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The Internet today is growing not only by size, but it is spreading to new
areas.  New ways to gather more data and control  devices  are developed in
many  application  areas  from  smart  homes  and  cities,  surrounding
environments in cities as well as agricultural settings to industrial settings. This
growth is due to miniaturization and the dropping costs. In order to deploy IoT
applications in truly pervasive manner the physical size and cost of the devices
should remain small. This means especially that in order to keep the cost low
some  of  the  device  capabilities  will  be  having  constraints  even  when
technologies evolve and the price might drop. The compromise is always going
to be between narrower deployments  with more capable devices  and wider
deployments with less capable devices. 

Wireless communication is in many cases the most economic way and for
this  reason Wireless  Sensor Networks  (WSN's)  have been used in industrial
settings for some time now. The same networking technologies can be used in
constrained IoT devices. Many of the current WSN deployments are based on
proprietary technologies and do not offer a secure end-to-end communication.
Instead they provide the data for the Internet through gateways translating the
WSN  communication.  The  communication  security  is  based  on  settings
provided in the time of provisioning the devices.

End-to-end connectivity and security can be realized by using IP-based
protocols  developed for constrained devices. But dynamic access control for
these  environments  is  still  more  or  less  an  open  question.  A  dynamic
authorized  authentication  mechanism  would  make  the  systems  even  more
integratable and easily maintainable. This paper deals with the problem field of
conducting  dynamic  authorized authentication  in  constrained  environments.
The  main  artifact  of  this  study  is  a  framework  that  identifies  both  the
constraints  and security  objectives  for  realizing authorized authentication in
constrained environments. 

Keywords:  Access  control,  Internet  of  Things,  Constrained  Environments,
Authorized Authentication
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Internetin kasvu ei perustu tällä hetkellä vain uusien solmujen määrään, vaan
Internet on levittäytymässä aivan uusille alueille.  Viimeaikoina erilaiset tavat
kerätä  tietoa  ja  ohjata  laitteita  uusin  tavoin  ovat  yleistyneet  esimerkiksi
teollisuudessa, kaupunkiympäristöjen melun ja saasteiden seurannassa. Lisäksi
käsitteet älykoti tai -kaupunki alkavat olla yleisesti tunnettuja. Nykyinen kasvu
näiden  teknologioiden  käytössä  perustuu  pitkälti  laitteiden  koon
pienenemiseen ja hintojen laskuun. Jotta Esineiden Internet pystyy kasvamaan
merkittävällä  tavalla,  laitteiden  fyysisten  kokojen  ja  hintojen  tulisi  pysyä
matalalla  tasolla  tai  laskea  edelleen.  Pieni  koko ja  hinta  tarkoittaa  kuitenkin
usein rajoituksia laitteiden ominaisuuksille. Vaihtoehtoina tuleekin luultavasti
aina olemaan rajoittuneempien laitteiden laajempi käyttö tai  kyvykkäämpien
laitteiden kapeampi käyttöönotto.

Langattomat  yhteydet  ovat  usein  edullisin  tapa  toteuttaa  verkko-
ominaisuuksia erilaisille laitteille. Tästä syystä langattomia sensoriverkkoja on
käytetty  teollisuudessa jo  pidemmän aikaa.  Samat  verkkoteknologiat  sopivat
myös  käytettäväksi  Esineiden  Internetin  laitteille.  Suuri  osa  nykyisistä
langattomista sensoriverkoista käyttää kuitenkin kaupallisia verkkostandardeja,
jotka  eivät  ole  yhteensopivia  Internet  teknologioiden  kanssa.  Tästä  syystä
tämän tyyppisillä järjestelmillä ei saavuteta päästä-päähän yhteyttä Internetissä
ja rajoitetussa ympäristössä sijaitsevien laitteiden välille. Tämä tarkoittaa myös
sitä, että viestinnän turvaamista ei voida toteuttaa päästä-päähän, vaan viestit
puretaan  ja  suojataan  uudelleen,  kun  ne  poistuvat  tai  tulevat  rajoitettuun
verkkoon.

Ratkaisuiksi  näihin  yhteensopivuus  ongelmiin  on  kehitetty  IP-pohjaisia
protokollia,  jotka  ovat  tarpeeksi  kevyitä  rajoitetuille  laitteille.  Yhteyden
luomiseen  kahden  rajoitetun  laitteen  välille  dynaamisesti  standardoitua
ratkaisua ei kuitenkaan vielä ole. Dynaaminen ratkaisu rajoitettujen laitteden
välisen  liikenteen  turvaamiseen  tekisi  järjestelmistä  entistä  paremmin
integroitavia ja helpommin ylläpidettäviä.  Tämä tutkielma käsitteleekin juuri
niitä ongelmia, jotka tulisi ratkaista, jotta rajoitettujen laitteiden dynaamiseen
autorisointiin  voitaisiin  löytää  yleisesti  hyväksytty  menetelmä.  Tutkielman
artefakti  on  arviointikehys,  joka  tunnistaa  laitteiden  rajoitteet  ja
turvallisuustavoitteet tällaiselle ratkaisulle.

Asiasanat: Esineiden Internet, Rajoitetut Ympäristöt, Autorisoitu Autentikointi
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1  Introduction

Internet  of  Things  (IoT)  is  a  paradigm  describing  how  objects  possessing
networking  and  collaborative  abilities  have  become  more  ubiquitous  and
continue to will do so in more pervasive way in the future. This paradigm also
predicts that in the near future an increasing amount of information produced
for the Internet will not be produced by humans. These visions are based on the
continuing development in communication technology and electronics that will
not only bring the cost of the technology down, but also bring networking and
collaborative  abilities  to  more  and  more  things  in  our  environment.  These
things include anything from household items to home automation and smart
city infrastructure to industrial applications.

Especially the communication between machines often takes  place in a
more  constrained  environment  than  the  Internet.  In  practice  a  constrained
environment can mean constraints on network capacity, processing power or
available memory of the things or all of these together. An example of the cause
for these constraints is a high packet loss in the networks due to the frequencies
used.  Due to the constraints these devices are not able to use normal Internet
protocols  for  communication,  securing  their  transmissions  or  authorization.
Constraints  that  prevent  protocol  use  can  come  from  too  big  overhead  of
network  packets  or  too  low processing  power  and  memory  for  using  such
things as public keys. 

In addition to the constraints mentioned the power consumption of these
devices  should  remain  low,  since  many  of  these  devices  can  be  battery
powered. The battery consumption should remain low since usually the devices
are expected to function for years with out the need for a battery change.  The
dominating  consideration  when  energy  consumption  is  concerned  is  the
network bandwidth usage. This is due to the fact that radio communications
usually consumes a big portion of the devices total energy consumption.

These edges  of  the future Internet  will  be constructed of  smart  objects
gathering data from and in some cases also acting in the physical world. These
devices  only  handle  very  simple  tasks,  such  as  provide  sensor  data  on
temperature or humidity readings or trigger events such as move an actuator.
The most economical way to handle such simple tasks is to use simple devices



to keep the cost of the devices and their deployment low. The balance between
cost  and  device  abilities  means  that  the  devices  will  always  have  certain
constraints.   

Despite  the  constraints  the  devices  have  they  still  need  to  be  able  to
function in a secure manner due to privacy concerns. Much of the data collected
these devices is potentially sensitive in nature. The devices may be collecting
data from everyday life such as home utility consumption. This kind of scenario
can  infringe  the  users  privacy  by  allowing  and  eavesdropper  to  conclude
whether the user is home or not. For this reason it is not enough to secure the
data  only  when  it  leaves  the  local  network,  but  an  end-to-end  solution  for
securing  the  communication  is  needed.  (Kothmayr,  Schmitt,  Hu,  Brünig,  &
Carle, 2013)

Currently most solutions gathering data this way are unable to  deliver
end-to-end security, due to the networking protocols they use. These protocols
are not inter-operable with normal Internet nodes, but use translating gateways
to communicate to the Internet. These gateways not only translate the incoming
and outgoing network packages, but are also in charge of applying security on
the transmissions too. In this kind of setting where the constrained networks
protocols  are  incompatible  with  the  common  Internet  protocols,  end-to-end
security can only be achieved within the network. 

One solution for  this  problem is  to  use  IP-based protocols.  A protocol
stack light enough to be used in constrained environments has been around for
some years  and described by IETF Request  For Comments  documents.  This
stack  consist  of  IPv6  for  Low  Power  and  Lossy  Networks  (6LoWPAN),
Constrained Application Protocol (CoAP) and IPv6 Routing Protocol for Low-
Power  and  Lossy  Networks  (RPL).  These  protocols  enable  end-to-end
communication between constrained nodes and normal Internet nodes through
a  border  router.  This  communication  can  also  be  secured  end-to-end  using
Datagram Transport Layer Security (DTLS).

End-to-end security ability is not the only thing using IP-protocol stack
has  to  offer  compared to  other  protocols.  End-to-end communication ability
removes many barriers on how these small devices can be used and integrated
in  other  systems  and  even  the  Internet.  It  provides  more  seamless
integrateability,  maintainability and possibility to develop more future proof
and evolvable systems. For example better integrateability enables easier way
for  communication  between systems from multiple  vendors  and areas.  This
could mean such things  as  integrating a  lighting system of  a  building with
ventilation  and  heating  systems  functionalities  would  be  a  matter  of
configuring what data is shared between these systems. Compared to the state
of such systems are today, this would mean substantial gains on many areas
where siloed systems co-exist side by side but unable to communicate.

As mentioned above using IP-protocol stack and end-to-end security is
possible using existing protocols in the constrained environments.  But the open
question  that  still  remains  is  how  the  devices  could  establish  a  secure
communications  channel  between  them  selves  with  out  a  previous  security
context. Currently there is no consensus on a protocol for establishing a secure
context between two constrained devices. A consensus is needed in order to



provide this the ability to constrained devices in universal way. So a common
mechanism  for  authorized  authentication  between  the  devices  needs  to  be
decided on and standardized. The major challenge on realizing such a system is
how  to  compose  such  a  protocol  within  the  limits  set  by  environment
constraints.  

1.1  Motivation

Several protocols have been proposed as a standard for providing authorized
authentication in the constrained environments. But at the time of this writing
none of them have reached the level of proposed standard. Motivation for this
study  is  to  help  the  process  of  protocol  selection  by  identifying  a  set  of
properties required to realize a solution. An evaluation framework would help
the process by combining the constraints the protocols have to submit to and
how they effect on security objectives it needs to meet. The major contribution
of this study is to provide an overall picture on the problem world of selecting a
universally  accepted  dynamic  authorized  authentication  protocol  for
constrained environments. 

1.2  Objectives and expected results

The objective of this study is to identify the critical features the solution for
authorized authentication in constrained environments has to possess and build
an evaluation framework that would capture these features. First objective is
that this framework is able to identify the constraints.  Second objective is to
categorize the constraints in order to verify accepted limits for different levels
of security possible. The third objective is to define adequate security objectives
for a proposed solution. The constraints and security objectives together will
form a framework to capture the perquisites for a authorized authentication
that  can  operate  under  the  environment  constraints  and  do  so  in  a  secure
manner. 

  After the framework is developed it is applied to two protocols proposed
for authorized authentication solution for constrained networks. To gain further
knowledge how well one of these protocols is able to meet the environment
constraints,  it  is  evaluated  further  by  conducting  a  simulated  experiment.
Experiment results are used with protocol definitions to assess the ability of
these  protocols  to  cope  with  environment  constraints.  Next  the  security
objectives  of  the  framework are  tested against  the  protocol  specifications  to
define if  the security objectives match the protocol  properties.  Based on the
analysis  between  the  objectives  and  protocol  properties,  the  objectives  are
operationalized against a use case to determine the dependencies between the
objectives and use case requirements.



 After these steps the framework is evaluated on how well it was able to
capture the constraints and how well did the security objectives were able to set
basis for different areas of a distributed system.

The expected result of this study is the creation of an artifact, a framework
for  authorized  authentication  evaluation.  This  framework  would  be  able  to
identify the environment constraints, objectives for secure distributed system
and so act as a guideline for protocol selection.

1.3  Research questions

Based on the objectives of this study first the framework needs to identify the
constraints posed by the environment. Since the purpose of such a mechanism
is  security,  objectives  for  a  secure  system  need  to  be  identified  also.  The
identification  of  constraints  and  their  effect  on  the  mechanism  should  give
answers to the first research question of this study which is:

RQ  1:  What  are  the  prerequisites  for  establishing  authorized
authentication mechanism between two devices when one or both have
constrained capabilities?

The identifying different constraints answer to the first sub-question:

RQ 1.1: What kind of constraints do the devices have?

After the constraints are identified it would be helpful to have a taxonomy for
the different constraints, which brings us to to the next sub-question: 

RQ 1.2: How the device constraints should be classified?

To  understand  what  the  identified  constraints  mean  when  choosing  a
mechanism the third research question needs to be answered:

RQ 1.3: Which constraints have effect on choosing the mechanism?

After  the  constraints  and  their  effect  on  choosing  the  mechanism  are
understood, the requirements for a system can be identified. This formed as the
second research question of this study: 

RQ 2:  What  are the requirements  for  a  system supporting authorized
authentication between two constrained devices?

Based on the requirements, a system fulfilling them can be described, so there
fore RQ 2 has a sub-question:

RQ 2.1: What kind of system could satisfy these requirements?



1.4  The structure of this study

First the research method for this study is determined and the objectives and
expected results are described in further detail in the following chapter. Then
then some central concepts are introduced in chapter  3 to help the reader to
continue to the more specific  subjects.  The first  of  these is  the definition of
constrained environments in chapter 4, which is expanded with an architecture
for authorization in constrained environments in chapter 5. Chapter 6 discusses
the security concerns of distributed systems in a general level. This is followed
by  introducing  two  protocols  proposed  as  a  solution  for  authorized
authentication in constrained environments in chapter  7 and a use case for a
system requiring these features is given in chapter 8. Chapters 9 & 10 consist of
describing the empirical experiment included in this study and portraying its
results. The results for both the literary review conducted in the first part of this
study and the experiment are evaluated in chapter 11.

 



2  Research methods

The field of IT-research is a study of artificial as opposed to natural phenomena.
As natural science aims to understand reality, design science attempts to create
things  that  serve  human  purposes.  Since  design  science  is  technology-
orientated, its products are assessed by value or utility criteria, such as does it
work? or  is  it  and improvement?  Rather  than producing general  theoretical
knowledge,  design science produces  and applies  knowledge of  situations or
tasks in order to produce successful artifacts. (March & Smith, 1995)

The design science is fundamentally a problem solving paradigm that has
it's  roots  in  engineering.  Design  Science  creates  and  evaluates  IT-artifacts
intended  to  solve  identified  organizational  problems.  The  artifacts  are
represented  in  a  structured  form  such  as  software,  formal  logic,  rigorous
mathematics or informal natural language descriptions. The further evaluation
a  new artifact  can  be  placed in  an organizational  contexts,  which  gives  the
opportunity to apply empirical and qualitative methods. (Hevner, March, Park,
& Ram, 2004)

Both  behavioral  science  and  design  science  paradigms  are  needed  to
ensure  the  relevance  and effectiveness  of  information system research,  even
though  the  paradigms  have  different  philosophies.  The  behavioral  science
paradigm seeks to find ”what is true” as the design science paradigm seeks to
create ”what is effective”. While one can argue that utility relies on truth, the
discovery of truth may not provide application to this utility.  In this setting
design science paradigm can be seen as a proactive agent. It focuses on creating
and  evaluating  artifacts  that  enable  organizations  to  address  important
information related tasks.  On the other hand behavioral science paradigm is
reactive with the respect  that  it  takes  technology as a given and focuses  on
developing  theories  to  explain  phenomena  related  to  the  acquisition,
implementation, management and use of technologies. (Hevner et al., 2004) 

Hevner  et  al.  (2004)  identify  seven  guidelines  for  design  science  in
information  systems  research.  These  guidelines  are:  design  as  an  artifact,
problem relevance,  design  evaluation,  research  contributions,  research  rigor,
design as a search process and communication of research. These guidelines
dictate that knowledge and understanding of a design problem and its possible



solutions  are  acquired  by  creating  an  innovative  purposeful  artifact  for  a
specified problem domain. And to make sure that the artifact has utility value
for  the  specified  problem,  evaluation  of  the  artifact  is  very  important.  The
artifact  must  also  be  innovative  and  solve  an  unsolved  problem or  solve  a
known problem more efficiently to contribute novel research information. To
meet research rigor guideline the artifact must be rigorously defined, formally
represented, coherent and internally consistent. The process of creating and the
artifact it self can enable a search process where the problem is processed and
an  effective  solution  is  found.  Finally  the  result  of  the  research  must  be
communicated effectively to both technical and managerial audience.  (Hevner
et al., 2004)

2.1  Design Science Research Method

The seven guidelines presented by Hevner et al. (2004) among other works on
the  area  have  been  refined  as  a  Design  Science  Research  Method  (DSRM)
proposed by Peffers et al. (2007).

The  DSRM  framework  is  aimed  to  be  a  commonly  accepted  and
consensus building framework for Design Science research. To accomplish this
they based their work on well-accepted elements described in prior research
and current thought to determine the appropriate elements for what the DS
researchers did or should do. The result of their synthesis was a process model
consisting  of  six  activities  in  a  nominal  sequence,  that  are  described  next.
(Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007)

Activity 1: Problem identification and motivation. The aim of this activity
is to define a specific research problem and justify the value of the solution. The
problem definition is used for artifact development that is aimed to provide a
solution. Depending on the complexity of the case it may be useful to atomize
the problem conceptually to help capturing it's complex features. The solution
value  justification serves  two purposes:  it  provides  motivation and helps  to
understand the reasoning of the researcher's understanding of the problem. The
motivation part of this activity is intended to help both the researcher and the
audience to pursue the solution and accept the results.  The required resources
for this activity include appropriate knowledge of the state of the problem and
the importance of it's solution.

Activity 2: Define the objectives for a solution. This activity indicates the
objectives of a solution based on the problem identification and knowledge of
possible  and  feasible  options.  The  given  objectives  can  be  qualitative  or
quantitative. Qualitative objectives can be such as in which terms a desirable
solution would be better than current ones. Quantitative objectives can describe
for  example  how  a  new  artifact  is  expected  to  support  solutions  to  novel
problems not yet addressed. The objectives should be inferred rationally from
the  problem  identification.  This  activity  requires  knowledge  of  the  state  of
problems and current solutions, if any exist, also the efficiency of the current
solutions. 



  Activity  3: Design and development.  This  activity  deals  with artifact
creation.  Artifacts  can  be  broadly  defined  constructs,  models,  methods  or
instantiations (Hevner et al., 2004). Conceptually an artifact in design research
can be any designed object that embeds the research contribution in it's design.
This activity determines the artifact's functionality, architecture and creates the
actual artifact. This activity moves from objectives to design and development.
The resources required for this transition include knowledge of the theory that
can be applied in a solution.

Activity 4: Demonstration. This activity demonstrates the use of an artifact
to solve one or more instances of a problem. This activity could involve using
the  artifact  in  experimentation,  simulation,  case  study,  proof  or  some other
appropriate  activity.  Resources  required  for  this  demonstration  include
effective knowledge on how an artifact can be used to solve a problem.

Activity  5: Evaluation.  During  this  activity  observations  and
measurements are made to determine how well the artifact supports a solution
to the problem. The measurements and other observed results extracted form
the use of the artifact are then compared to the objectives of a solution. This
requires knowledge of relevant metrics and analysis techniques. Evaluation can
take  many  forms  depending  on  the  nature  of  the  problem  and  artifact.
Evaluation can include comparison of the artifacts functionality to the solution
objectives, quantitative performance measures, results of satisfaction surveys,
client feedback, simulations or quantifiable measures of system performance.
Conceptually the evaluation could include any appropriate empirical evidence
or logical proof. At the end of this activity the researchers can decide if they
want  to  iterate  back  to  activity  3  to  try  to  improve the  effectiveness  of  the
artifact or to continue on to communication. The nature of the research venue
may dictate if the iteration is feasible or not.

Activity  6: Communication.  In  this  activity  the  problem  and  it's
importance, artifact,  artifacts utility and novelty, rigor of the artifacts design
and the artifacts effectiveness are published. The structure of DSRM process can
be used to structure a scholarly research publication. As the nominal structure
of  and  empirical  research  process  (problem  definition,  literature  review,
hypothesis,  development,  data  collection,  analysis,  results,  discussion  and
conclusion)  is  a  common  structure  for  empirical  research  papers.
Communication requires knowledge of the disciplinary culture.

The DSRM process is structured in a nominally sequential order. However
it does not expect that researchers would always proceed through the activities
in sequential order. In reality the researchers can start at almost any step and
move outward. The nominal sequence is based in a problem-centered approach
that starts with activity 1. This sequence is natural for research ideas that are
resulted from observation of a problem or from suggested future research. To
an objective-centered solution the first activity is 2. Objective-centered research
can be derived from an industry or research need that can be addressed by
artifact  creation.  A  design-  and  development-centered  approach  starts  with
activity 3. It could result from an existing artifact that has not been formally
examined as a solution for and explicit problem domain in which it could be
used. An artifact could have been used in a different problem or it could have



come from another research domain. A client-/context-initiated solution starts
from activity 4 and it may be based on observing a working practical solution.
This means that the researchers work backward to apply rigor to the process
retroactively. This kind of approach could be initiated from a consulting case.
(Peffers et al., 2007)

2.2  Requirements engineering

Since the main artifact of this study is a evaluation framework for a software
solution  running  on  tightly  specified  hardware,  requirements  engineering
principals apply on operationalization of the framework security objectives. The
framework  identifies  the  security  objectives  for  a  solution,  which  are  then
operationalized using use case requirements defined in chapter 8.

Requirements  engineering  can  be  defined  as  a  coordinated  set  of
activities  for exploring, evaluating, documenting,  consolidating, revising and
adapting the properties  of  a  new or revised system.  The goal  of  a  software
project  is  to   build  a  machine  that  is  intended  to  solve  a  problem  and  so
improve the world. (Van Lamsweerde, 2009)

When considering the behavior of the new system a decision has to be
made on which parts of the world are considered as parts of the problem and
therefore need to be analyzed. Pervasive views going into very small details are
impractical, so a subset of real-world elements considered relevant is chosen to
define the system context. (Haley, Laney, Moffett, & Nuseibeh, 2008)
A process of building a machine needs to investigate the problem world in two
versions of the same system: the system-as-is and the system-to-be. These states
are the system as it existed before the machine was built and how it should be
when the machine is built and operational. The project is initiated because the
system-as-is has problems, deficiencies or limitations, which the system-to-be is
intended to address based on technology opportunities. The problem world can
be divided in three dimensions: why, what and who.  (Van Lamsweerde, 2009)

The why dimension aims to identify and make explicit the objectives and
reasons for a new version of a system. The objectives need to be identified in
regards  to  the  limitations  of  the  system-as-is  and  the  opportunities  to  be
exploited. In order to do so first a through domain knowledge must be acquired
and in the basis of the knowledge alternative options and technology options
must  be  evaluated.  The  objectives  of  system-to-be  should  also  satisfy  the
possible conflicting viewpoints, interests or perceptions in the problem world.
(Van Lamsweerde, 2009)

The what-dimension identifies the functional services needed to satisfy the
objectives identified in the why-dimension. Functional services need to meet
constraints  and  assumptions  such  as  performance,  security,  usability,
interoperability and cost. These constraints and assumptions may be identified
from  usage  scenarios  envisioned  for  the  system-to-be  or  agreed  system
objectives. (Van Lamsweerde, 2009)



The  who-dimension  assigns  the  responsibilities  derived  from  the
objectives, services and constraints defined in why- and what-dimensions for
the components of the system-to-be. These components include human actors,
devices and software. The goal is select the assignments so, that the risk of not
achieving  system  objectives,  services  or  constraints  is  minimized.  (Van
Lamsweerde, 2009)

There  are  two  main  types  of  statements  involved  in  requirements
engineering:  descriptive  and  prescriptive  statements.  Descriptive  statements
state system properties that are true regardless of the system behavior and the
properties  stated  by  prescriptive  statements  are  dependent  on  the  system
behavior.  It  is  essential  to  make  distinction  between  descriptive  and
prescriptive statements since prescriptive statements may be changed or altered
and  the  descriptive  statements  may  not  be  changed  or  altered.  (Van
Lamsweerde, 2009)

Requirements  themselves  can  also  be  categorized  in  two  groups:
functional- and non-functional requirements. Functional requirements address
the 'what' aspects described above and refer to the services the software should
provide  and  non-functional  requirements  define  the  constraints  how  the
services  should be  provided.  (Van Lamsweerde,  2009) Quality  requirements
include among others the security attributes which are in central role in this
study.

Security  requirements  can  be  defined  as  constraints  on  the  systems
functional requirements, instead of themselves being functional requirements.
Security  requirements  are  prescriptive  requirements  like  functional
requirements,  since  they  provide  a  specification  to  achieve  desired  effect.
Security requirements are realized using security objectives. A single security
requirement can operationalize one or more security objectives. On the basis of
security  objectives  operationalized  to  security  requirements,  satisfaction
arguments can be formed to show the system is able to respect the security
requirements. (Haley et al., 2008)

2.3  Research process of this study

The DSRM framework is used as the basis for research process of this study.
This study has started with a problem-centered approach so the nominal order
of DSRM starting from activity 1 applies.  The different parts of the research are
divided in the six activities as follows:

Activity 1,  Problem identification and motivation:  The research problem
was first identified in the introduction chapter. Motivation for the research was
provided in an individual sub chapter 1.1. The initial problem identification and
motivation  provided  in  the  introduction  chapter  are  supplemented  by
describing  the  smart  object  paradigm  and  existing  legacy  and  IP-based
protocols in chapter 3. 



   

Activity 2, Define the objectives for a solution: The objective for this study
is  defined  in  the  introduction  chapter  1.2.  The  objective  is  to  construct  a
framework for evaluating protocols proposed to authorized authentication in
constrained  environments.  The  objectives  are  formed  into  concrete  research
questions in chapter 1.3.

When compared to current solutions on the problem this study evaluates,
the  key  property  is  dynamicity  .  Current  solutions  to  authorization  in  the
constrained environments are not dynamic in a sense that in most cases the
devices  are  configured  when  they  are  commissioned  and  rarely  or  never
reconfigured

When  current  solutions  similar  to  the  main  artifact  of  this  study  are
considered. A framework that would capture both the constraints and security
objectives in this manner does not exist. A literary review was conducted as a
part of this study to combine features from previous research, so building a
more holistic view of the problem world.     

Activity 3, Design and development: The main artifact of this study will be
developed based on the literary review conducted in chapters 4,  5 and 6. First
part of the framework identifies the constraints and provides classifications for
memory  and  power  consumption  constraints.  This  chapter  also  provides
answers  to  the  sub  research  questions  1.1  and  1.2.  The  second  part  of  the
framework  is  the  security  objectives  derived  from  IETF  architecture  for
authorization for  constrained environments.  This  architectures  purpose is  to
describe not only actors and functional requirements,  but also some security
objectives for designing a authorization solution for constrained environments.
The third  part  deals  with  common security  considerations  when building  a
distributed system. This part identifies the different parts of a secure system
and  brings  more  security  related  objectives  to  the  framework.  Figure  1
illustrates the design process and structure of the framework.

Figure 1: The design process and structure of the main artifact

 
Activity  4, Demonstration:  The  use  of  the  artifact  is  demonstrated  by

assessing two proposed protocols  described in chapter  7.  Both protocols  are
assessed in specification level. In addition one of the protocols is experimented
with in a simulated environment. During the simulated experiment described
in  chapter  9 data  is  gathered  to  determine  how  well  this  protocol  handles
certain constraints. The data is presented in chapter 10. After the experiment the
framework is applied to the protocols by discussing what kind of solutions they
bring to different areas of the framework in chapters  11.1,  11.2 and 11.3. Next
the framework security objectives are operationalized to use case requirements



and  linked  to  the  previous  discussions  on  protocols  in  chapter  11.4.  The
experiment  completes  the  answer  to  research  question  1  by  answering  the
remaining sub-question 1.3.  Research question 2  and it's  sub-question 2.1  is
answered by applying the framework to a use case.  

Activity 5, Evaluation: The basis for the evaluating the artifact is provided
by the demonstration activity, where framework is applied to the protocols and
use  case.  In  the  evaluation  activity  is  conducted  in  chapter  11.5 where
framework it self is assessed on how well it is able to capture the features of the
proposed protocols and provide objectives for the use case requirements.

Activity 6:  Communication. The results of this study including the artifact
it self will be published as a masters thesis for University of Jyväskylä and it is
published in electronic form in jyx.jyu.fi digital archive.



3  Smart object technologies

Smart objects is a good umbrella term for the devices addressed in this study. A
technical definition for a smart object is and item equipped with some form of
sensor or actuator, microprocessor, communication device and a power source.
The first two of the defined traits allow the smart object to interact with the
physical  world,  with  the  microprocessor  the  smart  object  can transform the
captured  data  or  control  an  actuator  and  it  can  communicate  it's  sensor
readings  or  receive  commands  with  the  communication  device.  (Vasseur  &
Dunkels, 2010)

Smart objects can be used to sense simple physical properties such as
light,  temperature  or  air  humidity.  They  can  also  be  used  to  sense  more
complex  variables  like  air  pollution  or  when  an  industrial  machine  needs
service or is  about to brake down. Smart objects can also effect the physical
world by using different  types  of  actuators.  An actuator  in  this  context  can
mean anything from simple tasks like switching on a small led or as complex as
adjusting the heating in a particular part of a building. A single smart object can
be very useful, but their real strength comes from their ability to communicate.
This  enables  different  functionalities  to  be  combined  by  smart  objects
communicating with each other.  This could be something like a switch on a
door that communicates to other nearby smart objects  to  turn on the lights,
adjust the heating and other functionalities  in a house.  (Vasseur & Dunkels,
2010)

Another  way  to  define  a  smart  object  is  based  on  their  behavior.  The
behavior of a smart object is based on where and what kind of task it is used.  A
smart object in a container logistics application for example behaves differently
than  a  smart  object  used  to  control  a  smart  home  functionality.  Another
important point is that smart object should be designed future proof in some
level, since it is impossible to know exactly how they are used in the future.
However this does not change the two behavioral  properties  common to all
smart objects: interaction with the physical world and communication. (Vasseur
& Dunkels, 2010)

The third definition of smart objects comes from user interaction. Because
smart  objects  have a dual  nature as physical  and digital  entities,  they bring



forward the fact that Internet of Things cannot be viewed only as a technical
system, but it has to be considered as a human centered interactive system. For
this  reason smart  object   design has  to  be  expanded beyond hardware  and
software and include interaction design and social aspects as well.  (Kortuem,
Kawsar, Fitton, & Sundramoorthy, 2010)

The smart objects  are quickly emerging as a technology,  never the less
there are still are some challenges both node and network levels. At the node
level the challenges that have to be addressed are physical size, cost and power
consumption. At the network level the challenges come from the scale of nodes
in a smart object networks, power consumption and memory constraints. The
challenges  in  the  smart  object  technology  it  self  are  standardization  and
interoperability. As the technology will be produced by many different parties
standardization  is  in  a  essential  role.  Interoperability  is  also  essential  to
integrate smart object devices in the existing IT ecosystem. (Vasseur & Dunkels,
2010)

Historically the origins of smart objects come from the separate strands
of development of computing and telephony. Smart objects can be seen as the
middle ground between computing and telephony as it borrows features from
both. The culture of engineering evolvable systems comes from the computing
heritage and the telephony heritage gives  the  smart  objects  the  principal  of
connecting disparate systems managed by different organizations. Other areas
that have influenced and are related to smart objects are embedded systems,
ubiquitous  and  pervasive  computing,  mobile  telephony,  telemetry,  wireless
sensor networks, mobile computing and computer networking. All the smart
object related areas are illustrated in Figure  2 Some of these have industrial
background and others have emerged from academic research communities.
The relating factors with all the aforementioned areas are that they deal with
computationally  assisted  communication  between  physical  items,  wireless
communication or involve interaction between the virtual and physical world.
(Vasseur & Dunkels, 2010) 

Figure 2: Smart objects and other key technologies (Vasseur & Dunkels, 2010)



3.1  Wireless Sensor networks

The concept  of  Wireless Sensor Networks (WSN's)  is  very similar to  that  of
smart objects, with the difference that smart objects are less focused on data
gathering. On the other hand WSN's are based on the idea that small wireless
sensors  are  capable  to  collect  and  transmit  information  from  the  physical
environment.  WSN's  are  composed  of  small  sensor  nodes  that  transmit
information to a base-station and also help each other to relay the information if
the base station is out of reach for some sensors. (Vasseur & Dunkels, 2010)

The research field of WSN's has been very active since the early 2000s.
The  research  community  has  developed  many  important  mechanisms,
algorithms  and  abstractions  targeting  the  special  requirements  of  small
interconnected devices.  Such as mechanisms for power-saving, since a typical
wireless  sensors  are  battery  powered and have a  long lifetime requirement.
Another important mechanism is the WSN's ability to autonomously configure
them selves to a network for transporting sensor readings. (Vasseur & Dunkels,
2010)

       The lowering cost of sensor technology has made WSN's applicable in
many  many  scenarios.  But  today  WSN's  are  characterized  by  high
heterogeneity because they consist of different proprietary and non-proprietary
solutions.  Closed  proprietary  systems  are  connectivity  islands  with  limited
communication to the external  world through application specific  gateways.
This wide range of incompatible solutions is delaying a large scale deployment
of these technologies and creating a virtual wide sensor network that would be
capable to integrate all existing sensor networks.  (Mainetti,  Patrono, & Vilei,
2011) Next two of these legacy protocols for smart objects are described shortly.

3.2  Legacy protocols for smart objects

3.2.1  ZigBee

ZigBee is  a  proprietary wireless communication specification based on IEEE
802.15.4 radio link layer and it is owned by the ZigBee alliance. The 802.15.4
standard provides a low bit rate and low duty cycle optimized physical and
link  layer  solution,  but  sensor  and  control  applications  also  need  a  mesh
networking layer and a standard syntax for application layer messages.  The
alliance was formed in 2002  to build these missing standard layers needed to



enable a multi vendor mesh network on top of 802.15.4 radio links.  (Hersent,
Boswarthick, & Elloumi, 2011)

The ZigBee architecture consist  of  five layers:  physical  (PHY),  medium
access  control  (MAC),  network  (NWK),  application  support  (APS)  and
application  framework  (AF)  layers.  In  addition  to  the  five  layers  the
architecture includes a cross-layer entity called ZigBee Device Object (ZDO).
PHY and MAC layers are adopted from IEEE 802.15.4 radio standard and not
defined by ZigBee specification. (Vasseur & Dunkels, 2010)

Even though the ZigBee stack layers correspond loosely to the those of the
IP Stack, it is still incompatible with the IP architecture. This causes problems if
ZigBee networks are deployed together with IP-based services and applications.
The only way to communicate between ZigBee network and IP-based services is
to use a gateway as an interpreter between the two networks. For this reason
and to reduce cost of integrating ZigBee networks with IP networks, the ZigBee
Alliance  announced  in  2009  that  ZigBee  will  start  move  towards  IP-based
infrastructure. (Vasseur & Dunkels, 2010)

3.2.2  ZWave

Z-Wave is a proprietary protocol architecture intended for automation in
residential and light commercial environments. The architecture is developed
by ZenSys and promoted by the Z-Wave Alliance. Z-Wave was developed for
reliable transmission of short messages between a control unit and one or more
nodes within a network. Z-wave architecture defines it's own physical, MAC,
transfer, routing and application layers. There are two types of devices in a Z-
Wave network:  controllers  and slaves.  Z-Wave functionality is  based on the
controllers to poll or send commands to the slaves. The slaves then either reply
to the controllers or execute given commands. (Mainetti et al., 2011)

3.3  Lightweight IP-based protocols

The use of IP protocol stack for smart objects has many advantages such as
interoperability evolvability  and scalability.  The interoperability  of  IP comes
from it's initial design, that enabled it to work on top of different link layers.
The evolvability is due to the end-to-end principle that IP architecture is based
on.  But  when  small  constrained  devices  are  concerned  it  needs  to  be  light
enough to  meet  node level  constraints.  (Vasseur & Dunkels,  2010) Next  the
building blocks  for  an IP-stack intended to  constrained environments  use is
described.   

3.3.1.1  6LowPAN

6LoWPAN  is  a  new  set  of  IETF  standards  for  Ipv6  over  low-power
wireless area networks, that is predicted to be a key technology for Wireless



Embedded Internet. The abbreviation WPAN is inherited from IEEE 802.15.4
standard and it originally stood for wireless personal area network. This term is
no longer descriptive for the wide range of applications for 6LoWPAN. A more
descriptive  term nowadays  is  low-power  wireless  area  network  (LoWPAN).
(Shelby & Bormann, 2009)

IPv6 enables smart  objects to be connected to other IP-based networks,
without  intermediate  entities  like  translation  gateways  or  proxies.  Since
LoWPANs have constraints such as limited packet size among others, the use of
IPv6  requires  and  adaptation  layer  that  performs  header  compression,
fragmentation and address auto-configuration. This adaptation layer between
IPv6  and  802.15.4  standard  has  been  defined  by  IETF  6LoWPAN  Working
group. 6LoWPAN can be used in applications where embedded devices need to
communicate with Internet-based services using open standards that are able to
scale across large network infrastructures and have mobility.  (Mainetti et al.,
2011)

The 6LoWPAN architecture consists of LOWPANs connected to other IP
networks  via  edge  routers.  The  edge  routes  route  traffic  in  and  out  the
LOWPANs and handle 6LoWPAN compression, NeighborDiscovery and  IPv4
connectivity mechanisms for the nodes within the LoWPAN.  All  LoWPAN
nodes are identified by unique IPv6 addresses and are capable of sending and
receiving  IPv6  packets.  The  nodes  use  User  Datagram  Protocol  (UDP)  as
transport protocol and in most cases support ICMPv6 traffic such as ping. The
routing in 6LoWPAN networks can be realized with IPv6 Routing Protocol for
Low power and lossy networks (RPL). (Mainetti et al., 2011) 

3.3.2  RPL

RPL was specified and developed to achieve a reliable communication and high
delivery ratio and at the same time to be energy efficient, so it can run on nodes
that have limited energy and memory capabilities. Since many devices in Low
Power and Lossy Networks (LLNs) are battery powered it is important to limit
the amount of sent control messages in the network. Many routing protocols
broadcast control packets at a fixed time interval which wastes energy when the
network is in a stable condition. For this reason RPL dynamically adapts the
sending  rate  of  routing  control  messages.  Routing  messages  are  rarely
generated in a network with stable links and more frequently generated on  a
network in which the topology changes frequently. (Tsvetkov, 2011)

RPL is based on a distance vector routing and network devices running
the protocol are connected in a way that no cycles are present. To achieve this a
Destination Orientated Directed Acyclic Graph (DODAG) is built. The graph is
routed at a single destination called DODAG root.  The graph is constructed
using  an  Objective  Function  (OF)  defining  how  the  routing  metrics  are
computed. The node position relative to the DODAG root is called a rank. The
rank of a node increase when they move away from the root and decrease when
they move towards the root. The rank of the nodes within a network is then
used avoid routing loops.  (Tsvetkov, 2011)



RPL allows building a logical routing topology over an existing physical
infrastructure,  enabling  network  optimization  for  different  application
scenarios  and  deployments.  Optimization  can  be  done  by  constructing  a
DODAG that considers expected number of transmissions or battery powered
nodes in certain parts of the network. (Tsvetkov, 2011)

3.3.3  CoAP

Constrained Application Protocol (CoAP) is an application layer protocol
optimized  for  resource  constrained  networks.  It  consists  of  a  subset  of  the
Hyper Text Transport Protocol functionalities,  that have been redesigned for
low processing power and energy consumption constraints of small embedded
devices. CoAP is built on top of UDP and it uses a fixed length binary header of
only  4  bytes  followed  by  compact  binary  options.  (Mainetti  et  al.,  2011)
Constrained networks such as 6LoWPAN support the fragmentation of Ipv6
packets to small link layer frames. This causes significant reduction in packet
delivery probability. For this reason one of the leading design goals of  CoAP
has  been  keeping  the  message  overhead  small  to  limit  the  need  for
fragmentation. (Shelby, Hartke, & Bormann, 2014)

CoAP  provides  a  request/response  interaction  model  for  application
endpoints, supports built-in discovery of services  and key web concepts such
as URIs and Internet media types. It also meets the special requirements of the
constrained  environments  such  as  multicast  support,  low  overhead  and
simplicity. Since CoAP is based on a sub-set of HTTP functionalities it is also
easily interfaceable with HTTP. (Shelby et al., 2014)

The differences between HTTP and CoAP interaction models come from
the  typical  machine-to-machine  interaction  where  one  single  CoAP
implementation acts in both client and server roles. CoAP request is similar to
HTTP request sent by a client requesting an action using a method code, on a
resource identified by URI from the server.  The server then responses with a
response code and depending on the request also a resource representation may
be included. (Shelby et al., 2014)

CoAP deals with the request/response interchanges asynchronously over
a datagram orientated transport such as UDP, using a layer of messages that
support optional reliability. For this goal CoAP defines four types of messages:
confirmable,  non-confirmable,  acknowledgement  and  reset.  Requests  and
responses can be carried in confirmable or non-confirmable messages and in
addition responses can be carried piggybacked in acknowledgement messages
as well. (Shelby et al., 2014)



4  Constrained environments

This  chapter  gives  definitions  to  what  do the  terms constrained device and
constrained node mean. It also describes and classifies the different constraints
and doing so provides the first part for the main artifact of this study. 

Constrained devices such as sensors or smart objects with limited CPU,
memory  and  power  resources  are  still  able  to  connect  to  a  network.  The
network  it  self  can  be  constrained  or  challenged,  with  unreliable  or  lossy
channels,  based  on  wireless  technologies  with  limited  bandwidth,  dynamic
topology  and  relying  on  a  gateway  or  proxy  to  connect  to  the  Internet.
(Herberg, Romascanu, Ersue, & Schoenwaelder, 2015) An alternative term for a
constrained device when the properties  of  a  network node are in focus is  a
constrained node. (Keranen, Ersue, & Bormann, 2014)

The need for constrained nodes can be justified as how the Internet of
Things could be scaled in the future. The scaling of Internet of Things has two
aspects:

• Scaling  up  of  Internet  technologies  to  large  number  of  inexpensive
nodes, while

• Scaling down the characteristics of the nodes and networks they form to
make the scaling up economically and physically viable solution. This
need for scaling down on characteristics leads to “constrained nodes”.  

A  good  way  to  define  the  term  “constrained  node”  is  to  contrast  it's
characteristics to a more familiar Internet nodes. A constrained node lacks some
characteristics that are taken for granted in the case of Internet nodes, due to
constraints  on  available  energy  and  physical  constraints  such  as  size  and
weight. This means that the nodes have tight upper bounds on state buffers,
code  space  and  processing  cycles.  Since  both  processing  and  transmitting
require  energy,  the  optimization  of  network  bandwidth  usage  and  power
consumption  used  in  processing  are  dominating  consideration  on  all
requirements. This is not a rigorous definition, but it clearly sets constrained
nodes  apart  from server  systems,  personal  computers  and  powerful  mobile
devices such as smartphones. (Keranen et al., 2014)

The constraints of the nodes can be divided into five subcategories:



1. Maximum code complexity (Read only memory/Flash)
2.  Size of state and buffers (Random access memory)
3. Amount of computation ability in a period of time (processing power)
4. Available power and energy
5. Lack of user interface and accessibility during deployment (ability to set

keys update software etc.) (Keranen et al., 2014)

The power efficiency demand affects the hardware and software design as
well  as  network  architectures  and  protocol  designs  of  constrained  nodes.
Because communication consumes power it is crucial that the communication
patterns  are  designed  so  that  they  use  available  resources  efficiently.  The
software design is also limited by the often scarce amount of memory, so the
software of constrained nodes not only needs to be power efficient, but must
have a small memory footprint. These resource constraints that limit the node
level  have their  effect  on the network level  also.  This  leads  to  demands on
network  protocol  design  to  minimize  the  amount  of  network  related
information each node has to keep and number of transmissions each node has
to make. (Vasseur & Dunkels, 2010)

When constrained nodes form a network, it often leads to constraints on
the  networks  themselves.  However  the  networks  can  have  constraints  not
related to  the  nodes.  For  this  reason the  terms  “constrained networks” and
“constrained-node  networks”  have  to  be  independently  distinguished.
(Keranen et al., 2014)

The  next  two  chapters  give  more  detailed  descriptions  on  constrained
devices and networks. These chapters also provide classifications for memory
and power constraints.

4.1  Classes of constrained devices

Since  a  overwhelming  variety  of  Internet-connected  devices  can  be
envisioned and even existing today, some kind of classification of constrained
devices  is  needed.  Bormann,  Ersue  &  Keränen  suggested  a  three  tier
classification in their IETF document that reached RFC status in 2014 and has
been referred since as a baseline classification. This classification is illustrated in
Table  1.  They  based  their  classification  on  distinguishable  clusters  of
commercially available chips and design cores available for constrained devices
at  the  time of  writing  the  document.  These  boundaries  of  these  classes  are
expected to move over time, but not as fast as in larger scale of computing.
Moore's law tends to be less effective in embedded space and the gains made
available by increasing transistor count and density will likely be invested in
reduction of cost and power than in increases in computing power. (Keranen et
al., 2014) 



TABLE 1 Classes of Constrained Devices

Name Data size (RAM) Code size (ROM/Flash)

Class 0, C0 < 10 kB < 100 kB

Class 1, C1 ~ 10 kB ~ 100 kB

Class 2, C2 ~ 50 kB ~ 250 kB

Class 0 devices are very constrained sensors, with so severe memory and
processing constraints that they are unable to communicate directly with the
Internet in a secure manner.  Class 0 devices need the help of larger devices
acting  as  proxies,  gateways  or  servers  to  participate  in  Internet
communications.  Generally  they  cannot  be  secured  or  managed
comprehensively in the traditional sense, but they will likely be preconfigured
and will be rarely reconfigured, if at all. (Keranen et al., 2014)

Class  1  devices  are  quite  constrained  in  code  space  and  processing
capabilities. They are not able to employ  a full Internet protocol stack and not
able  to  communicate  to  other  nodes  using  HTTP,  Transport  Layer  Security
(TLS),  other  related security  protocols  and XML-based  data  representations.
Instead Class 1 devices are capable enough to use a protocols stack designed for
constrained nodes including CoAP over UDP and special implementations of
Datagram Transport Layer Security (DTLS). This enables them to communicate
without  the  help  from a  gateway  node,  so  they  can  be  integrated  as  fully
developed peers of an IP-network. But their state memory, code space and often
also  power  expenditure  set  limits  to  protocol  and  application  solutions.
(Keranen et al., 2014)

Class 2 devices are less constrained and so capable of supporting most of
the protocol stacks of normal Internet nodes. However even in this level the
devices can often benefit from lightweight and energy-efficient protocol usage
and from consuming less  bandwidth.  The use  of  protocol  stack defined for
more constrained devices on Class 2 device leaves more resources available for
applications,  since  they  will  be  using  fewer  resources  for  networking.  This
might  also  reduce  development  costs  and  increase  interoperability.  Devices
significantly  beyond  minimum  level  of  Class  2  are  less  demanding  on  the
protocols  used,  but  can  still  be  constrained  by  a  limited  energy  supply.
(Keranen et al., 2014)

4.1.1  Classifications based on energy limitation

As mentioned earlier the available power and energy is also a limiting factor for
constrained devices. The power and energy available to a device can differ from
kilowatts to microwatts and from unlimited to hundreds of microjoules. Watts
determine the sustainable average power available for the device over the time
of it is functioning. Joules determine the total electrical energy available before
the energy source is exhausted. Devices can be limited both in available energy
and available power. Bormann, Ersue & Keränen (2014) describe a four level



classification for energy limitations that is illustrated in Table 2. (Keranen et al.,
2014)

TABLE 2 Classes of energy limitation

Name Type of energy limitation Power source example

E0 Event energy-limited Event-based harvesting

E1 Period energy-limited Periodically replaced or recharged battery

E2 Lifetime energy-limited Non-replaceable primary battery

E9 No limitations to available energy Mains-powered

Devices  classified as E0 have limited amount of  energy available  for  a
specific event, such as a button press in an energy-harvesting light switch. E1
classified devices have a energy limitation based on a specific period. Examples
of this kind of devices are a solar powered device with limited energy stored for
night, device that is manually connected to a charger or a device that needs it's
battery replaced in certain intervals. E2 device has an total energy limitation for
its usable lifetime and it may be discarded when its non-replaceable primary
battery runs out.  When no relevant  limitations to energy exist  the device is
classified as E9. (Keranen et al., 2014) 

In the case of wireless devices the radio transmissions cause a big portion
of  the  total  energy consumption of  the device.  The parameters  of  the  radio
transmissions  influence  the  power  consumption  during  transmission  and
reception. These parameters include the available spectrum, desired range and
the bit rate. The duration and number of transmission and reception including
waiting for  incoming messages  influence the total  energy consumption of  a
device.  Depending  on  the  energy  source  and  communication  frequency
different  strategies for power usage and network connectivity may be used.
(Keranen et al., 2014)

There are three strategies in the device level for power usage and they can
be described as follows.

Always-on:  No need for power saving measures, so the device can stay on
and connected to the network all the time. 

Normally-off: The  device  sleeps  long  periods  and  reconnects  to  the
network when it wakes up. In this strategy the main area of optimization is to
minimize  the  effort  needed  for  the  reattachment  process  and  resulting
application communications. If the device needs to communicate infrequently,
the increase in energy expenditure during reattachment may be acceptable.

Low-power: This  strategy is  suitable  when devices  need to  operate  on
small amount of power, but still  need to communicate in relatively frequent
basis. This strategy requires that low-power solutions are also available in the
hardware and and link-layer mechanisms. These devices retain their attachment
to the network in some form, despite they may have a relatively short sleep
period  between  transmissions.  This  strategy  minimizes  the  power  usage



needed for reestablishing communications. An example of this strategy is duty
cycling where components are switched on and off in a regular cycle.

4.2  Constrained networks

Bormann, Ersue & Keränen (2014) define a “constrained network” as a network
where some of the characteristics taken for granted with link layers in common
user in the Internet are not attainable. These constraints include:

• Low bit rate/throughput including limitations from duty cycling.
• High packet  loss and packet  loss variability,  that  causes  low delivery

rate.
• Highly asymmetric link characteristics.
• Using  larger  packets  causes  high  packet  loss  due  to  link-layer

fragmentation.
• Limits on reachability of nodes over time, since devices may power off

and be able to communicate for brief periods of time.
• Lack of or severe constraints on advanced services such as IP-multicast.

The term constrained network is used when at least some of the nodes in
the  network  have  some  of  these  characteristics.  The  reasons  behind  the
constraints may be one or several of the following:

• Network cost constraints
• Node constraints, this concerns constrained-node networks.
• Physical  constraints,  such  as  power  constraints,  environmental

constraints, media constraints etc.
• Regulatory  constraints,  such  as  limits  on  spectrum  availability  and

radiated power in a region of the world or industry such as explosion
safety.

• Technology constraints, such as heritage lower-speed technologies still
operational.

4.2.1  Constrained-node network

Constrained-Node  Network  is  a  network  composed  of  significant  part  of
constrained  nodes,  which  give  the  network  constrained  characteristics,  so  a
constrained-node network is always a constrained network. It may also have
other constraints in addition of consisting of constrained nodes. (Keranen et al.,
2014)

4.2.2  Summary

In  summary constrained environments  can  have  constraints  from two main
sources:  the  devices  them  selves  and  the  from  the  network  they  use.  The
constraints described in this chapter are gathered in Table 3. These constraints
are the first building block for the main artifact of this study.



TABLE 3 Constraint summary

Constraint Description

Maximum code
complexity

ROM/Flash  constraints  limit  the  size  of  algorithms  needed  for
computing  complex  tasks  such  as  asymmetric  keys.  The  minimum
amount of ROM for secure communication is ~100 kB. This constraint is
described by the three classes of devices based on available ROM and
RAM. By this classification the amount of ROM and RAM need to be
considered together (see next constraint on this table).

Size of state and
buffers

RAM constraints limit the size of keys and other state buffers needed to
hold  in  the  working   memory.  The  minimum  amount  or  RAM  for
secure communication is considered to be ~10 kB.

Processing 
power

Amount of computation ability in a period of time effects to the latency
of  complex  calculations  and  may  render  too  complex  calculations
demanded from the constrained nodes non applicable.

Available 
power and 
energy

Transmitting  is  identified  as  the  dominating  factor  on  energy
consumption. For this reason the network transmissions required from
energy constrained nodes  should be  minimized.  The  level  of  power
saving measures is dictated by the available energy.  

Network 
constraints

Throughput, delivery rate and node reachability are the considerations
that need to be taken into account. Since network constraints can also
effect the security mechanisms used.  

Lack of user 
interfaces

Sets  limits  to accessibility during deployment and ability to set keys
and update software during the device lifetime.

Physical 
constraints

Size and weight of the device.

Cost The  cost  of  a  constrained  distributed  system  is  also  a  constraint  to
consider when building a business case around an application. 

 
This  chapter  also  describes  two  ways  the  for  classifying  the  device

constraints.  The first  classification  is  made  based  on  available  memory  and
second based on power  and energy  limitations.  These  classifications  can  be
found from Tables 1 and 2.

The  device  constraints  pose  several  limits  to  choosing  an  authorized
authentication mechanism design. First the memory constraints limit the size of
used algorithms and encryption keys. Second the processing power also limits
the  applicability  of  more  complex  algorithms.  And  third  the  demand  for
energy efficiency brings a need for minimizing the number of transmissions. 

In addition to three groups of device constraints, the network constraints
and lack of user interfaces should also be considered. Network constraints can
cause larger latency for requests and other network related challenges that can
effect  the authentication mechanism. The lack of  user  interfaces needs to be
taken  into  consideration  when  the  constrained  devices  are  deployed.  For



example all necessary keying material to initial secure connections have to be
set when the devices are deployed.

The physical size and cost of the devices are very much dependent on the
other device properties. For example a larger on board battery capacity is in
many  cases  the  key  factor  to  the  devices  physical  size  and  cost  is  heavily
effected by processor and memory capacity.     



5  Architecture  for  authorization  in  constrained
environments

This  chapter  is  based  on  IETF  Authentication  and  Authorization  for
Constrained  Environments  (ACE)  working  group  architecture.  It  provides
objectives  on  specific  features  that  need  to  be  taken  into  account  when  a
authorized authentication mechanism is designed to be used in a constrained
environment. The objectives presented in this chapter provide the second part
for the main artifact of this study.

Since constrained nodes have limitations they may not  be able to perform
all necessary tasks required by the complex security mechanisms.  As a solution
to this problem it is proposed that more demanding tasks are assigned to other
less constrained entities  to achieve the required security level in constrained
scenarios.  The  functionalities  need  to  be  grouped by  their  demands  on  the
platform  i.e.  can  they  be  assigned  to  a  constrained  level  device  or  a  less-
constrained level device. In this chapter the architecture for authentication and
authorization in constrained environments in this manner is described and the
needed elements and  relationships of between functionalities  are identified.
(Gerdes, Seitz, Selander, & Bormann, 2015a)

First some assumptions for this architecture needs to be made in a general
level. The primary aim of the architecture is to control and protect a resource-
based interaction between two potentially constrained endpoints. One endpoint
is not limited to hosting the functionalities belonging to just one actor. Client is
determined as an endpoint that requests an access to a resource that is hosted
on another endpoint called the resource server. These two endpoints may not
have a security setup readily available, so one has to be established. (Gerdes et
al., 2015a)

5.1  Actors and their tasks

Actors in this architecture should be considered as a concept to understand the
security requirements for constrained devices. Actors are not synonymous to



devices, but a single device or piece of software can include the functionalities
of several actors. The actors consist of a set of tasks they perform. Actors are
grouped  to  three  levels:  principal,  less-constrained  and  constrained  levels.
Another  defining  factor  is  the  actors  security  domain  that  can  be  different
between  actors.  For  example  if  the  client  and  resource  reside  in  different
security domains. (Gerdes et al., 2015a)

5.1.1  Constrained level actors

First lets look into the constrained level actors client and resource server and
define their tasks. Both client and resource server  need to have an ability to
communicate  in  a  secure  way  and  validate  each  others  authorizations  to
perform the tasks needed for the transaction. The client has to validate that the
resource server is an authorized endpoint for the resource it wants to access. On
the  other  end  resource  server  needs  to  validate  that  the  client  requesting  a
resource has an authorization to do so.(Gerdes et al., 2015a)

5.1.2  Less-constrained level actors

Less-Constrained level  actors task is to assist the constrained level  actors by
relieving them from computationally intensive and memory demanding tasks
such as managing keys for numerous endpoints. On the Client side this actor is
called Client Authorization Server (CAS) and on the Resource Server side actor
is called Authorization Server (AS). These less-constrained actors belong to the
same  security  domain  and  function  under  the  same  principal  as  their
constrained  counterparts.  They  act  on  behalf  of  their  principals  and  as
authorities for claims about the constrained level actors residing in the other
security domain. (Gerdes et al., 2015a)   

The Client Authorization Servers function is to authenticate the Resource
Server and determine if it is an authorized server for the Resource in question.
The  tasks  to  achieve  this  are  to  validate  that  entity  attributes,  mediate  the
authorization information between Requesting Party and the Client and handle
the  negotiation  process  needed  for  secure  communication  in  behalf  of  the
Client. (Gerdes et al., 2015a)

The Authorization Servers main function is  to  authenticate a Client  on
behalf of the Resource Server and determine the Clients permissions to  the
different Resources. The sub tasks are similar with the client side: validate the
entity attributes, mediate authorization information between Resource Owner
and  Resource  Server  and  handle  the  secure  communication  establishing
process. (Gerdes et al., 2015a)

Many  use  cases  for  constrained  devices  portray  a  scenario  where
principals  are not  present  at  the time of  communication,  can't  communicate
directly  or  prefer  the  device  to  communicate  autonomously  for  some other
reason. In such cases the principal requires an agent to maintain the policies set
for the endpoint interaction it governs. Namely Authorization Server must be
able to act on behalf of the Resource owner handling access request on behalf of



Resource Server and Client Authorization server making resource request and
handling their responses on behalf of the Client. (Gerdes et al., 2015a)

5.1.3  The principal level actors

On  the  principal  level  the  client  and  resource  server  are  controlled  by  an
individual  or  a  company.  The  principal  controlling  the  client  is  called
Requesting  Party  (RqP)  and  resource  server  and  the  actual  resource  are
controlled by Resource Owner (RO). Requesting Party and Resource Owner are
in  charge  of  specifying  security  policies  to  the  constrained  level  actors  and
therefore by definition Client and Requesting Party belong to the same security
domain  as  do  Resource  Server  and  Resource  Owner.  Requesting  Party
configures C for authorization information for allowed sources for a resource
and  the  Resource  Owner  configures  the  Resource  Server  for  authorization
information for accessing a Resource. (Gerdes et al., 2015a) 

As said the principal level  actors make the authorization decisions and
specify them to the less-constrained level actors by encapsulating them in to
security  policies.  These  policies  are  then  enforced  by  the  constrained  level
actors. Security objectives in the principal level that are valid for any scenario
can be divided into two types on basis that they concern the Client or Resource
Server side. The first concerns the resource server side:  all entities that gain
access  or  knowledge  of  a  Resource  have  to  be  authorized  by  the  Resource
Owner.  The  Client  side  security  objective  is:  Client  conducts  exchanges,
including  requesting  data  or  accepting  a  response  only  from  resources
authorized by the Requesting Party. (Gerdes et al., 2015a)

The architecture described above and it's  three  levels  are illustrated in
Figure 3.  Note that the vertical arrows in this figure are not representative of
information flows but illustrate exerted control or provided support. Nor do the
arrows indicate a necessary connection during communication. As described
previously the principal level actors are not always present and in such cases
the authorization servers act autonomously. 

Figure 3: Overall architecture (Gerdes et al., 2015a)



5.1.4  Possible role combinations

Elements  described  here  are  purely  architectural.  Depending  on
implementation and the device capabilities,  several  elements  can reside in a
single  device  or  even  a  single  piece  of  software.  For  example  if  Client  or
Resource Server are located in a powerful enough device their functionalities
can be combined with their Authorization Servers. (Gerdes et al., 2015a)

Another good example of combining the functionalities of two actors is a
situation where the Client  and Resource Server  have the same principal  i.e.
Requesting Party is the same individual or company as Resource Owner. In this
kind of situation Client and server side authorization servers can be combined
as one entity if desired. (Gerdes et al., 2015a)

5.2  Information flows

When reviewing the information flows the architecture focuses on we need to
take note of the fact that the message flow may pass unprotected paths. The
interaction  between  principal  level  actors  is  not  a  concern  since  existing
mechanisms can be employed. The critical points in the message flow are the
messages  between  constrained  nodes  and  constrained  nodes  and  their  less
constrained  counterparts.  These  messages  can  after  all  contain  permissions,
client and server attributes, conditions on resources, not to mention keys and
credentials. This control information may also be rather asymmetric in the client
and server side. (Gerdes et al., 2015a)

The architecture assumes that the necessary credentials are provided for
the control information flows between constrained and their  less-constrained
counterparts and it needs to be part of a solution. The problem statement for
authorization  in  constrained  environments  is  derived  from  the  information
flows and can be summarized by three major points:

1. Less-constrained  nodes  control  the  interaction  between  potentially
constrained nodes on behalf of their principals.

2. The interaction needs to  be secured between endpoints  in  end-to-end
manner,  including  scenarios  with  intermediary  nodes,  including
necessary key establishment.

3. Transferring control information needs to be secured in an end-to-end
manner, including scenarios with intermediary nodes. This may require
employment of pre-established keying material. (Gerdes et al., 2015a)

The first potential information flow is a push sequence initiated by Client,
first acquiring credentials using CAS and presenting them to RS is presented in
Figure 4.



Figure 4: Information flow (Gerdes et al., 2015a)

But the architecture does not imply that this would be the only possibility.
It states “Authorization information is transferred from AS to RS using Agent,
Push  or  Pull  mechanisms”  (Gerdes  et  al.,  2015a).  This  implies  that  another
potential information flows would be possible. Such as a pull sequence. Again
initiated by C, but using RS as intermediary for authorization with AS, which
then communicates to CAS.

5.3  Summary

The  architecture  is  intended  to  be  used  as  a  framework  for  designing
authorized authentication mechanisms for constrained environments.  It  does
not pose tight restrictions on such things as authorization sequence or in which
actual device the different elements of the mechanism reside. The architecture
can so be seen as a set of objectives on how to realize such mechanism. Table 4
summarizes the objectives gathered from the architecture. These objectives are
the second building block for the main artifact of this study.



TABLE 4 Architecture objective summary

Objective Description

Delegation  of  demanding
tasks

Demanding  tasks  are  assigned  to  other  less  constrained
entities.  Functionalities  should  be  grouped  by  their
demands on the platform to determine if  they should be
assigned to a constrained level device or a less-constrained
level device.

Validation of actors • The client has to validate that the resource server is
an authorized endpoint for the resource it wants to
access. 

• Resource  server  needs  to  validate  that  the  client
requesting a resource has an authorization to do so.

• The Client Authorization Server needs to validate
that the Resource Server  is an authorized server for
the Resource. 

• The  Authorization  Servers  needs  to  validate  the
Client  on  behalf  of  the  Resource  Server  and
determine the Clients permissions to the Resource.

Autonomous functionality • Less-constrained  nodes  control  the  interaction
between potentially constrained nodes on behalf of
their principals. 

• Authorization Server must be able to act on behalf
of the Resource owner handling access request on
behalf of Resource Server. 

• Client  Authorization  server  making  resource
request and handling their responses on behalf of
the Client. 

End-to-end security The interaction needs to be secured between endpoints in
end-to-end manner, including scenarios with intermediary
nodes, including necessary key establishment and control
information.



6  Security concerns

This chapter deals with common security concerns for a distributed system that
need to be achieved even in constrained environments.  It  also discusses  the
different  options on choosing an authentication sequence and authentication
method. This chapter provides the third part for the main artifact of this study. 

Constrained  devices  are  designed  to  be  small,  inexpensive  and  easily
integratable.  By  this  definition  they  are  meant  to  be  used  in  various
environments. They can be in control of important functions and have access to
large amount of valuable data. In this kind of scenario the need to protect from
unauthorized access is self-evident, but there are other scenarios to take into
consideration.  Even gathering seemingly innocuous data  and information of
functions can lead to insights of a system that can be used to gain some level of
control.  Another  scenario  could  be  that  the  devices  themselves  are  not  the
primary target, but they are used as an intrusion point to infiltrate the network
and used to attack other more valuable devices. Because constrained devices
have limited capabilities they can be the weakest link in a network and hence an
attractive target.  (Selander, Mani, Kumar, Seitz, & Gerdes, 2015)

First objectives for a secure and reliable conduct for a distributed system
has to be defined.  Pfleeger & Pfleeger (2002) address the security goals of a
computer-related system with three aspects. These aspects are confidentiality,
integrity and availability described in Table 5. 

TABLE 5 Security objectives for a computer-related system 

Objective Description

Confidentiality Ensuring that assets are accessed only by authorized parties.
Access includes not only reading privileges, but also viewing,
printing and knowledge of the existence of an asset.

Integrity Only authorized parties have the ability to modify the assets.
Modification  includes  writing,  changing,  changing  status,
deleting and creation.

Availability All authorized parties have access to the assets,  at  the time
they need it.



These three objectives are considered as hallmarks of solid security. Their
first appearance in literature is found as early as 1972 in James P.  Anderson's
essay in computer security (Anderson, 1972). These properties are referenced as
the  C-I-A triad or  the  security  triad.  (Pfleeger,  Pfleeger,  & Margulies,  2015)
These properties define how resources should be secured. 

Nguyena,  Laurentb  &  Oualhaa  (2015)  propose  five  objectives  in  their
definition  for  security  objectives  of  IoT:  confidentiality,  integrity,
authentication, authorization and freshness. These properties are centered on
data  shared  between  devices  and  they  address  message  security
(confidentiality,  integrity,  authentication  and  freshness)  and  access  rights
(authorization).   (Nguyen,  Laurent,  &  Oualha,  2015) These  objectives  are
summarized in Table 6.

TABLE 6 Security objectives for IoT 

Objective Description

Confidentiality Exchanged messages in the IoT may need to be protected.
An attacker should not gain knowledge about the messages
exchanged between a sensor node and any other Internet
entity.

Integrity The  alteration  of  messages  should  be  detected  by  the
receiver.

Authentication The receiver should be able also to verify the origin of the
exchanged messages.

Authorization IoT devices should be able to verify whether certain entities
are  authorized  to  access  their  measured  data.  At  the
network layer, only authorized devices should be able to
access the IoT network. Unauthorized devices should not
be  able  to  route  their  messages  over   the  IoT  devices,
because it may deplete their energy.

Freshness This property ensures that no older messages are replayed.
This  is  important  to  secure  the  communication  channel
against replay attacks.

Both taxonomies can be seen congruent by content, but the grouping of
the objectives take different perspectives. The second taxonomy adds more IoT
specific features dealing with more message centric issues. Such as alteration
detection  and origin verification  for  the  messages.  It  also  acknowledges  the
possibility of replay attacks as a separate property. These issues can be dealt
with securing the communication between devices and enforcing authorized
authentication.  Next  chapters  describe  different  methods  for  communication
and resource security.      



6.1  Communication security

There are alternatives on how communication security can be achieved. These
alternatives include session based security at the transport layer, object security
at the application layer or hybrid solutions that utilize both session-based and
object  security.  Session-based  security  offers  security,  integrity  and
confidentiality protection for the whole application layer exchange. But it may
not be able to provide end-to-end security over multiple hops. It also requires
usage of a handshake protocol that has high memory and power demands that
can be too expensive for constrained devices. Object security is a more flexible
communication model, but it's problem is that it can not provide confidentiality
for the message headers. Hybrid solutions can be built so that key exchange is
handled with secure data objects, but session-based security is used for resource
access. (Gerdes et al., 2015a)

In addition to attacks focusing on monitoring and altering the data transit
constrained devices are specially vulnerable for Denial of Service (DoS) attacks.
These attacks can result not only temporary failure in a service, but also more
permanent failures, for example draining the battery by repeated flooding with
connection attempts. For these reasons authorization solutions should take into
account  such  things  as  power  usage,  number  and  size  of  authorization
messages needed, protocol code size and memory requirements.  (Selander et
al., 2015)

There are several proposed techniques for securing IP-based constrained
network  traffic  that  utilize  6LoWPAN  and CoAP.  CoAP standard  defines  a
binding  for  Datagram Transport  Layer  Security  (DTLS),  but  this  solution  is
based on a setting up the security information during the provisioning phase.
(Shelby et al., 2014)  

DTLS is a common Internet protocol, so it does not consider the needs of
constrained devices by design and use a heavyweight, protocol like this in a
constrained environment propose certain problems. One of them is the 127 byte
Maximum Transmission  Unit  (MTU)  of  802.15.4  standard  which  6LowPAN
stack uses as data link and transmission layer. For a constrained device sending
and receiving messages is much more expensive than local processing, so for
this reason it is proposed that 6LoWPAN compression is used also for DTLS
headers  and  messages  to  minimize  number  of  messages  needed.  The
6LoWPAN standard defines header compression and fragmentation schemes to
overcome the small MTU. For compression the standard defines an IP Header
Compression (IPHC) for the IP-header and also a Next Header Compression
(NHC) for the IP extension headers and the UDP header. These compression
mechanisms  can  be  used  to  compress  security  protocols  as  well.  (Raza,
Trabalza, & Voigt, 2012)

DTLS can be applied in an end-to-end manner.  An end-to-end security
protocol  can  provide  security  regardless  of  the  underlying  network
infrastructure.  DTLS  protocol  is  placed  between  transport  and  application
layers,  so it  does not rely on infrastructure provider to  support  the security
mechanism.  The  security  establishment  is  left  to  the  two  communicating



applications. DTLS assumes an unreliable transport, but it is still possible to use
DTLS over a reliable transport such as TCP. (Kothmayr et al., 2013)  

6.2  Authorized authentication

The terms authentication and authorization together define access rights and
”who can do what” for given object. Authentication addresses the who part of
the equation and authorization binds the who and permission to the object in
question, so defining if permission is granted or denied. Authentication is in
most  cases  done using credentials.  Types  of  credentials  can vary from long
-lived generic  authorizations  and some more specific  credentials  directed to
authorize  specific  actions.  In  some  cases  satisfactory  level  of  authenticated
authorization can be achieved by static authorization and there may be no need
to change the credentials after manufacturing or deployment.  But many use
cases  demand  for  more  flexible  and  fine-grained  access  control  policies.
(Gerdes et al., 2015a)

There are also privacy considerations to take in to account. Since in many
cases the purpose of constrained devices is to collect data from or affect their
surroundings in the physical world. Collected data can often be associated with
individuals. Privacy protection and a guarantee is needed that only authorized
entities with prior consent from resource owner are allowed to access the data
and trigger actions. (Selander et al., 2015)

These  requirements  for  authorized  authentication  can  be  divided  into
smaller pieces to better understand what is needed to achieve this goal. So next
authentication and authorization and their prerequisites are dealt with.

The key part  of  authentication is  identity.  So  what  is  the definition of
identity and since we are in the digital realm, more precise term we are looking
for  is  digital  identity.  Both  ITU  (ITU-T,  2009a) and  IETF  (Shirey,  2007)
documentation  define  similar  characteristics  for  the  term.  They  both  define
identity  to  be  a  set  of  characteristics  presented  as  attribute  values,  that  are
sufficient  to  positively  identify  an  entity  within  context.  An  entity  in  both
definitions is left as an ambiguous term that can be applied to a user or other
system entity such as a device or a piece of software.

Authorization is defined in the IETF Internet Security Glossary  (Shirey,
2007) as  ”An approval  that  is  granted to a system entity to access a system
resource” or ”A process for granting approval to a system entity to access a
system resource”. ITU-T-800  (ITU-T, 1991) definition is quite similar it  states
that authorization is: ”The granting of rights, which includes the granting of
access based on access rights”. 

There are plethora of different architectures for handling access control
with different mechanisms to handle authentication and authorization. Few of
them are described in the next chapters. 



6.2.1  Identity based access control

The digital identity is always based on finite number of attributes and should
not considered as a holistic identity of an entity. Holistic identity is a theoretical
issue with indefinite number of attributes and it should be considered as an
theoretical issue. (ITU-T, 2009a)

We are always dealing with a subset of attributes of an entity when digital
identity is being authenticated. In many cases a full set of attributes is not even
necessary  to  achieve  sufficient  level  of  identification.  The necessary  level  of
identification information always dependent on the context.  But in any case
sufficient identity information to uniquely recognize an entity within a context
to the extent that is necessary for the relevant applications is needed. So even
generic attributes, such as location or liaison to an organization can be enough
to identify an entity to adequate extent. (Chadwick, 2009)

This brings us to the question how identities are handled in information
systems.  The  process  of  handling  identity  attributes  is  called  identity
management.  ITU  defines  identity  management  as  a  set  of  functions  and
capabilities such as administration, management and maintenance, discovery,
communication  exchanges,  correlation  and  binding,  policy  enforcement,
authentication  and  assertions.  These  functions  and  capabilities  are  the
mechanisms used in assurance of identity information and the  identity of an
entity and so enabling  security applications. (ITU-T, 2009a)

In  the  system  level  there  are  different  ways  to  deal  with  identity
management. In a centralized system an entity presents its identifier and some
form  of  authentication  such  as  password  or  authentication  token.  The
authentication acts  as  a  proof  that  the entity  is  entitled to  be known by its
identifier. If the system accepts this authentication it associates the entity with
the given identifier, including all attributes linked to this identifier and grants
the entity access to the system.  In a distributed system each local system has its
own set of identifiers, so an accessing entity needs to have credentials to every
local system in order to access them. (Chadwick, 2009)

Single  sign  on  (SSO)  is  there  fore  desirable  solution  for  fighting
complexity in distributed systems. First designs to achieve SSO were based on
public  key  infrastructure  (PKI)  that  allocated  each  user  a  globally  unique
identifier. This identifier would be known by all local systems in a distributed
system and used to grant access. The weakness of this kind of system was that
everyone had to know everyone else's globally unique identifier and this raised
obvious security concerns. (Chadwick, 2009)

The next breakthrough was when it was realized that there was no need to
use global identifiers. Instead the identifiers could remain local to the system
that allocated them. This was achieved using a federation between local and
remote systems for authorization. In federated systems authorization is granted
based on identity attributes, rather than globally unique identifiers. The service
provider can verify an entity based on identity attributes provided by trusted
authoritative  sources.  These  systems  are  known  as  federated  identity
management systems. (Chadwick, 2009)



A federation is defined in ITU document X.1250  (ITU-T, 2009b) as ”An
association of users, service providers and identity providers”. This means that
a  group of  service providers  have formed an association and trust  between
themselves  and  are  willing  to  exchange  messages.  Further  more  if  these
messages  are  also  used  to  exchange  authentication  and  authorization
credentials  between  systems.  So  allowing  access  to  another  system  using
credentials verified by another federated system, we have federated identity
management (FIM). FIM enables SSO, but it also brings other benefits, such as
offloading  the  load  of  managing  user  attributes  and  easier  scalability.
(Chadwick, 2009)

But even though FIM systems give the ability to SSO and simplify things
compared to locally administrated access control, it still has its shortcomings.
These problems originate from the fact that only the identity is federated and
the authorization of resources is left remote system.   

6.2.2  Authorization base access control

In an Identity Based Access Control (IBAC) described in the previous chapter
an entity request a resource from a service and includes a proof of identity with
the request. The service that was called submits this information to its policy
engine to determine the authorizations, so the service bases its access decision
on this authorization not the provided identity. (Karp, 2006)

In an Authorization Based Access Control the only thing that changes is
that  the  local  policy  engine  used  to  determine  the  authorizations  before  a
resource request to the service. The calling entity then presents the appropriate
authorizations to the service along with the resource request. This way the only
function left to the remote system is to verify that the authorizations presented
haven't been forged. (Karp, 2006)

Authorization based access control has many advantages and the major
one  is  that  each  domain  only  needs  handle  the  information  about  its  own
principals.  The  user  entities  only  authenticate  to  their  own domains,  which
makes  system  updates  and  authorization  formats  simpler  and  makes  the
systems more scalable. This architecture also makes the systems more secure
and  private,  since  the  systems  only  needs  to  interpret  the  contents  of  the
authorizations  and  no  organizational  information  leaks  between  domains.
System manageability becomes easier because authorization delegation is much
simpler between entities. (Karp, 2006) 

6.2.3  Capability based access control

Traditional access control models that are based on authorization lists or group
authorizations  have  big  challenges  when  they  are  used  in  large  distributed
systems. This problem comes from the requirement of a consistent definition of
complex access policies.  To overcome this inherent complexity of traditional
access control models, some alternative approaches have been studied. One of



these approaches is Capability Based Access Control (CapBAC).  (Hernández-
Ramos, Jara, Marın, & Skarmeta, 2013)

A  capability  based  authorization  was  first  proposed  to  address  the
dynamicity  and  scalability  issues  in  an  environment  where  services  are
independently made available by service providers. The proposal was made by
Skinner  (Skinner,  2009) as  a  part  of  Digital  Ecosystem  (DE)  environment
promoted by SUN. DE environment provides facilities for searching services by
their characteristics and accessing them based on the needs of the user.  The
proposal intended to add basic services specific mechanism for the user to gain
an access  token to  a  service the  user  needs,  but  has  never  used before.  DE
environment does not assume environment wide access control mechanisms or
federated  identity  management  to  be  used.   The  environment  description
implies that each service is potentially autonomous and users needs could be
highly  dynamic,  so  a  more  permanent  link  was  not  necessarily  needed.
(Gusmeroli, Piccione, & Rotondi, 2013)

A capability is a communicable token of authority that is unforgeable and
associated to a set of access rights. The name is devised from the capability the
token gives to a process for interaction with an object in predetermined way. In
this model an entity has to present an authorization capability, by proving it
has  the  ownership  of  a  token  to  the  service  provider  for  gaining  access  to
resources. Compared to access control list models where the service provider
verifies the authorization rights to each requested resource for each requester.
This  approach brings benefits  in the form of simplified delegating of  access
rights,  capability revocation and information granularity.  Delegation support
means that a subject can grant rights to another subject and also grant the rights
for further delegation. Delegations can concern the whole set of rights granted
to the original subject or only part of them. Capability revocation can be done
by properly authorized subjects at any time. Information granularity means that
a capability can specify the level of granted rights dynamically and there fore
refine the level  data  access granted by a capability token.  (Gusmeroli  et  al.,
2013)

In  capability  based  systems  access  control  policies  and  authorization
procedure simpler from the service point of view. Since the entity that wishes to
access a resource sends a token together with the request, the receiving entity
already knows the right level of permissions the requester has been granted.
(Hernández-Ramos et al., 2013)

There are also some challenges facing capability based authorization. First
is the large amount of capabilities needed to issue and requesting them when a
resource is accessed. The second is to standardize the use of capability tokens
for cross-domain use. The first problem can be mitigated by setting up services
for  granting  capability  policies,  that  can  also  generate  on  the  fly  access  for
properly identified and authorized users. (Gusmeroli et al., 2013)



6.3  Authentication message sequence models

There  are  three  message  sequence  models  to  consider  when  a  secure
communication link needs to be set between a client and a service providing a
resource. These sequence models are described next. The models are derived
from  AAA  Security  Framework  specification  (Farrell  et  al.,  2000),  but  for
continuity the names used for the actors are from ACE WG architecture. 

Agent sequence: The  acts as an agent between the Client and Resource
Server.  The  Authorization  Server  receives  a  request  form  the  Client  and
forwards the authorization and configuration to the Resource server.  In this
model  the  Authorization  Server  after  receiving  a  request  authenticates  and
applies authorization policies for the client and for the particular service it has
requested. (Farrell et al., 2000) Agent sequence is presented in Figure 5.

Figure 5: Agent sequence (Farrell et al., 2000)

Pull sequence: The Client sends a request to the Resource Server, which
forwards  it  to  the  Authorization  Server.  Authorization  server  returns  an
response to the Resource Server after validating the Client and request. If the
request  is  accepted  the  Resource  Server  is  ready  to  provide  the  requested
service.  (Farrell et al., 2000) Pull sequence is presented in Figure 6.

 



Figure 6: Pull sequence (Farrell et al., 2000)

Push sequence: The Client requests a certificate or a ticket verifying it has
authorization to access the service. After obtaining the ticket the Client makes a
request for a service and includes the ticket with the request. After receiving the
ticket the Resource Server is ready to provide the requested service. (Farrell et
al., 2000) Push sequence is presented in Figure 7.

Figure 7: Push sequence (Farrell et al., 2000)

The same message sequences are possible in a simple scenario where all
the actors are part of the same security domain, as well as in roaming scenarios.
The  scenarios  involving  different  security  domains  are  a  little  bit  more
complicated,  but  the  main  prerequisite  is  that  the  client  has  to  have  a
relationship with an Authorization Server able to verify its authorization for the
service.

6.4  Summary

The security aspects for a distributed systems need to be considered even when
the system includes constrained devices. Constrained environments also have
some specific security issues. Such as they are specially vulnerable for denial of
service and replay attacks on the counts of limited processing and networking
capabilities and also because such attacks can shorten the lifetime of battery
powered devices considerably. The main security objectives identified in this
chapter are gathered to Table 7. These security objectives are the third building
block for the main artifact of this study.



TABLE 7 Security objective summary

Objective Description

Resource confidentiality The  access  for  the  resources  should  only  be  possible  to
authorized parties.  Access includes reading and viewing,
but  also  actions  requested  from  the  node  in  question.
Confidentiality of a resource could be extended to so far as
only authorized parties should even have knowledge of the
resource. 

Resource integrity Only authorized parties should have the ability to modify
the  resources.  Modification  includes  writing,  changing,
changing status, deleting and creation.

Resource availability All authorized parties have access to the resources, when
needed.

Message confidentiality The exchanged messages need to be protected. A possibly
malicious  third  party  should  not  gain  knowledge  of  the
message  contents  or  any  other  information  about  the
messages exchanged between nodes or between nodes and
entities in the Internet.

Message integrity The  alteration  of  messages  should  be  detected  by  the
receiver.

Message authentication The  receiver  should  be  able  to  verify  the  origin  of  the
received messages.

Message  freshness  and
authorization

The  replaying  of  old  messages  should  be  prevented  to
secure the communication channel against replay attack.
At the network layer,  only authorized devices should be
able  to  access  the  IoT  network.  Unauthorized  devices
should not be able to route their messages over  the IoT
devices, because it may deplete their energy

Access control method Identity  management  for  systems  including  constrained
devices  should consider the  access  control  method to  be
used.  This  kind  of  distributed systems  will  benefit  from
federated identity and authorization management.

Message  sequence  for
authentication

Message sequence used between the constrained actors and
their less constrained counterparts can have effect on the
level of identifying the actors.

First  three  objectives  derived  from  the  C-I-A  triad  concern  the
authorization  issues  of  resources.  These  objectives  set  the  requirements  for
authorized resource access that form resource security. 

The next four objectives describe the different secure communication. This
includes confidentiality, integrity and authenticity of the messages which are
generic requirements for any type of distributed system. The message freshness



and authorization considers the vulnerability to replay and flooding attacks,
which is have a larger potential effect in constrained environments.

Access  control  method  and  authentication  message  sequence  are
architectural decisions that need to be considered when building a authorized
authentication mechanism for constrained environments. For example list based
access control in large distributed system will raise the complexity and inflict
too much strain on the actors enforcing it.  For this reason using some of the
federated  approaches  to  access  control  is  advisable,  specially  when  access
control is enforced by a constrained device. 

Message sequence for authentication objective adds more definition to the
validation of all the actors objective presented in architecture based objectives.
The architecture based objective identifies the need to identify the actors  based
on the functions they need to accomplish. As selected message sequence effects
such  things   as  the ability  of  actors  to  verify  each  others  identities  and the
demand  for  connectivity  of  different  actors.  These  features  are  different
between sequences.  For example if  a  push sequence is  used and Client and
Server  have  their  own  authorization  servers.  In  this  kind  of  authentication
sequence the Client negotiates its authorization trough authorization server in
its own security domain. This means the authorization server in charge of the
resource has no direct way to authenticate the Client directly. The difference
with  the  other  two  sequences  described  is,  that  in  both  agent  and  pull
sequences  the  Client  credentials  are  available  at  least  in  some  level  to  the
authorization server in charge.



7  Proposed protocols

This chapter describes two protocols that have been proposed for authorized
authentication  in  constrained  environments  in  past  ACE  Working  Group
proceedings.  Other  protocols  have  been  proposed  also,  such  as  OAuth  2.0
which  is  currently  on  the  standards  track  (Erdtman,  Seitz,  Wahlstroem,
Selander,  & Tschofenig,  2016).  These two protocols  were selected since they
have different approaches to the problem and so provide basis for evaluating
the evaluation framework. 

7.1  DCAF

Delegated  CoAP  Authentication  and  Authorization  Framework  (DCAF)
relieves the constrained devices form the load of handling public  key based
authentication  and  authorization.  These  resource  consuming  tasks  are
delegated  to  authorization  servers  that  handle  these  tasks  behalf  of  their
constrained counterparts. DCAF is designed to be used with CoAP application
protocol and DTLS is used to secure transmission of authorization information
between constrained devices enabling end-to-end security. (Gerdes, Bergmann,
& Bormann, 2014)

7.1.1  DCAF objectives

The objectives of DCAF are twofold, consisting of communication scenario and
authorization  related  tasks.  The  communication  scenario  describes  the  basic
interaction of devices and concerns only the basic actors. Authorization related
tasks describe the security related requirements set for the message exchange.
Basic functional scenario for DCAF is a communication between a Client (C)
and Resource Server (RS) is: 

1. C wants to access a Resource (R) on a RS.
2. C and RS do not necessarily have an existing security relationship.
3. C and/or RS are Level 1 Constrained devices.



4. Unauthorized entities should not gain knowledge or access to R
5. Confidentiality  and  integrity  of  R  are  needed  and  authenticity  of

messages concerning R must be assured. (Gerdes et al., 2014)
Authentication  and  authorization  in  the  context  of  DCAF  include  several
attributes to validate. The authorization related tasks include:

1. Attribute binding: a verifiable attribute must be bound to a verifier such
as a key. This handled by an attribute binding authority, checking that
the attributes of the entity possessing a verifier match the ones it claims
to have. If the attributes are correct the authority provides endorsement
information to be used by other entities to validate the binding. 

2. Verifier validation: when an entity needs to authenticate another entity it
checks  the  attribute-verifier  binding  using  an  endorsement  from  the
claim validation authority.

3. Authentication:  An  entity  or  the  source  of  information  must  be
authenticated using the verifier.

After authentication the following tasks for authorization must be performed:
4. Configuration  of  authorization  information:  the  owner  needs  to

configure the authorization information.
5. Obtaining  authorization  information:  the  authorization  information

needs to be made available to the entity enforcing the authorization.
6. Authorization validation:  Entity  attributes  validated by authentication

need to be mapped to the authorization information.
7. Authorization enforcement:  the results  of  the  authorization validation

determine is the access to a resource granted or denied.  (Gerdes et al.,
2014)

7.1.2  Architecture

DCAF architecture matches the ACE Working Group architecture elements. The
tasks identified in the previous chapter are divided to three levels based on the
capabilities  of  the  entities.  These  levels  are  as  in  ACE  WG  architecture:
constrained-, principal- and less-constrained level.

The constrained level entities should be relieved from all complicated task
if possible. These tasks are delegated to more powerful entities on the upper
levels. For security reasons some tasks have to be performed in the constrained
level.  These  tasks  are:  authentication  of  received  information  and enforcing
authorization including validation. These tasks are the same ones described in
previous chapter. The authentication tasks in question are: verifier validation
and authentication (2 & 3). And authorization tasks: authorization validation
and enforcement (6 & 7). (Gerdes et al., 2014)

The naming of  constrained level  actors  is  a  little  bit  different  than the
naming  in  ACE  WG  documents  that  adopted  OAuth  naming  conventions.
Client (C) remains the same, but the Resource Server is called simply Server (S)
in DCAF specification. (Gerdes, Bergmann, & Bormann, 2015c)  

The principal level actor naming in DCAF is also a bit different. The client
side  principals  is  called  the  Client  Overseeing  Principal  (COP)  instead  of



Requesting  party  and  the  server  side  principal  is  called  the  Resource
Overseeing Principal  (ROP)  instead of  Resource  Owner.  The responsibilities
and specification of these actors are the same regardless of the naming. (Gerdes
et  al.,  2015c) The  principals  are  in  charge  of  authorization  configuration  in
behalf of their constrained counterparts. Namely configuration of authorization
information, as defined in the previous chapter (4). (Gerdes et al., 2014) 

The  differences  in  less  constrained  level  actor  naming  in  DCAF
specification compared to ACE WG concern both actors. Client Authorization
Server  is  named  Client  Authentication  Manager  (CAM)  and  Authorization
Server is  named Server Authorization Manager (SAM). (Gerdes et al., 2015c) 

Devices in the less constrained level are at least C2 level devices such as
smartphones  or  laptops.   They  must  also  provide  user  interfaces  for
configuration of  authorization information etc.  But  their  main tasks and the
ones  concerning  the  authentication  and  authorization  process  are  attribute
binding (1) and obtaining authorization information (5). The latter means that
they  preprocess  information  from  their  owners,  to  make  it  usable  for  the
constrained devices. (Gerdes et al., 2014)

DCAF makes the same assumptions on the interaction and placement of
the  actors  as  the  ACE WG architecture.  CAM belongs  to  the  same security
domain with the C and COP and SAM belongs to the same domain as R, S and
ROP. (Gerdes et al., 2014)

7.1.3  Protocol

As mentioned the key property of DCAF is to relieve constrained nodes from
resource intensive tasks such as validating certificate chains or parsing large
data structures.  This is  achieved by offloading these tasks to more powerful
nodes within the same security domain. The security objectives dictate that a
secure  channel  between  constrained  and  less-constrained  nodes  is  required.
DCAF does not force any specific means of communication security, but draws
on  the  properties  of  DTLS  since  they  are  well  understood  in  constrained
environments.  So  the  described  approach  assumes  that  communication  is
secured with DTLS when at least one of the endpoints is constrained. (Gerdes et
al., 2014)

As  described  in  the  previous  chapters  the  C  and  S  have  their  less
constrained level devices CAM and SAM. These entities share a symmetric key
within their respective security domains and use them to establish the initial
secure  channel  needed.  DCAF  only  assumes  that  this  trust  relationship  is
established and gives no specification how the key provisioning mechanism for
this  relationship  should  work.  These  secure  channels  are  used  to  provide
dynamic authenticated authorization mechanism for the constrained devices.
This  means  the  tasks  is  appointed  to  the  less-constrained  devices.  More
specifically  providing  attribute  binding  information  (1)  and  authorization
information (5). (Gerdes et al., 2014)

Protocol flow begins when C needs to access a specific R served by S. C
needs to requests an access ticket and to do this uses it's own designated CAM.



CAM relays the request to one of the Server Authorization Manager in charge
of  S.  SAM  determines  the  authorization  level  by  the  authorization  policies
configured  by  Resource  Overseeing  Principal.  If  C  is  allowed  to  access  the
resource, SAM generates a DTLS pre-shared key (PSK) for the communication
between C and S and wraps it into an access ticket. The ticket may also contain
detailed access permissions in a way that SAM and S can interpret them. This
ticket is then relayed to C via CAM and after presenting the ticket to S, C and S
can establish a secure communication channel. (Gerdes et al., 2014)

 If C does not have SAM information on the S it has two options. C can
send an initial  unauthorized resource request  to S.  S denies the request  and
sends the address of the SAM in charge of it back to C. The other option is to
look up the desired resource in a resource directory, that lists server resources.
Once  the  address  of  SAM is  known C can  use  CAM to  send a  request  for
authorization to the S in question. But  CAM has to approve the request first. If
it does CAM and SAM authenticate each other and their  authorization to act on
behalf of their constrained devices.  After the authorization between the less-
constrained devices SAM can do the authentication and ticketing procedure for
C. An illustration of DCAF protocol flow is presented in Figure 6. (Gerdes et al.,
2014)

DCAF access tokens consist of two parts: the face and verifier. The verifier
holds the DTLS PSK for C and S communication, so it must be transmitted over
a secure channel. The ticket face is generated for S and used as a PSK-identity of
C in the ClientKeyExchange message during the DTLS handshake between C
and S. The PSK-identity contains sufficient information for S to authorize C and
validate  that  the  ticket  face  in  particular  the  authorization  information  and
timestamp were generated by  SAM. This  eliminates  the need for  additional
message exchange. A ticket may also contain a lifetime, so S keeps the ticket
face as long it is valid. (Gerdes et al., 2014)

The mutual authentication between C and S is based on the ticket face and
verifier. S authentication of C is based on C proving that it is in possession of
the ticket verifier, namely the DTLS PSK generated by SAM. C can determine
S's authenticity because only S is able to derive the DTLS PSK from the PSK-
identity field of the ticket face. Only SAM and S can  generate the same DTLS
PSK  based  on  the  PSK-identity  and  to  ensure  this  they  use  an  keyed-hash
message authentication code with a shared key. For resource saving reasons the
hash function used is the one used in the cipher suite for their DTLS connection
and for agility the function is signaled within the ticket face.(Gerdes et al., 2014)



Figure 8: DCAF authentication steps (Gerdes et al., 2015c)

7.2  ABFAB

Application Bridging for Federated Access Beyond Web (ABFAB)  has it's roots
on a  project  called Moonshot  that  had goals  for  extending the  benefits  and
developing  single  unifying  technology  for  federated  identities  for  non  web
based  services.  ABFAB  is  based  on  widely  used  security  mechanisms  and
protocols  such  as  Authentication,  Authorization  and  Accounting  (AAA)
framework, Extensible Authentication Protocol (EAP), Generic Security Services
Application Program Interface (GSS-API), Remote Authentication Dial-In User
Service (RADIUS) and Security Assertion Markup Language (SAML). It uses
EAP for end user authentication and keying material derivation like many other
implementations  of  AAA  authentication  processes.  For  high  level
authentication it  uses SAML since it  is  also a widely deployed standard for
expressing end user's identity information. RADIUS is used, even though any
AAA protocol could be used. Again this is because of it's wide deployment and
high  acceptance.  (Perez-Mendez,  Pereniguez-Garcia,  Marin-Lopez,  Lopez-
Millan, & Howlett, 2014)

The benefits of federated access management are single or simplified sign-
on  (SSO),  data  minimization,  less  need  of  user  participation  and  flexible
provisioning. (Tschofenig, Hartman, Lear, Schaad, & Howlett, 2014)

SSO  provides  the  ability  for  an  Internet  service  to  delegate  access
management responsibilities  to an organization that already has a long-term
relationship  with  the  Client.  This  is  also  desirable  from the  Relying  Party's
point of view, because in many cases it does not want these responsibilities. The
benefits for the Client is that it requires fewer credentials.  (Tschofenig et al.,
2014)



Data minimization is due to the fact that the often the Relying Party does
not  need  to  know  the  identity  of  a  Client  to  reach  an  access  management
decision.  In  most  cases  it  is  adequate  to  only  gain  knowledge  of  specific
attributes  about  the  Client,  such  as  that  the  Client  is  affiliated  with  an
organization or  has  a  certain  role  or  entitlement.  In  some cases  it  might  be
adequate  if  the  Relying  Party  only  knows  a  pseudonym  of  the  Client.
(Tschofenig et al., 2014)

The need for Client interaction is reduced by the fact just mentioned that
the identification is based on the Client attributes held by the Identity Provider.
Prior to releasing the attributes to the RP, the IdP checks configurations and
policies to determine if the attributes should be released. In this decision point
there is no need for direct Client participation. (Tschofenig et al., 2014)

Provisioning of the attributes is flexible and in the cases the Relying Party
needs to know more about a Client than an affiliation or pseudonym, some
federated access management Identity Providers have the ability to provide the
information on request or unsolicited. (Tschofenig et al., 2014)

7.2.1  ABFAB Objectives

The main focus of ABFAB is a functionality on non-web-based environment
and protocols where HTTP is not used. Despite the trend to layer protocols on
top of HTTP, there are still  numerous protocols that do not use HTTP -base
transport. Many of such protocol lack a native authentication and authorization
framework. (Tschofenig et al., 2014)

Other ABFAB design objectives are:
• All  parties  taking  part  to  a  transaction  are  authenticated,  but  not

necessarily identified and the Client is authorized for resource specific
access. 

• Authentication is independent from the application protocol used. This
allows for multiple authentication methods with minimal changes to the
application.

• The  architecture  does  not  imply  sharing  of  long  term  private  keys
between Client and Relying Party.

• System is scalable to large number of identity providers, relying parties
and clients.

• System is based on existing standards and components and operational
practices. (Tschofenig et al., 2014)

7.2.2  Architecture

The ABFAB architecture consist  of  three main entities:  Client,  Relying Party
(RP) and Identity Provider (IdP). Client represents an entity that needs to access
a service hosted by RP. RP acts as a service provider in control for the service
the client wishes to access. IdP is the entity in charge of verifying the clients
credentials  and  distribution  of  authorization  information  to  the  RP.  (Perez-
Mendez et al., 2014)



In addition of elements the architecture describes how these elements are
interconnected  and  the  protocols  used  in  these  connections.  An  application
protocol  provides  the  service  for  the  eventual  communication  between  the
Client  and  RP,  but  ABFAB  architecture  does  not  assume  any  particular
protocol. As a part of the access control procedure a GSS-API security context
must be established between the Client and RP, in which the Client acts as GSS
Initiator and the RP as GSS Acceptor. The GSS context authenticates the Client
and provides the Client identity information used for authorization purposes to
the RP. (Perez-Mendez et al., 2014)

The  GSS-API  handles  the  high  level  abstraction  of  the  access  control
process, but the actual authentication process is carried out by executing EAP.
The EAP authentication process is a part of the GSS context establishment and it
enables a federated operation as it involves IdP in the process.  The client acts as
EAP peer, the IdP as an EAP server and RP as EAP authenticator.  EAP packets
are  transported  between  the  Client  and  RP  GSS-API  Mechanism  for  the
Extensible Authentication Protocol (GSSEAP) defined by ABFAB WG specially
for this purpose.  GSSEAP specifies the means for transporting EAP transport
on GSS tokens and using key material exported by the EAP method in GSS
security services. (Perez-Mendez et al., 2014)

Finally  ABFAB  specifies  that  RADIUS  is  used  as  an  AAA  protocol
between RP and IdP.  This  provides the federation substrate,  in other words
implementing trust relationships to form a federation. The AAA protocol has
two functions:  it  conveys  EAP packets  between RP and IdP and transports
Client's identity attributes from IdP to RP. This information is represented by
SAML statements. (Perez-Mendez et al., 2014)

7.2.3  Protocol

An ABFAB workflow example of a client attempting to connect to a server
to  access  data  or  perform  a  some  type  of  transaction  has  the  following
prerequisites and steps. An illustration of  ABFAB protocol flow is illustrated in
Figure 7. (Tschofenig et al., 2014)

1.  Client  Configuration:  The IdP has pre-configured the client with a
Network  Access  Identifier  (NAI).  The  client  is  also  configured  with  the
necessary keys, certificates, passwords or other information needed to run the
EAP protocols between it and IdP.

2. Authentication mechanism selection: The Client is configured to use
GSS-EAP as a GSS-API mechanism for authentication and authorization.

3.  Client  provides  an  NAI  to  RP: The  Client  starts  an  application
protocol for transport to the RP and begins the GSS-EAP authentication. RP
sends an EAP request  message in response nested in the GSS-EAP protocol
asking for the Client's name. The Client sends an EAP response with an NAI
name form containing at the minimum the realm portion of it's full NAI.

4. Discovery of federated IdP: The RP determines which IdP to contact
based on policy and the realm portion of the Client NAI. For this it uses pre-
configured information or a federation proxy.



5. Request from Relying Party to IdP:  When the RP finds out the IdP or
and agent of the IdP in question, it sends a RADIUS access request to the IdP,
including an encapsulated EAP response from the Client. In this point the RP
probably has no idea of the clients identity. RP sends it's identity to the IdP in
AAA  attributes  and  it  may  include  a  SAML  Attribute  Request  in  a  AAA
attribute.  The AAA network checks that the identity RP claims is valid.

6.  IdP begins  EAP with  the  client:  IdP sends an EAP message to the
Client with an EAP method to be used. In this stage IdP should accept a realm
only request to protect the client's name.

7. The EAP protocol is run: Several EAP messages are passed between
the client and the IdP. The content and number of the messages depend on the
selected EAP method. If the IdP is not able to authenticate the client, it sends an
EAP failure message to the RP. A part of the EAP protocol is that the Client
sends  a  channel  bindings  message  to  the  IdP.  In  this  message  the  Client
identifies the RP it is attempting to authenticate. The IdP checks between the
channel binding data received from the Client and RP using the AAA protocol.
If the bindings do not match this also constitutes a failure and IdP sends an EAP
failure message to the RP.

8.  Successful  EAP Authentications: The IdP and Client have mutually
authenticated each other and hold two cryptographic keys. A Master Session
Key  (MSK)  and  an  Extended  MSK  (EMSK).  The  Client  has  also  a  level  of
assurance about the RP's identity. Based on the channel binding data and the
naming information check from the AAA framework  conducted by IdP .

9. Local IdP Policy Check: The IdP checks the local authorization policy
to determine if the given transaction or service is permitted between the Client
and RP. If the action is permitted IdP releases the attributes to RP, if not it sends
an EAP failure message to the RP and Client.

10. IdP provides the RP with the MSK: IdP sends a positive result EAP
message and EAP MSK to  the RP.  Optionally  it  sends a  set  of  Client  AAA
attributes as one or more SAML assertions.

11.  RP  Processes  Results: After receiving the result  from the IdP,  RP
should have enough information to either grant or refuse the resource access
request.  Depending  on  the  authorization  level  it  may  have  specific
authorization  identity  information  concerning  the  Client.  If  the  RP  needs
additional attributes from the IdP, it can make a new SAML request to the IdP.
The RP will apply the results in an application specific way.

12.  RP  returns  results  to  the  client:  When  the  RP  has  received  a
response it informs the Client of the result. If all the checks has gone well all
parties are authenticated. The Client can complete the authentication of the RP
by using the EAP MSK and proceed with appropriate authorization level. 



Figure 9: ABFAB authentication steps (Tschofenig et al., 2014)



8  Use case

IETF  has  specified  several  use  cases  to  identify  and  address  problems  on
authentication and authorization in constrained environments. The application
areas  vary  from  logistics  and  smart  metering  to  health  monitoring  and
entertainment.   These  use  cases  assume  that  communication  architecture
between  the  devices  is  Representational  State  Transfer  (REST)  based  and
although  most  conclusions  are  generic  it  is  assumed  that  Constrained
Application Protocol (CoAP) is used. REST architecture means that a device acts
as a server, offering resources and these resources can be accessed by clients.
Resources accessed can be sensor data or control of actuators. In some cases the
communication happens through intermediaries such as gateways or proxies
and  the  processes  also  can  happen  without  human  intervention  (M2M
communication).   (Selander et al., 2015)

Each  use  case  presents  a  general  description  of  an  application
environment and one or more specific use cases, as well as a list of relevant
authorization problems to the application area. Definitions are needed for many
communication issues such as how do the devices find each other or which
device initiates the conversation. These requirements vary between use cases
and there can be a need for multiple communication schemes. (Selander et al.,
2015)

For this  work a  logistics  use  case was selected,  dealing with container
monitoring. The reason for selecting this use case over others is that it brings
many different authorization scenarios, since it deals with a mobile system in
various transport modes.

The motivation for this use case arises from the need of storing perishable
goods  in  a  constant  temperature  and  adequate  ventilation.  There  are  also
multiple stakeholders interested in the real-time information on the state of the
goods.  For example a transporter  needs to prioritize the handling goods by
their  expiration  date  and  vendors  need  to  fulfill  their  delivery  obligations.
Wireless  sensor  systems  make  this  kind  of  continuous  tracking  of
environmental variables possible. (Selander et al., 2015)

This  use  case  describes  a  logistics  chain  for  bananas  grown  in  south
America that are transported for the German market.  Bananas are shipped to



Germany  and  picked  up  by  trucks  that  deliver  them  to  the  fruit  vendors
ripening  facility.  After  ripening  a  supermarket  chain  buys  the  bananas  and
transports  them  to  multiple  stores  by  trucks.  The  fruit  vendor  equips  the
banana boxes with sensors as a quality management measure. The bananas are
monitored consistently through the whole chain and system records abnormal
fluctuations  in  sensor  values.  The  temperature  and  ventilation  information
sensors  are  also  used to  control  the  climate  control  system of  the  transport
container and ripening facility. In the ripening facility the sensors monitor the
ripeness of the bananas, so that ripe bananas can be identified and sold before
they spoil. (Selander et al., 2015)

The  second functionality  in  the  banana  box  sensors  is  identifying  and
locating the goods meant for a specific customer during loading and unloading.
The use case also gives additional parameters on logistics data confidentiality. It
defines that personnel is only allowed to see data for the time of loading or
unloading and information about the state of the goods needs to be confidential
in  these  situations.  Another  issue  concerning  data  confidentiality  and
ownership is that after the ripe bananas are sold to the supermarket chain, the
ownership of the sensors is transferred to the buyer. (Selander et al., 2015)

Networking  problems  in  this  use  case  include  environmental  problem
concerning  the  radio  connection  between  the  nodes  and  also  a  Internet
connectivity  problem.  The  radio  connection  problem  is  due  to  high  water
content  of  the  bananas,  that  can  cause  problems  on  direct  communication
between nodes and messages need to be forwarder over multiple hops. The
Internet connectivity problem during the journey may be solved using relay
stations owned by the transport company. (Selander et al., 2015)

From previous user story eleven authorization problems summarized:
1. Different authorizations need to be granted to the resources of the

banana box sensors owned by the fruit vendor and container systems
owned by the container owner.

2. Fruit  vendor  requires  the integrity  and authenticity  for  the  sensor
data  to  ensure  the  quality  of  the  product  and  climate  control
functionality.

3. The  container  owner  requirement  for  sensor  data  integrity  and
authenticity for climate control input.

4. Fruit vendor requirement for sensor data confidentiality for state of
the goods and location to protect  against  attacks to  the data  by a
competitors.

5. Different protection needed by the fruit vendor to protect sensor data
and logistics data residing in the same endpoint.

6. Data integrity and authenticity requirement of the fruit vendor and
logistics personnel for locating the goods and ensuring that the goods
are treated and delivered correctly.

7. Authorization  process  has  to  work  even  if  the  fruit  vendor  and
logistics personnel are at the time of access unable to take part on the
process.



8. Temporary access grants need to be issued in order to avoid giving
out permanent access to parties who may no longer be involved with
the process. This concerns all actors.

9. Security objectives need to be intact even if messages are forwarded
over multiple hops. This concerns all actors.

10. Authorization policies have to be enforced even if the devices do not
have access to the Internet at the time.

11. Need to  revoke authorization  on a  malfunctioning sensor  by fruit
vendors and container owners.

These problems can be derived to security requirements for an authorized
authentication mechanism.  The requirements  are  presented in  Table  8.  Each
requirement is based on one or more problems. The corresponding problems
for every requirement are shown in brackets after the requirement name.

TABLE 8 Use case security requirements

Requirement Description

Integrity & authenticity of 
sensor data (2,3,6)

Quality  of  monitored  recordings  and  identification  data
need to be attained, in order to serve climate control and
communication to logistics applications.

Confidentiality of sensor 
data (4)

Transmitting data on product quality and location needs to
be secured against  third  parties,  that  might  benefit  from
this information. 

Authorization by resource 
and requesting party basis 
(1,5)

Several different resources can reside in a single endpoint
and  different  authorizations  need  to  be  granted  for
different parties. For this reason authorization needs to be
configured on resource and requesting party basis.  

Autonomous authorization 
(7,10)

Resource  server  has  to  be  able  to  enforce  authorization
even when resource  owners  are not  able  to  intervene or
there  is  no  Internet  connectivity  at  the  time  of
authorization.  In  addition  the  connectivity  problems
caused  by  high  water  content  of  the  cargo  may call  for
autonomous capabilities from individual devices. 

Temporary access 
permissions (8,11)

Mechanism  for  temporary  permissions  and/or  revoking
permissions is needed. In order to avoid situations where
personnel no longer involved with the process have access
to  the  system  or  when  resource  servers  having
malfunctioning sensors need their access to be revoked.   

End-to-end security (9) Security objectives need to be achieved, even if messages
between endpoints are forwarded over multiple hops.

The empirical experiment is an implementation of this use case. It portrays
a  scenario  where  a  Client  from  another  security  domain  such  as  logistics
company  wants  to  gain  access  to  temperature  data  from the  banana  boxes
owned by the fruit vendor.



9  Experiment design

The empirical  part  of  this  study is  and experiment  conducted using  DCAF
protocol  implementation.  The objective  of  this  experiment  is  to  gain further
knowledge on how well DCAF protocol functions in a constrained environment
and the effect it has on the power consumption of the devices. The results of the
experiment are used when the framework objectives are evaluated in chapter
11.1.  Since  these  protocols  are  in  the  development  phase  this  was  the  only
implementation of such a protocol implementation to be found at the time of
conducting the study. The experiment is setup so, that the constrained actors
are simulated and less constrained actors are running as separate processes in
the host machine. The actors communicate using IPv6 networking through a
border router connecting the simulated actors and the actors running on the
host  machine.  Next  the  different  parts  of  the  experiment  are  described  in
greater detail.

9.1  Contiki

The  simulation  environment  used  in  this  study  is  Cooja,  which  simulates
devices running Contiki operating system.

Contiki is an operating system developed for constrained environments. It
has been ported to a number of micro-controller architectures including Texas
Instruments MSP430 and the Atmel AVR, which both are very popular and
inexpensive (Dunkels, Grönvall, & Voigt, 2004). 

Contiki  is  based  on  an  event  driven  kernel,  to  reduce  the  size  of  the
system. On top of the event driven kernel Contiki uses an application library
that provides preemptive multi-threading. The library is optionally linked with
applications  requiring  multi-threading  features.  This  design  was  adopted to
avoid  the  usage  difficulties  and  problems  of  handling  long  running
computations  with  state-machine  driven  programming  of  an  event-driven
system. (Dunkels et al., 2004)



A Contiki system consist of two parts: a core and loaded programs. The
core contains the kernel, base services and some parts of the language run-time
and  support  libraries.  Shared  functionalities  are  implemented  as  shared
libraries  and  run  as  services.  The  programs  can  be  loading  and  unloading
individually at runtime and services can be updated or replaced individually.
This gives a Contiki system a flexible structure. (Dunkels et al., 2004)

9.2  Cooja

Due to the distributed nature of sensor networks, developing applications for
them is often times a difficult and time consuming task. This is caused by a
longer  compile-run-debug  cycle,  since  compiled  programs  need  to  be
transferred onto a set of sensor nodes for debugging and testing. This process
can  be  simplified  by  using  a  simulator  which  enables  the  development  of
algorithms, system behavior study and interaction observations in a controlled
environment. (Osterlind, Dunkels, Eriksson, Finne, & Voigt, 2006) 

Cooja  is  a  Java-based  simulator  for  simulating  networks  of  devices
running the Contiki operating system. In a network simulation each node can
be  of  different  type,  not  only  by  running  different  software,  but  also  by
simulated hardware. Cooja is flexible as far as any many parts of the simulator
can be easily replaced or extended with additional functionality. For example
simulated radio medium, node hardware or plug-ins for input/output can be
extended. (Osterlind et al., 2006)

Contiki programs can be executed in two different ways in Cooja: native
code  running  directly  on  the  host  CPU  or  running  in  an  instruction  level
emulator (Osterlind et al., 2006). Examples of these emulators are MSPSim for
TI  MSP430  (Eriksson et  al.,  2009) and Avrora for  the Atmel  AVR platforms
(Titzer, Lee, & Palsberg, 2005). Non Contiki nodes can also be simulated. These
include  nodes  implemented  in  Java  and  nodes  running  another  operating
system. All these approaches have their own advantages and disadvantages.
Java-nodes do not run deployable code, but they enable faster simulations and
are useful for tasks such as distributed algorithm development. Using emulated
nodes a set of more fine-grained execution details can be captured, compared to
Java or native code based nodes. Native code simulations run deployable code,
but are more efficient than emulated node simulations. Using deployable code
makes  it  possible  to  simulate  and  deploy  the  same  code  without  any
modifications.  This  minimizes the time needed to move from simulations to
hardware deployments. (Osterlind et al., 2006)

There are also advantages in combining different abstraction levels in one
simulation. Good example of this is a large simulated networks where only few
nodes  need  to  be  simulated  at  the  hardware  level  and  others  can  be
implemented  at  Java  level.  The  advantage  of  this  approach  is  the  faster
simulation comparing to using all emulated nodes, but still receiving the fine-
grained execution details from the emulated nodes. (Osterlind et al., 2006)



Hardware  peripherals  of  the  simulated  nodes  are  called  interfaces.
Interfaces enable the simulator to detect and trigger events such as incoming
radio  traffic.  They  also  represent  node  properties  such  as  positions  in  the
environment  that  the  actual  node is  not  aware  of.  Interactions  between  the
simulation and simulated nodes are done through plugins, such as simulation
control that enables a user to start or pause the simulation. Both interfaces and
plugins can be used to add custom functionality to simulations. (Osterlind et al.,
2006)

For user  interaction Cooja has a Graphical  User Interface (GUI),  which
allows the placement of sensor nodes, modifying sensor inputs and disturbing
network  communication  by  increasing  the  noise  level  among  other  things
(Kugler,  Nordhus,  &  Eskofier,  2013).  The  GUI also  presents  information  on
different  aspects  of  the simulation such as  radio  traffic,  reception areas  and
mote  logs.  Cooja  can  also  provide  estimates  on  mote  energy  consumption
(Kugler  et  al.,  2013).  In  this  study  the  power  consumption  estimates  are
gathered by Powertrace.

9.3  Powertrace

Powertrace  is  a  run-time  power  profiling  mechanism based on  power  state
tracking to estimate power consumption of nodes running Contiki. It  breaks
down  the  power  consumption  to  energy  capsules  and  aggregates  them  to
higher-level activities. It allows inspecting both energy behavior in node-level
and network-level. (Dunkels, Eriksson, Finne, & Tsiftes, 2011)

Powertrace has a linear  power model,  which means that instantaneous
power is estimated as the sum of all active power states. Component energy is
derived from the time that the system spends in each power state. Components
in this case are such as the CPU, radio transceiver, on board Flash and sensors.
Examples of the power states are CPU in active mode or sleep mode and radio
in listening mode or transmission mode.  Device drivers are instrumented to
record a time stamp when a component enters a new state and when it leaves
the state, time difference is calculated and added to the corresponding capsule.
(Dunkels et al., 2011)

The power state tracking is done entirely in software,  so no additional
hardware is needed. The advantages of a software-based approach are that it is
not affected by environmental factors, such as temperature and humidity that
affect  the  energy consumption of  a  physical  system.  It  also  yields  the same
result on different batches of the same hardware, which is not always true when
hardware-based method is used. (Dunkels et al., 2011)



9.4  DCAF setup

As mentioned the DCAF experiment consists of constrained devices running
Contiki that are simulated in Cooja environment and two processes running on
the host machine. The processes running on the host machine represent the less
constrained  actors  Server  Authorization  Manager  (SAM)  and  Client
Authorization  Manager  (CAM).  The  constrained  nodes  are  Client  (C)  and
Resource Server (RS). 

9.4.1  Constrained actors

Client and Server are compiled as emulated Wismote-devices and added to the
simulation. The RPL Border Router is also compiled to the same platform. The
actors are positioned in the simulation so, that they do not have a network path
between  them,  because  they  are  out  of  each  others  radio  range.  So  all  the
communication between the Client and Server is relayed by the RPL Border
Router. This setup was chosen so that the energy consumption of the actors can
be compared more accurately. The constrained network is displayed in Figure
10. Cooja network view does not have an option to show a name of the node
and node type can only be displayed by color. But in this picture node number
1 is the RPL Border Router, node number 2 is the Resource Server and node
number 3 is the Client. The green area around the Server node represents its
radio range and shows that only the Border Router is within the Servers radio
range.
  

Figure 10: Client, Server and the Border router shown in Cooja Network

When the simulation is started the RPL Border Router starts to form the
network. The IPv6 addresses the nodes get is consistent with the node numbers.
Node  number  1  address  is  aaaa::200:0:0:1,  node  number  2  address  is



aaaa::200:0:0:2 and so on. To enable communication to an external network first
the  Border Router needs to have an open server serial socket configured. When
the simulation is running a bridge between the RPL network and the external
network can be created with the Tunslip utility provided in Contiki.

9.4.2  Less constrained actors

The less constrained actors are run from the command line of the host machine.
CAM has nothing to configure. SAM can be configured with JSON files in the
program  folder  or  through  a  web-interface.  To  make  a  working  DCAF
authorization the less constrained actors need to have a set of CA-Certificates.
When these  Certificates  are  created CAM can be  added to  the  SAM list  of
authorized  CAM's.  Individual  CAM's  are  identified  by  SHA1-fingerprints
provided by their certificates.

New servers can be added from the SAM web-interface, by giving a host
name  or  IP  address,  secret  and  one  or  more  resources  and  methods  they
support  (GET, POST, PUT, DELETE).  To establish a connection between the
SAM and a RS, the RS has to be commissioned by SAM. This can be done from
the web-interface also. In order to establish this connection there needs to be a
mutual secret configured in the adding phase and the same secret also needs to
be configured for RS. After commissioning SAM can be used to create access
rules for the RS. 

A rule is created by selecting a CAM that the rule is given, expiration date
and one or  more  resources  with  their  allowed methods.  In  addition special
conditions  for  each  rule  can  be  given.  When  a  rule  is  in  place  CAM  can
negotiate an access ticket from SAM and relay it to one of it's Clients. When a
ticket is granted it can be viewed from a list in the SAM web-interface where a
list  of  granted  and  revoked  tickets  can  be  found.  A  granted  ticket  can  be
revoked from the list view of granted tickets.

The  less  constrained  actors  communicate  with  their  constrained
counterparts through the RPL Border Router and Tunslip. Both are configured
to aaaa::1 IPv6 address. CAM listens to port 5684 and SAM listens to port 8080.

9.4.3  Running the experiment

Running the experiment begins with starting the Cooja simulation. When the
simulation is started the RPL Border Router starts to form the network inside
the simulation. Next Tunslip is started to form a bridge to the external network,
namely to the host machine. When Tunslip output shows that it has formed the
bridge to the simulation for the less constrained actors, SAM and CAM can be
started in separate terminal windows.

The DCAF procedure is initiated by the Client by a 30 second timer. This
timer is in place so that the RPL Border Router has enough time to form the
network  and  there  is  also  enough  time  to  start  Tunslip,  SAM  and  CAM
processes. The first message sent by Client is an unauthorized resource request
to the Resource Server. The Resource Server enforces access control and  replies



to this message with an unauthorized resource request code and includes SAM
information with the message.  After the Client receives the SAM information it
starts DTLS handshake with CAM to establish a DTLS connection. When the
secure connection is established, the Client can send an access ticket request to
CAM requesting access to the RS. CAM receives the message and forms a DTLS
connection with SAM and forwards the ticket  request.  SAM then checks it's
settings if a rule for the requested resource is set for the CAM requesting it. If a
rule is set SAM sends an access ticket to CAM which relays it to the Client. Now
the Client has an access ticket to the resource it wants to access in the RS. The
Client  starts  a  DTLS handshake  with  the  Resource  Server  to  form a  secure
connection between the two. After the handshake is done the Client can send
authorized resource  requests  for  the resource as  long as  the  access  ticket  is
valid.

Cooja provides lots of information on the running simulation in for of logs
and time lines. In this experiment the most important log is the Mote output log
shown in Figure  11. This log is important because it does not only show the
debug messages from the motes and network log generated by the RPL Border
Router,  but it  also logs the Powertrace messages used for power estimation.
This log view has an exclude filter which helps to filter out messages to help
analyzing the messages.

Figure 11: Cooja mote output log

The Powertrace messages can be gathered form the log and processed in
another application. The message contain values for power consumption both
aggregated during the whole simulation and per cycle.  Table  9 explains the
structure of this example message:  

4626 P 0.0 17 24061 1158216 1298 1148635 0 0 8381 59730 680 67432 0 0 (radio 97.-
7240% / 100.00% tx 0.10% / 0.99% listen 97.-7251% / 99.00%)



TABLE 9 Powertrace parameters

Value Parameter Description

4626 clock_time Clock time

0.0 rimeaddr Rime address

17 seqno Sequence number

24061 all_cpu Accumulated CPU energy consumption

1158216 all_lpm Accumulated Low Power Mode energy consumption

1298 all_transmit Accumulated transmission energy consumption

1148635 all_listen Accumulated listen energy consumption

0 all_idle_transmit Accumulated idle transmission energy consumption

0 all_idle_listen Accumulated idle listen energy consumption

8381 cpu Latest cycle CPU energy consumption.

59730 lpm Latest cycle Low Power Mode energy consumption

680 transmit Latest cycle transmission energy consumption

67432 listen Latest cycle listen energy consumption

0 idle_transmit Latest cycle idle transmission energy consumption

0 idle_listen Latest cycle listen energy consumption

The values the Powertrace prints out are not actual power usage values,
but a sum of all power states as explained in the chapter about Powertrace. The
actual power consumption needs to be calculated from these values, because it
is  dependent  on  the  hardware  of  the  device.  The  power  consumption  in
milliwatts can be calculated with the following formula  (Han, Cao, Alinia, &
Crespi, 2015):

  

Power consumption=
Powertrace value∗Current∗Voltage

RTIMERSECOND∗Runtime

Where power trace value is the value from the Powertrace log. Current is
the current consumption of the component, CPU, CPU in Low Power Mode,
Transmit (TX) or Receive (RX). These values can be obtained from the device
datasheets, which in the case of Wismote are MSP430 (Texas Instruments, 2014)
and CC2520 (Texas Instruments, 2007). The values of Currents are 2,2 mA and
0.00169 mA, 33.6 mA and 18.5 mA for  CPU,  LPM, TX and RS respectively.



Voltage  value  in  the  formula  is  the  supply  voltage  of  the  system.
RTIMERSECOND value is the number of ticks per second in the system, which
for Wismote is 32768 and Runtime is the seconds between log events which in
this experiment is 2 seconds.

Total radio usage can also followed with the PowerTracker tool provided
by Cooja shown in Figure 12.

 

Figure 12: Cooja PowerTracker tool  



10  Results

This  chapter  presents  the  results  extracted  from  the  experiment.  The  first
chapter presents the time consumption of different parts of DCAF authorization
sequence. The data was gathered from mote outputs after each simulation was
run. The second chapter deals with power consumption data gathered from
Powertrace outputs, which was then calculated to actual power consumption
readings  in  mW.  The  results  are  evaluated  more  throughly  and  their
positioning in the evaluation framework is discussed in chapter 11.

10.1  Time consumption data

Time data was gathered from the logs that are written as the Client and Server
initiate different parts of the DCAF authorization sequence.  To analyze how
much time each part consumes, the total time of the authorization sequence was
divided in smaller parts and average times for these parts were calculated. The
parts include: unauthorized request flight time, Client-CAM DTLS handshake,
ticket  request  flight  time,  Client-Server DTLS handshake,  authorized request
flight time and the total time used in DCAF authorization sequence. Average
times for different parts and also minimum and maximum times are presented
in Table 10.  

The table shows that the most time consuming part of the authorization
sequence is the DTLS handshake between the Client and Server. Time spent on
this  sequence  also  had  the  biggest  variance.  The  time  taken  on  the  DTLS
handshake is caused by the hash function the Server needs to run to validate
the  access  ticket  provided  by  the  Client.  But  although  this  part  of  the
mechanism  takes  time  it  saves  energy,  because  no  further  transmissions  is
needed to establish the DTLS connection.
Other parts the variance was smaller, including the DTLS handshake between
Client and CAM. Request response sequences between the constrained actors
gave totally congruent values. 



 TABLE 10 Time elapsed in key functions

Sequence Average time (sec) Min (sec) Max (sec)

Unauthorized request flight time 0,036 0,036 0,036

Client-CAM DTLS handshake 1,682 1,612 1,726

Ticket request flight time 0,336 0,256 0,389

Client-Server DTLS handshake 5,362 4,558 8,572

Authorized request flight time 0,051 0,051 0,051

DCAF authorization sequence total 7,502 6,623 10,576

10.2  Power consumption data

The power consumption of the constrained nodes was logged as described in
the previous chapter. The readings were then converted to milliwatts to analyze
power consumption on different stages of the experiment.  Client and Server
were analyzed separately. A graphs of power consumption of the Client and
Server are visualized in Figures 13 and 14 respectively.

Figure 13: Client power consumption



Figure 14: Server power consumption

Since the nodes in the experimental setup do not use duty cycling, in other
words the radio is always on, the listening of radio transmissions (RX) values
remained constant. Since RX values would not bring any additional information
so the values were ignored in the analysis.  The graphs and tables display CPU
and Transmission (TX) values, where the CPU value consists of both active and
Low Power Mode CPU values.

 Both  graphs  clearly  show  the  power  consumption  peaks  starting  at
approximately  30  second  mark.  This  peak  is  the  authorization  sequence
initiated by the Client. Transmissions seen before the sequence are ICMP traffic
when the RPL Border Router forms the network and the nodes negotiate paths
within  the  network.  The  smaller  peak  after  the  authorization  sequence  is  a
authorized resource request  from the Client,  that  the Server  replies  with an
appropriate resource response.

The  graphs  clearly  show  that  the  Client  peak  power  usage  on
transmissions  is  substantially higher compared to the Server.  This  is  due to
bigger number of transmissions the Client has to do during the authorization
sequence. The authorization sequence from the Servers point of view consists of
two request-response sequences and a DTLS handshake.  The first  request  is
unauthorized and so denied and SAM information is sent to the Client. During
the second resource-response sequence the Client has an access ticket. So it can
initiate  DTLS handshake with the  Server  and after  the  secure  connection is
established it can send an authorized resource request. The Client on the other
hand consumes much more energy on transmissions during the authorization
sequence, because it also needs to negotiate a secure connection with CAM and
send an access ticket request,  in addition to communication with the Server.
This amounts to two times higher Client peak power usage on transmissions
compared to the Server. 



The CPU power usage peak values between the Client and the Server do
not  differ  as  much  as  the  transmission  values.  But  when  the  graphs  are
compared, they show that the Server has a higher peak on CPU usage than in
transmissions. During the DCAF authorization sequence the Client negotiates
two secure DTLS connections when the Server only needs to negotiate one. This
suggests that the DTLS handshake it self does not amount to very large CPU
power usage when the keys are provided for the constrained actor. 

The  power  consumption  was  further  analyzed  by  separating  different
events and calculating how much energy was consumed during these events.
The  events  taken  into  further  analysis  were  network  negotiation  sequence,
authorization sequence and the authorized request-response sequence.  These
values were then compared to the power consumption when the system was in
idle state and the total power consumption of the experiment.

The experiment was conducted five times and averages derived from the
values gathered were used as approximations of power usage in each sequence.
The  power  consumption  values  for  each  sequence  were  gathered  from  the
aggregated  power  consumption  values  for  each  component  separately.  The
start and end of each state was determined form the node log events and the
closest aggregate value from the end of the sequence was subtracted from the
closest aggregate value from the start of the sequence. After gathering the data
on all experiments, the average values were collected together. This information
is provided in Table 11 for the Client and Table 12 for the server.

   TABLE 11 Client power consumption in different sequences

Sequence CPU (mW) TX (mW) CPU+TX (mW)

Authorization 2,4831 3,3546 5,8377

Network negotiation 0,1453 0,1046 0,2499

Authorized request response 0,1757 0,1507 0,3265

Idle (2 seconds) 0,0980 0 0,0980

Total 4,9714 4,4565 9,4279

 TABLE 12 Server power consumption in different sequences

Sequence CPU (mW) TX (mW) CPU+TX (mW)

Authorization 2,0521 1,1819 3,2340

Network negotiation 0,2495 0,1046 0,3541

Authorized request response 0,1845 0,1418 0,3263

Idle (2 seconds) 0,0974 0 0,0974

Total 4,4590 2,1718 6,6307



This data supports the findings made from the graph data. The Client
uses  more  than  two  times  more  power  to  transmissions  during  the  DCAF
authorization cycle compared to the Server. The CPU values on the other hand
do not differ so much between the two based on this data as the graph also
suggested.  On the  idle  and  authorized request-response  sequences  the  total
CPU+TX power usage between the Client and the Server hardly differs at all. 

From this  data  an estimate can be calculated for  how many times this
sequence could be conducted if the nodes would be powered by batteries. The
battery life can be calculated with a formula (Han et al., 2015):

Battery life=
Battery capacity x Current

Power usage

Where battery  capacity  is  the  mAh of  the  battery  used,  for  example  a
typical  alkaline  AA  battery  this  value  is  2500  mAh.  Current  is  the  current
drawn from the battery and power usage is the power usage of an event in mW.
If  two  AA batteries  are  used  which  both  have  an  output  of  1,5  Volts  they
conveniently supply the current needed. If this formula is applied to the power
usage of the CPU and TX during a Clients DCAF authorization sequence, which
is 5,84 mW this formula would provide the number of authorization sequences
possible:

2500mAh x 1,5V∗2
5,84

=1285

For the Server this formula produces the value 2319 sequences.  



11  Evaluation

In this chapter the framework objectives constructed in chapters  4,  5, &  6 are
applied to the results of the empirical part and protocol specifications in chapter
7.  This  will  identify  protocol  features  that  can  provide  solutions  to  the
constraints and security objectives identified by the framework. To make the
following  the  different  parts  of  this  chapter  easier,  an  overview  of  all
framework components is displayed in Table 13. 

TABLE 13 Framework overview

Constraints

Maximum code complexity

Size of state and buffers

Processing power

Available power and energy

Network constraints

Lack of user interfaces

Physical constraints

Cost

Architecture based security
objectives

Delegation of demanding tasks

Validation of actors

Autonomous functionality

End-to-end security

Security objectives

Resource confidentiality

Resource integrity

Resource availability

Message confidentiality

Message integrity

Message authentication

Message freshness and authorization

Access control architecture 

Message sequence for three party authentication



The  results  of  the  experiment  described  in  the  previous  chapter  are
mapped into the framework in the next chapter  11.1. The following chapters
11.2 discuss how the architecture based objectives are met. The third chapter
11.3  assesses the security properties of the protocols by the framework security
objectives. The fourth chapter 11.4 identifies the dependencies between use case
requirements  framework  objectives.  And  finally  chapter   11.5 evaluates  the
framework it self. 

11.1  Constraints

This chapter discusses the constraints  identified by the framework and how
well they match the implications of constraints observed during the experiment.

11.1.1  Memory constraints

Based  on  the  experiment  and  documentation  DCAF  it  can  handle  the  the
memory constraints of a Class 1 device in both ROM and RAM. In practice this
means that the Contiki operating system and the needed libraries needed for
CoAP  and  securing  the  transmissions  with  DTLS  fit  in  ~100kB  of  ROM
available.  The  available  RAM  also  seems  to  be  adequate  to  run  DCAF
authentication sequence. But considering the memory footprint of the needed
libraries and operating system they can not be supported with a Class 0 device.
This supports the minimum classification identified in the framework.

11.1.2  Processing power

Processing power demand of  DCAF authorization sequence can be assessed
based on the logged times for different tasks in the experiment results. When
the log was inspected the most time consuming part of the whole sequence was
the DTLS handshake between Client and Resource Server. The handshake was
responsible for more than two thirds of the total time consumption of the entire
sequence. This gives direction on the latency increase that can be expected in a
mechanism where constrained devices are required to handle more complex
calculations.  This  design  decision  can  be  justified  with  a  lower  power
consumption  compared  to  the  alternatives,  such  as  requesting  the
Authorization Manager to verify the credentials. The effects of increased latency
depend on the application and they should be considered when decisions are
made between lower latency of tasks versus lower power consumption.  



11.1.3  Available power and energy

This brings us to the power consumption during the experiment, that can be
used to estimate the available power and energy needed to conduct the DCAF
authorization sequence. The first thing the results show is that the Client energy
consumption on transmissions is significantly larger compared to the Resource
Server. On Average the Client power consumption on transmitting was three
times the value recorded from the Resource Server during the authorization
sequence. 

CPU  power  consumption  readings  between  the  Client  and  Resource
Server did not have such a dramatic difference. The CPU power consumption
difference between the actors was under twenty percent. What is noticeable the
Client CPU power consumption was higher than the Servers, even though the
Server conducted the calculation based on the access ticket during the Client-
Server handshake. 

Both actors show the highest peaks on both CPU and transmission power
consumption  during  the  authorization  sequence.  The Client  being  the  more
active party in this sequence seems to have larger power demand on both CPU
and transmissions. The Client after all has to perform a DTLS handshake with
the Client Authorization Manager and send a ticket request, in addition to the
handshake  and  messages  sent  and  negotiated  with  the  Server.  This  brings
further implications to the notion that increased computation does not have
dramatic effect on power consumption. 

The Clients larger power consumption on transmissions reflects why the
minimizing of transmissions is an important objective. It also shows what kind
of  gains  can  be  achieved  by  optimizing  the  number  of  transmissions  over
computation required from the constrained actors. This was identified in the
framework under available power and energy objectives.

Since only DCAF was experimented with only speculations can be made
on  ABFAB  authorization  sequence  power  consumption.  Based  on  the
specification ABFAB does delegate more tasks to the Identity Provider, but the
sequence includes more transmissions between the constrained actors and the
Identity Provider. The total number of messages also vary depending on such
things as the EAP-method used. This would suggest that ABFAB would have a
larger energy footprint on the constrained devices than DCAF.

11.1.4  Network, interface, physical and cost constraints 

Network constraints  did not  play a  significant  role  in the experiment.  Duty
cycling  and  higher  packet  loss  situations  were  not  tested,  because  the
experimental setup was not prepared to handle these situations. The lack of
user  interfaces,  physical  constraints  and  cost  could  not  be  assessed  in  a
simulation based experiment.  Settings and changes to the constrained actors
could be easily made by compiling new versions in the simulation and physical
constraints and cost are both zero in a simulation. In a real world deployment of
a constrained environment these factors can play a significant role.  



11.2  Architecture related security objectives

In  this  chapter  the  framework  architecture  related  security  objectives  are
evaluated  by  comparing  them  to  the  protocol  specifications  of  DCAF  and
ABFAB. The delegation of demanding tasks to less constrained devices, as it is
the key architecture objective, is discussed first. 

11.2.1  Delegation of demanding tasks

Both protocols do delegate the more demanding tasks to less constrained actors.
In DCAF this means the authorization managers CAM and SAM and in ABFAB
the  identity  provider.  The  protocol  architectures  and  mechanisms  of  the
protocols different. DCAF delegates the key negotiation to CAM and SAM, but
the  access  control  is  enforced  by  the  Resource  Server.  Where  as  ABFAB
delegates the whole access decision making process to  the Identity Provider
that returns the results to the Relying party. From this point of view ABFAB
delegates  more  tasks  to  the  less  constrained  actor.  But  on  the  other  hand
ABFAB requires more transmissions from the constrained actors, so it shifts the
demand from processing to power consumption. But since no experiment on
ABFAB was conducted this can not be verified. 

11.2.2  Validation of actors

When DCAF protocol is used the the Client and Client Authorization Manager
are able to verify that the Resource server in the level that it is associated with
SAM. This is because only SAM and Resource server can produce the same Pre-
shared key based from the ticket-face information. 

How ever the validation needed by the Server Authorization Manager and
Resource  Server  about  the  Client  differs  between  the  two  protocols.  The
differences between the protocols are due to the different message sequences
they  use.  This  matter  is  discussed  in  more  detail  in  the  following  chapter
dealing with the three party authentication sequence. 

11.2.3  Autonomous functionality

The third objective concerning autonomous functionality is yet another aspect
that  separates  the  two  protocols.  The  authentication  and  authorization  of
ABFAB requires real-time interaction between the AAA-server and the Service.
So  the  scenario  where  the  Relying  Party  is  unconnected  at  the  time  of
authorization is not possible. The Relying Party has to have a connection to the
Identity Provider at the time of authorization. AAA-servers are normally used
in server environments, in which remote systems can connect over the Internet.
For this reason it  is  assumed that the Relying Party has to have an Internet
Connection and connection to a local network is not enough. On the other hand



since in a push sequence type of authorization the Relying Party is handling the
connections to the Identity Provider This takes some load off the Client, since it
only needs to be able to connect to the Relying Party, and not directly to the
Identity Provider. 

DCAF can tolerate temporary network unavailability situations, since the
Resource Server can enforce access control even if it would not have connection
to the Server Authorization Manager at the time of  communication. Client can
provide all the necessary information after Client Authorization Manager has
negotiated a DCAF ticket on its behalf from the Server Authorization Manager.
The  only  problem  regarding  Resource  Server  connectivity  is  the  ability  to
revoke tickets. If the Resource Server does not have connection to SAM, tickets
can not  be  revoked.  DCAF Client  on the other  hand needs a  connection to
Client Authorization Manager which in turn needs to have connection to the
Server  Authorization  Manager  at  the  time  when  authorization  sequence  is
executed.

11.2.4  End-to-end security

The objective for secure end-to-end communication more specific to constrained
environments.  It  realizes  that  the  constrained  devices  need  to  communicate
with entities that can reside outside their own network and identifies the need
for securing these connections. When legacy protocols are used the gateway is
responsible  for  interpreting  a  message  coming  from  a  constrained  node,
translating it to Internet package and transmitting it further.  In this kind on
system the security features also have to applied at the gateway for all outgoing
and incoming messages.  For  this  reason protocols  using translating-gateway
breaks the end-to-end security objective. 

When using a IP-based communication is, that this translation phase is not
needed, since the protocols are compatible. This enables that the transmission
can be secured from endpoint-to-endpoint, even if one resides in a constrained
node network and the other is a common Internet node. As an example DTLS it
is not dependent on any specific network infrastructure and can be  applied in
an end-to-end manner. This feature is one of the strengths of using IP-protocols
in constrained environments. The ability to provide end-to-end security can be
seen as a side product of compatible protocols between constrained nodes and
even node in the Internet. This does not only enable this security feature, but
also possibilities build more integratable and evolvable systems. Other matters
of message security are discussed in the next chapter.

11.3  Security objectives

This chapter evaluates how well the framework security objectives are enable to
capture the different properties of the two proposed protocols. Most of these



properties can be assessed based on the specifications so also ABFAB can also
be discussed. 

11.3.1  Resource security

The  security  objectives  concerning  resource  confidentiality,  integrity  and
availability are realized through the authorization procedures. DCAF Resource
Servers preserve the resource confidentiality and integrity by enforcing access
control to their resources. The access rules can be set for all RESTful methods
individually. This said confidentiality of a resource is based on enforcing the
rules for GET method and integrity is realized by enforcing the rules for POST,
PUT and DELETE. Availability of resources for all authorized parties is  also
realized through enforcing the access rules, that enable all parties access to the
resources they possess a valid  access ticket. The confidentiality and integrity
are enforced with the possibility to a define lifetime and possibility to revoke
granted tickets. This also simplifies the access management. 

ABFAB  provides  the  same  basic  features  on  resource  confidentiality,
integrity and availability by enforcing access control. But since ABFAB is a used
in  many  different  environments  and  its  roots  are  in  larger  systems,  the
specification  does  not  go  to  details  on  constrained  environment
implementations,  such  as  the  resolution  of  access  control  in  RESTful
environment. 

11.3.2  Message security

Message  security  objectives  confidentiality,  integrity  and  authentication  are
dependent  on  the  encryption  of  messages.  When  message  confidentiality
concerning  the  message  contents  is  achieved  in  the  transport  level,  it  is
reasonably hard for third parties to gain knowledge of it. This is the case with
DCAF  which  uses  DTLS  to  encrypt  messages  between  actors.  The  only
unencrypted message in  the sequence is  the optional  unauthorized resource
request  and  response  messages  between  Client  and  Resource  Server.  This
message is optional, so if SAM identity is already known this message is not
used. The response message contains the URI of SAM in charge of the Resource
Server. This information is not critical in the wrong hands since SAM is a less
constrained device capable of using necessary methods to secure it self. Even
using  a  transport  layer  security  does  not  provide  total  confidentiality  of
messages in a wireless environment. While message contents can be secured a
third  party  can  still  gather  information  about  the  transmissions  even  if
encryption holds. Eavesdropping on a wireless network can always reveal such
things as number of transmissions and other activity.

Message  integrity  in  this  context  means  the  receivers  ability  to  detect
message  alteration  is  a  side  product  of  using  transport  layer  security.  If  a
message is altered during transmission by a third party, the receiver can detect
this when decrypting the message. Provided of course the third party does not
have the encryption key for the transmission. 



Message origin can be authenticated in similar  way.  When two parties
negotiate a DTLS connection between each other they exchange encryption keys
to  encrypt  the  transmissions.  Message comes  in  through a  DTLS encrypted
transmission the origin can therefore only be from the other party which the
connection has been formed.         

One  possibility  for  achieving  message  freshness  mentioned  in  the
framework  is  with  DTLS  replay  detection.  Replay  detection  is  an  optional
feature  of  DTLS,  since  packet  duplication  is  not  always  malicious.  The
technique used is the same one as in IPSec,  based on maintaining a bitmap
window  of  received  records.  This  is  used  to  silently  discard  all  records
previously received or too old to fit in the window.  (Rescorla & Modadugu,
2012) 

ABFAB does not specify or restrict the usage of any specific application
protocol or specific transport security. So the same examples of how to achieve
message confidentiality, integrity, authenticity and freshness apply to ABFAB.  

11.3.3  Access control architecture

When access control architecture is concerned DCAF uses a capability based
access  control  model  in  the  constrained  level.  This  has  several  advantages
compared to other approaches, such as the Resource Server has no need to store
client  privilege information.  Those kind of  approaches would work only on
very small deployments, due to limited storage capacity for user information.
The architecture does not limit on combining actors if they reside within a same
domain. Similarly the architecture does not mention limitations on combining
the authorization managers to other systems. So they could be integrated to
other systems as long as they perform the specified tasks.

   On the constrained level ABFAB uses identity based access control. Since
ABFAB  is  based  on  AAA-framework  it  assumes  framework  services  are
present.  But  if  an  existing  AAA-infrastructure  exists,  an  ABFAB
implementation  of  constrained  devices  can  be  integrated  seamlessly.  This
solution  would  realize  a  system  wide  uniform  authorization  management,
where access control configuration for all parts can be done in a centralized
way.   

11.3.4  Message sequence for three party authentication

As  mentioned in  the  previous  chapter  validation  of  the  Client  between the
protocols  bares  difference.  DCAF  has  a  disadvantage  inherent  to  message
sequence it uses so the protocol is based on trust between the two authorization
managers.  This  means that  the Server  Authorization Manager has  no direct
means  to  validate  the  origins  of  a  resource  request.  Sever  Authorization
Manager can only trust the Client Authorization Manager for not giving out or
disclosing authorization tickets that are used as  session keys.  (Gerdes et al.,
2015c)    



ABFAB has different set of features relating to this same problem. ABFAB
architecture it is able to authenticate any of the actors, including the client. This
is  due  to  the  push  sequence  used  in  the  authentication  messaging.  So  the
Relying Party can authenticate the Client in an adequate level that depends on
the policies set for it and the Identity Provider. This is based on the trust based
on the federation substrate mechanism.

11.4  Use case security requirements

In this chapter the frameworks security objectives are operationalized by use
case requirements presented in chapter  8. Most of the use case requirements
operationalize  more  than  one  framework  objectives.  Few  of  the  framework
objectives  also  have  dependencies  to  multiple  requirements.  The  only  two
objectives  that  did  not  have  clear  dependency  to  any  of  the  use  case
requirements were message freshness and access control architecture. Table 14
presents  the  dependencies  found  between  use  case  requirements  and
framework objectives. 

TABLE 14 Dependencies between use case requirements and framework objectives
Requirement Framework objective

Integrity & authenticity of sensor data Resource integrity

Message integrity

Message authentication

Confidentiality of sensor data Message confidentiality

Authorization by resource and requesting party 
basis

Validation of actors

Message sequence for three party authentication

Resource confidentiality

Resource integrity

Resource availability

Autonomous authorization
Delegation of demanding tasks

Autonomous functionality

Temporary access permissions Resource confidentiality

Resource integrity

End-to-end security End-to-end security

Based  on  these  dependencies  a  system  that  would  satisfy  these
requirements can be envisioned. The main categories of properties this kind of
system needs to possess in the highest level are resource and message security.



The rest of this chapter discusses these dependencies in more detail and ways to
meet the requirements.

11.4.1  Integrity & authenticity of sensor data

The first functional requirement extracted form the use case requiring integrity
and authenticity of  sensor data  operationalize objectives  from both resource
and message security. This is due to the fact that quality of monitored readings
can  be  effected  by  both  tampering  the  resources  them  selves  or  messages
exchanged  between  the  server  and  client.  This  requirement  operationalizes
integrity objectives for both resources and messages messages.  In addition it
operationalizes  authentication  objective  for  messages.  As  described  in  the
previous chapter resource integrity can be achieved by enforcing access control,
in  this  case  the  access  rights  to  change  the  resources.  Message  integrity  is
achieved through using a secure channel for communication between the server
and client requesting the data. So to put this in the use case context the quality
of monitored readings and identification data served for the climate control and
logistics applications can be achieved through enforcing the access control and
using a secure communications channel.

11.4.2  Confidentiality of sensor data

The description of the second functional requirement “Confidentiality of sensor
data” focuses purely on securing the transmitted data, so it operationalizes only
one message security objective, which is message confidentiality. As discussed
in  the  previous  chapter  message  confidentiality  is  also  a  matter  of  using  a
secure channel  for communication.  The solution for this  requirement  can be
formulated: data transmissions containing quality and location information can
be secured by using a secure communications channel for transmissions. 

11.4.3 Authorization by resource and requesting party basis

Authorization  by  resource  and  requesting  party  basis   is  a  matter  of
operationalization  of  all  objectives  concerning  resource  security.  Namely
confidentiality, integrity and availability of resources. But this requirement also
operationalize  two  more  objectives  concerning  actor  validation.  The
architecture  based  objectives  define  the  baseline  objective  for  validation  of
actors,  which  is  then  made  more  specific  by  the  objective  concerning  the
message sequence used.  

This  issue  is  discussed  in  the  previous  chapter  in  the  context  of  the
protocols. The requirement it self  has two dimensions. First it acknowledges
that one node can serve more than one resources and different resources are
required to have their unique set of access rights. This rules out the possibility
of using a node wide global access control. How ever this requirement does not



impose the need for explicit access control, where the rights to a resource are
determined in  method level,  such  as  read and write  privileges.  The second
dimension is the authentication dimension. A requesting party can be realized
as a specific user or a group of users. Where the single user can be authenticated
in different levels  of identity attributes.  In any case this  requirement can be
fulfilled by resource security objectives namely enforcing access control. So the
solution for this requirement is: authorization by resource and requesting party
basis can be achieved by enforcing fine-grained access control.

11.4.4 Autonomous authorization

Autonomous authorization requirement in the use case requires the system has
the ability to enforce authorization also in such situations where there is no
Internet connectivity or the resource owners cannot take part in the process. 

This requirement has a strong dependency on autonomous functionality
objective.  But  it  also  has  a  dependency  on  delegation  of  demanding  tasks
objective, which can influence this requirement through the selected delegation
approach. This is due to larger demand on connectivity when more task are
delegated away from the constrained actors. For these reasons this requirement
operationalizes both of these objectives. 

 This matter can also be divided into two parts. The system needs to be
able to function without intervention from the resource owners and it has to be
able to function without Internet connection. In order to achieve the first part
the system has needs to support adequate level of configurability, to be able to
full  fill  this  responsibility   with  out  the  need  for  actions  from the  resource
owner. For the second part of being able to function with limited connectivity
one solution is to use capability based authentication, where the resource server
can enforce access control even when it does not have connectivity to it less
constrained counterparts.  

11.4.5 Temporary access permissions

This  requirement  operationalizes  the  resource  confidentiality  and  integrity
objectives. These objectives were also operationalized by previous requirements
concerning resource security.

A solution for this requirement dictates a need for a way to set a lifetimes
for  a  permissions  and  the  ability  from  access  control  to  enforce  them.  The
matter  of  revoking  granted  tickets  requires  a  similar  mechanism.  Enforcing
these  features  have  some  differences  between  authorization  methods  in
constrained environments. These differences can be caused by such things as
limited connectivity. 

Life  time  of  an  access  permission  is  pretty  straight  forward,  since  the
server has knowledge of this starting from the initial authorization negotiated.
Even with limited connectivity the enforcing party has knowledge when the
authorization is no longer valid. 



The revoking of a once granted access permission in a limited connectivity
situation on the other hand can pose a problem. An example of this would be a
situation, where a resource server has limited connectivity and capability based
authentication is used. A client possesses a access ticket for a resource, which is
then revoked. The problem arises when the information of the revocation needs
to  be  transmitted  to  the  resource  server.  The  server  has  has  no  connection
present for its less constrained counterpart and therefore no knowledge that the
access ticket has been revoked. The solution for this requirement in any case fall
down to configuring and enforcing access control in the level of detail needed.

11.4.6 End-to-end security

End-to-end security has a strong dependency on the framework objective of the
same name, which it there fore operationalizes.

End-to-end security requirement expand the requirement for sensor data
confidentiality to state that transmission should be secured from endpoint-to-
endpoint. This matter was discussed earlier as a part of architecture objectives
and it can be solved by using a security protocol able to crossing the necessary
borders  on negotiating a  secure communications  channel.  When constrained
environments  are  concerned  the  borders  can  include  different  transport
mediums and underlying network protocols. This rules out systems that use
translating gateways since they break the end-to-end security when the other
endpoint  resides  outside  of  their  own  network.  The  solution  fulfilling  this
objective to use transport  level security able to  use any underlying network
such as DTLS.

11.5  Evaluation of the main artifact

Based  on  the  evaluations  done  previously  in  this  chapter  the  framework
seemed  to  be  able  capture  the  different  features  needed  for  an  authorized
authentication mechanism to be used in constrained environments.  All  three
levels, namely constraints, architecture objectives and security objectives served
the a purpose of bringing unique features to strengthen the framework. 

The  constraints  level  identified  the  different  constraints  and  provided
taxonomies on memory and power constraints. The memory taxonomy enables
the identification of minimum ability the devices need for safe conduct. It also
shows the level where normal Internet protocols can be used. The constraint
level inspection identified and verified several effects the constraints can cause.
These effect included such things as latency due to low processing ability or
rising total power consumption due to large number of transmissions. These
were  tested  with  an  experiment,  which  showed  processor  usage  and
transmitting  have  effects  on  device  power  consumption  and  latency.
Transmitting being the dominant factor on power consumption and processing
on increased latency. 



The  architecture  level  objectives  enabled  the  identification  of  several
differences  in  the  protocol  functionalities,  such  as  difference  in  delegation
strategies, ability to identify all the actors and autonomous functionality. These
differences bring decision points on which property to optimize over another.
These decisions  are such as  optimizing power consumption over processing
required from the constrained nodes or possible latency gains over autonomous
functionality. In addition to these the the architecture level identifies what kind
of gains on security can be achieved by end-to-end security. 

The security objective level identified two main areas for realizing a secure
distributed system. These areas are resource and message security, both having
sub areas. The framework was enable to identify these areas as objectives and
therefore  the  protocols  could  be  evaluated  based  on  the  mechanisms  they
provide to each objective. 

When the framework security objectives derived from the architecture and
security concerns were operationalized as requirements of a logistics use case,
dependencies  for  most  objectives  could  be  found.  Requirements  concerning
resource and message security had dependencies on objectives identified at the
security  concerns  level.  Some  of  the  requirements  having  dependencies  on
security level were supplemented by objectives from the architecture level. But
there  were  two  requirements  that  operationalized  only  architecture  level
objectives. These were the requirements for autonomous authorization and end-
to-end security. These requirements are more constrained environment specific
so  they  could  not  be  identified  by  the  common  security  objectives  for
distributed systems. Overall the framework provided one or more objectives for
every requirement in the use case.  



12  Conclusions

This study was conducted using the Design Science Research Method which is
essentially a problem solving paradigm consisting of six activities. In the first
activity  the  problem  was  identified  as  a  lack  of  dynamic  authorized
authentication mechanism enable to function in constrained environments. 

Based on the problem identification activity the objective for this study
was set to create an artifact, an authorized authentication evaluation framework
for constrained environments. The framework was to be developed to identify
the environment constraints, prerequisites for a secure distributed system and
how these two can coexist in a single system. 

The framework development activity already gave answers to the first two
sub-research questions:  RQ 1.1 What kind of constraints do the devices have?
and RQ 1.2 How the device constraints should be classified? 

In  the  demonstration  activity  the  framework  was  used to  evaluate  the
properties of two protocols. This provided answers to the rest of the research
questions:  RQ 1.3 Which constraints have effect on choosing the mechanism?
and first of the main research questions:  RQ 1:What are the prerequisites for
establishing authorized authentication mechanism between two devices when
one or both have constrained capabilities?  Then framework security objectives
were operationalized to use case requirements to provide answers to the second
main  research  question:  RQ  2:  What  are  the  requirements  for  a  system
supporting authorized authentication between two constrained devices?  and
its sub question: RQ 2.1 What kind of system could satisfy these requirements? 

With  all  the  research  questions  answered  the  evaluation  activity
concentrated  on  evaluating  the  framework  on  its  ability  to  capture  the
properties  it  was  designed  to  capture.  The  final  activity  of  the  process  is
communicating the results which is this document. 

To justify the value of the this research terminology from  requirements
engineering can be used, even though the main artifact is not a machine per se.
The problem world could be described as follows. The first state of the problem
world system-as-is in this case is a situation where no framework for evaluating
dynamic authorized authentication protocols exists.  The system-to-be state is



the situation where a such a framework exists. The why-dimension limitations
on identifying  constraints  and security  objectives  and  their  dependencies  is
harder to do with system-as-is. The opportunity to be exploited to make this
process  easier.  The  what-dimension  identifies  a  framework  for  evaluating
authorized authentication solutions as a service needed to satisfy the objectives
identified  in  the  why-dimension.  The  who-dimension  assigns  the
responsibilities defined in the why- and what-dimensions to the artifact.

Evaluation of the main artifact in the previous chapter showed that it was
able to identify  perquisites to realize authorized authentication in constrained
environments at least when this use case and these two protocols are evaluated.
A  good  subject  to  a  future  research  would  be  to  add  more  use  cases  and
proposed protocols to determine if the resolution of the framework would be
adequate to evaluate them. 

The requirements which in this case were the solutions ability to meet the
constraints posed by the environment constraints were identified by the first
level of the framework that specified the areas of constraints to be evaluated.
The evaluation was based on protocol specifications and an experiment where
DCAF authorization sequence was studied. The experiment showed that the
constraints  identified  in  the  framework,  namely,  power  consumption  and
processing  power  had  the  effects  predicted.  The  results  showed  that  the
number  of  transmissions  the  constrained node has  to  perform,  increases  its
power usage substantially. The processing required from a constrained node
did not show similar effect on node power consumption. 

This  is  a  crucial  decision point when a mechanism for  authorization is
chosen. This decision is between delegating more tasks away from constrained
devices  and  minimizing  the  transmissions  needed.  From  the  power
consumption point of view it can sometimes be wise to optimize to the direction
of less transmissions over processing assigned to the constrained actors. But if
the power consumption is not an issue in a particular system, the decision could
be the opposite. This could be the case if the optimizing need to be done in the
direction  of  fast  operation.  Such  as  a  user  application  where  long  response
times are not accepted, since people tend to get anxious when a action takes
more than a few seconds. Other constraints identified in the framework could
not be evaluated in this extent based on the experiment or the protocols being
reviewed.

After  all  this  said  about  the  power  footprint  of  the  authorization
sequences,  based on the experiment the power usage can still  be considered
reasonable. Comparing the power consumption readings with the capacity of
an ordinary battery showed that DCAF authorization sequence could be run
more than thousand times before the batteries run out. Since an authorization
sequences  are  not  that  frequent  in  normal  situations  this  suggests  that  an
acceptable battery life can be achieved.

The first stage of evaluating the security related objectives identified by
the framework was applying them to the specifications of the two proposed
protocols DCAF and ABFAB. This stage showed that the framework objectives
seemed to capture  protocol features quite well.  The objectives for the main
aspects of security which are securing resources and transmissions had good



enough  resolution  to  identify  the  technologies  needed  for  a  solution.  The
framework was also enable to differentiate the protocols on several features and
there fore supply answers on questions about the effect different approaches on
authorized authentication can cause. A good example of these difference is the
effect a delegation strategy has to autonomous functionality. When more tasks
are delegated to the less constrained actors it can mean decrease in ability to
autonomous functionality. The architecture based requirements only specified
that the other actors need to be able to function without the supervision from
the principal level actors.  The ability of a constrained actor to function with
limited connectivity to its  less  constrained counterpart  can in some cases be
advantageous in its own right. One such situation can be envisioned based on
the  logistics  use  case.  If  a  resource  server  does  not  have  connection  to  it's
authorization manager, due to radio signals being dampened by the high water
content  cargo.  If  the  system uses  capability  based authorization,  this  server
would still be able to validate tickets and enforce access control in this extent.

When the frameworks security related objectives were operationalized to a
use  case  the  primary  security  objectives  turned  out  to  be  the  objectives
demanding  for  resource  and  transmission  security.  These  objectives  were
operationalize by the four out of six use case requirements defining the need for
confidentiality,  integrity  and  availability  to  resources  and  confidentiality,
integrity and authenticity to the messages. These requirements can be seen as
some what essential,  since they define the base line requirements for secure
conduct. 

The higher-level objectives for resource security were complemented by
operationalizing  more  fine-grained  objectives  concerning  validation  level  of
actors  and  end-to-end  security.  These  objectives  are  the  security  objectives
derived from the ACE architecture document, that describe more constrained
environment specific security objectives. Only two out of six requirements were
operationalized by these objectives alone.  Both of  these requirements can be
seen more or  less  constrained environment  specific,  since they specified the
need for autonomous authorization and end-to-end security capabilities. These
kind of objectives get less attention in Internet systems since connectivity and
protecting transmissions are pretty much taken for granted. 

 This  use  case  showed  that  most  of  the  requirements  for  authorized
authentication  in  constrained  environments  can  be  achieved  by  common
security  objectives  for  distributed  systems.  The  security  requirements  them
selves do not change when moving from a larger less constrained system to a
more constricted one. The major difference for the requirements comes from
how to realize these requirements with constrained resources. For this a set of
more finer-grained objectives requirements can be a big help. But as the results
of this study have shown even a battery powered device with Class 1 memory
constraints,  can  fulfill  the  security  objectives  described  by  the  framework
reasonably well. 
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