
id=1537650

Farrell, S., Holdrege, M., Laat, C. T. A. M. de, Calhoun, P. R., Gommans, L.,
Vollbrecht, J. R., … Spence, D. W. (2000). AAA Authorization
Framework. Retrieved from https://tools.ietf.org/html/rfc2904

Gerdes, S., Bergmann, O., & Bormann, C. (2015c). Delegated CoAP
Authentication and Authorization Framework (DCAF). Retrieved
January 23, 2016, from https://tools.ietf.org/html/draft-gerdes-ace-
dcaf-authorize-04

Gerdes, Bergmann, O., & Bormann, C. (2014). Delegated Authenticated
Authorization for Constrained Environments. In 2014 IEEE 22nd

International Conference on Network Protocols (ICNP) (pp. 654–659).
http://doi.org/10.1109/ICNP.2014.104

Gerdes, Seitz, L., Selander, G., & Bormann, C. (2015a). An architecture for
authorization in constrained environments. Retrieved from
https://tools.ietf.org/html/draft-ietf-ace-actors-02

Gusmeroli, S., Piccione, S., & Rotondi, D. (2013). A capability-based security
approach to manage access control in the Internet of Things.
Mathematical and Computer Modelling, 58(5–6), 1189–1205.
http://doi.org/10.1016/j.mcm.2013.02.006

Haley, C. B., Laney, R., Moffett, J. D., & Nuseibeh, B. (2008). Security
requirements engineering: A framework for representation and analysis.
Software Engineering, IEEE Transactions on, 34(1), 133–153.

Han, S. N., Cao, Q. H., Alinia, B., & Crespi, N. (2015). Design, Implementation,
and Evaluation of 6LoWPAN for Home and Building Automation in the
Internet of Things. Retrieved from
https://www.researchgate.net/profile/Son_Han/publication/28523671
0_Design_Implementation_and_Evaluation_of_6LoWPAN_for_Home_a
nd_Building_Automation_in_the_Internet_of_Things/links/565cf2db08a
efe619b254d0d.pdf

Herberg, U., Romascanu, D., Ersue, M., & Schoenwaelder, J. (2015, May).
Management of Networks with Constrained Devices: Problem Statement
and Requirements. Retrieved January 26, 2016, from
http://tools.ietf.org/html/rfc7547

Hernández-Ramos, J. L., Jara, A. J., Marın, L., & Skarmeta, A. F. (2013).
Distributed capability-based access control for the internet of things.
Journal of Internet Services and Information Security (JISIS), 3(3/4), 1–16.

Hersent, O., Boswarthick, D., & Elloumi, O. (2011). The Internet of Things: Key
applications and protocols. John Wiley & Sons.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in
Information Systems Research. MIS Quarterly, 28(1), 75–105.

ITU-T. (2009a). Baseline capabilities for enhanced global identity management
and interoperabilityITU-T X.1250. International Telecommunication
Union. Retrieved from http://www.itu.int/ITU-
T/recommendations/rec.aspx?rec=9456

ITU-T. (2009b). NGN identity management framework Y.2720. International
Telecommunication Union. Retrieved from http://www.itu.int/ITU-
T/recommendations/rec.aspx?id=9574&lang=en

ITU-T. (1991). Security Architecture For Open Systems Interconnection For
CCITT Applications, Recommendation X.800. International

Telecommunication Union. Retrieved from http://www.itu.int/ITU-
T/recommendations/rec.aspx?id=3102&lang=en

Karp, A. H. (2006). Authorization-based access control for the services oriented
architecture. In Creating, Connecting and Collaborating through
Computing, 2006. C5’06. The Fourth International Conference on (pp.
160–167). IEEE. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4019390

Keranen, A., Ersue, M., & Bormann, C. (2014, May). Terminology for
Constrained-Node Networks. Retrieved January 23, 2016, from
http://tools.ietf.org/html/rfc7228

Kortuem, G., Kawsar, F., Fitton, D., & Sundramoorthy, V. (2010). Smart objects
as building blocks for the Internet of things. IEEE Internet Computing,
14(1), 44–51. http://doi.org/10.1109/MIC.2009.143

Kothmayr, T., Schmitt, C., Hu, W., Brünig, M., & Carle, G. (2013). DTLS based
security and two-way authentication for the Internet of Things. Ad Hoc
Networks, 11(8), 2710–2723.

Kugler, P., Nordhus, P., & Eskofier, B. (2013). Shimmer, Cooja and Contiki: A
new toolset for the simulation of on-node signal processing algorithms.
In Body Sensor Networks (BSN), 2013 IEEE International Conference on
(pp. 1–6). IEEE. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6575497

Mainetti, L., Patrono, L., & Vilei, A. (2011). Evolution of wireless sensor
networks towards the Internet of Things: A survey. In 2011 19th
International Conference on Software, Telecommunications and
Computer Networks (SoftCOM) (pp. 1–6).

March, S. T., & Smith, G. F. (1995). Design and natural science research on
information technology. Decision Support Systems, 15(4), 251–266.

Nguyen, K. T., Laurent, M., & Oualha, N. (2015). Survey on secure
communication protocols for the Internet of Things. Ad Hoc Networks.
Retrieved from
http://www.sciencedirect.com/science/article/pii/S1570870515000141

Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., & Voigt, T. (2006). Cross-level
sensor network simulation with cooja. In Local computer networks,
proceedings 2006 31st IEEE conference on (pp. 641–648). IEEE. Retrieved
from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4116633

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design
Science Research Methodology for Information Systems Research.
Journal of Management Information Systems, 24(3), 45–77.

Perez-Mendez, A., Pereniguez-Garcia, F., Marin-Lopez, R., Lopez-Millan, G., &
Howlett, J. (2014). Identity Federations Beyond the Web: A Survey. IEEE
Communications Surveys Tutorials, 16(4), 2125–2141.
http://doi.org/10.1109/COMST.2014.2323430

Pfleeger, C. P., Pfleeger, S. L., & Margulies, J. (2015). Security in Computing (5th
Edition) (5th ed.). Upper Saddle River, NJ, USA: Prentice Hall Press.

Raza, S., Trabalza, D., & Voigt, T. (2012). 6LoWPAN compressed DTLS for
CoAP. In Distributed Computing in Sensor Systems (DCOSS), 2012 IEEE
8th International Conference on (pp. 287–289). IEEE. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6227754

Rescorla, E., & Modadugu, N. (2012). Datagram transport layer security version
1.2. Retrieved from http://tools.ietf.org/html/rfc6347.txt

Selander, G., Mani, M., Kumar, S., Seitz, L., & Gerdes, S. (2015, b). Use Cases for
Authentication and Authorization in Constrained Environments.
Retrieved from https://tools.ietf.org/html/draft-ietf-ace-usecases-10

Shelby, Z., & Bormann, C. (2009). 6LoWPAN: The wireless embedded Internet
(Vol. 43). John Wiley & Sons.

Shelby, Z., Hartke, K., & Bormann, C. (2014). The constrained application
protocol (CoAP). Retrieved from
http://tools.ietf.org/html/rfc7252%23section-5.5.2

Shirey, R. (2007). Internet Security Glossary, Version 2. Retrieved January 23,
2016, from https://tools.ietf.org/html/rfc4949

Skinner, G. D. (2009). Cyber security management of access controls in digital
ecosystems and distributed environments | NOVA. The University of
Newcastle’s Digital Repository, Cyber security management of access
controls in digital ecosystems and distributed environments. Retrieved
from http://novaprd-
lb.newcastle.edu.au:8080/vital/access/manager/Repository/uon:9103?
f0=sm_subject%3A%22access+controls%22

Texas Instruments. (2007). CC2520 2.4 Ghz IEEE 802.15.4 / ZigBee RF
Transceiver Datasheet. Retrieved May 19, 2016, from
http://www.ti.com/product/CC2520

Texas Instruments. (2014). MSP430F5437 and MSP430F5x/6x Mixed-Signal
Microcontrollers Datasheet. Retrieved May 19, 2016, from
http://www.ti.com/product/MSP430F5437

Titzer, B. L., Lee, D. K., & Palsberg, J. (2005). Avrora: Scalable sensor network
simulation with precise timing. In Proceedings of the 4th international
symposium on Information processing in sensor networks (p. 67). IEEE
Press. Retrieved from http://dl.acm.org/citation.cfm?id=1147768

Tschofenig, Hartman, S., Lear, E., Schaad, J., & Howlett, J. (2014). Application
Bridging for Federated Access Beyond Web (ABFAB) Architecture.
Retrieved February 9, 2016, from https://tools.ietf.org/html/draft-ietf-
abfab-arch-13

Tsvetkov, T. (2011). RPL: IPv6 Routing Protocol for Low Power and Lossy
Networks. Sensor Nodes–Operation, Network and Application (SN), 59,
2.

Van Lamsweerde, A. (2009). Requirements engineering: from system goals to
UML models to software specifications. Retrieved from
http://dial.uclouvain.be/handle/boreal:78351

Vasseur, J.-P., & Dunkels, A. (2010). Interconnecting Smart Objects with IP: The
Next Internet. Morgan Kaufmann.

	1 Introduction
	1.1 Motivation
	1.2 Objectives and expected results
	1.3 Research questions
	1.4 The structure of this study

	2 Research methods
	2.1 Design Science Research Method
	2.2 Requirements engineering
	2.3 Research process of this study

	3 Smart object technologies
	3.1 Wireless Sensor networks
	3.2 Legacy protocols for smart objects
	3.2.1 ZigBee
	3.2.2 ZWave

	3.3 Lightweight IP-based protocols
	3.3.1.1 6LowPAN
	3.3.2 RPL
	3.3.3 CoAP

	4 Constrained environments
	4.1 Classes of constrained devices
	4.1.1 Classifications based on energy limitation

	4.2 Constrained networks
	4.2.1 Constrained-node network
	4.2.2 Summary

	5 Architecture for authorization in constrained environments
	5.1 Actors and their tasks
	5.1.1 Constrained level actors
	5.1.2 Less-constrained level actors
	5.1.3 The principal level actors
	5.1.4 Possible role combinations

	5.2 Information flows
	5.3 Summary

	6 Security concerns
	6.1 Communication security
	6.2 Authorized authentication
	6.2.1 Identity based access control
	6.2.2 Authorization base access control
	6.2.3 Capability based access control

	6.3 Authentication message sequence models
	6.4 Summary

	7 Proposed protocols
	7.1 DCAF
	7.1.1 DCAF objectives
	7.1.2 Architecture
	7.1.3 Protocol

	7.2 ABFAB
	7.2.1 ABFAB Objectives
	7.2.2 Architecture
	7.2.3 Protocol

	8 Use case
	9 Experiment design
	9.1 Contiki
	9.2 Cooja
	9.3 Powertrace
	9.4 DCAF setup
	9.4.1 Constrained actors
	9.4.2 Less constrained actors
	9.4.3 Running the experiment

	10 Results
	10.1 Time consumption data
	10.2 Power consumption data

	11 Evaluation
	11.1 Constraints
	11.1.1 Memory constraints
	11.1.2 Processing power
	11.1.3 Available power and energy
	11.1.4 Network, interface, physical and cost constraints

	11.2 Architecture related security objectives
	11.2.1 Delegation of demanding tasks
	11.2.2 Validation of actors
	11.2.3 Autonomous functionality
	11.2.4 End-to-end security

	11.3 Security objectives
	11.3.1 Resource security
	11.3.2 Message security
	11.3.3 Access control architecture
	11.3.4 Message sequence for three party authentication

	11.4 Use case security requirements
	11.4.1 Integrity & authenticity of sensor data
	11.4.2 Confidentiality of sensor data
	11.4.3 Authorization by resource and requesting party basis
	11.4.4 Autonomous authorization
	11.4.5 Temporary access permissions
	11.4.6 End-to-end security

	11.5 Evaluation of the main artifact

	12 Conclusions

