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We investigate the time-resolved quantum transport properties of phonons in arbitrary harmonic systems
connected to phonon baths at different temperatures. We obtain a closed analytic expression of the time-dependent
one-particle reduced density matrix by explicitly solving the equations of motion for the nonequilibrium Green’s
function. This is achieved through a well-controlled approximation of the frequency-dependent bath self-energy.
Our result allows for exploring transient oscillations and relaxation times of local heat currents, and correctly
reduces to an earlier known result in the steady-state limit. We apply the formalism to atomic chains, and
benchmark the validity of the approximation against full numerical solutions of the bosonic Kadanoff-Baym
equations for the Green’s function. We find good agreement between the analytic and numerical solutions for
weak contacts and baths with a wide energy dispersion. We further analyze relaxation times from low to high
temperature gradients.

DOI: 10.1103/PhysRevB.93.214301

I. INTRODUCTION

Heat in a nanoscale junction is transported by electrons
and molecular vibrations known as phonons or vibrons. In
traversing an electronic device, an electron may transfer a
portion of its energy to the structure’s molecular vibrations
thus creating a heat wavefront propagating through the
system [1–3]. Therefore phonons are ubiquitous in virtually
any molecular or nanoscale junction. In spite of the progress
and advances in studying electron transport phenomena in
nanoscale structures since the early 1970s [4], measurements
of thermal conductance at this scale presents several technical
and conceptual difficulties and became available only recently.
Suspended nanostructures such as monocrystalline GaAs [5]
and silicon nitride layers [6] have been among the first settings
where quantized thermal conductance was observed. Further
thermal conductance studies have been performed in carbon
nanotubes [7,8] and silicon nanowires [9,10], and ultimately
reaching the scale of molecular and atomic contacts [11–13].

A considerable amount of purely electronic transport
simulations has been done according to the intuitive framework
by Landauer [14] and Büttiker [15]. The basic idea is that the
charge dynamics in a conducting channel connected to elec-
trodes is governed by a scattering process where charge carriers
are either transmitted between the electrodes through the chan-
nel, or reflected back to an electrode from the channel. From
this approach, an expression for the current through the channel
is obtained in terms of transmission probabilities. This frame-
work has been particularly useful after the more rigorous work
by Caroli et al. [16,17] based on the nonequilibrium Green’s
functions. Further generalizations to the formalism are due to
Meir and Wingreen [18], Pastawski [19], Jauho et al. [20],
Stefanucci and Almbladh [21], Myöhänen et al. [22], who
discussed electron interactions in the conducting channel,
dissipation due to many-body effects, time-dependent volt-
ages and fields, and the role of initial correlations. In the
case of noninteracting particles, the same methodology has
been proposed up to the derivation of a time-dependent

Landauer-Büttiker formula in simple systems [21,23] and
arbitrary structures with time-dependent bias voltages
[24–26].

The Landauer-Büttiker formalism is not limited to elec-
tronic transport. It also applies in the context of thermal
transport for phononic systems as proposed by Segal et al. [1],
Rego and Kirczenow [27], Rego [28] via the wave scattering
method (similar to the original work of Landauer) and by
Yamamoto and Watanabe [29], Wang et al. [30,31] in terms
of nonequilibrium Green’s functions (similar to the work of
Meir and Wingreen). In both approaches, expressions for
the thermal conductance and the heat current are recovered
as a Landauer–Büttiker formula. These studies have further
been supplemented by, e.g., exact transmission functions [32],
heat transport models for refrigeration [33], nonlinear in-
teractions [30], and thermal conductance studies in atomic
junctions [31,34–36], graphene ribbons [37–39], and carbon
nanotubes [29,40].

The nonequilibrium Green’s function approach offers a
natural framework to study transient effects both in elec-
tronic [41–43] and phononic systems [44–46]. Also in the
case of phonon transport, it would be extremely useful to have
a time-dependent Landauer–Büttiker formula for interpreting
the transient oscillations and relaxation times in an intuitive
fashion. In addition, as the time propagation of the equations
of motion for the phonon Green’s function is computationally
a rather heavy task [47,48], bringing down the computational
cost when studying larger systems would be advantageous. In
this paper, we present a substantial advance in this direction;
we consider harmonic nanoscale systems connected to heat
baths in a wide-band-like approximation, and derive a closed
expression for the time-dependent phonon density matrix.
In the steady-state limit, our result reduces to a form of
Landauer-Büttiker type discussed in, e.g., Refs. [49,50].

We will first introduce the model and the dynamical
equations of motion in our phonon transport setup (Sec. II A),
and then we will discuss the embedding scheme with its
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approximations and limitations (Sec. II B). The solution to
the equations of motion, the main result of the present work, is
derived in Sec. II C with more detailed calculations presented
in the Appendix. As an illustration of the derived formula
we study the transient heat currents in small atomic chains
(Sec. III). A summary and main conclusions are drawn in
Sec. IV.

II. THEORETICAL BACKGROUND

A. Transport setup and assumptions

We model heat transport in a nanomechanical device
coupled to phononic baths at different temperatures. The de-
scription is for noninteracting phonons only. The Hamiltonian
for this setup can be written in terms of momentum and
displacement field operators (� = 1)

Ĥ =
∑

j

p̂2
j

2mj

+
∑
jk

1

2
ûjKjkûk (1)

with indices j,k = 1, . . . ,N running over the basis of the
studied system, mj being the mass of the j th oscillator,
and K being the positive definite force constant matrix. The
momentum and displacement operators obey the canonical
commutation relations [ûj ,p̂k] = iδjk,[ûj ,ûk] = 0 = [p̂j ,p̂k].
We define mass-normalized operators as û′

j = √
mj ûj and

p̂′
j = p̂j /

√
mj obeying the same commutation relations and

write further

Ĥ =
∑

j

1

2
(p̂′

j )2 +
∑
jk

1

2
û′

jK
′
jkû

′
k = 1

2

∑
jk,μν

φ̂
μ

j Ω
μν

jk φ̂ν
k , (2)

where also the force constant matrix was transformed as K ′
jk =

Kjk/
√

mjmk . The second equality follows by introducing the
composite operators φ̂ with components φ̂1

j = û′
j and φ̂2

j = p̂′
j .

The indices {μ,ν} ∈ {1,2} run over the different components of
the field operators φ̂. The matrix elements of the block matrix
Ωjk are given by Ω11

jk = K ′
jk,Ω

22
jk = δjk and zero otherwise.

The motivation behind the φ̂-“spinor” representation is that
the equations of motion are first order differential equations,
instead of second order [47,48]. The canonical commutation
relations are encoded in the field operators φ̂ as

[
φ̂

μ

j ,φ̂ν
k

] = δjkα
μν with α =

(
0 i
−i 0

)
. (3)

We accordingly define the phononic Green’s function for time
arguments z and z′ on the Keldysh contour [51] γ as

D
μν

jk (z,z′) = −i
〈
Tγ

[
φ̂

μ

j (z)φ̂ν
k (z′)

]〉
, (4)

where Tγ is the contour-time ordering operator and 〈·〉 is an
ensemble average [47,48,52]. The equations of motion for the
Green’s function can be expressed through the time evolution
of the field operators φ̂, and they read as (matrices in the 2N ×
2N representation are from now on denoted with boldface

FIG. 1. Heat transport setup where a central system of interest is
connected to two reservoirs of different temperatures. The internal
structures and couplings are defined by the force constant matrices
K . The coupling refers to partitioned approach where the different
systems are uncoupled at times t < 0 and coupled at times t � 0
when the system is driven out of equilibrium.

symbols)

i∂z Djk(z,z′) = αδjkδ(z,z′) +
∑

q

αΩjq Dqk(z,z′), (5)

− i∂z′ Djk(z,z′) = αδjkδ(z,z′) +
∑

q

Djq(z,z′)Ωqkα. (6)

Here each term is a 2 × 2 matrix.
Let us look more specifically at the transport setup shown in

Fig. 1. The full Hamiltonian can be expressed as a composition
of three parts: the left reservoir (L), the central system (C),
and the right reservoir (R)

Ω =
⎛⎝ΩLL ΩLC 0

ΩCL ΩCC ΩCR

0 ΩRC ΩRR

⎞⎠. (7)

The different subsystems are coupled apart from a direct
coupling between the reservoirs. In principle, we have an
underlying potential energy surface E( �R) for all nuclear coor-
dinates �R in the composite system, which, in turn, determines
the force constant matrix elements by Kjk = ∂2E/∂Rj∂Rk .
For an uncoupled system, we would only have the diagonal
blocks nonzero in Eq. (7). Here we consider only two reservoirs
but the partitioning in Eq. (7) can directly be generalized to an
arbitrary number of reservoirs to include, e.g., inner reservoirs
as probes [49]. In Eq. (7), each diagonal block is a 2NC × 2NC

or 2Nλ × 2Nλ matrix for λ ∈ {L,R}. The block structures for
the diagonal elements are simply those discussed earlier:

(ΩCC)jCkC
=

(
K ′

jCkC
0

0 δjCkC

)
, (8)

(Ωλλ)jλkλ
=

(
K ′

jλkλ
0

0 δjλkλ

)
. (9)

The different regions, however, couple only through the
displacement term, so the block structures for the off-diagonal
elements are given by

(ΩCλ)jCkλ
=

(
K ′

jCkλ
0

0 0

)
, (10)

(ΩλC)jλkC
=

(
K ′

jλkC
0

0 0

)
(11)

for λ ∈ {L,R}.
We are mainly interested in the transport properties of the

central system, so we extract the component corresponding
to the central region, CC, from the equations of motion (5)
and (6). This procedure leads to the following set of
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equations:

(i1CC∂z − αCCΩCC)DCC(z,z′)

= αCCδ(z,z′) + αCC ICC(z,z′), (12)

ICC(z,z′) =
∫

γ

dz̄ΠCC(z,z̄)DCC(z̄,z′), (13)

ΠCC(z,z′) =
∑

λ

ΩCλ(z)dλλ(z,z′)ΩλC(z′), (14)

(i1λλ∂z − αλλΩλλ)dλλ(z,z′) = αλλδ(z,z′), (15)

and the corresponding adjoint equations. In the equations
above, αCC ≡ α ⊗ 1CC and αλλ ≡ α ⊗ 1λλ are 2NC × 2NC

and 2Nλ × 2Nλ matrices, respectively. Here, dλλ is the isolated
phonon Green’s function in the reservoir λ satisfying the
equation of motion (15) with the reservoir Hamiltonian
Ωλλ. Since we are dealing with noninteracting phonons,
the self-energy ΠCC in the collision integral (13) is given
solely as the embedding self-energy defined in terms of the
coupling Hamiltonians ΩCλ in Eq. (14). From Eq. (12) and
its adjoint, we can derive an equation of motion for the lesser
Green’s function D<

CC by using the Langreth rules for the
collision integrals [51]. Particularly, we are interested in the
time-dependent one-particle reduced density matrix given by
the time-diagonal ρ(t) = iD<

CC(t,t). This is given by

i
d

dt
D<(t,t) − [αΩ D<(t,t) − D<(t,t)Ωα]

= −{[DR · Π<] + [D< · ΠA]

+ [D
 
 Π�]}(t,t)α + H.c., (16)

where we defined [a · b](t,t) = ∫ ∞
0 dt̄a(t,t̄)b(t̄ ,t) and [a 


b](t,t) = −i
∫ β

0 dτ̄a(t,τ̄ )b(τ̄ ,t) for Keldysh functions a and b,
and we also dropped the subscripts CC as we will only refer
to the central region from now on.1 The Keldysh components
lesser (<), greater (>), retarded (R), advanced (A), left (�),
and right (
) of a function k(z,z′) on the contour are defined
by [51]

k≶(t,t ′) = k(t∓,t ′±),

kR/A(t,t ′) = ±θ [±(t − t ′)][k>(t,t ′) − k<(t,t ′)],

k�(τ,t ′) = k(t0 − iτ,t ′),

k
(t,τ ) = k(t,t0 − iτ )

with the contour points z = t− on the forward branch, z = t+
on the backward branch, and z = t0 − iτ on the vertical branch.

If we did not have the central system embedded into the
environment, the self-energy terms in Eq. (16) would simply
be zero, and we would be left with a Liouville-type equation for
the time-evolution of the reduced density matrix for an isolated
central region. The self-energy terms, therefore, account for the

1Strictly speaking the derivation of Eq. (16) requires a single
inverse temperature β = 1/T for the whole system because of the
convolution along the imaginary axis. As we will consider partitioned
systems, imaginary-time convolutions vanish and we can assign
different temperatures to different subsystems.

open transport setup where a finite central region is embedded
into the environment.

So far, the discussion has been rather general, and Eq. (16)
also applies to many different setups beyond the present study.
For instance, interactions could be included by adding a many-
body self-energy contribution. Our aim is to solve (analyti-
cally) this integro-differential equation for D< (in the equal-
time limit) and then extract dynamical quantities such as heat
currents from the time-dependent phonon density matrix. Sim-
ilar derivations have been done in earlier studies [21,23–25]
for electron transport, and we will work along these previous
ideas. For solving the equation, we need to make some
approximations, the first one being the partitioned approach,
i.e., all regions in the transport setup are initially (t < 0)
uncoupled and in separate thermodynamical equilibria. At
t = 0, we couple the different regions thus driving the system
out of equilibrium, see Fig. 1. From the perspective of
an underlying potential energy surface, which we discussed
earlier, this would lead to nonzero off-diagonal blocks in
Eq. (7). This coupling could, however, change the matrix
elements in the diagonal blocks as well but we approximate
them to be the same as for the uncoupled system.

The partitioning procedure disregards the initial couplings:
ΩλC = 0 in equilibrium, so the integrations along the vertical
track of the Keldysh contour on the right-hand side of Eq. (16)
are simply left out [44,45]. The remaining two terms on the
right-hand side of Eq. (16) can be interpreted as a source/drain
and a damping/equilibration term. The drain (source) term is
a convolution between the propagator in the central region,
DA (h.c.), and the lesser embedding self-energy Π<, which is
related to the probability of finding a phonon in the reservoirs,
i.e., it describes the extraction (insertion) of phonons out of
(into) the central region. The second term is a convolution
between the propagator in the reservoirs, ΠR (h.c.) and the
lesser Green’s function in the central region D<, which is
related to the probability of finding a phonon in the central
region, i.e., it is responsible for damping (equilibration) effects.

For any type of reservoirs, we may obtain ΠR in a
separate calculation. However, the complicated time-structure
of the embedding self-energy makes it difficult to close the
equations of motion into an analytically solvable form. Thus
we introduce an approximation. In the case of electronic trans-
port, the commonly used wide-band approximation makes
the embedding self-energy proportional to a delta function
allowing for a closed solution [24,25]. In the next section, we
will make a similar approximation in the phononic case.

B. Approximating the embedding self-energy

Let us start by considering the coupling of the central region
to the reservoirs via the embedding self-energy. In order to
evaluate the embedding self-energy from Eq. (14) we need
the coupling Hamiltonians and the reservoir Green’s function,
and, as we are considering the retarded component of the
embedding self-energy, we need to find an expression for dR.
For the isolated phonon Green’s function in the reservoir λ,
we have the following expression:

dλλ(z,z′) = −iαλλθ (z,z′)f̄λ(Ωλλαλλ)e−iΩλλαλλ(z−z′)

− iαλλθ (z′,z)fλ(Ωλλαλλ)e−iΩλλαλλ(z−z′), (17)
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which can be checked to satisfy Eq. (15) by calculating the
derivative iαλλ∂zdλλ(z,z′). In the above expression, f̄λ = 1 +
fλ and fλ(ω) = (eβλω − 1)−1 is the Bose-Einstein distribution
for reservoir λ at inverse temperature βλ = (kBTλ)−1. The
expression in Eq. (17) is also proportional to the density matrix
for an isolated system in the limit z′ → z+. By using the
above expression for the uncoupled Green’s function, we may
derive different Keldysh components and calculate the retarded
embedding self-energy from Eq. (14), see Appendix A. We find
that the real and imaginary parts of the retarded embedding
self-energy

ΠR
λ (ω) =

(
ΠR

λ (ω) 0
0 0

)
= Λλ(ω) − i

2
Γ λ(ω) (18)

are, respectively, even and odd functions in frequency ω.
This finding also corresponds to the form calculated

explicitly for a uniform one-dimensional system of N coupled
springs [53]. We take this model for our reservoirs (Nλ sites
coupled with equal springs) and construct the embedding
self-energy accordingly. In this model, the force constant
matrix K ′

λλ has diagonal elements 2kλ and the first off-diagonal
elements −kλ. In the limit Nλ → ∞, the retarded embedding
self-energy is given by ΠR

λ (ω) = −kλzλ(ω) where [see Sec. 7
in Ref. [53]]

zλ(ω) = 1

2kλ

[2kλ − ω2 + ζλ(ω)ω

×
√

(ω − 2
√

kλ)(ω + 2
√

kλ)] (19)

with ζλ(ω) = sgn(ω + 2
√

kλ). Even though we have an explicit
form for the frequency dependency of the embedding self-
energy in Eq. (19), we consider an approximation so that the
equation of motion (16) could be solved analytically. The full
numerical solution of Eq. (12) is also possible using a time-
stepping algorithm in the two-time plane [47,48] but this is
restricted to only small systems due to the computational cost.

We make a wide-band-like approximation to Eq. (18) so
that for small frequencies (compared to other energy scales of
the studied system)

Λλ(ω) ≈ Λλ(ω = 0) ≡ Λ0,λ, (20)

Γ λ(ω) ≈ ω(∂ωΓ λ)ω=0 ≡ ωΓ ′
0,λ. (21)

In contrast to the conventional wide-band approximation in
electronic transport, now the retarded embedding self-energy
is not a purely imaginary constant. Instead, the real part
is constant and the imaginary part is frequency dependent
(linearized approximation). In fact, the imaginary part is not
bounded when |ω| → ∞ leading to some technical difficulties
addressed soon. Also, since the force constant matrices K

are by construction positive definite, then from Eqs. (20)
and (A11), we see that Λ0,λ is negative definite, and from
Eqs. (18) and (21), we get that Γ ′

0,λ is positive definite.
Compared to Eqs. (20) and (21) similar wide-band-like
approximations for the self-energy have been proposed in
Refs. [54,55] where the embedding self-energy is approxi-
mated as a purely imaginary sign function.

-2 -1 0 1 2

ω/
√

kλ

-2

-1

0

1

2

Π
R λ
(ω

)/
k

λ

FIG. 2. Frequency dependency of the retarded embedding self-
energy for the infinite coupled spring model: The solid red line is
the real part and the long-dashed green line is the imaginary part.
The respective approximations are the dash-dotted blue line and the
short-dashed magenta line. The axes are scaled with the interatom
force constant kλ.

The real and imaginary parts of ΠR
λ (ω) are plotted together

with the approximations in Eqs. (20) and (21) [evaluated from
Eq. (19)] in Fig. 2 versus ω. [In the figure, we also employ a
cutoff frequency, see Eq. (23).]

Looking at the form in Eq. (19) the imaginary part of the
self-energy is nonzero only for |ω| < 2

√
kλ introducing the

phonon bandwidth. The motivation behind the approximations
in Eqs. (20) and (21) around ω = 0 is also clearly visible.

Since the coupling matrices between different regions only
have nonzero components in the uu block, we express the
embedding self-energy in the following form:

ΠR
λ (ω) ≈

(
Λ0,λ − iω

2 Γ ′
0,λ 0

0 0

)
= Λ0,λ − iω

2
Γ ′

0,λ, (22)

where each element of the 2 × 2 matrix is an NC × NC

matrix. Also, summing over the different reservoirs λ gives
the total embedding self-energy: ΠR = ∑

λ=L,R ΠR
λ , and this

also applies to the real and imaginary parts Λ0 and Γ ′
0.

Compared to the conventional wide-band approximation in
electronic transport, where the imaginary part of the self-
energy is constant and the real part is zero, here we run
into problems with our approximation for the embedding
self-energy because of the unboundedness of the imaginary
part ωΓ ′

0/2 when |ω| → ∞. This approximation for the real
and imaginary parts of the embedding self-energy function
does not satisfy the Kramers-Kronig relations [51,56], and for
this reason we introduce a cutoff frequency ωc,λ above which
the approximation for the embedding self-energy is simply
zero:

ΠR
λ (ω) = θ (ωc,λ − |ω|)

(
Λ0,λ − iω

2
Γ ′

0,λ

)
. (23)

A natural choice for the cutoff frequency would be the phonon
bandwidth, see Fig. 2. We may tune the considered frequency
range by varying the reservoir force constant so that the
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important processes are captured around comparatively small
frequencies, ω/

√
kλ. The lesser component of the embedding

self-energy is then simply given by the fluctuation-dissipation
relation [51]

Π<
λ (ω) = θ (ωc,λ − |ω|)[−ifλ(ω)ωΓ ′

0,λ]. (24)

The cutoff frequency is a similar concept as the Debye
temperature; here they are related by �ωc,λ = kBTλ [31].
Instead of fixing the cutoff frequency at the phonon bandwidth,
we could also determine it by a frequency sum rule.

C. Solving the equations of motion

Based on the approximation discussed in the previous
section, we derive expressions for the time convolutions in
Eq. (16). More detailed calculations are shown in Appendix B
and we state here only the results. First, we define the effective
(non-Hermitian) Hamiltonian as

Ωeff = 1

α + i
2Γ ′

0

(Ω + Λ0), (25)

which reduces to the uncoupled Hamiltonian, αΩ , in the
limit Λ0,Γ

′
0 → 0. For cases relevant to us,2 this object has its

eigenvalue spectrum in the lower-half plane, i.e., the imaginary
part, given essentially by Γ ′

0, of the eigenvalues are negative.
The real part of the eigenvalues occur at the eigenfrequencies
of the uncoupled system shifted by Λ0. For the adjoint Ω

†
eff,

on the other hand, the eigenvalues lie in the upper-half plane.
For the convolution between the retarded Green’s function

and lesser embedding self-energy, we have

[DR · Π<](t,t) = −i
∑

λ=L,R

∫ ∞

−∞

dω

2π
[1 − ei(ω−Ωeff)t ]DR(ω)

× θ (ωc,λ − |ω|)ωfλ(ω)Γ ′
0,λ. (26)

As the frequency integral is cut off, we evaluate DR in the limit
ωc,λ → ∞ [see Eq. (B5)]:

DR(ω) = 1

ω − Ωeff

1

α + i
2Γ ′

0

. (27)

By conjugating Eq. (26), we also get

[Π< · DA](t,t) = −[DR · Π<]†(t,t)

= −i
∑

λ=L,R

∫ ∞

−∞

dω

2π
θ (ωc,λ − |ω|)ωfλ(ω)Γ ′

0,λ

× DA(ω)[1 − e−i(ω−Ω
†
eff)t ], (28)

where DA is found by conjugating Eq. (27).
The convolution between the lesser Green’s function and

the retarded/advanced embedding self-energy is well-behaved
for all cutoff frequencies. We therefore take the limit ωc,λ →
∞ in Eq. (23), see Appendix B for more details, and obtain

[D< · ΠA](t,t) = D<(t,t)Λ0 + ∂t ′ D<(t,t ′)|t ′=t

Γ ′
0

2
, (29)

and by conjugating we also get

[ΠR · D<](t,t) = −[D< · ΠA]†(t,t)

= Λ0 D<(t,t) + Γ ′
0

2
∂t D<(t,t ′)|t=t ′ . (30)

The approximated form of the convolutions in
Eqs. (26), (28), (29), and (30) are expected to be in
good agreement with a full Kadanoff-Baym propagation
provided that the vibrational frequencies of the central region
fall in the frequency window where Im ΠR(ω) is linear,
see Fig. 2. In Sec. III B, we assess the accuracy of the
approximations by evaluating Eqs. (26) and (28) with the
exact DR/A, and Eqs. (29) and (30) with the finite cutoff
ΠR/A.

An important thing to notice is that the convolutions in
Eqs. (29) and (30) depend not only directly on D< but also on
the time-derivative of D< at equal-time limit. This means that
inserting these expressions back into the equation of motion
does not immediately close the equation for D<. However, we
may insert iteratively the explicit time-evolution from Eq. (12)
and its adjoint for the derivative terms. As Eq. (12) includes
a similar structure of time-convolutions, we will gain similar
terms by the iteration procedure. Interestingly, it turns out that
the iteration is truncated already after the first cycle due to the
structure of the transport setup, and we get a closed equation
for D<.

Now we are ready to insert Eqs. (26), (28), (29), and (30)
into Eq. (16):

i
d

dt
D<(t,t) − [αΩ D<(t,t) − D<(t,t)Ωα]

= α

[
−i

∑
λ=L,R

∫ ∞

−∞

dω

2π
θ (ωc,λ − |ω|)ωfλ(ω)Γ ′

0,λ DA(ω)[1 − e−i(ω−Ω
†
eff)t ] + Λ0 D<(t,t) + Γ ′

0

2
∂t D<(t,t ′)|t=t ′

]

−
[

D<(t,t)Λ0 + ∂t ′ D<(t,t ′)|t ′=t

Γ ′
0

2
− i

∑
λ=L,R

∫ ∞

−∞

dω

2π
θ (ωc,λ − |ω|)ωfλ(ω)[1 − ei(ω−Ωeff)t ]DR(ω)Γ ′

0,λ

]
α. (31)

2For example, in a one-site central region (scalar case) large values of |Λ0| compared to the vibrational frequency of the central region can
break this analytical structure.
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Then, we insert ∂t D(t,t ′) and ∂t ′ D(t,t ′) from Eq. (12) and its adjoint, and accordingly insert the consequent convolutions from
Eqs. (26), (28), (29), and (30). This step generates a plethora of terms but we still expand all the parentheses to better see what
is the overall structure of the various terms:

i
d D<(t,t)

dt
− αΩ D<(t,t) + D<(t,t)Ωα

= −iα
∑

λ=L,R

∫ ∞

−∞

dω

2π
θ (ωc,λ − |ω|)ωfλ(ω)Γ ′

λ DA(ω)[1 − e−i(ω−Ω
†
eff)t ] + αΛ0 D<(t,t) − iα

Γ ′
0

2
αΩ D<(t,t)

−α
Γ ′

0

2
α

∑
λ=L,R

∫ ∞

−∞

dω

2π
θ (ωc,λ − |ω|)ωfλ(ω)Γ ′

λ DA(ω)[1 − e−i(ω−Ω
†
eff)t ] − iα

Γ ′
0

2
αΛ0 D<(t,t)

− iα
Γ ′

0

2
α

Γ ′
0

2
∂t D<(t,t ′)|t=t ′ − D<(t,t)Λ0α − iD<(t,t)Ωα

Γ ′
0

2
α − iD<(t,t)Λ0α

Γ ′
0

2
α

− i∂t ′ D<(t,t ′)|t ′=t

Γ ′
0

2
α

Γ ′
0

2
α −

∑
λ=L,R

∫ ∞

−∞

dω

2π
θ (ωc,λ − |ω|)ωfλ(ω)[1 − ei(ω−Ωeff)t ]DR(ω)Γ ′

λα
Γ ′

0

2
α

+ i
∑

λ=L,R

∫ ∞

−∞

dω

2π
θ (ωc,λ − |ω|)ωfλ(ω)[1 − ei(ω−Ωeff)t ]DR(ω)Γ ′

λα. (32)

Next step would be to again insert the derivatives from Eq. (12) and its adjoint, but already in the above step of the iteration, all
terms involving derivatives of the lesser Green’s function vanish. We notice this truncation (and cancellation of other terms as
well) by evaluating simple matrix products

Γ ′
0,(λ)αΛ0 = Λ0αΓ ′

0,(λ) = Γ ′
0,(λ)αΓ ′

0,(λ) = 0. (33)

All higher order derivatives are also truncated based on these matrix structures. By combining accordingly and simplifying we
end up with

i
d D<(t,t)

dt
− Ωeff D<(t,t) + D<(t,t)Ω†

eff

= −i
∑

λ=L,R

∫ ∞

−∞

dω

2π
θ (ωc,λ − |ω|)ωfλ(ω){αΓ ′

0,λ DA(ω)[1 − e−i(ω−Ω
†
eff)t ] − [1 − ei(ω−Ωeff)t ]DR(ω)Γ ′

0,λα}. (34)

In Eq. (34), we now have a linear, first-order, nonhomogeneous differential equation for D<, which can be solved uniquely with
an initial condition. The solution is (see Appendix C)

ρ(t) ≡ iD<(t,t) = iD<
0 (t,t) +

∑
λ=L,R

∫ ωc,λ

−ωc,λ

dω

2π
fλ(ω)[1 − ei(ω−Ωeff)t ]Bλ(ω)[1 − e−i(ω−Ω

†
eff)t ] (35)

with the initial condition

iD<
0 (t,t) = e−iΩefftαfC(Ωα)eiΩ†

efft (36)

stemming from the uncoupled lesser Green’s function in
the central region as in Eq. (A2) where the distribution
fC is defined via an equilibrium temperature for the cen-
tral region before coupling. The spectral function Bλ(ω) ≡
DR(ω)ωΓ ′

0,λ DA(ω) can be evaluated as

Bλ(ω) = 1

ω
(
α + i

2Γ ′
0

) − Ω − Λ0

×ωΓ ′
0,λ

1

ω
(
α − i

2Γ ′
0

) − Ω − Λ0

= 1

ω − Ωeff
(Γ ′

0,λ)eff(ω)
1

ω − Ω
†
eff

(37)

with (Γ ′
0,λ)eff(ω) = (α + iΓ ′

0/2)−1ωΓ ′
0,λ(α − iΓ ′

0/2)−1.
Equation (35) is our main result for the time-dependent one-

particle density matrix. Remarkably, it is a closed expression,
i.e., no time propagation is needed for evaluating the time-
dependent density matrix; this also is a general feature in
previous studies including similar derivations [21,23–26]. The
transient behavior is encoded in the exponentials; we find
oscillations ωjk = | Re ωj,eff − Re ωk,eff|, where ωeff are the
complex eigenvalues of the effective Hamiltonian Ωeff, as
transitions between the vibrational modes in the central region.
Finally, fλ(ω)Bλ(ω) is well-behaving at ω = 0 (although
fλ(ω) diverges at zero), and the cutoff frequency ωc,λ regulates
the nonintegrable behavior at ω → −∞.

It is instructive to investigate few limiting cases for Eq. (35).
At t = 0, the square brackets vanish and we are left with
the uncoupled result, as should be the case due to the initial
condition. This also happens if the systems remain uncoupled,
i.e., Λ0 = 0 = Γ ′

0; then we are left with the free evolution
of the initial state as Ωeff → αΩ and Bλ(ω) → 0. The
steady-state result comes from the limit t → ∞ when the
exponentials vanish due to the nonhermitian structure of Ωeff
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[see the discussion after Eq. (25)]:

ρSS =
∑

λ=L,R

∫ ωc,λ

−ωc,λ

dω

2π
fλ(ω)

1

αω − Ω − (
Λ0 − iω

2 Γ ′
0

)
×ωΓ ′

0,λ

1

αω − Ω − (
Λ0 + iω

2 Γ ′
0

) . (38)

Within our self-energy approximation, ΠR/A(ω) = θ (ωc,λ −
|ω|)(Λ0 ∓ iω

2 Γ ′
0), we may write Eq. (38) as

ρSS =
∑

λ=L,R

∫ ∞

−∞

dω

2π
fλ(ω)DR(ω)Γ λ(ω)DA(ω). (39)

Indeed, our time-dependent result reduces in the steady-state
limit to similar “Landauer” type of results derived from various
starting points [1,27,29,30,49,50,57–59].

Finally, we point out that the integrals in Eq. (35) are
possible to carry out analytically to some extent which
considerably speeds up the computation. Similarly, as in
Ref. [25], this result can be expanded in the eigenbasis of
the non-Hermitian matrix Ωeff. Furthermore, when the Bose
function is expressed as a Padé series [60–62], the resulting
frequency integrals may be written in terms of complex
logarithms and exponential integral functions.

III. RESULTS

A. Setup and quantities of interest

Here we apply the derived result in Eq. (35) to study
the transient behavior of the heat current in simple lattice
models when coupled to reservoirs at different temperatures.
We benchmark the validity of the approximation by comparing
to full numerical solution to the equation of motion (12) with
the embedding self-energy in Eqs. (18) and (19).

As the derived result provides information about the one-
particle density matrix in the central region, we are interested
in local quantities in this region. The local energy in the central
region may be calculated as a sum over the uu and pp blocks
of the product of the Hamiltonian and the density matrix:

E(t) = i

2
Tr[Ω D<(t,t)]. (40)

The local heat current between the sites of the central region
may be derived by considering the temporal change in local
energy in a given site; this should amount to the sum of heat
currents flowing in and out of that site [63–65]. The local
energy for site j can be written as an expectation value εj =
〈Ĥj 〉 of the local Hamiltonian Ĥj = [(p̂′

j )2 + ∑
k û′

jK
′
jkû

′
k]/2.

(This is chosen so that Ĥ = ∑
j Ĥj .) Then, for Ĥ being the

total Hamiltonian for the central region [see Eq. (2)], we get
from the Heisenberg equation

dεj

dt
= −i〈[Ĥj ,Ĥ ]〉 =

∑
k

1

2
K ′

jk(〈û′
j p̂

′
k〉 − 〈û′

kp̂
′
j 〉), (41)

where we used the commutation algebra of the momentum and
displacement operators. This motivates us to define the local
(net) heat current between sites j and k as the up component
of the density matrix,

J
Q
jk(t) = 1

2K ′
jk(〈û′

j p̂
′
k〉 − 〈û′

kp̂
′
j 〉)(t), (42)

where the two terms can be regarded as “in-coming” (from k to
j ) and “out-going” (from j to k) heat current. This definition in
Eq. (42) deviates a little from the conventional definitions for
the heat current between a reservoir and the central region [33]
since in our case there may be multiple (arbitrary) contacts
between the sites contributing to the heat current in a given
site.

We also note here that the above definition for a local
energy (density) εj is ambiguous since we can add any local
contribution cj , for which

∑
j cj = 0, which leaves the total

energy unchanged. Further, the definition for the local heat
current, obtained from the temporal change in local energy, is
also not unique although widely used [63–68]. The appropriate
definition for the local energy density has recently been
discussed in, e.g., Ref. [69]. Our motivation here, however,
is to compare the derived analytical result in Eq. (35) with
a full numerical solution, and this issue does not affect the
comparison.

In our transport setup, we have uniform one-dimensional
(semi-infinite) systems of coupled springs as reservoirs, and
we fix the force constant in the reservoirs as kλ = 1 for all
leads and then relate the remaining parameters to this energy
scale. Also, the central region, through which we study the
heat current transients, is similarly a uniform one-dimensional
(but finite) system of coupled springs for which we have the
interatom force constant kC :

K ′ =

⎛⎜⎜⎜⎜⎝
2kC −kC · · · 0

−kC 2kC · · · ...
...

...
. . . −kC

0 · · · −kC 2kC

⎞⎟⎟⎟⎟⎠. (43)

The terminal sites of the central region are coupled to the
terminal sites of the reservoirs by the coupling force constant
kλC .

As discussed in Sec. II B, we can tune the embedding by
choosing the coupling strength kλC . Also, for the vibrational
frequencies of the central region to be inside the bandwidth
(given by ±2

√
kλ) we choose the force constant in the central

region kC small enough. As the force constants in the reservoirs
are equal, the cutoff frequency also becomes λ-independent
ωc,L = ωc,R ≡ ωc. We also set the Boltzmann constant kB = 1.
We consider the temperature scale between the subsystems as
a difference �T = TL − TR and set the temperature for the
central region as TC = (TL + TR)/2. We fix the temperature in
the right reservoir TR = 1 and relate the remaining ones to this.
After the systems are coupled the temperature in the central
region loses its meaning during transient due to nonequilibrium
conditions. Even if the system reaches a steady state, it is
not a thermal equilibrium but a nonequilibrium steady state.
Therefore, instead of “thermalization,” we say that the system
relaxes, and we use a measure

κ = JQ(t = τ ) − J
Q
SS

J
Q
SS

(44)

for defining the relaxation time τ (time from t = 0 to reach
the steady state) as κ = 10% [70]. Evaluation of Eq. (44) also
assumes the relative error to stay under the given tolerance at
times t > τ .
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As the structure of the central region and its couplings
to the reservoirs are arbitrary, it is feasible to study also more
complex systems, such as graphene ribbons [71], with the same
methodology. Also, the nature of the heat transport (normal
or anomalous [72,73]) may be analyzed by different models
with impurities or inner reservoirs. These type of simulations
will, however, be postponed to future work since the focus of
the present work is to benchmark the derived formula against
exact results from the full propagation of the Kadanoff-Baym
equations.

B. Validity of the approximations

Compared to the full numerical solution of Eq. (12), we
have made a number of approximations when deriving the
analytic solution in Eq. (35). We study how much error each
approximation causes when compared to the full numerical
solution. First, we make the wide-band-like approximation for
the self-energy in Eq. (23) but otherwise we still solve the
equation of motion numerically, i.e., without approximating
the time-convolutions as was done in Appendix B when deriv-
ing Eq. (35). We denote this level of approximation as “WB.”
Second, besides Eq. (23), we calculate the time-convolution
[DR · Π<] as in Eq. (26) using Eq. (27) (and similarly for the
adjoint). This level of approximation is denoted as “WB-1.”
Third approximation, we again use Eq. (23) for the embedding
self-energy but we calculate the time convolution [D< · ΠA]
as in Eq. (29) using ωc,λ → ∞ in Eq. (23) (and similarly for
the adjoint). We refer to this approximation as “WB-2.” The
main result in Eq. (35) follows when both WB-1 and WB-2
are made. Except for Eq. (35), the numerical solution of all the
other schemes is obtained self-consistently in the full two-time
plane [47,48].

We benchmark the validity of the approximations stated
above by studying the heat current through a dimer molecule as
the central region; the force constant matrix in Eq. (43) is then
2 × 2. The parameters are chosen so that: (a) the vibrational
frequencies of the dimer molecule are comparable with the
cutoff frequency, i.e., the wide-band-like approximation is
expected to fail; and (b) the vibrational frequencies of the dimer
are in a narrow range compared to the reservoir bandwidth, i.e.,
the wide-band-like approximation should not neglect the detail
of the spectrum. In case (a), we take kλC = 1/2 and kC = 1,
and in case (b) we take kλC = 1/4 and kC = 1/3. In both cases,
we set the temperature profile by TL = 5,�T = 4.

In Fig. 3, we show the heat current, JQ
12, between the dimer’s

atoms evaluated using Eq. (42) for the two above-mentioned
cases. In Fig. 3(a), we see more deviation from the full
solution (red, thick solid line) compared to Fig. 3(b) as
was expected from the parameter choice. By neglecting the
frequency dependency of the phonon band in Eq. (19) (see
Fig. 2) we see in both panels (green, long-dashed curve, WB)
that the transient behavior is overestimated due to too crude
of an approximation for the band edges. (The approximated
embedding self-energy abruptly drops to zero.) This also
affects the long-time behavior as the current saturates towards
a steady-state value faster than the full solution because the
coupling strength (dissipation) is overestimated in WB. Also,
the steady-state value for the heat current is overestimated.
When we also add the approximation for the time-convolution
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FIG. 3. Time-dependent heat current through a dimer molecule
(in units of appropriate energy scale) connected to two reservoirs
with (a) strong coupling and broad spectrum and (b) weak coupling
and narrow spectrum. Thick solid red line is the numerical solution to
Eq. (12), long-dashed green, dash-dotted blue, short-dashed magenta,
and thin solid cyan lines describe different levels of approximation,
see text. The inset shows the difference between the approximate and
full solutions.

[DR · Π<] (blue, dash-dotted curve, WB-1) we do not, at least
in this case, see any qualitative difference to WB. This means
that approximating the retarded Green’s function in Eqs. (B4)
and (B5) as the embedded one only slightly modifies the
initial transient and the steady-state values. When we consider
the approximation only for the time-convolution [D< · ΠA]
(magenta, short-dashed curve, WB-2) we see a relatively good
match with the full solution. However, individual density
matrix elements may still differ considerably between the
approximated and full solutions, see Fig. 4 and Sec. III E.
When deriving [DR · Π<] in Eq. (B10) and [D< · ΠA] in
Eq. (B14), we implicitly assumed the limit ωc,λ → ∞. Now,
when the cutoff frequency is set to the phonon bandwidth, in
Fig. 3(a), the approximations do not fully take into account
the broader spectrum of the central region. In Fig. 3(b),
the spectrum of the central region is more narrow, and all
approximations give a reasonable agreement. Even if the
general trend of the transient is qualitatively captured in both
cases, quantitative differences can still be considerable, see
the insets in Fig. 3. When combining all the approximations,
we get the analytic result in Eq. (35) (cyan, thin solid line).
It is worth pointing out that this result, without needing
any numerical evaluation of the Green’s function, can give
a comparatively good description.

To elucidate the transient behavior further we consider also
the time-dependence of the commutator of the displacement
and momentum operators 〈[û1,p̂1]〉 at site 1; this is shown
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û
1
p̂
1

(t
)

p̂
1
û
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FIG. 4. Time-dependence of the commutator between the dis-
placement and momentum operators at site 1 of a dimer molecule.
The parameters of the calculation are the same as in Fig. 3.

in Fig. 4. We see that this quantity in Full and WB equals
the canonical commutation relation, i, but when the time-
convolutions are approximated in WB-1 and WB-2 we see
a deviation. For these elements of the density matrix (from
which the commutator is computed), this deviation is more
significant than for the heat current in Fig. 3. Further, this
deviation can partly be tracked down to the approximation
made for the retarded Green’s function in Eq. (B5). From
Eq. (4) and using DR(t,t ′) = θ (t − t ′)[D>(t,t ′) − D<(t,t ′)],
we should have

lim
t→t ′+

DR(t,t ′) = −i[φ̂,φ̂] = −iα =
(

0 1
−1 0

)
(45)

with φ̂ the composite field operators in Eq. (2), and the
commutator is understood componentwise. (Each block in
the above 2 × 2 matrix is an NC × NC matrix.) However, if
we directly Fourier transform Eq. (B5) and take the equal-time
limit, we end up with

lim
t→t ′+

DR(t,t ′) =
(

0 1
−1 −Γ ′

0/2

)
. (46)

This means that the commutation relation, in case of the
retarded Green’s function, would only be satisfied in the limit
of weak coupling, Γ ′

0 → 0. Figure 4(b) shows that this is
related to the commutation relation obtained from the lesser
Green’s function (density matrix elements), i.e., we observe a
deviation of only few percent when the coupling is weak.

C. Dependency on the cutoff frequency

We further compare the obtained analytic solution to the
full numerical solution of the equation of motion (12). We

0 5 10 15 20
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ω = 2 b.w.
ω = 4 b.w.
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E
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FIG. 5. Time-dependent energy in a single site connected to two
reservoirs with (a) strong coupling and broad spectrum, and (b) weak
coupling and narrow spectrum. Solid red line is the numerical solution
to Eq. (12), dashed green, blue and magenta lines are obtained from
Eq. (35) with different cutoff frequencies. The insets show the uu

component of fL(ω)BL(ω) (in logarithmic scale) with vertical lines
indicating the integration cutoff frequency.

perform numerical integrations of Eq. (35) with varying cutoff
frequency in terms of the bandwidth 2

√
kλ. In Fig. 5, we show

the time-dependent energy in a single site connected to two
reservoirs calculated from Eq. (40). We set TL = 5,�T = 4,
and study in Fig. 5(a) strong coupling kλC = 1/2 with broad
spectrum kC = 1, and in Fig. 5(b) weak coupling kλC = 1/4
with narrow spectrum kC = 1/3. Both transients (the full
solution) show similar features as the energy in the site first
grows and oscillates and then saturates; reaching the steady
state takes longer in the weak coupling case, as is to be
expected. In fact, since we are dealing with one site only, this
quantity E(t) can by the equipartition theorem be related to the
time-dependent local temperature in the site [64,65,74,75]. At
t = 0, the temperature is as prepared for the uncoupled system
TC , and after the transient the system saturates to a value within
the temperature “bias” window [TL,TR].

The insets in Fig. 5 show the frequency dependency of
the uu component of the steady-state integrand fL(ω)BL(ω)
in logarithmic scale and the integration limits corresponding
to the cutoff values. As can be seen from the insets, the
value of the integral depends on the cutoff frequency, and
more specifically, on how well the spectral peaks in the
central region fit in this frequency window. Also, as discussed
earlier, the integral would not converge due to the self-energy
approximation but it is regulated when ω → −∞ by the
cutoff frequency. We see that in case (a) the integrand is
broader and the spectral peaks are further away from ω = 0
leading to a mismatch between the numerical solution with
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FIG. 6. Time-dependent local heat current (in appropriate units)
in the middle of a four-site chain connected to two reservoirs with
(a) strong coupling and broad spectrum, (b) intermediate coupling
and spectrum, and (c) weak coupling and narrow spectrum. Solid red
line is the numerical solution to Eq. (12) and dashed green line is
obtained from Eq. (35) by cutoff frequency at the phonon bandwidth,
ωc,λ = 2

√
kλ. The insets in (b) and (c) show the long-time behavior

of the heat current.

the full embedding self-energy and the derived time-dependent
density matrix with the self-energy approximation. Increasing
the cutoff frequency brings the time-dependent data closer
to the full solution as less spectral weight is left outside of
the integration region. It is still important to remember that
if we do not limit the integration by the cutoff frequency the
approximate solutions will grow (slowly) without a bound; in
principle they do not approach the full solution. Due to the
unsuitable parameters in case (a) the curves agree only close
to the steady state with higher cutoff values. In case (b), the
match is better since the integrand is more narrowly peaked
and the peaks are closer to ω = 0. The oscillation frequencies
correspond to the peak separation in the spectral function. It
can be seen that the transient frequency in the narrow spectrum
case (b) is indeed smaller than in the broad spectrum case (a).

D. Heat current in a four-site system

Next, we study the heat current in the middle of a four-site
chain given by the local heat current in Eq. (42) between
sites 2 and 3, see Fig. 6. Also here, we set the temperature
difference as TL = 5,�T = 4. In Fig. 6(a), we have strong
coupling kλC = 1/2 with broad spectrum kC = 1, in Fig. 6(b)
intermediate coupling and spectrum kλC = 1/4, kC = 2/3,
and in Fig. 6(c) weak coupling kλC = 1/8 and narrow spectrum
kC = 1/3. Like in the previous example, we solve numerically
the equation of motion (12) (solid red lines) and compare

this to numerical integration of Eq. (35) (dashed green lines)
by setting the cutoff frequency to the phonon bandwidth,
ωc,λ = 2

√
kλ.

Due to the strongest coupling in Fig. 6(a), the steady state is
reached the fastest, but, as the spectrum is broad (reaching the
edge of the band with tails outside the band) the transient
is not captured very accurately. In Fig. 6(b), the spectral
peaks are inside the band although the broadening still causes
differences with the full numerical result due to the cutoff
frequency. Even though in Fig. 6(b) most transient features
are already captured, in Fig. 6(c) the correspondence is even
better since the spectrum is well inside the band with very
narrow peaks. Also, in a longer time scale [see the insets in
Figs. 6(b) and 6(c)], the transient oscillations can reach several
hundred units of time before saturation. The approximate
steady-state values overestimate the full solution by roughly
10%. More generally, we observe in steady state the heat
current to be positive, meaning a steady flow from the hot
to the cold reservoir. However, if the temperature differences
were smaller, the current could also momentarily (during the
transient) flow from the cold to the hot reservoir (not shown).
This finding is not related to the approximations (the effect
was also seen in the full solution) but to the partitioned model
with contacts being suddenly switched on [44,71]; the effect
would fade away in the case of adiabatic switching.

E. Transient time shifts in individual density matrix elements

Even though the comparisons between the full numerical
solution and the derived analytical result in Figs. 3 and 6
matched reasonably well, we may still wonder about the
individual density matrix elements. This is due to the heat
current in Eq. (42) being an “averaged-out” quantity as it
is evaluated as a sum of two contributions. In Fig. 7, we
consider the same numerical simulation as in Fig. 6(c) but
now we plot separately the different terms in the definition
of the heat current (and also the net current for reference).
We notice that, even if the net current is described very
accurately, the “in-coming” and “out-going” components of
the current differ considerably (time shift) at short times
between the full numerical solution (solid lines) and the
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FIG. 7. Time dependence of the individual density matrix ele-
ments (real parts) when computing the heat current between sites 2
and 3 in a four-site chain, cf. Fig. 6(c). The solid lines are the full
numerical solutions and the markers with corresponding color are
evaluated from Eq. (35).
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analytic result in Eq. (35) (markers in corresponding color).
This deviation relates to the approximation made for the
time-convolution between the lesser Green’s function and
the advanced embedding self-energy; the short-time failure
is considered more in detail in Appendix B. If the cutoff
frequency is not large enough compared to the relevant
frequencies in the central region, the time shift becomes
relatively more severe, see also Fig. 4.

This effect also relates to the fulfillment of the commutation
relation investigated in Fig. 4. The approximations for the time
convolutions in deriving Eq. (35) result in up and pu blocks
of the density matrix possibly having complex elements when
j �= k although they should be real-valued. This means that
the heat current components, when considered separately as
in Fig. 7, gain a nonzero imaginary part. This imaginary part,
however, cancels when evaluating the net heat current as a
difference in Eq. (42).

If an accurate description is desired also for the individual
matrix elements, it is possible as a “rule of thumb” to take the
time shift into account by transforming the time axis for the
approximate solution by t → t(1 + ae−bt ), where a and b are
positive real numbers depending on the system parameters
(a = 2

√
Γ ′,b = ωc,λ

√
Γ ′/4), to better represent the initial

transient. We have tested (not shown) that during the initial
transient the curves will be mostly in phase due to this shifting.
Also, at larger times when the shifting goes to zero, the curves
will stay in phase as argued in Appendix B.

F. Relaxation time scales

We may also use the time-dependent formalism to estimate
relaxation time scales using Eq. (44). We consider similar
atomic chains as in the previous sections but now we vary the
length of the chain and the strength of the coupling between
the chain and the reservoirs. We expect to see longer relaxation
times for longer chains as it simply takes longer time for
the wavefront to propagate over longer systems. Also, by
increasing the coupling strength between the central region
and the reservoirs, the relaxation times should decrease due to
the stronger dissipation. We choose the model parameters in

physical units as kλ = 1.0 eV/(Å
2

u), kC = 0.625 eV/(Å
2

u)
where u is the atomic mass unit. (Notice that these are the
mass-normalized force constants, i.e., in SI units [k] = 1/s2.)
In Fig. 8, we display the relaxation times (color map) for chains
of varying length (horizontal axis) and with varying coupling
strength (vertical axis) having a 10% temperature difference
between the reservoirs. In Fig. 8(a), the baseline temperature is
10 K (leading to TL = 11 K and TR = 9 K), and in Fig. 8(b), we
have the baseline temperature 300 K (leading to TL = 330 K
and TR = 270 K).

Indeed, we observe that, for both low and high temperature
regimes, the relaxation is fastest in the shortest chain (NC = 2)
when the coupling strength between the central region and
the reservoirs is the highest (kCλ = 0.9kC). Expectedly, the
slowest relaxation, which can take up to picosecond scale,
occurs in the longest chain (NC = 16) when the coupling is
the weakest (kCλ = 0.2kC). The overall dependency on the
studied parameters is roughly similar in both low and high
temperature regimes. However, we see in high temperature
and small coupling that even the mid-range chains can
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FIG. 8. Relaxation times (color map) for atomic chains of varying
length (horizontal axis) and coupling strength to the reservoirs
(vertical axis) at (a) low and (b) high temperature.

take a comparatively long time for relaxation. On the other
hand, increasing the coupling strength in the high-temperature
regime leads to comparatively faster relaxation. This is also
partly due to the larger absolute difference in temperature in
the high-temperature case.

IV. CONCLUSION

We discussed a quantum transport model for noninteracting
phonons in an arbitrary harmonic lattice setup. Using the
nonequilibrium Green’s function approach we derived an
analytic result for the time-dependent one-particle reduced
density matrix. The derivation involved a wide-band-like
approximation for the embedding self-energy of the reservoirs;
compared to the conventional wide-band approximation in
electronic transport, now the real part of the embedding
self-energy was set to be a nonzero constant around zero
frequency whereas for the imaginary part we introduced a
linear approximation. In addition, we introduced a cutoff
frequency above which the embedding self-energy is simply
set to zero. In the steady-state limit our analytical formula
reduces to a known result [49,50].

As an application of the derived formula we analyzed
transient heat currents in atomic chains. Using the numerical
examples we were able to benchmark our derived result
against a full numerical solution to the equations of motion
for the Green’s function, and furthermore test the validity
of the approximations put forward when deriving the result.
The approximations were found to be reasonable and the
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benchmark results congruent when the cutoff frequency was
chosen large enough compared to the relevant energy scales of
the studied systems, and when the coupling strength between
the central region and the reservoirs was small enough for the
wide-band-like approximation to hold.

Due to its computational simplicity, the introduced method
holds promise for studying transient heat transport especially
in large spatial scale, e.g., in graphene ribbon or carbon
nanotube circuitries. It remains to be investigated if and how
a partition-free approach, conventionally used in electronic
transport [21], could be incorporated also in the context of
(time-dependent) phonon transport. A related issue, in the
case of heat transport due to electrons, has recently been
discussed in Refs. [76,77], the latter concentrating on the
transient regime.
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APPENDIX A: SELF-ENERGY CALCULATIONS

From Eq. (17), we may deduce the greater and
lesser components for the uncoupled Green’s function

to be

d>
λλ(t,t ′) = −iαλλf̄λ(Ωλλαλλ)e−iΩλλαλλ(t−t ′), (A1)

d<
λλ(t,t ′) = −iαλλfλ(Ωλλαλλ)e−iΩλλαλλ(t−t ′), (A2)

and further, the retarded component to read as

dR
λλ(t,t ′) = θ (t − t ′)[d>

λλ(t,t ′) − d<
λλ(t,t ′)]

= −iαλλθ (t − t ′)e−iΩλλαλλ(t−t ′). (A3)

Since the retarded Green’s function is a function of t − t ′, we
find by Fourier transforming

dR
λλ(ω) = αλλ

1

ω − Ωλλαλλ + iη
= 1

αλλ(ω + iη) − Ωλλ

,

(A4)

where, for the second equality, we used the idempotency of
α. The parameter η is a positive infinitesimal accounting for
the correct causal structure. We can then insert Eq. (A4) into
Eq. (14) and derive an expression for the retarded self-energy
for the central region embedded in the environment. We may
evaluate the retarded Green’s function by performing a matrix
inversion for a block matrix resulting in

dR
λλ(ω) =

(
((ω + iη)2 − K ′

λλ)−1 i(ω + iη)((ω + iη)2 − K ′
λλ)−1

−i(ω + iη)((ω + iη)2 − K ′
λλ)−1 K ′

λλ((ω + iη)2 − K ′
λλ)−1

)
. (A5)

If we know the eigendecomposition of K ′
λλ as K ′

λλX = Xω2
λ, we can then also diagonalize the full reservoir Hamiltonian with

X ≡ diag(X,X) as

Ω̃λλ = X†ΩλλX =
(

ω2
λ 0

0 1

)
≡ ω2

λ. (A6)

Further, we may write the retarded embedding self-energy in terms of the eigenmodes when inserting Eq. (A5) into Eq. (14):(
ΠR

λ

)
jCkC

(ω) =
∑
qλ

Ω̃jCqλ

1

(ω + iη)2 − ω2
qλ

(
1 i(ω + iη)

−i(ω + iη) ω2
qλ

)
Ω̃qλkC

, (A7)

where we explicitly labeled the basis elements of the central region (jC,kC) and the reservoirs (qλ). Also, Ω̃jCqλ
≡ (ΩCλX )jCqλ

.
Since the coupling Hamiltonians only have nonzero elements in the uu block, this leads to the embedding self-energy having
nonzero contribution also in the uu block only, and we have

(
ΠR

λ

)11
jCkC

(ω) ≡ (
ΠR

λ

)
jCkC

(ω) =
∑
qλ

K̃jCqλ
K̃qλkC

(ω + iη)2 − ω2
qλ

=
∑
qλ

K̃jCqλ
K̃qλkC

2ωqλ

(
1

ω − ωqλ
+ iη

− 1

ω + ωqλ
+ iη

)
, (A8)

where K̃jCqλ
≡ (K ′

CλX)jCqλ
. The advanced embedding self-energy ΠA

λ is simply given by complex conjugating Eq. (A8). Then,
we may evaluate the level-width function Γλ defined as

(Γλ)jCkC
(ω) ≡ i

[(
ΠR

λ

)
jCkC

(ω) − (
ΠA

λ

)
jCkC

(ω)
]

= i
∑
qλ

K̃jCqλ
K̃qλkC

2ωqλ

(
1

ω − ωqλ
+ iη

− 1

ω + ωqλ
+ iη

− 1

ω − ωqλ
− iη

+ 1

ω + ωqλ
− iη

)

=
∑
qλ

K̃jCqλ
K̃qλkC

ωqλ

(
η

(ω − ωqλ
)2 + η2

− η

(ω + ωqλ
)2 + η2

)
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=
∑
qλ

πK̃jCqλ

1

ωqλ

[δ(ω − ωqλ
) − δ(ω + ωqλ

)]K̃qλkC
, (A9)

where we used the Lorentzian representation for the delta
function πδ(x − a) = limη→0 η/[(x − a)2 + η2]. Since ΠA =
(ΠR)†, we have that

ΠR
λ (ω) = Λλ(ω) − i

2
Γλ(ω), (A10)

where Λλ and Γλ are real functions related by the Hilbert
transform

(Λλ)jCkC
(ω) = 1

π
P

∫ ∞

−∞
dω′ (Γλ)jCkC

(ω′)
ω′ − ω

=
∑
qλ

K̃jCqλ
K̃qλkC

ωqλ

(
1

ω − ωqλ

− 1

ω + ωqλ

)
.

(A11)

From Eqs. (A9) and (A11), we notice that Λλ is an even
function and Γλ is an odd function.

APPENDIX B: TIME CONVOLUTIONS

Here we calculate the convolutions [Π< · DA],[DR ·
Π<],[ΠR · D<], and [D< · ΠA] in Eq. (16). We keep DR so
far unspecified and we calculate the time convolution

[DR · Π<](t,t) =
∫ ∞

0
dt̄ DR(t,t̄)Π<(t̄ ,t)

=
∫ ∞

−∞

dω

2π

∫ ∞

−∞
dt ′ DR(t ′)eiωt ′Π<(ω)θ (t − t ′),

(B1)

where we inserted the Fourier transform of Π<, changed the
integration variable as t − t̄ = t ′ and inserted a step function
for extending the time interval to minus infinity. For the step
function, we may use the expression

θ (t − t ′) = lim
η→0+

∫ ∞

−∞

dω′

2π i

eiω′(t−t ′)

ω′ − iη
(B2)

and evaluate further

[DR · Π<](t,t) =
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω̄

2π i

ei(ω−ω̄)t DR(ω̄)

ω − ω̄ − iη
Π<(ω),

(B3)

where we used the Fourier transform of DR(t) and changed the
integration variable to ω − ω′ = ω̄. The exponential involving
both frequencies can be split up, and we may also insert the
approximation for the embedding self-energy

[DR · Π<](t,t)

=
∑

λ=L,R

∫ ∞

−∞

dω

2π
eiωt

[∫ ∞

−∞

dω′

2π i

e−iω′t DR(ω′)
ω − ω′ − iη

]
×θ (ωc,λ − |ω|)[−ifλ(ω)ωΓ ′

0,λ]. (B4)

The cutoff frequency ωc,λ is now explicitly in this expression
without specifying DR. As we argued earlier, this expression is

only valid in the cutoff regime and we simply use the embedded
retarded Green’s function for all frequencies ω′ (in the inner
integral),

DR(ω) = 1

αω − Ω − ΠR(ω)
≈ 1

ω − Ωeff

1

α + i
2Γ ′

0

, (B5)

where we inserted the approximation for the embedding self-
energy and defined the effective Hamiltonian as in Eq. (25).

Now the retarded Green’s function is specified, and DR and
ΠR satisfy the Dyson equation in the limits of |ω| < ωc,λ. In
Eq. (B4), if the eigenvalues of Ωeff lie in the lower-half plane
[see the discussion after Eq. (25)], then also the analytical
structure for the Green’s function is correct: DR(ω′) has poles
in the lower-half plane, and also the denominator goes to zero
when ω′ = ω − iη (in LHP). The key for evaluating the time-
convolution was the approximation for DR in Eq. (B4). As this
is done within the cutoff frequency window θ (ωc,λ − |ω|), we
may analyze how large a difference does this approximation
make compared to a full numerical solution of the equations
of motion (12). As we approximate the retarded Green’s
function for all frequencies ω as in Eq. (B5), this means the
limit ωc,λ → ∞. On the other hand, when we specify the
cutoff frequency directly to the self-energy approximation in
Eq. (23), this would amount to

DR
θ (ω) ≡ 1

αω − Ω − ΠR(ω)

= 1

αω − Ω − θ (ωc,λ − |ω|)(Λ0 + iω
2 Γ ′

0

) . (B6)

As we discuss only the region |ω| < ωc,λ when evaluating the
time-convolution in Eq. (B4), we may compare how much the
approximated Green’s function deviates from that in Eq. (B6)
(outside the cutoff window),

DR(ω)

DR
θ (ω)

= αω − Ω − θ (ωc,λ − |ω|)(Λ0 + iω
2 Γ ′

0

)
αω − Ω − Λ0 + iω

2 Γ ′
0

ω>ωc,λ= αω − Ω

αω − Ω − Λ0 + iω
2 Γ ′

0

ω�ωeff−−−→ α

α + i
2Γ ′

0

Γ ′
0�1−−−→ 1, (B7)

where ωeff are the real parts of the eigenvalues of the
effective Hamiltonian Ωeff. This limit means that (1) we
choose the cutoff frequency high enough so that the physical
frequencies of the central region fall well inside this window;
(2) if the frequency in the retarded Green’s function still
was higher than ωc,λ, we would have, in the limit Γ ′

0 → 0
(weak coupling), that the relative difference in the retarded
Green’s functions approaches unity. Therefore, in order to
make the approximation better is then twofold; we can tune
the force constant in the reservoirs so that the cutoff window
is considerably broader than the energy scale of the central
region, and/or we can also couple the central region more
weakly to the reservoirs, thus, decreasing the value for Γ ′

0.
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By using the eigenbasis of the effective Hamiltonian Ωeff,
and if the eigenvalues lie in the lower-half plane [again, also
see the discussion after Eq. (25)], we can evaluate the integral
in Eq. (B4) over ω′ by closing the contour in the lower-half
plane (t is a positive number):∫ ∞

−∞

dω′

2π i

e−iω′t

ω − ω′ − iη

1

ω′ − Ωeff

1

α + i
2Γ ′

0

= −
[

e−iΩefft

ω − Ωeff − iη
− e−i(ω−iη)t

ω − iη − Ωeff

]
1

α + i
2Γ ′

0

.

(B8)

Then we can take the limit η → 0 and write∫ ∞

−∞

dω′

2π i

e−iω′t DR(ω′)
ω − ω′ − iη

= e−iωt − e−iΩefft

ω − Ωeff

1

α + i
2Γ ′

0

= (e−iωt − e−iΩefft )DR(ω). (B9)

Inserting this into Eq. (B4), we get

[DR · Π<](t,t)

=
∑

λ=L,R

∫ ∞

−∞

dω

2π
[1 − ei(ω−Ωeff)t ]DR(ω)

× θ (ωc,λ − |ω|)[−ifλ(ω)ωΓ ′
0,λ]. (B10)

It is worth noticing that this result could also be derived by
Fourier transforming DR(ω) from Eq. (B5) and then inserting
the resulting DR(t,t ′) directly into the first row of Eq. (B1).
[Π< · DA] is found by conjugating Eq. (B10).

Then we calculate the other time convolution in Eq. (16),

[D< · ΠA]. From Eq. (23), we get ΠA(ω) = [ΠR(ω)]
†

and
further in time domain

ΠA(t,t ′) =
∫ ∞

−∞

dω

2π
ΠA(ω)e−iω(t−t ′)

=
∫ ∞

−∞

dω

2π
θ (ωc,λ − |ω|)

(
Λ0 + iω

2
Γ ′

0

)
e−iω(t−t ′)

= Λ0
1

π (t − t ′)
sin

(
t − t ′

1/ωc,λ

)
− Γ ′

0

2
∂t

[
1

π (t − t ′)
sin

(
t − t ′

1/ωc,λ

)]
. (B11)

In the limit ωc,λ → ∞, the sinc functions become delta
functions, i.e., limε→0

1
πx

sin ( x
ε
) = δ(x) and we obtain

ΠA(t,t ′) → Λ0δ(t − t ′) − Γ ′
0

2
∂t δ(t − t ′). (B12)

This is naturally the same result as if we put the limits of the
integration in the derivation of Eq. (B11) to ±∞. Based on
the above expression for the advanced embedding self-energy,
we aim to calculate the time convolution in the equation of
motion,

[D< · ΠA](t,t) =
∫ ∞

0
dt̄ D<(t,t̄)ΠA(t̄ ,t), (B13)

and the corresponding Hermitian-conjugated one. The higher
cutoff frequency ωc,λ we choose for the advanced embedding
self-energy, the faster will the oscillations (in time) be in

ΠA(t̄ ,t). On the other hand, the fastest oscillations for D<(t,t̄)
correspond to the (physical) vibrational frequencies of the
central region. If we choose the cutoff frequency ωc,λ to
be considerably higher than the typical energy scales in the
central region, then in time-domain, ΠA(t̄ ,t) appears almost
as Eq. (B12) compared to D<(t,t̄). This allows us to calculate

[D< · ΠA](t,t)

=
∫ ∞

0
dt̄ D<(t,t̄)ΠA(t̄ ,t)

=
∫ ∞

0
dt̄ D<(t,t̄)

∑
λ

[
Λ0,λδ(t̄ − t) − Γ ′

0,λ

2
∂t̄ δ(t̄ − t)

]

= D<(t,t)Λ0 + ∂t ′ D<(t,t ′)|t ′=t

Γ ′
0

2
, (B14)

where we integrated by parts and noticed that the boundary
term vanishes. By conjugating Eq. (B14) we also find [ΠR ·
D<]. The result in Eq. (B14), however, implicitly assumes the
limit ωc,λ → ∞ as we motivated its derivation by comparison
of energy scales in ΠA and D< exactly this way: ωc,λ � ω for
frequencies ω in the central region.

Let us try to justify this proposition by evaluating the time
convolution of ΠA and D< also by using the explicit expres-
sion in Eq. (B11) and performing an asymptotic expansion in
ωc,λ in

[D< · ΠA](t,t) =
∫ ∞

0
dt̄ D<(t,t̄)ΠA(t̄ ,t)

=
∫ t

0
dt̄ D<(t,t̄)Λ0

1

π (t̄ − t)
sin

(
t̄ − t

1/ωc,λ

)
+

∫ t

0
dt̄ D<(t,t̄)

Γ ′

2
∂t̄

[
1

π (t̄ − t)
sin

(
t̄ − t

1/ωc,λ

)]
,

(B15)

where the upper limit of the integration follows from the
advanced nature of ΠA(t̄ ,t) ∼ θ (t − t̄). Using Leibniz’ rule,
we may write the second term of Eq. (B15) as∫ t

0
dt̄ D<(t,t̄)

Γ ′

2
∂t̄

[
1

π (t̄ − t)
sin

(
t̄ − t

1/ωc,λ

)]
=

∫ t

0
dt̄∂t D<(t,t̄)

Γ ′

2

1

π (t̄ − t)
sin

(
t̄ − t

1/ωc,λ

)
− d

dt

[∫ t

0
dt̄ D<(t,t̄)

Γ ′

2

1

π (t̄ − t)
sin

(
t̄ − t

1/ωc,λ

)]
.

(B16)

This tells us that we only need to consider “the first line”-like
terms in Eq. (B15),

F (t) =
∫ t

0
dt̄f (t,t̄)

1

π (t̄ − t)
sin

(
t̄ − t

1/ωc,λ

)
, (B17)

and then we get “the second line” term in Eq. (B15) by inserting
∂t D<(t,t̄)Γ ′/2 and D<(t,t̄)Γ ′/2 as f (t,t̄) and using Eq. (B16).
We then consider the behavior of the function F in Eq. (B17)
when ωc,λ is large. We can get rid of the sinc function structure
by taking the derivative with respect to ωc,λ. (We assume we
are allowed to differentiate under the integral sign since the
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functions are well-behaving in our case.) We obtain

dF (t)

dωc,λ

= π−1
∫ t

0
dt̄f (t,t̄) cos[ωc,λ(t̄ − t)] (B18)

for which we may perform a sequential integration by parts
since we know all the anti-derivatives of a cosine function

dF (t)

dωc,λ

= π−1

{
f (t,t̄)

1

ωc,λ

sin[ωc,λ(t̄ − t)]

+ ∂t̄f (t,t̄)
1

ω2
c,λ

cos[ωc,λ(t̄ − t)]

− ∂2
t̄ f (t,t̄)

1

ω3
c,λ

sin[ωc,λ(t̄ − t)]

− ∂3
t̄ f (t,t̄)

1

ω4
c,λ

cos[ωc,λ(t̄ − t)] + . . .

}t

0

, (B19)

where the remainder will only be higher order in 1/ωc,λ. This
is justified by assuming that the derivatives |∂ (k)

t̄ f (t,t̄)| remain
small compared to ωk+1

c,λ which is true as the oscillations in
the function f relate to the frequencies in the central region
[see Eq. (B15)], which are by construction assumed small
compared to the cutoff frequency. Since we are interested in
the large ωc,λ limit, we may simply take only the leading term,
and integrating once over ωc,λ, we obtain

F (t) = π−1

{
f (t,t̄)Si[ωc,λ(t̄ − t)] + O

(
1

ω2
c,λ

)}t

0

, (B20)

where Si(x) is the sine integral. Now we may consider
Eq. (B15) by inserting the corresponding parts as the function
f in Eq. (B20) with the help of Eq. (B16). Further, by using
an asymptotic expansion for the sine integral [78], we may
conclude that the terms neglected by approximating Eq. (B15)
by Eq. (B14) are of the order O[(ωc,λt)−1]. Therefore, for long
times, the approximation is reasonable but even if we choose
a large cutoff frequency ωc,λ, for short times t � 1/ωc,λ, the
approximation fails.

APPENDIX C: INTEGRATING EQ. (34)

It is convenient to start by making a transformation

D<(t,t) = e−iΩefft D̃
<

(t,t)eiΩ†
efft . (C1)

When evaluating the derivative of this product and cancel-
ing terms, the left-hand side of Eq. (34) simply becomes

e−iΩefft i d D̃
<

(t,t)
dt

eiΩ†
efft . We can then, accordingly, multiply both

sides of the equation from left and right with the exponentials
to get

d D̃
<

(t,t)

dt
=

∑
λ=L,R

∫ ∞

−∞

dω

2π
θ (ωc,λ − |ω|)ωfλ(ω)eiΩefft

× [DR(ω)Γ ′
0,λα − αΓ ′

0,λ DA(ω)]e−iΩ†
efft

−
∑

λ=L,R

∫ ∞

−∞

dω

2π
θ (ωc,λ − |ω|)ωfλ(ω)

× [DR(ω)Γ ′
0,λαei(ω−Ω

†
eff)t

− e−i(ω−Ωeff)tαΓ ′
0,λ DA(ω)]. (C2)

Before we start integrating over t , recall the matrix structures

DR(ω) = 1

ω − Ωeff

1

α + i
2Γ ′

0

, (C3)

DA(ω) = 1

α − i
2Γ ′

0

1

ω − Ω
†
eff

. (C4)

In Eq. (C2), we have terms such as

DR(ω)Γ ′
0,λα = 1

ω − Ωeff

1

α + i
2Γ ′

0

Γ ′
0,λα, (C5)

αΓ ′
0,λ DA(ω) = αΓ ′

0,λ

1

α − i
2Γ ′

0

1

ω − Ω
†
eff

, (C6)

where, conveniently,

αΓ ′
0,λ

1

α − i
2Γ ′

0

= 1

α + i
2Γ ′

0

Γ ′
0,λα, (C7)

which can be checked by simply evaluating the matrix products
and inverses. Then, looking at the first row of Eq. (C2), we can
perform the integration over t by using the formula∫ t

0
dt ′eiAt ′

(
1

x − A
B − B

1

x − A†

)
e−iA†t ′

= −ieiAt ′ 1

x − A
B

1

x − A† e−iA†t ′
∣∣∣∣t
0

(C8)

for arbitrary matrices A and B. The second row of Eq. (C2) is
simple to integrate over t since there is only one exponential
depending on time in each term. After integration, we arrive at

D̃
<

(t,t) − D̃
<

(0,0+) = −i
∑

λ=L,R

∫ ∞

−∞

dω

2π
θ (ωc,λ − |ω|)ωfλ(ω)

[
eiΩefft

1

ω − Ωeff

1

α + i
2Γ ′

0

Γ ′
0,λ

1

α − i
2Γ ′

0

1

ω − Ω
†
eff

e−iΩ†
efft

+ 1

ω − Ωeff

1

α + i
2Γ ′

0

Γ ′
0,λ

1

α − i
2Γ ′

0

1

ω − Ω
†
eff

− 1

ω − Ωeff

1

α + i
2Γ ′

0

Γ ′
0,λ

1

α − i
2Γ ′

0

1

ω − Ω
†
eff

ei(ω−Ω
†
eff)t

− e−i(ω−Ωeff)t
1

ω − Ωeff

1

α + i
2Γ ′

0

Γ ′
0,λ

1

α − i
2Γ ′

0

1

ω − Ω
†
eff

]
. (C9)

On the left-hand side, we have the initial-state Green’s function (at t = 0). We are working in the partitioned scheme, i.e., the
systems of different temperatures are coupled at t = 0, so the initial condition should be equal to the uncoupled Green’s function
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as in Eq. (A2) but for the indices in the central region:

D̃
<

(0,0+) = D<(0,0+) = −iαfC(Ωα). (C10)

Here, fC gives the thermal distribution according to which the central system is prepared before it is connected to the reservoirs,
and Ωα is correspondingly the uncoupled Hamiltonian. Now, in Eq. (C9), we may transform back from D̃

<
(t,t) to D<(t,t) by

multiplying with the exponentials from left and right and obtain our final result:

iD<(t,t) = e−iΩefftαfC(Ωα)eiΩ†
efft +

∑
λ=L,R

∫ ∞

−∞

dω

2π
θ (ωc,λ − |ω|)ωfλ(ω)[1 − ei(ω−Ωeff)t ]

× 1

ω − Ωeff

1

α + i
2Γ ′

0

Γ ′
0,λ

1

α − i
2Γ ′

0

1

ω − Ω
†
eff

[1 − e−i(ω−Ω
†
eff)t ], (C11)

which can be written as Eq. (35) in main text by introducing the spectral function Bλ(ω) in Eq. (37).
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