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Abstract A method called PAINT is introduced for computationally expen-
sive multiobjective optimization problems. The method interpolates between
a given set of Pareto optimal outcomes. The interpolation provided by the
PAINT method implies a mixed integer linear surrogate problem for the orig-
inal problem which can be optimized with any interactive method to make
decisions concerning the original problem. When the scalarizations of the in-
teractive method used do not introduce nonlinearity to the problem (which is
true e.g., for the synchronous NIMBUS method), the scalarizations of the sur-
rogate problem can be optimized with available mixed integer linear solvers.
Thus, the use of the interactive method is fast with the surrogate problem
even though the problem is computationally expensive. Numerical examples
of applying the PAINT method for interpolation are included.
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1 Introduction

Multiobjective optimization means optimizing multiple conflicting objectives
at the same time [see e.g., 23]. Multiobjective optimization problems may have
many Pareto optimal solutions, whose objectives cannot be improved without
impairing some other objectives. A vector containing the objective values for
a single solution is called an outcome and the set of outcomes given by Pareto
optimal solutions is often called the Pareto front. The ultimate aim of mul-
tiobjective optimization is to help a decision maker find a solution that is
preferable to him/her. A decision maker is a person who has the right or is
expected to make decisions concerning the real life problem that is mathe-
matically modeled by the multiobjective optimization problem. Here we do
not assume that he/she has any knowledge about different multiobjective op-
timization methods.

One way to classify different multiobjective optimization methods, intro-
duced in [15] and followed in [23], is based on the relative order of the decision
maker’s preference articulation and optimization. In a priori methods, the pref-
erences of the decision maker are first specified and then a single Pareto opti-
mal solution is found with respect to these and in a posteriori methods many
Pareto optimal solutions are generated and then the decision maker is expected
to choose a preferred one among them. If the decision maker’s preferences do
not play a role or are unavailable then the method is called a no-preference
method. Finally, interactive methods employ an iterative procedure and allow
the decision maker to correct his/her preferences and also enable the decision
maker to learn about the problem [see e.g., 28]. Interactive methods have in
many instances been seen as the most prominent [8, 20, 23, 28], because they
allow the decision maker to gain more insight about the problem while solving
it without introducing too much cognitive load at a time. In other words, the
decision maker can consider only those Pareto optimal solutions that have been
generated based on his/her preferences. We have, thus, focused on interactive
methods in our research.

In interactive methods, new solutions to the multiobjective optimization
problem are often produced through scalarization, i.e., by converting the mul-
tiobjective optimization problem into single objective optimization problems
[20]. Different interactive methods use different scalarizations and some inter-
active methods even use multiple scalarizations (e.g., the synchronous NIM-
BUS method introduced in [27]). In this paper, a scalarization of the multiob-
jective optimization problem refers to a single objective optimization problem
whose optimal solutions are solutions to the multiobjective optimization prob-
lem. Usually, scalarizations include a way to take into account the decision
maker’s preferences (as e.g., in achievement scalarizing problem (8) from [33],
where the reference point contains aspiration levels for the objectives). For
more information about scalarizations, see e.g., [23, 26].

A drawback with iterative procedures of interactive methods is that the
decision maker has to wait while new Pareto optimal solutions are gener-
ated with his/her updated preferences. This is usually done in each iteration.
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Since many real-life problems are computationally expensive [see e.g., 14, 18],
scalarizations of the problems may also be computationally expensive. By a
computationally expensive multiobjective optimization problem we here mean
a problem that requires a long time to compute the objective values for a given
solution. For these problems, the time that is needed to optimize the scalar-
izations may be too long for the decision maker to spare. Besides, the decision
maker may become unwilling to explore different solutions to the problem in
the so-called learning phase (in which the most interesting region on the Pareto
front is to be identified [28]).

In this paper, we develop and implement a Pareto front approximation
method PAINT (PAreto front INTerpolation) that interpolates between a set
of given Pareto optimal outcomes. The interpolation satisfies the property
of inherent nondominance introduced in [13] and, thus, implies a surrogate
problem that can replace the computationally expensive original problem and
can be solved with any interactive method to yield a preferred solution for
the original problem. The inherent nondominance guarantees that none of
the interpolants dominate or are dominated by any of the given Pareto op-
timal outcomes, neither do they dominate each other. The interpolation is
based on the results developed in [12], where it was suggested that a certain
subcomplex of the Delaunay triangulation of the given Pareto optimal out-
comes should be used. Our surrogate problem allows the decision maker to
consider approximate outcomes (i.e., interpolants of the given Pareto optimal
outcomes produced by the PAINT method). In this paper, we also develop a
mixed integer linear formulation for the surrogate problem that is implied by
the interpolation. Replacing the original computationally expensive problem
with the surrogate problem will naturally offer computational time savings
when an interactive method is used.

Approaches similar to ours, where a Pareto front approximation is used to
search for interesting outcomes not limited to a given set, have been proposed
in [8, 19, 29]. The main difference between these approaches and ours is that
the others use their own tailor-made methods for finding a vector containing
preferred approximate outcomes on the approximations, while our approxi-
mation aims to work (through the mixed integer linear surrogate problem) in
concert with any interactive method. Furthermore, [8, 29] are only applicable
to convex multiobjective optimization problems, while ours can handle non-
convex problems. As mentioned before, PAINT has been developed to produce
interpolate outcomes to be used with an interactive method through the sur-
rogate problem. However, when looking at PAINT as a plain approximation
method, it can be compared to some existing methods in the literature. This
kind of approximation methods can be found in a survey [30] and in papers
[2, 7, 9, 16, 21]. These methods, however, do not concentrate on the question
of how to choose a Pareto optimal solution on the produced approximation
as we do. Also, none of the above methods guarantee the property of inher-
ent nondominance for nonconvex optimization problems with more than two
objectives.
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The rest of this paper is structured as follows: In Section 2, notation and
definitions are given. The PAINT method and related computational issues are
described in Section 3. In Section 4, the surrogate multiobjective optimization
problem implied by the approximation is discussed. Section 5 shows examples
of different Pareto front approximations to demonstrate the versatility of the
PAINT method. Finally, conclusions are drawn in Section 6.

2 Notation and definitions

In this paper, we study multiobjective optimization problems

min (f1(x), . . . , fk(x))
s.t. x ∈ S, (1)

where the integer k is the number of real-valued objectives. The set S is called
the feasible set. A vector z = f(x) = (f1(x), . . . , fk(x))T with x ∈ S is called
an outcome. The set f(S) is called the outcome set. We assume that the set S is
connected and that the objective functions fi are continuous. This assumption
is made in order to justify interpolating between the objective function values
of Pareto optimal solutions.

The set Rk is called the outcome space. For a vector z in the outcome
space, a component zi is called an objective value. Because problem (1) is a
minimization problem, less is preferred to more in each objective. A vector z1

in the outcome space is said to dominate another vector z2 in the outcome
space if z1 is at least as good as z2 in all objectives and strictly better in at
least one. If z1 dominates z2 then it is written z1 ≤ z2.

An outcome z1 is said to be Pareto optimal, if there does not exist another
outcome z2 so that z2 dominates z1. The set of all Pareto optimal outcomes
is called the Pareto front. In this paper, the set P always refers to the given
set of Pareto optimal outcomes on which the Pareto front approximation is
based. The number of these Pareto optimal outcomes is denoted by m and
the elements of this set are denoted by pj , where j = 1, . . . ,m. This set is
called the initial set of Pareto optimal outcomes and it is taken as given, i.e.,
we assume that we cannot influence the locations of these outcomes in the
outcome space.

Important elements in our PAINT method are polytopes and collections
of polytopes for which we mostly follow the definitions given in [10]: For
a nonnegative integer a, the convex hull of z1, . . . , za+1 ∈ Rk is denoted
by P(z1, . . . , za+1) and is called an a-polytope. It is said that the polytope
P(z1, . . . , za+1) is defined by vectors z1, . . . , za+1. A vertex of a polytope K is
a point x ∈ K for which it holds that λz+(1−λ)y = x, λ ∈ (0, 1) and z, y ∈ K
imply x = y = z. The set of vertices of a polytope K is denoted by vert(K).
A face of a polytope K is another polytope K ′ so that K ′ = ∅, K ′ = K or
there exist vectors z1, z2 ∈ Rk so that K ′ = {z1 + h : h ∈ Rk, hT z2 = 0} ∩K.
A polytope P(z1, . . . , za+1) is a simplex if the vectors z1, . . . , za+1 are affinely
independent.
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Collections of polytopes are sets whose elements are polytopes and they
are denoted by calligraphic letters A,B,K, . . .. The body of a collection of
polytopes A is body(A) = ∪K∈AK. A (polyhedral) complex K is a special
type of collection of polytopes so that (a) if it holds that a polytope K ∈ K
and another polytope K ′ is a face of K then it must hold that K ′ ∈ K,
and (b) if it holds that polytopes K1,K2 ∈ K then the set K1 ∩ K2 must
be a possibly empty face of both polytopes K1 and K2. A triangulation of
a finite set P ⊂ Rk is a complex T so that the body of T is the convex
hull of the set P and the set of vertices in T is P . A polytope P(z1, . . . , zk)
with z1, . . . , zk ∈ P is called Delaunay (in P ) if there exists an open ball
B ∈ Rk with cl(B) ∩ P = {z1, . . . , za+1} (here cl(B) denotes the closure of
B) and B ∩ P = ∅. A complex D is a Delaunay triangulation of P if D is
a triangulation of P so that every polytope in D is Delaunay. A polyhedral
complex is called a simplicial complex, if all the polytopes are simplices.

In [13], the most important concepts for the theory behind our Pareto front
approximation were given. First, a set A ⊂ Rk is called inherently nondomi-
nated, if there does not exist a, b ∈ A so that a ≤ b. Given a set of outcomes,
one can check whether any of them dominates the others. Inherent nondomi-
nance is a more advanced concept used to guarantee that when a new infinite
set of interpolating outcomes has been generated, none of them is dominated
by or dominates others. In order to connect the inherently nondominated set
to a known set of Pareto optimal outcomes P it was defined that an inherently
nondominated set A is called an inherently nondominated Pareto front approx-
imation (based on a set of outcomes P ), if it holds that P ⊂ A. Since also the
set P is by definition an inherently nondominated Pareto front approxima-
tion, it was further defined that for a set B ⊂ Rk, an inherently nondominated
Pareto front approximation A ⊂ B is called a B-maximal inherently non-
dominated Pareto front approximation, if there does not exist an inherently
nondominated set A′ so that A ( A′ ⊂ B. A B-maximal inherently nondom-
inated Pareto front approximation is a maximal (by inclusion) collection of
points from B that could be a part of a same Pareto front as the initial Pareto
optimal outcomes in P are.

Since an inherently nondominated Pareto front approximation is to be used
as an interpolation of the Pareto optimal outcomes in P , it usually contains an
infinite number of points. On the other hand, such an infinite set can be rep-
resented by a finite number of polytopes. Thus, it is easier to construct such
interpolations from polytopes than from points. Hence, the above concepts
were in [12] slightly modified to fit collections of polytopes and polyhedral
complexes. A collection of polytopes K is called inherently nondominated and
an inherently nondominated Pareto front approximation, whenever its body,
body(K), is that. Finally, if B is a collection of polytopes, an inherently non-
dominated collection of polytopes K is called a B-maximal inherently nondom-
inated Pareto front approximation if there does not exist a polytope K ∈ B\K
so that the collection of polytopes K∪{K} is inherently nondominated. Thus,
the difference between this definition and the corresponding definition for a
set is that a B-maximal inherently nondominated Pareto front approximation
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is a maximal collection of polytopes (not points) in B that could be a part of
a same Pareto front as the initial Pareto optimal outcomes in P are. A mem-
ber of the body of an inherently nondominated Pareto front approximation is
called an approximate Pareto optimal outcome.

To construct inherently nondominated collections of polytopes, a domi-
nance between polytopes was defined in [12]. Let K1,K2 ⊂ Rk be polytopes.
It is defined that the polytope K1 dominates the polytope K2 if there exist
vectors s1 ∈ K1 and s2 ∈ K2 so that s1 dominates s2. As shown in that
paper, a complex K ⊂ D is inherently nondominated if and only if there does
not exist polytopes K1,K2 ∈ K so that K1 dominates K2.

3 The PAINT method

In this section, we introduce the algorithm of the PAINT method, to be called
Algorithm 1. We describe data structures that can be used in implementing
this algorithm. Based on these data structures, we illustrate how the steps of
Algorithm 1 can be carried out. We also discuss the implementation aspects
of the algorithm and the complexity of the PAINT method. Finally, we de-
velop a way of resolving dominance between two polytopes, which is needed
in Algorithm 1.

The PAINT method takes as input a set of m Pareto optimal outcomes P
and its output is a D-maximal inherently nondominated Pareto front approx-
imation based on P , where D is a Delaunay triangulation of the set P . The
method is based on the ideas presented in [12] and it guarantees that the ap-
proximation satisfies the following rules (R1) and (R2) given in [12]: assuming
that l-polytopes in the Delaunay triangulation D are Kl,j with j = 1, . . . , tl,
a polytope Kl,j ∈ D is removed, if either

(R1) there exists an outcome p ∈ P that dominates or is dominated by the
polytope Kl,j or the polytope Kl,j dominates itself
OR

(R2) there exists an m-polytope Km,j′ ∈ D with either m > l or m = l and
j′ < j that is not removed, and that dominates or is dominated by the
polytope Kl,j .

In [12], it is shown that a resulting polyhedral complex after having applied
rules (R1) and (R2) is a D-maximal inherently nondominated Pareto front
approximation.

In the implementation of the PAINT method presented in this paper, the
Delaunay triangulation and the inherently nondominated Pareto front approx-
imation are represented as matrices D and A, respectively. In those matrices,
each row represents the vertices of a polytope with each entry referring to an
outcome in P . For example a row with entries 1, 2 and 3 represents a polytope
defined by outcomes p1, p2 and p3 in P . Polytopes that are defined with fewer
outcomes than there are columns in D or A are handled by repeating the same
outcome multiple times. This way of representing the complexes enables us to
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write e.g., the outcomes defining the polytope represented by row j in the
matrix D as pDj,1 , pDj,2 , . . . , pDj,b with b being the number of columns in D.

3.1 Algorithm

The PAINT method is described in Algorithm 1. Throughout the algorithm,
indices a and b stand for the number of polytopes in the Delaunay triangulation
and the maximal number of outcomes defining a polytopes in the Delaunay
triangulation, respectively. The algorithm begins by reading in the initial set
of Pareto optimal outcomes P . Line 2 of the algorithm is concerned with con-
structing a Delaunay triangulation of the set P . We propose to do this with the
Quickhull algorithm [1], which constructs the Delaunay triangulation by build-
ing the convex hull of a higher dimensional related set (see [3]). The Quickhull
algorithm assumes that the outcomes in P are in general position (see [1]),
which is not always the case for e.g., linear multiobjective optimization prob-
lems for which the outcomes may be affinely dependent. This dependency can
be removed by e.g., slightly perturbing the points as proposed in [6]. Whenever
necessary, we have used perturbation in the examples in Section 5.

In line 3 of Algorithm 1, the rows of matrix D representing the Delaunay
triangulation are ordered in a descending order with respect to the number of
different entries in the row that is defined as the number of outcomes defining
the polytope that is represented by the row. The ordering ensures that the
polytopes are checked in the loop starting from line 5 in a descending order
with respect to the number of outcomes defining the polytope.

In lines 6, 11 and 19 of the algorithm, there are three different if-conditions.
The purpose of the conditions in lines 6 and 11 is to make sure that the final
approximation follows rule (R1), and the purpose of the condition in line 19 is
to make sure that the final approximation follows rule (R2). Conveniently, all
these conditions reduce to checking dominance between two polytopes, which
is the condition in line 19: (a) the inherent nondominance of a polytope in line
6 can be reduced to checking whether a polytope dominates itself, because in
[12] it was proven that a polytope is inherently nondominated if and only if
it does not dominate itself, and (b) the dominance between an outcome and
a polytope in line 11 is actually dominance between two polytopes because
a singleton containing a vector in Rk is by definition a polytope.Thus, it is
adequate to build mathematical tools for determining dominance between two
polytopes. This is done in Subsection 3.2 by using two linear optimization
problems.

Assume now that the algorithm is in the loop starting from row 5 and
ending with row 26 and that the index i value is ı̂. If the polytope given by
row ı̂ in D is not inherently nondominated, it dominates or is dominated by
an outcome in P or it dominates or is dominated by a polytope given by any
of rows d+ 1, . . . , ı̂− 1 in the current D, then the polytope is removed from D
in lines 7, 12 and 20, respectively. This is done by increasing d (the number of
polytopes that have been already removed) and interchanging rows d and ı̂ in
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Algorithm 1 PAINT method: Construction of the inherently nondominated
Pareto front approximation

1: Read the Pareto optimal outcomes P = {p1, p2, . . . , pm} ⊂ Rk.
2: D ← the Delaunay triangulation of P
3: Sort the rows of D in descending order w.r.t. number of different entries in the row
4: a, b ← the number of rows and columns of D, respectively, d ← 0
5: for i = 1 to a do
6: if the polytope given by vertices pDi,1 , pDi,2 , . . . , pDi,b is not inherently nondomi-

nated then
7: d ← d + 1 and interchange rows i and d of the matrix D
8: else
9: deleted ← false

10: for j = 1 to m do
11: if the polytope given by vertices pDi,1 , pDi,2 , . . . , pDi,b dominates or is domi-

nated by outcome pj then
12: d ← d + 1 and interchange rows i and d of the matrix D
13: deleted ← true
14: Break
15: end if
16: end for
17: if not deleted then
18: for l = d + 1 to i− 1 do
19: if the polytope given by vertices pDi,1 , pDi,2 , . . . , pDi,b dominates or is dom-

inated by the polytope given by vertices pDl,1 , pDl,2 , . . . , pDl,b then
20: d ← d + 1 and interchange rows i and d of the matrix D
21: Break
22: end if
23: end for
24: end if
25: end if
26: end for

27: A←

Dd+1,1 . . . Dd+1,b

...
...

...
Da,1 . . . Da,b


28: return A

the matrix D. Because in line 27 only rows in D from row d+ 1 onwards are
set as matrix A, such a polytope will not be a part of the approximation. If
a polytope is not removed as described above, the row representing this poly-
tope will be inserted into matrix A (representing the inherently nondominated
Pareto front approximation) in line 27.

Finally, let us consider the complexity of the proposed implementation of
Algorithm 1. According to [1], the worst case complexity of the construction of
the Delaunay triangulation with the Quickhull algorithm is O((k+ 1) log(m))
for k ≤ 2 and O((k + 1)cm/m) for k ≥ 3, where

cm = O(mb(k+1)/2c/b(k + 1)/2c!).

According to [22], a Delaunay triangulation of the set P contains at most
O(mdk/2e) polytopes, where m is the number of outcomes in P and k is the
number of objectives of the multiobjective optimization problem. Thus, one
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may have to resolve O(mk) dominance relations between polytopes to deter-
mine which of the polytopes are to be removed. This means that resolving the
dominance relations between polytopes is computationally the most expensive
part of the PAINT method. Since in Subsection 3.2 it is shown that the dom-
inance between polytopes can be resolved by solving two linear optimization
problem, the worst case complexity of the PAINT method is O(mk) in linear
optimization problems.

The complexity of solving the linear optimization problems of Subsection
3.2 depends on the number of objectives and the number of variables. In these
problems, the numbers of objectives and variables depend linearly on the max-
imal number of outcomes defining a polytope in the approximation and on the
number of objectives. In practical problems, the number of objectives is usually
rather low, and if one perturbs the Pareto optimal outcomes before construct-
ing the Delaunay triangulation (as suggested in [6]), the maximal number of
outcomes defining a polytope is the number of objectives plus one. Since these
numbers are so low, also the linear optimization problems defined in Subsec-
tion 3.2 are fairly small and quick to solve. Consequently, we may here assume
that in practice the complexity of solving a single linear optimization problem
within the algorithm is low and independent of the numbers of objectives and
variables. With current personal computers, a feasible number of objectives is
about 10 and the maximal number of Pareto optimal outcomes is about 200.

3.2 Resolving dominance between two polytopes

According to [12], a polytope K1 ⊂ Rk dominates another polytope K2 ⊂ Rk

(which needs to be resolved in lines 6, 11 and 19 of Algorithm 1) if and only
if one of the following holds:

(i) the optimal value in problem

min maxi=1,...,k(s1i − s2i )
s.t. s1 ∈ K1, s2 ∈ K2 (2)

is less than zero
OR

(ii) the optimal value in problem (2) is exactly zero and the optimal value in
problem

min
∑k

i=1(s1i − s2i )
s.t. s1 ∈ K1, s2 ∈ K2

s1i ≤ s2i for all i = 1, . . . , k.

(3)

is less than zero.

In order to efficiently solve the above problems, it is beneficial to build linear
programs that are equivalent to them. Assuming that the polytope K1 is
given by row r1 in the matrix D (representing the Delaunay triangulation)
and the polytope K2 is given by row r2 in D, we introduce the following
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matrix B ∈ Rk×2b (with b being the number of columns in D and k being the
number of objectives of the problem)

B =


p
Dr1,1

1 p
Dr1,2

1 . . . p
Dr1,b

1 −pDr2,1

1 . . . −pDr2,b

1

p
Dr1,1

2 p
Dr1,2

2 . . . p
Dr1,b

2 −pDr2,1

2 . . . −pDr2,b

2
...

...
...

...
...

...
...

p
Dr1,1

k p
Dr1,2

k . . . p
Dr1,b

k −pDr2,1

k . . . −pDr2,b

k

 .

In matrix B, the first b columns include the components of the outcomes
defining the polytope K1 and the last b columns include the opposites of the
components of the outcomes defining the polytope K2. Using the matrix B
we can give the following representation for problem (2):

min t

s.t. [B,−1]

λµ
t

 ≤
0

...
0


∑b

j=1 λj = 1,
∑b

j=1 µj = 1

λ ∈ [0, 1]b, µ ∈ [0, 1]b, t ∈ R,

where −1 =

−1
...
−1

 .
(4)

In a similar way, problem (3) can be formulated as

min g

[
λ
µ

]

s.t. B

[
λ
µ

]
≤

0
...
0


∑b

j=1 λj = 1,
∑b

j=1 µj = 1

λ ∈ [0, 1]b, µ ∈ [0, 1]b,

where g = [p
Dr1,1

1 + . . .+ p
Dr1,1

k , . . . , p
Dr1,b

1 + . . .+ p
Dr1,b

k ,

− pDr2,1

1 − . . .− pDr2,1

k , . . . ,−pDr2,b

1 − . . .− pDr2,b

k ].

(5)

In both problems (4) and (5), the left hand side of the inequality constraint

B

[
λ
µ

]
=

b∑
j=1

λjp
Dr1,j −

b∑
j=1

µjp
Dr2,j

gives a vector that is in the set K1 − K2, because the components of both
vectors λ, µ ∈ [0, 1]b sum up to one. Furthermore, by definition, each element
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in the set K1 −K2 can be expressed in this way. Consequently, each row in
the inequality constraint of problem (4) is of the form

b∑
j=1

λjp
Dr1,j

i −
b∑

j=1

µjp
Dr2,j

i ≤ t

for some i = 1, . . . , k. Thus, minimizing t as the objective function is equivalent

to minimizing the maximum of
∑b

j=1 λjp
Dr1,j

i −
∑b

j=1 µjp
Dr2,j

i over all i. This
implies that problem (4) is equivalent to problem (2).

In problem (5), each row in the inequality constraint is of the form

b∑
j=1

λjp
Dr1,j

i ≤
b∑

j=1

µjp
Dr2,j

i

for some i = 1, . . . , k. The objective function becomes

g

[
λ
µ

]
=

k∑
l=1

 b∑
j=1

λjp
Dr1,j

l −
b∑

j=1

µjp
Dr2,j

l

 .

The inequality constraints and the objective function are thus the same as in
problem (3).

Problems (4) and (5) can be solved with any linear programming solvers
e.g., ILOG CPLEX (see http://www.cplex.com/) or GLPK (see http://

www.gnu.org/software/glpk/) or with the MATLAB linprog function (see
http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/linprog.

html).

4 Decision making with the approximation – a surrogate problem

In this section, we discuss how one can use interactive methods with the ap-
proximation created in the previous section. The main tool is the surrogate
multiobjective optimization problem implied by the inherently nondominated
Pareto front approximation. The surrogate problem was introduced in [12, 13].
In order to accomplish this, there are two issues that need to be addressed:

1. The scalarizations of the surrogate problem given by the interactive method
at use need to be efficiently solvable in order to present the new computed
solutions to the decision maker in real time.

2. Once a preferred approximate outcome on the Pareto front approximation
has been found with the help of the surrogate problem and an interactive
method, one must find the closest Pareto optimal outcome on the Pareto
front of the original problem.
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Our solution to the first issue is a multiobjective mixed integer linear for-
mulation for the surrogate problem. Powerful mixed integer linear solvers,
e.g., CPLEX and GLPK, allow then to efficiently solve scalarizations of the
surrogate problem provided that the scalarization of the interactive method
maintains linearity of the problem. This enables us to efficiently use many
interactive methods e.g., the synchronous NIMBUS [23, 25, 27], because all its
scalarizations can be formulated in a way that they maintain linearity.

In [12], the surrogate problem given by an inherently nondominated Pareto
front approximation A was formulated as

min (z1, . . . , zk)
s.t. z ∈ ∪K∈AK.

(6)

The idea of the surrogate problem is that its outcomes are in the same space as
the outcomes in P and, thus, the decision maker should be able to articulate
his/her preferences about them when using an interactive method to solve
problem (6), because the objectives have corresponding meanings in (6) and
in the original problem..

Problem (6) cannot be inputted into standard multiobjective optimization
solvers because it contains a non-algebraic constraint z ∈ ∪K∈AK. Problem
(6), however, has an equivalent mixed integer linear formulation

min (z1, . . . , zk)

s.t.
∑a

j=1

∑b
l=1 λj,l = 1∑b

l=1 λj,l ≤ yj , for all j = 1, . . . , a∑
j=1 yj = 1

λ ∈ [0, 1]a×b

y ∈ {0, 1}a,
where zi =

∑a
j=1

∑b
l=1 λj,lp

Al,j

i for all i = 1, . . . , k.

(7)

In multiobjective optimization problem (7), there are two variables λ ∈
[0, 1]a×b and y ∈ {0, 1}a. The component λj,l of variable λ is for all j = 1, . . . , a
and l = 1, . . . , b the coefficient of the vertex l of the polytope given by row
j in the matrix A. The variable y determines which of the rows of matrix λ
are nonzero. Note, that the third equality states that all but one component
of the variable y must be zero. Matrix A refers to the representation of the
inherently nondominated Pareto front approximation given by the PAINT
method. According to the first equality constraint, all components λj,l must
sum up to one. According to the second inequality constraint, the entries in all
but one row in the matrix representing the variable λ must some up to zero,
because only one component of y nonzero. Thus, problem (7) is equivalent to
problem (6).

As an example of scalarizations that maintain linearity we consider the
achievement scalarizing problem [33], which can be formulated for multiobjec-
tive optimization problem (1) as

min
x∈S

max
i=1,...,k

wi(fi(x)− z̄i) (8)



PAINT: Pareto Front Interpolation for Nonlinear Multiobjective Optimization 13

with the normalizing weight w in the positive orthant of Rk and the reference
point z̄ ∈ Rk representing desirable objective values. For example, with the
CPLEX solver and using an Acer laptop with Core 2 Duo P8700 processor
and 4 GB of RAM, we solved the achievement scalarizing problem formulated
for a surrogate problem implied by an inherently nondominated Pareto front
approximation with the number of objectives k = 5, number of initial points
m = 330, number of polytopes a = 1824 and the maximal number of outcomes
defining a polytope b = 5 in approximately 3 seconds. We consider this Pareto
front approximation to be as large as we need for decision making. We also
consider the computational time of 3 seconds to be small enough that the
formulations and tools of this section can be used with e.g., the NIMBUS
method to compute new approximate Pareto optimal outcomes for the decision
maker. These results show promise for further applicability of the PAINT
method.

The surrogate problem, while useful in solving computationally expensive
problems, also has some limitations. First, the problem does not provide infor-
mation about the preimage of the Pareto front in the decision space. Second,
the outcomes of the surrogate problem include all the inherently nondominated
interpolations between the Pareto optimal outcomes and, thus, the method
does not detect any possible areas where the Pareto front is disconnected.
The first limitation is an issue if the decision variables are very meaningful to
the decision maker in making decisions. This may sometimes be the case in
engineering problems, even though the opposite is argued in [17]. The second
limitation is an issue if the Pareto front has big areas of discontinuity and the
decision maker is especially interested in those areas in the outcome space.
These are topics of further research on this subject.

Finally, when a preferred approximate Pareto optimal outcome has been
found, we must find the decision vector in the decision space S that gives the
outcome on the actual Pareto front of the original problem that is the best
match to it. As described above, we propose to solve the achievement scalar-
izing problem formulated for the original problem with the preferred approxi-
mate Pareto optimal outcome as the reference point. If the resulting outcome
on the actual Pareto front is satisfactory to the decision maker, we stop. If
we find out that the approximate Pareto optimal outcome was satisfactory to
the decision maker but the actual Pareto optimal outcome was not, then we
must update the inherently nondominated Pareto front approximation. This
is done by adding the new Pareto optimal outcome to the set P and running
the PAINT method again. This yields a Pareto front approximation that is
more accurate close to the new Pareto optimal outcome. Note, however, that
both of these operations (finding the closest element on the actual Pareto front
and rerunning the PAINT method) take time. Hence, repeating them multiple
times should be avoided, if possible.
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5 Examples

In this section, we present examples of inherently nondominated Pareto front
approximations constructed with the PAINT method described in Algorithm
1. The implementation of Algorithm 1 was written under GNU Octave [5].
Delaunay triangulations of the finite sets of Pareto optimal outcomes were
constructed with a Qhull implementation (see http://www.qhull.org/) of the
Quickhull algorithm [1]. Optimization problems (4) and (5) were solved with
GLPK (GNU Linear Programming Kit, see http://www.gnu.org/software/

glpk/). This all was done on an Acer laptop with Core 2 Duo P8700 processor
and 4 GB of RAM running Fedora 12.

The different example problems with multiple objectives have been selected
to demonstrate different types of Pareto fronts and to show that the PAINT
method is suitable for approximating all of them. The problems in Subsections
5.1, 5.2 and 5.3 are test problems that are used for testing evolutionary mul-
tiobjective optimization algorithms. These problems are not computationally
expensive but have been selected because their Pareto front has an interesting
geometry to depict in three dimensions. Let us point out that even though the
PAINT method has been developed for enabling faster solution processes for
computationally expensive multiobjective optimization problems, it can nat-
urally be applied to computationally inexpensive problems. This is because
the computational expense of the problem does not play any role within the
PAINT method after the initial set of Pareto optimal outcomes has been com-
puted. The problem in Subsection 5.4 is a real application of multiobjective
optimization to wastewater treatment planning. With it, we demonstrate how
the PAINT method can be used with real-life applications.

We emphasize that the purpose of the examples is not to illustrate the
decision making aspect (including the surrogate problem), which has to be
studied with real-life problems and with real decision makers. As mentioned,
here we want to demonstrate how PAINT works as an approximation method.
Naturally, the benefits of the surrogate problem will better show up with
problems with more than three objectives, for which one cannot graphically
present the Pareto front nor its approximation.

5.1 The three-objective Viennet’s test problem

The Pareto front of the three-objective Viennet’s test problem [32] consists
of a one-dimensional curve in R3. Figure 1a illustrates 240 Pareto optimal
outcomes for this problem generated with a local search assisted evolutionary
multiobjective optimization algorithm [31]. This figure is drawn to give an
understanding of what the Pareto front looks like. If we dealt with a computa-
tionally expensive multiobjective optimization problem, the generation of this
large set would be too time-consuming.

Table 1 lists a subset of 20 Pareto optimal outcomes {p1, p2, . . . , p20} which
are randomly selected from the Pareto optimal outcomes in Figure 1a. This
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Table 1: The initial set of Pareto optimal outcomes P for the Viennet’s test
problem

Outcome z1 z2 z3
p1 0.030032 0.880533 0.991796
p2 0.000000 1.000000 -0.628862
p3 1.000000 0.894206 0.058335
p4 0.929845 0.893301 0.062197
p5 0.029038 0.880566 1.000000
p6 0.001497 0.955310 -0.588038
p7 0.111630 0.881325 0.471040
p8 0.451435 0.888326 0.124438
p9 0.000529 0.972149 -0.616055
p10 0.602037 0.887156 0.097756
p11 0.013991 0.895472 0.014610
p12 0.128648 0.881001 0.450349
p13 0.000014 0.995955 -0.628542
p14 0.002388 0.945419 -0.557775
p15 0.262487 0.882276 0.212985
p16 0.845441 0.889814 0.070032
p17 0.386630 0.883861 0.143005
p18 0.004519 0.928747 -0.471886
p19 0.000457 0.974112 -0.617907
p20 0.005243 0.924974 -0.439333

subset is taken as the initial set of Pareto optimal outcomes P for the problem.
These Pareto optimal outcomes are also illustrated in Figure 1b. Notice that
the vectors are distributed rather non-uniformly. If we dealt with a compu-
tationally expensive multiobjective optimization problem, generating this set
would obviously be a lot less time-consuming than generating the outcomes in
Figure 1a.

Figure 1c shows the body of a Delaunay triangulation of the set P , which
contains 395 polytopes. As it can be seen, the body of the Delaunay trian-
gulation covers the whole convex hull of P . By comparing Figures 1a and 1c
one can see that the Delaunay triangulation as such does not give a good ap-
proximation of the Pareto optimal outcomes because its body contains many
vectors that are very far from the Pareto optimal outcomes.

After the Delaunay triangulation has been constructed the inappropriate
polytopes are removed from it. In this case, the inherently nondominated
Pareto front approximation is represented (as described in Section 3) by the
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matrix 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 1 1 1 1 2 3 3 4 5 6 6 7
17 18 19 20 5 7 11 12 13 4 16 16 11 9 14 12
17 18 19 20 1 1 1 1 2 3 3 4 5 6 6 7
17 18 19 20 1 1 1 1 2 3 3 4 5 6 6 7

8 8 9 10 10 11 12 13 14 15 18 1 1 3 8
10 17 19 16 17 20 15 19 18 17 20 5 7 4 10
8 8 9 10 10 11 12 13 14 15 18 11 12 16 17
8 8 9 10 10 11 12 13 14 15 18 1 1 3 8


T

Notice that the matrix has been transposed and cut into three parts to save
space. The body of the this approximation is shown in Figure 1d. Comparing
this figure with Figure 1c one may notice that this approximation is a subset
of the Delaunay triangulation. By comparing Figures 1a and 1d, one can see
that the approximation is able to describe also many of the Pareto optimal
outcomes in Figure 1a but not in the set P .

All in all, 88.1% of the polytopes in the Delaunay triangulation were re-
moved in the PAINT method. All of these were removed due to rule (R1),
because 58.7% of the polytopes were removed as they were not inherently
nondominated and, after this, 29.4% of the polytopes were removed as they
dominated or were dominated by an outcome in P . The PAINT method took
2.3 seconds on the configuration described above. The D-maximal Pareto front
approximation contained 47 polytopes.

5.2 The three-objective DTLZ2 test problem

The Pareto front of the three-objective DTLZ2 test problem [4] consists of
the subset of the unit sphere that is in the positive orthant of Rk. A set of
200 Pareto optimal outcomes can be seen in Figure 2a. Again, this set would
be time-consuming to produce for a computationally expensive multiobjective
optimization problem. As in the case of Viennet’s test problem, the Figure 2b
illustrates a random subset of this consisting of 20 outcomes.

Figure 2c depicts an inherently nondominated Pareto front approximation
which is the output of the PAINT method. Since the Pareto front of this
problem is a two-dimensional part of the surface of the ball, the body of the
inherently nondominated Pareto front approximation is two-dimensional even
though no information about the dimensionality was given to the algorithm.
As it should be, the approximation can again describe also the Pareto optimal
outcomes that are not in the initial set of Pareto optimal outcomes P .
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(d) An inherently nondomi-
nated Pareto front approxima-
tion

Fig. 1: Approximating the Pareto front of the three-objective Viennet’s test
problem

In this case, 56.8% of the polytopes in the Delaunay triangulation were
removed due to (R1) as 33.6% of the polytopes were not inherently nondomi-
nated and 23.2% were inherently nondominated, but dominated or were dom-
inated by an outcome in P . Of the polytopes that were not removed due to
rule (R1), 31.8% were removed due to rule (R2). In total, the PAINT method
took 8.3 seconds. The final D-maximal inherently nondominated Pareto front
approximation given by PAINT contained 85 polytopes.
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(c) An inherently nondominated
Pareto front approximation

Fig. 2: Approximating the Pareto front of the three-objective DTLZ2 test
problem

5.3 The four-objective DTLZ2 test problem

The four-objective DTLZ2 test problem is similar to the three-objective one
but with one more objective. That is, the Pareto front of this problem consists
of a subset of the surface of the unit ball that is in the positive orthant of R4.

Table 2 lists the initial Pareto optimal outcomes in P . These outcomes are
randomly generated vectors on the Pareto front of this problem.

Of the polytopes in the Delaunay triangulation 38.8% were removed due
to rule (R1) as 19.8% were not inherently nondominated and 19.0% were in-
herently nondominated, but dominated or were dominated by an outcome in
P . Furthermore, 34.2% of the polytopes that were not removed due to rule
(R1) were removed due to rule (R2). Here the PAINT method took 111.2
seconds. The D-maximal inherently nondominated Pareto front approxima-
tion given by PAINT contained 148 polytopes. The body of the inherently
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Table 2: The given set of Pareto optimal outcomes P for the four-objective
DTLZ2 test problem

Outcome z1 z2 z3 z4
p1 0.1712 0.7377 0.6467 0.0909
p2 0.4399 0.2015 0.4218 0.7668
p3 0.2457 0.1934 0.6819 0.6613
p4 0.7375 0.3556 0.2103 0.5343
p5 0.2430 0.6618 0.6582 0.2641
p6 0.4781 0.6984 0.0493 0.5304
p7 0.0952 0.4074 0.5114 0.7506
p8 0.5689 0.3861 0.7032 0.1810
p9 0.1823 0.0621 0.7022 0.6854
p10 0.3304 0.5462 0.5204 0.5672
p11 0.3074 0.7199 0.2407 0.5738
p12 0.5578 0.3268 0.3376 0.6842
p13 0.3685 0.5472 0.4703 0.5861
p14 0.3598 0.4594 0.6085 0.5378
p15 0.5401 0.1739 0.6530 0.5016
p16 0.0395 0.2779 0.7468 0.6030
p17 0.7778 0.4705 0.4110 0.0682
p18 0.5801 0.6938 0.1218 0.4089
p19 0.6200 0.2287 0.4903 0.5682
p20 0.5681 0.3916 0.6646 0.2868

nondominated Pareto front approximation can be seen in Figure 3. In the fig-
ure the approximation has been projected to R3 by the projection function
p : R4 → R3, (x1, x2, x3, x4) 7→ (x1, x2, x3) and the fourth objective is marked
with colour.

5.4 Wastewater treatment planning

Finally, we have a real life multiobjective optimization problem of wastewater
treatment planning from [11]. The problem considers the so-called activated
sludge process, which is globally the most common method of wastewater treat-
ment. In this process, biomass (which is called activated sludge) suspended in
the wastewater to be treated is cultivated and maintained in an aerated biore-
actor. The wastewater is purified, i.e., organic carbon, nitrogen and phosphorus
are removed during its retention in the bioreactor. The bioreactor is followed
by a clarifier basin, in which the biomass is separated by gravitational settling
and returned to the bioreactor, and the treated wastewater is directed as over-
flow to further treatment or to discharge. Excess activated sludge is removed
from the process and treated separately. The process performs nitrification,
i.e., oxidation of ammonium nitrogen to nitrate nitrogen by autotrophic, slow-
growing micro-organisms. The biochemical reactions involved consume a lot of
oxygen and alkalinity. Oxygen is supplied by aeration compressors and alkalin-
ity partly by influent wastewater, partly by adding chemicals, e.g., Na2CO3.
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Fig. 3: A projection of an inherently nondominated Pareto front approximation
for the 4-objective DTLZ2 test problem. The value of the fourth objective is
marked with colour.

Aeration consumes energy and chemicals cost money, so minimizing the need
for aeration and alkalinity addition is important for the operational economy
of the plant.

The considered multiobjective optimization problem is computationally
expensive and no closed form equations are known for the objectives. In [11],
the process was simulated and a global solver was used to find Pareto opti-
mal solutions with the interactive method NIMBUS. Because the problem is
computationally expensive, it took a long time to find new Pareto optimal
solutions. Hence, this problem has room for improvement with our methods.

We considered the 11 solutions generated with NIMBUS in [11]. One of the
11 solutions was dominated by another solution in the set and, thus, it was
dropped. We assumed that the ten remaining solutions were Pareto optimal,
which was in fact uncertain because a global solver was used to optimize the
scalarizations of the multiobjective optimization problem that were given by
the interactive method NIMBUS. The outcomes implied by these solutions
(shown in Table 3) were given to the PAINT method as input P . The PAINT
method took 2.5 seconds and the final inherently nondominated Pareto front
approximation contained 37 polytopes. The body of the Pareto front approx-
imation is shown in Figure 4.

In computational tests, the achievement scalarizing problem formulated for
problem (7) takes 0.01 seconds to be solved with CPLEX for various values
of reference points and weights. After a preferred solution to the surrogate
problem has been found, one can project the outcome on the Pareto front
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Table 3: The given set of Pareto optimal outcomes P for the multiobjective
wastewater problem

Outcome residual ammonium
nitrogen concentra-
tion [gN/m3]

alkalinity chemical
dosing rate [m3/d]

aeration energy con-
sumption [kW ]

p1 8.05 218 460
p2 3.52 286 490
p3 1.69 326 506
p4 4.9 298 477
p5 1.11 336 515
p6 0.55 347 528
p7 9.36 246 448
p8 30.2 7.23 308
p9 0.9 333 519
p10 0.72 332 524

residual ammonium ni-
trogen concentration

alkalinity chemical dos-
ing rate

aeration energy con-
sumption

p 1

p 2

p 3

p 4

p 5
p 6

p 7

p 8

p 9p 1 0

Fig. 4: An inherently nondominated Pareto front approximation for the mul-
tiobjective wastewater treatment planning problem

by solving globally the achievement scalarizing problem of the reference point
method with the preferred solution to the surrogate problem as the preferred
solution.

In this case, the initial set of Pareto optimal outcomes was not the best
possible for our approximation because, as can be seen from Figure 4, the
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outcome p8 is very far from the other outcomes. This may lead to inaccuracy
of the approximation in interpolating between outcome p8 and the others.

If one had used the PAINT method in [11], the decision making process
would have been much faster with the interactive method. Because with the
help of the surrogate problem one could have provided the decision maker
quickly with new approximate Pareto optimal outcomes that correspond to
his/her preferences, the decision maker should have been more inclined to
further explore the Pareto front. This could have led the decision maker to get
more insight about the problem.

6 Conclusions

We have demonstrated how one can in practice generate a Pareto front ap-
proximation by interpolating between a small finite set of given Pareto optimal
outcomes. The interpolation is produced by the PAINT method proposed in
this paper. The theory behind this method is based on a property called in-
herent nondominance previously introduced by the authors. In this paper, we
have described a way of implementing the method and presented computa-
tional results on interpolating on Pareto fronts with the implementation. We
have also illustrated how the Pareto front approximation implies a mixed inte-
ger linear surrogate problem for the original one that can be used in decision
making concerning the original problem. This approach is especially useful
with computationally expensive multiobjective optimization problems.

The combination of the following two benefits of our approach make it
novel: (1) the proposed Pareto front approximation method can approximate
non-convex Pareto fronts, and (2) any interactive method can be used in de-
cision making with the proposed Pareto front approximation because of the
mixed integer linear surrogate problem that it implies. These benefits make
our approach applicable to different computationally expensive multiobjective
optimization problems and enable it to support various decision makers.

As an example of interactive methods that can be applied with the Pareto
front approximation produced, we have considered achievement scalarizing
function based approaches. The achievement scalarizing problem formulated
for the presented surrogate problem can be solved e.g., with the CPLEX linear
solver. This enables us to use an interactive method based on decision maker’s
preferences formulated as a reference point, like the NIMBUS method. While
the surrogate problem is a multiobjective optimization problem that can in
theory be used with any interactive method, the implementations of the meth-
ods may restrict its use because the surrogate problem contains integer vari-
ables.

Further research on this subject includes applying the PAINT method with
real-life problems and real decision makers. We can use the interface of IND-
NIMBUS [24] (see http://ind-nimbus.it.jyu.fi/) and solve the scalarized
problems of the mixed integer surrogate problem with the CPLEX solver. In
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this way, we can study the performance of the PAINT method in decision
making.
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10. B. Grünbaum. Convex Polytopes. Interscience Publishers, London, 1967.
11. J. Hakanen, K. Miettinen, and K. Sahlstedt. Wastewater Treatment: New

Insight Provided by Interactive Multiobjective Optimization. Decision
Support Systems, 51:328–337, 2011.

12. M. Hartikainen, K. Miettinen, and M. M. Wiecek. Constructing a Pareto
Front Approximation for Decision Making. Mathematical Methods of Op-
erations Research, 73:209–234, 2011.



24 Markus Hartikainen et al.

13. M. Hartikainen, K. Miettinen, and M. M. Wiecek. Pareto Front Approxi-
mations for Decision Making with Inherent Non-dominance. In Y. Shi,
S. Wang, G. Kou, and J. Wallenius, editors, New State of MCDM in
the 21st Century, Selected Papers of the 20th International Conference
on Multiple Criteria Decision Making 2009, pages 35–46. Springer-Verlag
Berlin, Heidelberg, 2011.

14. M. Hasenjäger and B. Sendhoff. Crawling Along the Pareto Front: Tales
From the Practice. In The 2005 IEEE Congress on Evolutionary Com-
putation (IEEE CEC 2005), pages 174–181, Piscataway, NJ, 2005. IEEE
Press.

15. C. Hwang and A. S. M. Masud. Multiple Objective Decision Making -
Methods and Applications: a State-of- the-Art Survey. Springer-Verlag
Berlin, Heidelberg, 1979.

16. G. K. Kamenev. Study of an Adaptive Single-Phase Method for Approxi-
mating the Multidimensional Pareto Frontier in Nonlinear Systems. Com-
putational Mathematics and Mathematical Physics, 49:2103–2113, 2009.

17. R. L. Keeney. Value-Focused Thinking: a Path to Creative Decisionmaking.
Harward University Press, Harward, 1996.

18. T. Laukkanen, T.-M. Tveit, V. Ojalehto, K. Miettinen, and C.-J. Fogel-
holm. An Interactive Multi-Objective Approach to Heat Exchanger Net-
work Synthesis. Computers & Chemical Engineering, 34:943–952, 2010.

19. A. V. Lotov, V. A. Bushenkov, and G. A. Kamenev. Interactive Decision
Maps. Kluwer Academic Publishers, Boston, 2004.

20. M. Luque, F. Ruiz, and K. Miettinen. Global Formulation for Interactive
Multiobjective Optimization. OR Spectrum, 33:27–48, 2011.

21. J. Martin, C. Bielza, and D. R. Insua. Approximating Nondominated
Sets in Continuous Multiobjective Optimization Problems. Naval Research
Logistics, 52:469–480, 2005.

22. P. McMullen. The Maximum Number of Faces of a Convex Polytope.
Mathematika, 17:179–184, 1970.

23. K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic
Publishers, Boston, 1999.

24. K. Miettinen. IND-NIMBUS for Demanding Interactive Multiobjective
Optimization. In T. Trzaskalik, editor, Multiple Criteria Decision Mak-
ing’05, pages 137–150. The Karol Adamiecki University of Economics in
Katowice, Katowice, 2006.
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26. K. Miettinen and M. M. Mäkelä. On Scalarizing Functions in Multiobjec-
tive Optimization. OR Spectrum, 24:193–213, 2002.
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