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The nuclear matrix elements (NMEs) corresponding to the neutrinoless double-β (0νββ) decays to excited 0+

states of major experimental interest are calculated. All these decay transitions are electron emitting (0νβ−β−

decays) and take place in the mass A = 76,82,96,100,110,116,124,130,136 nuclei. This work is an extension
of our previous work [Phys. Rev. C 91, 024613 (2015)], where 0νββ decays to the ground states of the same
nuclei were treated. We calculate the NMEs for transitions mediated by both the light (l-NMEs) and the heavy
(h-NMEs) Majorana neutrinos. A higher-QRPA (quasiparticle random-phase approximation) framework, the
multiple-commutator model, is adopted for the calculations, including a previously omitted contribution to the
transitions to two-phonon states. A Bonn G-matrix-based effective nucleon-nucleon interaction is generated
by exploiting the recently proposed isoscalar-isovector decomposition of the particle-particle proton-neutron
interaction parameter, gpp. All the appropriate short-range correlations, nucleon form factors, and higher-order
nucleonic weak currents are included to benchmark our calculations. The relevant nuclear spectroscopy was
checked to validate the nuclear models used. The computed l-NMEs and h-NMEs are compared with the
available other calculations and the relevance of the new included two-phonon term is discussed. The results are
summarized by easy-to-use half-life-Majorana-mass interrelations.

DOI: 10.1103/PhysRevC.93.064306

I. INTRODUCTION

The neutrino-oscillation experiments have succeeded in
gathering precise information on neutrino-mass differences
and neutrino-mixing amplitudes during the past decade [1].
The neutrinoless double-β (0νββ) decay serves as a comple-
mentary means of extracting information on the fundamental
properties of neutrino, like its basic character as a Dirac or
Majorana particle [2–5]. Because the 0νββ decays take place
in atomic nuclei one needs the aid of nuclear-structure physics
to extract quantitative information about neutrino properties
from the results of the 0νββ experiments. This is where
the calculation of the associated nuclear matrix elements
(NMEs) comes into play. Accurate calculation of the NMEs
is a challenging task and a central issue in the present-day
double-β-decay community. A good selection of the presently
used nuclear models and their 0νββ results can be found in
the review [6].

Until quite recently most of the 0νββ efforts have con-
centrated on the electron-emitting (0νβ−β−) decays to the
ground state, 0+

gs, of the daughter nucleus [2]. In the case of the
two-neutrino double-β (2νββ) decay the first experimental
results on the transitions to the first excited 0+ state, 0+

1 ,
in 100Mo and 150Nd have been obtained (see the recent
review [7]). On the theory side, first attempts to compute
the 2νββ-decay rates to excited states in the quasiparticle
random-phase approximation (QRPA) formalism were made
in Refs. [8–11]. Recent theoretical results and references to
earlier ones can be found in Ref. [12].

Until now, no positive signal has been detected in the
0νββ experiments, in particular concerning decays to ex-
cited final states. Attempts have been made to compute the
NMEs related to 0νββ decays to excited 0+ states by using
the QRPA framework [13–19], the interacting shell model
(ISM) [20], and the interacting boson approximation (IBA-

2) [21]. In the QRPA case the basic QRPA was extended to
the multiple-commutator model (MCM) [10,22] by combining
the charge-conserving QRPA (ccQRPA, for the excited states
in an even-even nucleus) with the proton-neutron QRPA
(pnQRPA, for the states of an odd-odd nucleus) using a
common even-even reference ground state. Decay transitions
to the one- and two-ccQRPA-phonon states were considered
and the corresponding transition amplitudes were written
explicitly in Ref. [10]. Earlier, a slightly different formalism,
the two-phonon recoupling approach [8], was used in the
description of the 100Mo decay to the two-phonon 0+ state
in 100Ru.

In the present work we extend the previous MCM cal-
culations by computing 0νβ−β− decays to excited one- and
two-phonon states for all nuclei of major experimental interest,
including also the heavy Majorana-neutrino exchange as a
possible mechanism to mediate 0νββ transitions. At the same
time we extend the two-phonon formalism of Ref. [10] by
adding an extra term in the decay amplitude, previously
omitted as negligible for the light-Majorana-neutrino exchange
but possibly important for the exchange of a heavy Majorana
neutrino. This work is a continuation of our previous work [23]
on 0νββ transitions to the ground state by using the efficient
recursive numerical methods reported in Ref. [24]. Like in
Ref. [23], we adopt the isospin-symmetry restoration scheme
introduced in Ref. [25]. In this scheme one divides the
particle-particle proton-neutron interaction constant, gpp [26],
into isoscalar (T = 0) and isovector (T = 1) parts and fits
the isovector part such that the magnitude of the Fermi NME
of 2νββ decay is pushed to zero, thus restoring the isospin
symmetry. The isoscalar part of gpp we treat as discussed
in Ref. [23]. Like in Ref. [23], we take into account the
appropriate short-range nucleon-nucleon correlations [27–29]
and contributions arising from the induced currents and the
finite nucleon size [30].
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This article is organized as follows. In Sec. II we introduce
the MCM expressions for the one- and two-phonon transition
amplitudes. In Sec. III we display and discuss the obtained
double-β-decay results for the l-NMEs and h-NMEs. The final
conclusions are drawn in Sec. IV.

II. MCM TRANSITION AMPLITUDES

The computational formalism to obtain the 0νββ-decay
amplitudes for the transitions to the ground state was thor-
oughly discussed in Refs. [23,24] and we refer the reader
to these sources for further details. Here we display only
those expressions that are essential for understanding the
background of the present calculations of transitions to the
excited 0+ states.

A. Structure of the 0νββ-decay NME

We start by introducing the 0νββ-decay NME that was
written in Eq. (38) of Ref. [23] for the ground-state-to-ground-
state decays. Its extension to ground-state-to-excited-state
decays can be written in the form

M
(0ν)
K =

∑
Jπ ,k1,k2,J ′

∑
pp′nn′

(−1)jn+jp′+J+J ′√
2J ′ + 1

×
{

jp jn J
jn′ jp′ J ′

}
(pp′ : J ′||OK ||nn′ : J ′)

× (
0+

f ||[c†p′ c̃n′ ]J ||Jπ
k1

)〈
Jπ

k1

∣∣Jπ
k2

〉(
Jπ

k2
||[c†pc̃n]J ||0+

i

)
,

(1)

where k1 and k2 label the different pnQRPA solutions for a
given multipole Jπ , stemming from the parent and daughter
nuclei of the 0νββ decay. The operatorsOK in the reduced two-
particle matrix element denote the Fermi (K = F), Gamow-
Teller (K = GT), and tensor (K = T) parts of the double-β
operator, given explicitly in Ref. [23]. The two-particle matrix
element contains also the appropriate short-range correlations,
higher-order nucleonic weak currents, and nucleon form
factors [23]. The last line of (1) contains the one-body
transition density between the initial ground state (0+

i ) and the
intermediate state Jπ

k2
, and it can be obtained from a pnQRPA

calculation as discussed in Sec. II C of Ref. [23]. The one-body
transition density between the intermediate state Jπ

k2
and the

final 0+ state (0+
f ) can be evaluated for the 0+ ground state by

the procedure outlined in Sec. II C of Ref. [23]. To evaluate it
for the transitions to the excited 0+ states, one has to resort to
the higher-QRPA MCM formalism presented in the following
section. The term between the one-body transition densities
is the overlap between the two sets of intermediate states
emerging from the two pnQRPA calculations based on the
parent and daughter even-even ground states.

A possible serious shortcoming of the present QRPA
calculations, and also of many other nuclear-structure cal-
culations in different model frameworks, is that they may
contain spurious center-of-mass (c.m.) contributions which
contaminate the computed nuclear wave functions. Because
the c.m. momentum operator is a vector, of spin-parity Jπ =
1−, the spurious components tend to affect the computed 1−

states. For general considerations of restoring the Galilean
invariance in nuclear many-body problem, see Ref. [31] and the
references therein. There exists an exact method for the RPA
calculations to remove the c.m. contributions from the wave
functions [32] and this method can be probably generalized
to the QRPA case. However, we leave a more quantitative
analysis considering these c.m. effects for the future.

B. Decay amplitudes in the MCM formalism

Let us write the solution of the pnQRPA equations (see,
e.g., Ref. [33]),

|ω M〉 = q†(ω,M)|QRPA〉
=

∑
pn

(
Xω

pn[a†
pa†

n]JM − Yω
pn[a†

pa†
n]†JM

)|QRPA〉, (2)

where we use the shorthand ω = Jπ
k for the kth intermediate

state of spin parity Jπ . Here |QRPA〉 is the QRPA ground
state. However, the first excited 2+ state, 2+

1 , in an even-even
(daughter) nucleus is described in the ccQRPA formalism, and
the corresponding wave function can be presented as (see [33])

|2+
1 M〉 = Q†(2+

1 ,M)|QRPA〉
=

∑
a�b

[
X

2+
1

abA
†
ab(2M) − Y

2+
1

ab Ãab(2M)
]|QRPA〉, (3)

where the normalized two-quasiparticle operators are defined
as

A
†
ab(IM) = Nab(I )[a†

aa
†
b]IM, (4)

Nab(I ) =
√

1 + δab(−1)I

1 + δab

, (5)

for any state of angular momentum I in the even-even nucleus.
We denote also Ãab(IM) ≡ (−1)I+MAab(I,−M). It should
be noted that here the summation over a � b guarantees that
there is no double counting of two-quasiparticle configurations
and this with the normalized operators (4) guarantees that the
wave function is properly normalized with the normalization
condition [33] ∑

a�b

(∣∣X2+
1

ab

∣∣2 − ∣∣Y 2+
1

ab

∣∣2) = 1. (6)

The first 2+ state of an even-even vibrational nucleus (which
we assume our 0νββ daughter nuclei are) is usually very
collective [33] and we refer to the creation operator Q†(2+

1 ,M)
of (3) as a creation operator for a ccQRPA phonon.

For calculational convenience it is preferable to go from the
restricted sum of (3) to a nonrestricted one by introducing the
correspondence

|2+
1 M〉 = Q̄†(2+

1 ,M)|QRPA〉
=

∑
ab

[
X̄

2+
1

ab Ā
†
ab(2M) − Ȳ

2+
1

ab
˜̄Aab(2M)

]|QRPA〉, (7)

where the barred two-quasiparticle operators are the ones of (4)
without the normalizer Nab(I = 2). Then the normalization
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condition of the 2+
1 state reads

∑
ab

(∣∣X̄2+
1

ab

∣∣2 − ∣∣Ȳ 2+
1

ab

∣∣2) = 1

2
. (8)

At the same time the two kinds of X and Y amplitudes are
related by

X̄ω
ab =

√
1 + δab

2
Xω

ab, Ȳ ω
ab =

√
1 + δab

2
Yω

ab, a � b, (9)

for any ω = Iπ
n , n denoting the nth even-even daughter state of

spin-parity Iπ . The barred amplitudes are symmetrized ones
and possess the convenient symmetry relations (to generate
amplitudes with a > b)

X̄ω
ba = (−1)ja+jb+J+1X̄ω

ab, Ȳ ω
ba = (−1)ja+jb+J+1Ȳ ω

ab. (10)

Using the above-defined barred operators, one can write
the two-phonon states of the even-even daughter nucleus in
the form

|I (2+
1 2+

1 ) MI 〉 = 1√
2

[Q̄†(2+
1 )Q̄†(2+

1 )]IMI
|QRPA〉. (11)

Let us denote the one-phonon states in the 0νββ daughter
nucleus in general by

|ωf MI 〉 = Q̄†(ωf ,MI )|QRPA〉
=

∑
ab

[
X̄

ωf

ab Ā
†
ab(IMI ) − Ȳ

ωf

ab
˜̄Aab(IMI )

]|QRPA〉,

(12)

with ωf = Iπ
n identifying the nth Iπ state. Then, in the

MCM framework the one-body transition densities from the
intermediate |ω M〉 state (2) to the final one-phonon state (12)
and two-phonon state (11) are calculated by first writing the
transition densities as ground-state-averaged multiple commu-
tators and then applying the quasiboson approximation [33] by
replacing the QRPA vacuum by the BCS vacuum when taking
the ground-state average. The averaged multiple commutators
then become

〈ωf MI |β−
Lμ(pn)|ω M〉

≈ 〈|[[Q̄(ωf ,MI ),β−
Lμ(pn)],q†(ω,M)]|〉, (13)

〈I (2+
1 2+

1 ) MI |β−
Lμ(pn)|ω M〉

≈ 〈|[[Q̄(2+
1 ,M2),[Q̄(2+

1 ,M1),β−
Lμ(pn)]],q†(ω,M)]|〉, (14)

where |〉 is the BCS ground state and we have denoted the β−
type of transition density operator by

β−
Lμ(pn) ≡ [c†pc̃n]Lμ, (15)

with c
†
p creating a proton on orbital p and c̃n annihilating a

neutron on orbital n.
To convert (13) and (14) to reduced transition densities,

needed in Eq. (1), we can use the Wigner-Eckart theorem [33].
We then obtain after a lengthy but straightforward calculation
the needed one-body transition densities for the one-phonon

final state

(ωf ||[c†pc̃n]L||ω) = 2Î L̂Ĵ (−1)I+L

×
∑
p′

(−1)jn+jp′ (X̄ωf

p′pXω
p′nupun − Ȳ

ωf

p′pYω
p′nvpvn

)

×
{

J L I
jp jp′ jn

}
(16)

+ 2Î L̂Ĵ (−1)I+J

×
∑
n′

(−1)jp+jn
(−X̄

ωf

n′nX
ω
pn′vpvn + Ȳ

ωf

n′nY ω
pn′upun

)

×
{

J L I
jn jn′ jp

}
, (17)

and for the two-phonon final state

(I (2+
1 2+

1 )||[c†pc̃n]L||ω) = T
(1)ω
ILJ + T

(2)ω
ILJ , (18)

with

T
(1)ω
ILJ = 40√

2
Î L̂Ĵ (−1)J+L+1

×
∑
p′n′

(
X̄

2+
1

pp′X̄
2+

1
nn′X

ω
p′n′upvn + Ȳ

2+
1

pp′ Ȳ
2+

1
nn′Y

ω
p′n′vpun

)

×
⎧⎨
⎩

jp jp′ 2
jn jn′ 2
L J I

⎫⎬
⎭, (19)

T
(2)ω
ILJ = − 20√

2
Î L̂Ĵ

⎡
⎣∑

p′p′′

(
Ȳ

2+
1

p′′pX̄
2+

1
p′p′′X

ω
p′nvpun

+ X̄
2+

1
p′′pȲ

2+
1

p′p′′Y
ω
p′nupvn

)K(1)
ILJ

+
∑
n′n′′

(
Ȳ

2+
1

n′′nX̄
2+

1
n′n′′X

ω
pn′vpun

+ X̄
2+

1
n′′nȲ

2+
1

n′n′′Y
ω
pn′upvn

)K(2)
ILJ

⎤
⎦. (20)

The auxiliary geometric factors read

K(1)
ILJ = (−1)L+I+jp+jn

{
2 2 I
jp′ jp jp′′

}{
J L I
jp jp′ jn

}
,

(21)

K(2)
ILJ = (−1)J+L+jn+jn′+1

× K(1)
ILJ (jp′ → jn′ ; jp′′ → jn′′ ; jn ↔ jp)

= (−1)J+I+jp+jn′
{

2 2 I
jn′ jn jn′′

}{
J L I
jn jn′ jp

}
.

(22)

In the earlier works [10,13–19,34] the latter term, T
(2)ω
ILJ , of

the two-phonon transition density (18) was omitted owing
to its potentially negligible contribution to the β-decay and
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double-β-decay rates. Here we take full account of (18) to
study quantitatively the contribution of the omitted term to the
0νββ decays mediated by a light or a heavy Majorana neutrino.

III. RESULTS

A. Model parameters and 0+ excited states

The model parameters were fixed by the procedures ad-
vanced in detail in our previous work [23], in Sec. III A. There
the construction of the various single-particle model spaces
with their single-particle energies is thoroughly explained.
For the pnQRPA the particle-hole parameter gph and the
particle-particle parameter gpp are adopted. The gpp parameter
is further decomposed into isoscalar (T = 0) and isovector
(T = 1) parts and the isovector part is fixed such that the
magnitude of the Fermi NME of 2νββ decay becomes zero.
This guarantees the restoration of the isospin symmetry [25].
The isoscalar part of gpp was fixed in a way discussed in
Ref. [23].

To describe the excited states of the 0νββ daughter nuclei,
we use the ccQRPA with the associated particle-hole parameter
Gph, and the particle-particle parameter Gpp. For the 2+ mode
the Gph parameter we fixed by reproducing the excitation
energy of the first (collective) 2+ state in the ccQRPA
calculation. For the particle-particle parameter we used the
default value Gpp = 1.0 because the value of this parameter
has practically no effect on the properties of the 2+

1 state
used in the two-phonon calculations. The 0+ state, used in
the calculations of decay transitions to the one-phonon states,
was fitted to its experimental energy by varying simultaneously
the Gph and Gpp parameters, removing at the same time the
spurious lowest 0+ root of the ccQRPA by forcing its energy
to zero [35]. The same nucleon-nucleon interaction (Bonn G
matrix) and BCS vacuum was used in the pnQRPA and the
ccQRPA calculations.

In the following we review our results concerning
the l-NMEs and h-NMEs of the mass A = 76,82,96,100,
110,116,124,130,136 nuclear systems. In the mass A =
76,82,136 systems the two-phonon 0+ state in the daughter
nuclei 76Se ,82Kr, and 136Ba is clearly identifiable [13,17]
at energies E(0+

2-ph) = 1.1223,1.4876,1.5790 MeV, respec-
tively. In Ref. [16] the mass A = 124,130,136 systems
were discussed and the two-phonon states in the daughter
nuclei 124Te and 130Xe were identified at energies E(0+

2-ph) =
1.6573,1.7935 MeV, respectively. In Ref. [14] the two-phonon
states in the daughter nuclei 96Mo and 116Sn were identi-
fied as the second excited 0+ states at energies E(0+

2-ph) =
1.330,2.0275 MeV, respectively. At the same time the first ex-
cited 0+ states in these nuclei were assumed to be one-phonon
vibrational states at energies E(0+

1-ph) = 1.1481,1.7569 MeV,

respectively. In Refs. [11,15] the first excited 0+ state in 100Ru
was treated as a two-phonon state [E(0+

2-ph) = 1.1303 MeV]
and the second excited 0+ state was treated as a one-phonon
vibrational state [E(0+

1-ph) = 1.7410 MeV]. Finally, the first

excited 0+ state in 110Cd is a very likely two-phonon excitation
at an energy E(0+

2-ph) = 1.4731 MeV (see Ref. [18]). In the
present work we use all the aforementioned assignments of

FIG. 1. Theoretical and experimental low-energy 0+ spectra for
the nuclei 96Mo and 116Sn. The experimental information is found
from Ref. [36] (96Mo) and Ref. [37] (116Sn).

energies and characters of the excited 0+ states in the 0νββ
daughter nuclei in our computations.

B. Comparison of the calculated nuclear structure
with experiment

The purpose of this section is to test the validity of the
adopted nuclear-structure models by comparing the calculated
quantities with available experimental data. These quantities
include the low-energy 0+ and 2+ spectra, the two-phonon
energies, and the B(E2) values.

1. Low-energy 0+ and 2+ spectra

Let us first look at the energy spectra of the low-lying 0+
and 2+ excitations. The two-phonon states, used to model
the structure of the low-energy 0+ excitations in this paper,
are built from two QRPA quadrupole phonons. Moreover, the
first 0+ excitation in nuclei 96Mo and 116Sn and the second
0+ excitation in the nucleus 100Ru are treated as one-phonon
states. Thus, comparing the theoretical 0+ and 2+ excitation
energies with the corresponding experimental spectra may give
some preliminary hint about the validity of the one- and two-
phonon wave functions used in the computation of the NMEs.

Figure 1 presents the theoretical and experimental low-
energy 0+ spectra for the nuclei 96Mo and 116Sn. The energy
of the 0+

2 two-phonon state in 96Mo compares well with the
experimental energy of 1.330 MeV, although the experimental
value is not certain, as indicated by the question mark (?). The
value shown here is from the latest Nuclear Data Sheets [36]
analyzing this mass region. In the nucleus 116Sn the predicted
two-phonon state is found at the energy of 2.584 MeV.
This overestimates by a half of a MeV the corresponding
experimental energy at 2.027 MeV. However, the rest of the 0+
spectrum compares very well with the experimental levels. It
seems that low-energy 0+ spectra in 96Mo and 116Sn are quite
well modeled as one- and two-phonon excitations.

Figure 2 shows the theoretical and experimental low-energy
2+ spectra for the nuclei 96Mo and 116Sn. For 96Mo the
predicted two-phonon state at the energy of 1.556 MeV
compares well with the corresponding experimental energy.
Also the two higher one-phonon states at 2.118 and 2.660 MeV
can be identified from the experimental spectrum. In 116Sn
the predicted two-phonon state at the energy of 2.584 MeV
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FIG. 2. Theoretical and experimental low-energy 2+ spectra for
the nuclei 96Mo and 116Sn. The experimental information is found
from Ref. [36] (96Mo) and Ref. [37] (116Sn).

again overestimates the experimental energy of 2.112 MeV.
The second and third one-phonon states at the energies of 2.436
and 2.537 MeV, respectively, are in satisfactory agreement with
the corresponding experimental levels with energies 2.225 and
2.650 MeV.

Figure 3 shows the theoretical and experimental low-energy
2+ spectra for the nuclei 82Kr and 124Te. In the nucleus 82Kr
the predicted two-phonon state at the energy of 1.550 MeV is
in good agreement with the corresponding experimental level
at 1.475 MeV. One can identify the higher experimental levels
as one-phonon excitations as well, although the multipolarities
of the higher levels are not certain. The predicted two-phonon
state of the nucleus 124Te at the energy of 1.206 MeV is also
in good agreement with the experimental level at 1.326 MeV.
The higher energy experimental spectrum is now much more
dense and not given by the one-phonon excitations alone.

Figure 4 displays theoretical and experimental low-energy
0+ and 2+ spectra for the nuclei 82Kr and 130Xe, respectively.
In 82Kr the two-phonon model predicts a correct energy for the
first 0+ excitation. The second excited state at the energy of
2.139 MeV compares favorably with experiment as well. The
low-energy 0+ spectrum in 82Kr seems to have a clear one- and

FIG. 3. Theoretical and experimental low-energy 2+ spectra for
the nuclei 82Kr and 124Te. The experimental information is found from
Ref. [38] (82Kr) and Ref. [39] (124Te).

FIG. 4. Theoretical and experimental low-energy 0+ and 2+

spectra for the nuclei 82Kr and 130Xe, respectively. The experimental
information is found from Ref. [38] (82Kr) and Ref. [40] (130Xe).

two-phonon structure, as was also the case for the 2+ spectrum.
The two-phonon model also predicts a correct energy for the
second 2+ excitation in the nucleus 130Xe. Identification of
the higher experimental states as one-phonon states is not
so clear because of the uncertainties in the experimental
multipolarities and because of the (thus resulting) higher level
density. The experimental level at the energy of 3.230 MeV is
given a relatively large error estimate ±0.200 MeV so it might
compare favorably with the QRPA state at 3.542 MeV.

Figure 5 presents the theoretical and experimental low-
energy 0+ and 2+ spectra for the nucleus 136Ba. The two-
phonon model works very well in predicting both the 0+

1
and the 2+

2 energies. In case of the higher-energy states, one
can identify the QRPA-predicted 2+ one-phonon states at the
energies 2.167 and 2.235 MeV with the experimental states at
the energies 2.129 and 2.223 MeV, respectively. Of course, one
would also need to investigate the electromagnetic properties
of these states to confirm this identification. The higher QRPA
0+ spectrum compares nicely with the experimental levels as
well. Based on this comparison it seems that the low-energy 0+
and 2+ excitations in 136Ba are given by one- and two-phonon
excitations alone.

FIG. 5. Theoretical and experimental low-energy 0+ and 2+

spectra for the nucleus 136Ba. The experimental information is found
from Ref. [41].
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TABLE I. Comparison of the theoretical energies and B(E2) values, given by the two-phonon model, with the available experimental
data. The source of the experimental values is displayed next to each nuclear symbol. Error estimates for the experimental B(E2) values are
displayed if they were given in the cited references. The adopted effective charges are listed in the last row of the table. Energies are given in
units of MeV and all B(E2) values are given in Weisskopf units.

Quantity 76Se [42] 82Kr [38] 96Mo [36] 100Ru [43] 110Cd [44] 116Sn [37] 124Te [39] 130Xe [40] 136Ba [41]

E(2+
1 )exp 0.559 0.777 0.778 0.540 0.658 1.294 0.603 0.536 0.818

E(2+
1 )th 0.562 0.775 0.778 0.539 0.659 1.294 0.603 0.536 0.818

E(0+
1 )exp 1.122 1.488 1.130 1.473 1.657 1.794 1.579

E(0+
1 )th 1.124 1.550 1.078 1.318 1.206 1.072 1.636

E(2+
2 )exp 1.216 1.475 1.498 1.362 1.476 2.112 1.326 1.122 1.551

E(2+
2 )th 1.124 1.550 1.556 1.078 1.318 2.584 1.206 1.072 1.636

E(0+
2 )exp 1.330 2.027

E(0+
2 )th 1.556 2.584

E(4+
1 )exp 1.331 1.821 1.628 1.226 1.542 2.391 1.249 1.205 1.867

E(4+
1 )th 1.124 1.550 1.556 1.078 1.318 2.584 1.206 1.072 1.636

B(E2; 2+
1 → 0+

gs)exp 44 (1) 21.3 (7) 20.7 (4) 35.6 (4) 27.0 (8) 12.4 (4) 31.1 (5)
B(E2; 2+

1 → 0+
gs)th 43.3 21.5 20.7 33.4 26.1 12.1 30.5

B(E2; 0+
1 → 2+

1 )exp 47 (22) 15 (5) 35 (5) ? 20 (4)
B(E2; 0+

1 → 2+
1 )th 86.6 43.1 66.7 52.3 61.0

B(E2; 0+
2 → 2+

1 )exp ? 0.49 (7)
B(E2; 0+

2 → 2+
1 )th 41.0 24.1

B(E2; 2+
2 → 2+

1 )exp 43 (3) 5.5 16.4 (24) 30.9 (4) 30 (5) 7.7 (8) ?
B(E2; 2+

2 → 2+
1 )th 86.6 43.1 41.0 66.7 52.3 24.1 61.0

B(E2; 4+
1 → 2+

1 )exp 71 (2) 32 (12) 41 (7) 51 (4) 42 (9) 38 (21) 97.529 (4)
B(E2; 4+

1 → 2+
1 )th 86.6 43.1 41.0 66.7 52.3 24.1 61.0

B(E2; 2+
2 → 0+

gs)exp 1.21 (10) 0.094 1.10 (11) 1.9 (+4–5) 1.35 (20) 0.118 (7) 0.49 (+5–10)
B(E2; 2+

2 → 0+
gs)th 0.0 0.0 0.0 0.0 0.0 0.0 0.0

e
(p)
eff e

(n)
eff 1.2 0.2 1.4 0.4 1.2 0.2 1.11 0.11 1.25 0.25 1.42 0.42 1.25 0.25

2. Two-phonon energies and B(E2) values

In Table I we have listed the two-phonon energies and
B(E2) values for all the daughter nuclei of decays considered
in this paper. Some of the two-phonon energies were already
visible in Figs. 1–5. For nuclei 130Xe and 136Ba very little
experimental data about the considered B(E2) values is
known, so only the energies are displayed in Table I. The
theoretical values in Table I are given by the following
very simple systematics, valid for the two-quadrupole-phonon
excitations [33],

B(E2; 0+
2-ph,2

+
2-ph,4

+
2-ph →2+

1-ph) = 2B(E2; 2+
1-ph →0+

gs) (23)

B(E2; 2+
2-ph → 0+

gs) = 0 (24)

E(0+
2-ph,2

+
2-ph,4

+
2-ph) = 2E(2+

1-ph), (25)

where the state 2+
1-ph is now the QRPA 2+

1 state. The states
0+

2-ph, 2+
2-ph, and 4+

2-ph are identified as the states 0+
1 , 2+

2 , and 4+
1

in nuclei 76Se ,82Kr ,100Ru ,110Cd ,124Te ,130Xe, and 136Ba and
as the states 0+

2 , 2+
2 , and 4+

1 in nuclei 96Mo and 116Sn. Energies
of the QRPA 2+

1 states were adjusted to the corresponding
experimental energies. The proton and neutron effective
charges e

(p)
eff and e

(n)
eff were taken to obey the usual relation

e
(p)
eff = 1 + e

(n)
eff [45]. Then e

(n)
eff was adjusted in such a way that

the experimental B(E2; 2+
1 → 0+

gs) value is reproduced by the
theory. The thus-obtained values for the effective charges are
listed in the last row of Table I. The rest of the theoretical
B(E2) values, listed in Table I in Weisskopf units, then follow

from the two-phonon formulas (23) and (24). In Table I
we have also compared the theoretical energies and B(E2)
values with available experimental data. It can be seen that the
experimental energies agree quite well with the energies of the
degenerate two-phonon triplet given by Eq. (25). However, in
case of the B(E2) values it seems that only the 4+

1 states follow
closely the two-phonon prediction (23). For the states 0+ and
2+ the two-phonon estimate (23) is usually larger than the
experimental value by a factor of two. Still, it is remarkable
that the experimental B(E2; 2+

2 → 0+
gs) values are close to

zero and confirm the two-phonon picture where these B(E2)
values are exactly zero. Contrary to the general trends the
two-phonon picture fails completely in the description of the
0+

2 → 2+
1 E2 transition in the nucleus 116Sn. This could have

consequences for the reliability of the 0νββ NMEs discussed
in the next sections. One should also mention that the use of the
microscopic two-phonon description violates slightly the Pauli
principle because both 2+ phonons contain the same intrinsic
structures. However, this violation is not expected to affect
significantly the final results in two-phonon calculations [46].
Overall, it seems that the two-phonon model of Eqs. (23)–(25)
gives pretty good estimates for most of the energies and B(E2)
values of relevance in this work.

C. Matrix elements for light-neutrino exchange

We start the presentation of our 0νββ results with a
discussion of the NMEs corresponding to the exchange
of a light Majorana neutrino (the l-NMEs). The l-NMEs
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TABLE II. Values of the computed l-NMEs for 0+
gs −→ 0+

1 transitions. Columns 3–5 show the decomposition of the presently calculated
total NMEs (column 6) in terms of the Fermi, Gamow-Teller, and tensor contributions. Our present total NMEs are compared with the IBM-2
NMEs of Ref. [21] in the second-to-last column and with the earlier QRPA computations of Refs. [14,15,17,18] in the last column.

Nuclear transition gA l-NMEs, present results M (0ν) [21] M (0ν)

M
(0ν)
F M

(0ν)
GT M

(0ν)
T M (0ν)

76Ge −→ 76Se 1.00 −1.389 2.450 −0.021 3.818 5.50 ± 0.81 [17]
1.26 −1.379 2.525 −0.018 3.376 2.46 4.87 ± 0.73 [17]

82Se −→ 82Kr 1.00 −0.585 1.228 −0.008 1.805 1.72 ± 0.34 [17]
1.26 −0.583 1.249 −0.008 1.609 1.23 1.53 ± 0.31 [17]

96Zr −→ 96Mo 1.00 −1.559 3.948 −0.078 5.429
1.26 −1.549 3.800 −0.071 4.704 0.04 1.96 [14]

100Mo −→ 100Ru 1.00 −0.299 0.461 −0.007 0.753
1.26 −0.297 0.480 −0.007 0.661 0.99 0.31 [15]

110Pd −→ 110Cd 1.00 −0.230 0.849 0.008 1.087 1.552 [18]
1.26 −0.227 0.844 0.011 0.997 0.46 1.488 [18]

116Cd −→ 116Sn 1.00 −0.214 1.284 −0.019 1.516
1.26 −0.214 1.269 −0.018 1.422 0.85 0.25 [14]

124Sn −→ 124Te 1.00 −1.980 4.847 −0.005 6.822 6.747 [18]
1.26 −1.958 5.004 0.000 6.238 2.70 6.130 [18]

130Te −→ 130Xe 1.00 −2.003 5.067 0.006 7.075
1.26 −2.002 5.089 0.007 6.357 3.07

136Xe −→ 136Ba 1.00 −1.640 4.596 0.011 6.247 5.89 ± 1.03 [17]
1.26 −1.640 4.567 0.011 5.611 1.82 5.34 ± 0.94 [17]

corresponding to the 0+
gs −→ 0+

1 decay transitions have been
decomposed according to the Fermi, Gamow-Teller, and tensor
contributions in Table II. The tensor contribution seems to
become negligible for the transitions to the excited states. It has
some influence to the ground-state-to-ground-state transitions,
although the effect is quite small in that case also [23]. We
have compared our present results with the IBM-2 NMEs of
Ref. [21] in the second-to-last column of Table II. Agreement
between the QRPA and IBM-2 calculations is satisfactory
for the lighter nuclei, larger deviations occurring for the
heavier nuclei. There seems to be a notable discrepancy
in the case of the decay of 96Zr. The IBM-2 results are
computed by using the Miller-Spencer (M-S) parametrization
of the Jastrow function which imitates the effect of the
hard-core nucleon-nucleon repulsive force on the two-body
wave functions. In this work we have used the softer CD-Bonn
parametrization. The difference between the NMEs calculated
with different short-range correlations is, however, quite small
for the decays to the two-phonon excited states [17]. This is
one of the different features between the ground-state and the
excited-state transitions. For the ground-state transitions the
difference between the M-S and CD-Bonn parametrizations
is large (of the order of 1.0), whereas for the two-phonon
excited-state transitions it is rather small (of the order of 0.1).
This property was noticed in Ref. [17], where the effects of the
Unitary Correlation Operator Method and Jastrow short-range
correlations on the two-phonon transitions were compared. In
case of the nucleus 96Zr there exists a strong SRC dependence
similar to the ground-state decays, but this dependence is not
even nearly strong enough to suppress the NME to the level of
the IBM-2 result.

We have also compared our present results with the earlier
QRPA calculations of Refs [14,15,17,18] in the last column of

Table II. In these earlier computations the second term (20) of
the two-phonon transition density was omitted as negligible.
In the calculations of Refs. [14,15] the computational scheme
was based on the relativistic harmonic confinement model
(RHCM; see Ref. [47]) instead of the more phenomenological
standard formulation used in this work. In RHCM, the nucleon
current emerges from the quark dynamics inside the nucleons.
No short-range correlations are taken into account beyond
the RHCM-predicted nucleon form factors. In addition, the
coupling parameters gV and gA do not explicitly appear
because they are set to unity on the quark level and calculated
from the quark dynamics on the nucleon level [2,48]. This
is why the comparison of the present results, obtained in
the standard formulation, and the results of Refs. [14,15]
is not straightforward. It was noticed in Ref. [17] that
in the RHCM formulation the decays to the two-phonon
states are suppressed more than in the standard formulation.
It seems, according to our present calculations, that also
the decays to the one-phonon states (decays of 96Zr and
116Cd; see Table II) are suppressed more in the RHCM
formulation.

In Figs. 6(a)–6(i) we have plotted the QRPA multipole
decomposition of the total l-NME M (0ν) for all nuclei con-
sidered in this paper and for 0+

gs −→ 0+
1 decay transitions.

All decompositions are calculated with the bare value of
the axial-vector coupling gA = 1.26. Matrix elements depend
mostly on the details of the 1+ multipole. In some nuclei
also the 0+, 2+, and 2− contributions play a significant role.
Structure of the multipole distribution seems to be the same
for one- and two-phonon transitions.

The l-NMEs corresponding to the 0+
gs −→ 0+

2 transitions
have been decomposed according to the Fermi, Gamow-Teller,
and tensor contributions in Table III. The l-NMEs for these
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FIG. 6. Multipole decomposition of the l-NME M (0ν) for nuclei 76Ge, 82Se, 96Zr, 100Mo, 110Pd, 116Cd, 124Sn, 130Te, and 136Xe for transitions
to the first excited state in the corresponding daughter nuclei.

transitions are usually suppressed by one order of magnitude
relative to the 0+

gs −→ 0+
1 matrix elements and because of

this are probably not so interesting from the point of view of
experimental detection of the 0νββ.

In Fig. 7 we have analyzed the effect of the previously omit-
ted second term (20) of the two-phonon transition density on
the total l-NMEs. For the heavier nuclei (116Cd ,124Sn ,130Te,
and 136Xe) the shift caused by the second term is quite small
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TABLE III. Values of the computed l-NMEs for 0+
gs −→ 0+

2

transitions. Columns 3–5 show the decomposition of the presently
calculated total NMEs (column 6) in terms of the Fermi, Gamow-
Teller, and tensor contributions.

Nuclear transition gA l-NMEs

M
(0ν)
F M

(0ν)
GT M

(0ν)
T M (0ν)

96Zr −→ 96Mo 1.00 −0.238 0.416 −0.000 0.653
1.26 −0.234 0.460 −0.000 0.607

100Mo −→ 100Ru 1.00 −0.005 0.562 0.015 0.582
1.26 −0.007 0.628 0.016 0.648

116Cd −→ 116Sn 1.00 −0.049 0.221 0.004 0.274
1.26 −0.049 0.219 0.004 0.254

(2%–10%) and the omission of (20) seems to be a good
approximation indeed. The second term has a larger influence
on the matrix elements of the lighter nuclei. For 96Zr and
100Mo the percentage suppression of the NMEs is actually
quite significant (34% and 44%, respectively). The reason for
this suppression can be seen from the pair-angular-momentum
decompositions of the matrix elements. In Figs. 8(a)–8(d)
we have plotted the pair-angular-momentum decompositions
for nuclei 76Ge ,82Se ,100Mo, and 136Xe with and without the
term (20) included. It is seen from the figures that the new term
basically switches on the J ′ = 0 contribution, which becomes
comparable in magnitude with the earlier dominating J ′ =
2 contribution. The two angular-momentum contributions
interfere destructively, which causes the suppression of the
matrix elements. Similar cancellations between the J ′ = 0
and J ′ = 2 contributions are observed also in the shell-model
calculations [49], although in the shell model the effect seems
to be more intense, leading to more suppressed NMEs. In
Figs. 9(a) and 9(b) we have plotted the pair decompositions
also for the first-excited-state transitions in nuclei 96Zr and
116Cd. In these transitions the final state is a one-phonon
vibrational state as described in Sec. III A. The structure of
the pair decomposition is more simple in the one-phonon
case than in the two-phonon case, the J ′ = 0 part clearly

0
1
2
3
4
5
6
7
8

M
(0

ν
)
(0

+ g
s
−→

0+ 2
−

p
h
)

-21 %

76Ge
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82Se
-34 %

96Zr
-44 %

100Mo
-24 %

110Pd
-10 %

116Cd
-4 %

124Sn
-5 %

130Te
-2 %

136Xe

FIG. 7. Effect of the previously omitted second term of the two-
phonon transition density (20) on the total l-NMEs. Dark (light) gray
bars give the matrix element without (with) the second term (20)
included. The lowest row of numbers displays the shifts of the NMEs
in percents.

dominating over the rest of the contributions. The destructive
interference effect is also absent, leading to potentially larger
matrix elements.

The 0νββ transition operators OK in the matrix element
expression (1) depend the relative radial coordinate r between
the two decaying neutrons (see the explicit expressions for
the transition operators in Ref. [23]). In Figs. 10(a) and 10(b)
we have plotted the radial dependence of the matrix elements
M

(0ν)
F , M

(0ν)
GT , and the full NME M (0ν) for the nuclei 76Ge

and 96Zr. The tensor matrix element was omitted owing to
its negligible size. The curves in the figures correspond to
transitions to the first excited 0+ states. Complete matrix
elements are found by integrating over the radial curves

M
(0ν)
K =

∫ ∞

0
drM

(0ν)
K (r). (26)

The two sets of curves shown have very different shapes.
This difference can be traced back to the different structure
of the decay final states. For 76Ge the final state has a
two-phonon structure, whereas for 96Zr the final state is a basic
one-phonon excitation. The radial curves for 76Ge reveal why
the two-phonon transitions do not show strong dependence on
the parametrization of the short-range-correlation effects. A
large contribution to the NME comes from higher relative
distances, so the SRC effects play only a minor role. By
contrast, for the ground-state-to-ground-state transitions most
of the NME seems to come from shorter relative distances
r � 2 fm [23,50], which leads to a strong SRC dependence for
those decays. The radial curves for 96Zr resemble more those
found for the ground-state decays. Most of the matrix element
comes from short relative distances leading again to a more
intense SRC dependence.

D. Matrix elements for heavy-neutrino exchange

Next we present our results for the NMEs corresponding to
the exchange of a heavy Majorana neutrino (the h-NMEs). The
h-NMEs corresponding to the 0+

gs −→ 0+
1 decay transitions are

decomposed according to the Fermi, Gamow-Teller, and tensor
contributions in Table IV. Unlike the l-NMEs, the h-NMEs
depend strongly on the parametrization of the short-range
correlation effects. In this respect they behave similarly to the
ground-state transitions. Because of this, we have computed
the h-NMEs also with the M-S parametrization to facilitate a
more straightforward comparison with the M-S parametrized
IBM-2 NMEs of Ref. [21], displayed in the last column of
Table IV. In addition to this, we have also included in Table IV
the h-NMEs computed without the second term (20) of the
two-phonon transition density and by using the M-S SRC.
Present QRPA results seem to be only in a partial agreement
with the IBM-2 calculations. There exists notable differences
for the nuclei 96Zr and 110Pd. It was observed in our previous
work [23] that for the ground-state decays the IBM-2 h-NMEs
are always, approximately, by a factor of 2 smaller than
the corresponding QRPA h-NMEs. This systematic deviation
seems to be lost for transitions to the excited states. In some
cases the IBM-2 NMEs are larger than the corresponding
QRPA NMEs in other cases they are smaller, as one notices
from Table IV.
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TABLE IV. Values of the computed h-NMEs for 0+
gs −→ 0+

1 transitions. The columns 3–5 show the decomposition of the presently
calculated total NMEs (column 6) in terms of the Fermi, Gamow-Teller, and tensor contributions. The extra columns of matrix elements
(columns 7 and 8) are calculated with the M-S parametrization of the SRC. In the matrix elements of the column 8, the second term (20) of the
two-phonon transition density is omitted. Our present results are compared with the IBM-2 calculations [21] in the last column.

Nuclear transition gA h-NMEs, present results M (0ν) [21]

M
(0ν)
F M

(0ν)
GT M

(0ν)
T M (0ν) M (0ν)(M-S) M (0ν) [M-S + no term (20)]

76Ge −→ 76Se 1.00 −7.34 8.83 −0.19 15.97
1.26 −7.34 11.73 −0.15 16.20 10.94 34.51 18.5

82Se −→ 82Kr 1.00 −6.81 14.79 0.17 21.77
1.26 −6.82 15.65 0.16 20.10 10.21 16.24 8.14

96Zr −→ 96Mo 1.00 −78.08 194.38 −9.43 263.04
1.26 −78.21 184.72 −8.34 225.64 90.28 90.28 1.26

100Mo −→ 100Ru 1.00 −2.38 10.43 −0.75 12.05
1.26 −2.36 8.95 −0.67 9.77 2.25 13.71 7.87

110Pd −→ 110Cd 1.00 −1.90 7.26 −1.40 7.76
1.26 −1.94 5.44 −1.31 5.35 0.22 11.03 34.5

116Cd −→ 116Sn 1.00 −10.45 26.99 1.61 39.04
1.26 −10.45 26.62 1.46 34.66 15.99 15.99 25.8

124Sn −→ 124Te 1.00 −31.96 71.71 1.09 104.76
1.26 −31.93 74.24 1.02 95.37 46.08 51.94 26.4

130Te −→ 130Xe 1.00 −35.37 79.31 1.86 116.53
1.26 −35.40 80.80 1.77 104.86 50.98 59.06 28.1

136Xe −→ 136Ba 1.00 −28.66 63.57 0.97 93.19
1.26 −28.41 65.89 0.85 84.63 40.80 30.24 14.7

We observe that the h-NME for 110Pd suppresses dra-
matically when the SRC parametrization is changed from
CD-Bonn to M-S. For the majority of nuclei the change from
CD-Bonn to M-S SRC cuts the matrix element about 50%,
which is a similar suppression as in the case of the ground-state
transitions [23]. The effect of the added second term (20) of the
two-phonon transition density seems to be much stronger in
the heavy-neutrino exchange than it was in the light-neutrino
exchange. We have investigated this effect in Fig. 11. One
notices from the figure that the second term gives very large
shifts to the matrix elements of the lighter nuclei and its
omission is no longer acceptable. In fact, for the nuclei 100Mo
and 110Pd the negative contribution given by the term (20) is
so large that it changes the signs of the total NMEs for these
nuclei. In Table IV we have changed their sign again to make
all the total NMEs positive. The overall sign of the NMEs does

TABLE V. Values of the computed h-NMEs for 0+
gs −→ 0+

2

transitions. The columns 3–5 show the decomposition of the presently
calculated total NMEs (column 6) in terms of the Fermi, Gamow-
Teller, and tensor contributions.

Nuclear transition gA h-NMEs

M
(0ν)
F M

(0ν)
GT M

(0ν)
T M (0ν)

96Zr −→ 96Mo 1.00 −1.67 0.79 0.27 2.73
1.26 −1.70 1.75 0.24 3.06

100Mo −→ 100Ru 1.00 0.08 1.43 1.55 2.90
1.26 0.27 1.57 1.42 2.82

116Cd −→ 116Sn 1.00 −1.25 2.67 0.28 4.20
1.26 −1.25 2.73 0.26 3.78

not matter if the S-wave mass mode is considered as the only
possible decay mechanism as is done in this paper. The sign
has to be taken into account, however, if one wishes to compute
the matrix elements and half-life contributions coming from
the right-handed currents and electron P waves. The nuclei in
the decay chain of 136Xe behave exceptionally because adding
the second term increases the magnitude of the NME, whereas
for the rest of the nuclei the NME is suppressed.

The effect of the added term (20) is, as in the case
of the light-neutrino exchange, most easily grasped by
observing the pair-angular-momentum decompositions. In
Figs. 12(a)–12(d) we have plotted these decompositions for

0

100

M
(0

ν
)
(0

+ g
s
−→

0+ 2
−

p
h
)

-81 %

76Ge
-44 %

82Se
-89 %

96Zr
-133 %

100Mo
-129 %

110Pd
-16 %

116Cd
-16 %

124Sn
-18 %

130Te
+38 %

136Xe

FIG. 11. Effect of the previously omitted second term of the
two-phonon transition density (20) on the total h-NMEs. Dark (light)
gray bars give the matrix element without (with) the second term (20)
included. The lowest row of numbers displays the shifts of the
NMEs in percents. These NMEs are computed with the CD-Bonn
parametrization of the SRC effects and with gA = 1.00.
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FIG. 12. Pair-angular-momentum decomposition of the h-NME for nuclei 76Ge ,82Se ,110Pd, and 136Xe. Dark (light) gray bars show the
corresponding J ′ contribution without (with) the second term (20) of the two-phonon transition density.

nuclei 76Ge ,82Se ,110Pd, and 136Xe. As in the light neutrino
exchange, the added term (20) switches on the J ′ = 0
contribution, but now the amplification is much larger than in
the previous case. In the nucleus 76Ge the J ′ = 0 term almost
exactly cancels the earlier dominating J ′ = 2 contribution.
The same thing happens in the nucleus 110Pd. In 110Pd, the
destructive interference of the J ′ = 0 and J ′ = 2 terms is even
more intensified if M-S parametrization is used for the SRC
effects, as one notices from the sixth and seventh columns of
Table IV. In the nucleus 136Xe the amplification of the negative
J ′ = 0 contribution is milder, which causes the +38% increase
of the NME observed earlier.

In Figs. 13(a)–13(d) and 14(a)–14(e) we have plotted
the QRPA multipole decomposition of the h-NME for all
the nuclei considered in this paper and for the 0+

gs −→
0+

1 decay transitions. Multipole decompositions have more
irregular shape for the heavy-neutrino exchange than for
the light-neutrino exchange. Multipole strength is distributed
towards higher angular-momentum values. There exists no
characteristic leading multipole either, as was 1+ in the
light-neutrino exchange. The multipole structure of 96Zr differs
somewhat from the others. It is more reminiscent of the
ground-state-to-ground-state multipole distributions [23].

In Table V we have presented our results for the h-NMEs
for the 0gs −→ 0+

2 decay transitions. For the nucleus 96Zr
the transition to the second excited state is suppressed by two
orders of magnitude relative to the transition to the first excited
state, whereas an order-of-magnitude suppression occurs for
the nuclei 116Cd and 100Mo. The tensor contribution seems to
become very important for the decay of 100Mo.

E. Half-lives for the light- and heavy-neutrino exchange

Starting from the expression (13) of Ref. [23] the 0νββ
half-life for the light-neutrino-exchange mechanism can be

written as

t
(0ν)
1/2 (0+

i −→ 0+
f ) = C

(0ν)
l

(|〈mν〉|[eV])2
× 1025 yr, (27)

where the effective neutrino mass should be given in units of
eV. Similarly, we find for the half-life of the decay transitions
mediated by heavy electron neutrinos, the expression

t
(0ν)
1/2 (0+

i −→ 0+
f ) = C

(0ν)
h(|ηM |[ 1

GeV

])2 × 109 yr, (28)

where the effective inverse mass of the heavy neutrino, ηM ,
has been defined, e.g., in Ref. [4] [Eq. (66)] or in Ref. [23]
and it should be inserted in units of inverse GeV. Although we
have not considered the possible particle physics mechanisms
for the generation of the neutrino masses in this paper,
concentrating on the nuclear-structure aspects of the problem
instead, it is worth pointing out that in Ref. [51] the heavy
neutrino contribution was shown to be negligible in the context
of the seesaw type I scenario. It is likewise appropriate to
mention that the h-NMEs contribute also to the processes
triggered by the right-handed currents (see Eq. (67) of Ref. [4]).

We have listed the nuclear-structure coefficients C0ν
l and

C0ν
h in Table VI. To contrast with the corresponding coeffi-

cients for the ground-state-to-ground-state transitions, we have
also included the ground-state coefficients as extracted from
our earlier results in Ref. [23]. The ranges of the coefficients
C0ν

l and C0ν
h correspond to the range gA = 1.00–1.26 for

the axial-vector coupling constant. It is seen that for the
light-neutrino exchange the half-lives for the transitions to the
first excited states are usually an order of magnitude longer
than for the ground-state-to-ground-state transitions. In some
cases the difference is two or even three orders of magnitude,
like for the nucleus 110Pd. The large suppression of the decay
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FIG. 13. Multipole decomposition of the h-NME M (0ν) for nuclei 82Se, 100Mo, 110Pd, and 116Cd for transitions to the first 0+ excited state
in the corresponding daughter nuclei.
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FIG. 14. Multipole decomposition of the h-NME M (0ν) for nuclei 76Ge, 96Zr, 124Sn ,130Te, and 136Xe for transitions to the first 0+ excited
state in the corresponding daughter nuclei.
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TABLE VI. Calculated values of the nuclear-structure coefficients of the half-life expressions (27) and (28).

Nuclear transition C
(0ν)
l C

(0ν)
h

0+
gs −→ 0+

gs 0+
gs −→ 0+

1 0+
gs −→ 0+

2 0+
gs −→ 0+

gs 0+
gs −→ 0+

1 0+
gs −→ 0+

2

76Ge −→ 76Se 0.144–0.234 4.20–8.28 1.07–1.94 (0.79–2.06) × 104

82Se −→ 82Kr 0.065–0.104 3.79–7.60 0.48–0.86 (0.11–0.23) × 104

96Zr −→ 96Mo 0.044–0.054 0.09–0.17 7.13–15.5 0.20–0.35 1.68–3.11 (1.22–3.87) × 104

100Mo −→ 100Ru 0.036–0.056 6.44–12.5 22.6–70.5 0.20–0.35 (0.13–0.21) × 104 (5.18–12.4) × 104

110Pd −→ 110Cd 0.042–0.060 66.6–141 0.35–0.61 (1.01–1.21) × 105

116Cd −→ 116Sn 0.028–0.052 5.48–12.2 373–807 0.28–0.53 (0.40–0.80) × 103 (0.73–1.50) × 105

124Sn −→ 124Te 0.0328–0.0334 0.91–1.92 0.20–0.32 (0.17–0.35) × 103

130Te −→ 130Xe 0.036–0.052 0.53–1.07 0.22–0.38 (0.84–1.71) × 102

136Xe −→ 136Ba 0.065–0.114 0.37–0.75 0.69–1.27 (0.71–1.47) × 102

of 110Pd is related to the combined effect of a small NME and
an unfavorable phase space for this decay.

The decay of 96Zr to the first excited 0+ state in 96Mo seems
to be enhanced relative to the other excited-state transitions.
One notices from Table VI that this transition in 96Zr is not very
much suppressed relative to the ground-state transition. This
effect was already noticed in Ref. [14]. It was also discussed
in Ref. [14] how this enhancement could be utilized in the
experimental search for the 0νββ decay. The main benefit is the
possible reduction of the background of the measured spectra
by the coincidence of the two emitted electrons with the signals
emerging from the γ decay of the excited final state. Although
96Zr seems to be a very promising candidate for these kind
of experimental investigations, one must remember that our
present QRPA results for 96Zr are not supported by the IBM-2
calculations, which give an exceptionally small matrix element
for this decay (see Table II). Further studies of the excited-
state transitions are needed to settle this discrepancy. Another
good option for the experimental detection of an excited-state
transition would be 136Xe, at least from a theoretical point of
view.

For the heavy-neutrino exchange the half-lives of the
excited-state transitions are usually much longer than for
the ground-state transitions. This is particularly striking for
the transition to the 0+

1 state in 110Cd and transitions to
the 0+

2 states in 96Mo and 116Sn. Contrary to this, only an
order-of-magnitude suppression occurs for the transition to
the 0+

1 state in 96Mo. This is the strong 0+ vibrational state
enhancing also the corresponding transition mediated by the
light Majorana neutrino.

IV. CONCLUSIONS

As an extension to our previous work on the ground-state-
to-ground-state transitions, in this work we have calculated the
nuclear matrix elements of the neutrinoless double-β-minus
decays, mediated by the light or heavy Majorana neutrino,
to excited 0+ final states. The matrix elements have been
computed for those decay transitions which potentially attract
current and future experimental interest. We have decomposed

our matrix elements in different ways to allow transparent
comparison with other calculations using different nuclear-
structure frameworks.

Our calculations have been done by using realistic two-body
interactions and single-particle bases. All the appropriate
short-range correlations, nucleon form factors, and higher-
order nucleonic weak currents are included in our results. In
this work we have also extended the old MCM formalism by
adding a previously omitted term in the two-phonon transition
density. We also checked the nuclear spectroscopy of the
involved daughter nuclei by comparing our nuclear-structure
results with the available data on low-energy spectra and
electric quadrupole transitions involving the nuclear states of
relevance in the present study.

We found in the calculations that the adopted nuclear-
structure framework describes reasonably the involved nuclear
states and that in the case of the light-neutrino exchange the
earlier omission of the added two-phonon term is justified for
the heavier nuclei (A = 116, 124, 130, 136) but causes quite
significant percentage shifts (up to 44%) for the lighter nuclei.
For the heavy-neutrino exchange the added term caused very
large shifts in the magnitudes of the NMEs and its omission
was no longer realistic.

The decay of 96Zr to the first 0+ excited state in 96Mo
was found to be amplified relative to the other excited-state
decays. This amplification might make this decay transition a
promising candidate for future 0νββ experiments.

We have summarized our results in the expressions (27)
and (28), connecting the 0νββ half-life measurements with the
effective mass of the light Majorana neutrino and the effective
inverse mass of the heavy Majorana neutrino via tabulated
nuclear-structure coefficients.
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