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Abstract

Complex dynamical systems, ranging from the climate, ecosystems to fi-
nancial markets and engineering applications typically have many coexisting
attractors. This property of the system, is called multistability. The final
state, i.e., the attractor on which the multistable system evolves strongly
depends on the initial conditions. Additionally, such systems are very sensi-
tive towards noise and system parameters so a sudden shift to a contrasting
regime may occur. To understand the dynamics of these systems one has
to identify all possible attractors and their basins of attraction. Recently, it
has been shown that multistability is connected with the occurrence of un-
predictable attractors which have been called hidden attractors. The basins
of attraction of the hidden attractors do not contain unstable fixed points
(if exists) and are located far away from such points. Numerical localization
of the hidden attractors is not straightforward since there are no transient
processes leading to them from the neighborhoods of unstable fixed points
and one has to use the special analytical–numerical procedures. From the
viewpoint of applications, the identification of hidden attractors is the major
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issue. The knowledge about the emergence and properties of hidden attrac-
tors can increase the likelihood that the system will remain on the most
desirable attractor and reduce the risk of the sudden jump to undesired be-
havior. We review the most representative examples of hidden attractors,
discuss their theoretical properties and experimental observations. We also
describe numerical methods which allow identification of the hidden attrac-
tors.

Keywords: nonlinear dynamics, attractors, multistability, basins of
attraction
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1. Introduction

The climate [1–5], a number of ecosystems (e.g. the Amazon rainforest)
[6–9], the human brain [10, 11], arrays of coupled lasers [12–14], financial
markets [15, 16] and many applied engineering systems [17–20] are modeled
by complex dynamical systems which are characterized by the existence of
many coexisting attractors. This property of the systems is called multi-
stability and refers to systems that are neither stable nor totally unstable,
but that alternate between two or more mutually exclusive states (attrac-
tors) over time [21–31]. Multistable systems are very sensitive towards noise
[30, 31], initial conditions [22, 24, 26] and system parameters [25].

In multistable systems, particularly in the case of the existence of at-
tractors with very small basins or previously unidentified attractors, one can
observe the sudden switch to unexpected (undesired or unknown) attractors.
Such a shift can lead to the catastrophic events ranging from sudden climate
changes, serious diseases to financial crises and disasters of commercial de-
vices [32]. The spectacular example of the disaster caused by the sudden
swith to the undesired attractor is the crash of aircraft YF–22 Boeing in
April 1992 [33]. Generally, to keep the system on the desired attractor one

3
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needs first to uncover all coexisting attractors and next apply an appropriate
controlling scheme [24].

Most of the common examples of both chaotic and regular attractors,
like that of van der Pol, Beluosov–Zhabotinsky, Lorenz, Rossler, Chua and
many others are located in the neighborhoods of unstable fixed points (its
basins of attraction touch/include unstable fixed points). Such attractors are
called the self–exited attractors and can be easily localized numerically by the
standard computational procedure (one can start with the initial conditions
in a small neighborhood of the unstable fixed point on unstable manifold and
observe how it is attracted) [34, 35]. The classical example of a self–excited
chaotic attractor in a Duffing system was numerically constructed by Ueda
in 1961, although it become well–known much later [36].

Recently, it has been shown that multistability is connected with the
occurrence of unpredictable attractors [21–31] which have been called the
hidden attractors [37–40]. An attractor is called the hidden attractor if its
basin of attraction does not intersect with small neighborhoods of the unsta-
ble fixed point, i.e., the basins of attraction of the hidden atttractors do not
touch unstable fixed points and are located far away from such points. For
example, the hidden attractor is the periodic or chaotic attractor in the sys-
tem without equilibria or with the only stable equilibrium (a special case of
multistability and coexistence of attractors). An extensive review of control
of multistability has been published by Pisarchik and Feudel [24] for the self–
excited multistable attractors. However, due to existence of hidden attractors
and problems with localization of them not all of the methods presented in
[24] can be applied for multistable systems with hidden attractors.

The concept of hidden attractors has been suggested in connection with
the discovery of unexpected attractor in Chua’s circuit [37, 38, 41–46]. The
dynamics of this circuit can be described by the following dimensionless equa-
tions:

ẋ = α(y − x− ψ(x)),
ẏ = x− y + z,
ż = −(βy + γz),
ψ(x) = 1/2(m0 −m1)(|x+ 1| − |x− 1|),

(1)

where x, y and z are state variables and α, β, γ,m0 and m1 are constant
[47]. For α = 9.3515908493, β = 14.7903198054, γ = 0.0160739649,m0 =
−1.1384111956 and m1 = −0.7224511209 system (1) has two coexisting dou-
ble scroll attractors shown in Fig. 1, while for α = 8.5, β = 14.28, γ = 0,m0 =
−8/7 and m1 = −5/7 it evolves on two symmetric Rossler–like attractors

4
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shown in Fig. 2. The attractors shown in Figs. 1 – 2 are self–excited as
they can be easily reached from the neighborhoods of unstable fixed points
F0, S1 and S2. On the other hand, the attractor shown in Fig. 3 (α =
8.4562218418, β = 12.0732335925, γ = 0.0051631393,m0 = −0.1767573476
and m1 = −1.1467573476) is hidden. One can see that its basin does not
touch any of the unstable points S1,2. Stable fixed point F0 attracts tra-
jectories (shown in black) from stable manifolds M1,2

st of two saddle points
S1,2 while the trajectories starting from unstable manifolds M1,2

unst (shown
in red) tend to infinity. The comparison of Figs. 1 – 3 exhibits the main
differences between the self–excited and hidden attractors.

Contrary to the self–excited attractors the localization of hidden attrac-
tors is not straightforward since there are no similar transient processes lead-
ing to such attractors from the neighborhoods of the unstable fixed points
[44, 48]. For numerical uncovering of hidden attractors it is necessary to de-
velop special analytical–numerical procedures. This paper reviews the cur-
rent state of art in the research on multistable systems with hidden attractors
from the physical point of view (other reviews like e.g. [40] discuss hidden
attractors from the strict mathematical point) and point out the directions
of further studies. New examples of hidden attractors, numerical procedures
for finding them as well as methods of controlling multistable systems are
presented. Experimental evidence of the existence of hidden attractors is
given. We try to unify the approaches of rare attractors, rare events [49] and
basin stability [50].

This review paper is organized as follows. Section 2 gives examples of the
hidden attractors and categorize them according to the structure of systems’
equations. The relation between hidden and rare attractors is discussed in
Sec. 3. In Sec. 4 we describe the methods for detection of hidden attractors
and introduce their main properties. In addition to various numerical meth-
ods we describe the recently developed approach of perpetual points [51, 52].
Section 5 describes the dynamics of the coupled systems with hidden at-
tractors. The examples of the experimental realizations of the systems with
hidden attractors are given in Sec. 6. Finally, this review is summarized in
Sec. 7.

2. Hidden attractors: widespread objects in dynamical systems

Consider a dynamical system

Ẋ = F (X, p), (2)

5
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Figure 1: (color online). Double–scroll self–excited Chua attractors for parameters
α = 9.3515908493, β = 14.7903198054, γ = 0.0160739649, m0 = −1.1384111956,
m1 = −0.7224511209. In (a) the localization from vicinity of fixed point F0 is shown,
while in (b) the localization from vicinity of fixed point S1 is presented.
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Figure 2: (color online). Two symmetric Rossler–like self–excited Chua attractors for
parameters α = 8.5, β = 14.28, γ = 0, m0 = −8/7, m1 = −5/7. The localization from
vicinity of fixed point F0 is shown (two views (a) and (b)).
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z

x y

Figure 3: (color online). Symmetric hidden chaotic attractors (A1,2
hidden – green domain) in

the classical Chua circuit: locally stable zero equilibrium F0 (orange dot) attracts trajecto-
ries (black) from stable manifolds Mst

1,2 of two saddle points S1,2 (blue dots); trajectories
(red) from unstable manifolds Munst

1,2 tend to infinity; α = 8.4562, β = 12.0732, γ =
0.0052, m0 = −0.1768, m1 = −1.1468.

where X ∈ Rn, t ∈ R and p ∈ Rk is the vector of system parameters. From
a computational point of view, it is natural to introduce the following clas-
sification of attractors:

Definition 1. [37, 38, 40, 53] An attractor is called a self–excited attractor
if its basin of attraction intersects with any open neighborhood of an unstable
fixed point. Otherwise it is called a hidden attractor.

The basin of attraction for a hidden attractor is not connected with any
unstable fixed point. For example, the hidden attractors are observed in
the systems with no unstable fixed points or with one stable fixed point
(a special case of multistability). In many practical systems (e.g. Chua

8
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circuit described in Sec. 1) various self–excited attractors coexist with hidden
attractor (of attractors).

In this Section we describe typical examples of hidden attractors. We
start with simple flows and continue to present the real physical systems.

2.1. Hilbert’s 16th problem

The problem of analyzing hidden periodic oscillations first arose in the
second part of Hilbert’s 16th problem (1900), which considered the number
and mutual disposition of limit cycles in two–dimensional polynomial systems
[54]. The first nontrivial results have been obtained by Bautin (see, e.g. [55])
and have been devoted to the theoretical construction of three nested limit
cycles around one equilibrium in quadratic systems. Bautin’s method can
only be used to construct nested, small–amplitude limit cycles, which can
hardly be computed and visualized. However, recently an analytical approach
has been developed, which can be used to effectively visualize nested, normal
amplitude limit cycles in quadratic systems [40, 56, 57].
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Figure 4: (color online). Visualization of four limit cycles L1 −L4 (green color represents
stable and red represents unstable) in a two–dimensional polynomial quadratic system (3)
for the coefficients a1 = b1 = β1 = −1, c1 = α1 = 0, b2 = −2.2, c2 = −0.7, a2 = 10,
α2 = 72.7778, and β2 = −0.0015. One limit cycle L4 (self–excited attractor) around
an unstable equilibrium (red dot) is shown in (a), while the localization of three nested
limit cycles (L1,2,3; L2 is a hidden attractor) around stable zero equilibrium (green dot)
is presented in (b).

For example, let us consider the following system:

ẋ = −(a1x
2 + b1xy + c1y

2 + α1x+ β1y),
ẏ = −(a2x

2 + b2xy + c2y
2 + α2x+ β2y).

(3)

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Typical limit cycles of system (3) are shown in Fig. 4. The cycles L1 − L4

are presented in green (stable) and red (unstable). The fixed point (0, 0) is
stable as well as the orbits L2 and L4. Attractor L2 is hidden as its basin
located between unstable cycles L1 and L3 does not contain unstable fixed
points.

2.2. Flows without fixed points (equilibria)

The works of Nosè [58] and Hoover [59] in 1984–85 have led the study of
the following dynamical system without equilibria

ẋ = y,

ẏ = −x− yz,
ż = α(y2 − 1),

(4)

and its various modifications, where hidden chaotic oscillations can be found
(see, e.g. [60–64]). This example motivates further construction and study
of various artificial chaotic systems without equilibria.

Let us consider the system proposed by Wei [65]

ẋ = −y,
ẏ = x+ z,

ż = 2y2 + xz − 0.35,

(5)

which is a modification of the Sprott case D system [61]. As system (5) has
no fixed points, the chaotic attractor shown in Fig. 5 is hidden.

Jafari and Sprott [66] have performed systematic search to find the sim-
plest three–dimensional chaotic systems with quadratic nonlinearities and no
equilibria. Seventeen simple systems that show chaos have been found. As
an example, the attractor of the system

ẋ = y,

ẏ = −x+ z,

ż = −0.8x2 + z2 + 2,

(6)

is shown in Fig. 6.
Other examples of chaotic and hyperchaotic systems with no equilibrium

and hidden attractors can be found in [51, 67–73].
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xy

z

Figure 5: (color online). Attractor of the system (5) with initial conditions (-1.6,0.82,1.9).

xy

z

Figure 6: (color online). Attractor of system (6) with initial conditions (0,2.3,0).

2.3. Flows with stable fixed point (equilibrium)

The example of such unusual chaotic flow (with only one stable equilib-
rium) has been designed by Wang and Chen [74]. They have considered the

11
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hidden attractor

stable fixed point

xy

z

Figure 7: (color online). Attractor of the system (7) with initial conditions (0,0,0).

following system:
ẋ = yz + 0.006,

ẏ = x2 − y,
ż = 1− 4x.

(7)

Its hidden attractor is shown in Fig. 7.
Later Jafari and Sprott have identified 23 simple systems with this prop-

erty. To do that, they have performed systematic computer search for chaos
in three–dimensional autonomous systems with quadratic nonlinearities and
a single equilibrium (stable according to the Routh–Hurwitz criterion). Sys-
tem

ẋ = y,

ẏ = z,

ż = −x− 0.6y + z2 − 0.4xy,

(8)

is one of the simplest cases which have been found in this way. The equilib-
rium of this system is at (0,0,0) and its attractor is illustrated in Fig. 8. At
least one point attractor coexists with a hidden strange attractor for these
types of chaotic flows. Other chaotic and hyperchaotic systems with stable
equilibrium have been described in [71, 75–82].
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Figure 8: (color online). Attractor of the system (8) with initial conditions (4,-2,0).

2.4. Flows with a line of fixed points (equilibria)

After proposing a chaotic system with any number of equilibria by Wang
and Chen in [73], Jafari and Sprott in [83] have introduced simple chaotic
systems with a line of equilibria. They have been inspired by the structure
of the conservative Sprott case A system [61] and have considered a general
parametric form of it with quadratic nonlinearities. With exhaustive com-
puter search, nine simple cases have been found. The system given by the
following equations:

ẋ = y,

ẏ = −x+ yz,

ż = −x− 15xy − xz,
(9)

is an especially simple example with only six terms. System (9) has a line
of stable fixed points (equilibria) at (0, 0, z∗), where z∗ ∈ R, with no other
equilibria (in other words the z–axis is the line equilibrium of this system).
Its attractor is shown in Fig. 9.

The strange attractor of this system is hidden, from computational point
of view, since there are uncountably many unstable points on the equilibrium
line of which only a tiny portion intersects the basin of the chaotic attractor.
Thus the equilibria cannot help in finding the attractor(s) because we don’t
know which part of the equilibria may be the desired part.
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Figure 9: (color online). Attractor of the system (9) with initial conditions (0,0.5,0.5).

2.5. Electromechanical system without equilibria

Hidden attractors appear naturally in systems without equilibria, de-
scribing various mechanical and electromechanical models with rotation and
electrical circuits with cylindrical phase space. One of the first such examples
has been described by Arnold Sommerfeld in 1902 [84]. He has studied the
oscillations caused by a motor driving an unbalanced weight and discovered
the resonance capture (Sommerfeld effect). The Sommerfeld effect of the
capture phenomenon represents the failure of a rotating mechanical system
to be spun up by a torque–limited rotor to a desired rotational velocity due
to its resonant interaction with another part of the system [85, 86].

As an example, let us consider the model studied in [87], i.e., the trans-
lational oscillator–rotational actuator, which consists of a cart (of mass M)
attached to a wall by a spring of stiffness k2. An unbalanced rotor (where m
is the rotating eccentric mass, while l is the length from the axis of rotation)
which is connected to the cart is actuated by a DC motor, where u = N(t)
is the motor torque. The scheme of the model is shown in Fig. 10.

The dynamics of the system is given by the following equations
{

(M +m)ẍ+ k1ẋ+ml(θ̈ cos θ − θ̇2 sin θ) + k2x = 0,

Jθ̈ + k3θ̇ +mlẍ cos θ = u,
(10)

where J is the moment of inertia, k1, k3 are the damping coefficients, and
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Figure 10: The translational oscillator–rotational actuator model in the horizontal plane
[87].

M,m, l, k2, u are as in the description of the model presented above. The x
variable is the displacement of the cart from its equilibrium, while θ is the
rotational angle of the rotor.

In Fig. 11 the hidden attractors in the model (10) are presented for the
fixed parameters J = 0.014,M = 10.5,m = 1.5, l = 0.04, k3 = 0.005, k2 =
5300, k1 = 5 and u considered as the control one. In the space (x, ẋ, θ̇) there
is a hidden attractor for u = 0.49 shown in Fig. 11(a), where the red curve
corresponds to the regular start of the system, i.e. zero initial conditions,
and is attracted by an attractor. For u = 0.48 there are two coexisting
hidden attractors presented in Fig. 11(b). The blue curve corresponds to the
regular start of the system, i.e. zero initial conditions and demonstrates the
Sommerfeld effect, while the red curve is attracted to the desired operation
of the system.

2.6. Electromechanical model of the drilling system

In the works [89, 90] a double–mass mathematical model of the drilling
system is studied by the group of researchers from the Eindhoven University
of Technology. This mathematical model is based on an experimental setup.
It consists of upper and lower discs connected with each other by a steel
string. The upper disc is actuated by a DC motor and there is also a brake
device which is used for modelling of the friction force which acts on the
lower disc. The model is described by the following differential equations

Juθ̈u + kθ(θu − θl) + b(θ̇u − θ̇l) + Tfu(θ̇u)− kmv = 0,

Jlθ̈l − kθ(θu − θl)− b(θ̇u − θ̇l) + Tfl(θ̇l) = 0.
(11)
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Figure 11: (color online). Hidden attractors and multistability in the electromechanical
model without equilibria (10). The control parameter equals to u = 0.49 (a) and u = 0.48
(b) respectively [88] .
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Figure 12: (color online). Hidden attractor and multistability in the drilling model (11).
In the space (θu − θu, θ̇u, θ̇l) a hidden periodic attractor coexists with a stable stationary
point (the red curve is attracted to a stable stationary point and corresponds to the
start of drilling, i.e. the friction is applied to the model, after starting the motor; the
blue curve is attracted to a stable limit cycle and corresponds to the start of the system
with friction applied). Parameters: km = 4.3228; Ju = 0.4765;Tsu = 0.37975; ∆Tsu =
−0.00575; bu = 2.4245; ∆bu = −0.0084; kθ = 0.075; b = 0; Jl = 0.035;Tsl = 0.26;Tcl =
0.05;ωsl = 2.2; δsl = 1.5; bl = 0.009;u = 3.5 [88].
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Here θu and θl are angular displacements of upper and lower discs; Ju and
Jl are constant inertia torques; b is rotational friction (damping); kθ is the
torsional spring stiffness; km is the motor constant; v is the constant input
voltage; Tfu(θ̇u) and Tfl(θ̇l) are friction torques acting on the upper and the
lower discs. The torque Tfl(θ̇l) appears due to the friction between the drill
bit (lower disc) and the bedrock to be drilled. Tfu(θ̇u) − kmv is a result
of the influence of the drive part on the drill–string. The drive part of the
model, considered above, is a linear combination of constant input voltage
and friction torque Tfu(θ̇u) acting on the upper disc. The friction model,
which has been found experimentally [89, 90], is as follows:

Tfl(ω + θ̇l) ∈
{
Tcl(ω + θ̇l)sign(ω + θ̇l), ω + θ̇l 6= 0

[−T0, T0] , ω + θ̇l = 0,
(12)

where

Tcl(ω + θ̇l) = T0

Tsl
(Tpl + (Tsl − Tpl)e−|

ω+θ̇l
ωsl
|δsl

+ bl|ω + θ̇l|). (13)

Here T0, Tsl, Tpl, ωsl, δsl, and bl are nonnegative coefficients. T0 is an addi-
tional parameter for changing the drilling medium.

In the above dynamical model of the drilling system there are two natural
transition processes: the first is to start the motor and then to begin drilling
(i.e. to add friction to the model), the second is to apply friction to the model
and then to start the motor (also it corresponds to the sudden changes in the
friction). The first transition process leads to the normal operation (i.e. the
corresponding trajectory is attracted to the stable stationary point), while
the second transition process may lead to a hidden oscillation (see Fig. 12).

Similar behavior and hidden periodic attractors are also found in the
drilling systems driven by induction motors with a wound rotor or salient
pole synchronous motors [91–94].

2.7. Rabinovich system

In 1978 one of the oldest known chaotic system, where a hidden attractor
can be found, 




ẋ = hy − ν1x− yz,
ẏ = hx− ν2y + xz,

ż = −z + xy,

(14)
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Figure 13: (color online). Hidden attractor in the Rabinovich system (14). Parameters:
r = 6.8, a = −0.5, σ = ra, b = 1 [95].

was suggested by Mikhail Rabinovich [96, 97]. The Rabinovich system (14)
describes the interaction of three resonantly coupled plasma waves two of
them being parametrically excited. Here parameter h is proportional to
the pumping amplitude and parameters ν1 and ν2 are normalized dumping
decrements.

By the linear transformation (see, e.g. [98]): x→ ν1ν2h
−1y, y → ν1x, z →

ν1ν2h
−1z, t→ ν−1

1 t the Rabinovich system (14) is transformed to the form of
generalized Lorenz system





ẋ = −σ(x− y)− ayz,
ẏ = rx− y − xz,
ż = −bz + xy,

(15)

where
σ = ν−1

1 ν2, b = ν−1
1 , a = −ν2

2h
−2, r = ν−1

1 ν−1
2 h2. (16)

System (15) with a = 0 coincides with the classical Lorenz system [99].
Remark that for classical parameters σ = 10, β = 8/3, ρ = 28 the Lorenz
attractor is self–excited with respect to all three equilibria and σ = 10, β =
8/3, ρ = 24.5 is self–excited with respect to zero unstable equilibrium only.

System (15) was also used to describe the following physical processes:
the convective fluid motion inside rotating ellipsoid, the rotation of rigid
body in viscous fluid, the gyrostat dynamics, the convection of horizontal
layer of fluid making harmonic oscillations and the model of Kolmogorov’s
flow.
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Figure 14: (color online). Hidden attractor in the Gluhovsky–Dolzhansky system (17).
Parameters: r = 700, a = 0.0052, σ = ra, b = 1 [53, 102].

Note that since parameters ν1, ν2, h are positive then from (16) the
parameter a is negative. Also, due to (16) one can obtain the following
relation between σ, a and r: σ = −ar. For a < 0 if r < 1, then (15)
has a unique equilibrium S∗0 = (0, 0, 0), which is globally asymptotically
Lyapunov stable [98, 100]. If r > 1, then system (15) has three equilibria:

S∗0 = (0, 0, 0) and S∗1,2 = (±x1, ±y1, z1). Here x1 = σ
√
ξ

σ+aξ
, y1 =

√
ξ, z1 =

σξ
σ+aξ

, ξ = σ
2a2

(
a(r − 2)− σ +

√
(σ − ar)2 + 4aσ

)
. For r = 6.8 and a =

−0.5 the equilibria S∗1,2 attract the unstable separatrices of the saddle zero
equilibrium, at the same time a hidden attractor can be computed in the
system (see Fig. 13) [95, 101].

2.8. Gluhovsky–Dolzhansky system

In 1980 another Lorenz–like system, where a hidden attractor can be
found, 




ẋ = −σx+ z + a0yz,

ẏ = R− y − xz,
ż = −z + xy,

(17)

was suggested by Alexander Gluhovsky and Felix Dolzhansky [103]. This
model describes convective fluid motion, a rigid body rotation in a resisting
medium and the forced motion of a gyrostat.

By the change of variables x → x, y → R − σ
a0R+1

z, z → σ
a0R+1

y sys-
tem (17) takes the form of the generalized Lorenz system (15) with parame-
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ters b = 1, A = a0σ2

(a0R+1)2
, r = R

σ
(a0R+1). For r = 700, a = 0.0052, σ = ra,

and b = 1 the equilibria S1,2 attract the unstable separatrices of the saddle
zero equilibrium, at the same time a hidden attractor can be computed in
the system (see Fig. 14) [53, 102].

2.9. Rabinovich–Fabricant model

Mikhail Rabinovich and Anatoly Fabrikant [104] introduced and analyzed
from a physical point of view a model describing the stochasticity arising from
the modulation instability in a non–equilibrium dissipative medium. This is
a simplification of a complex nonlinear parabolic equation modelling different
physical systems, such as: the Tollmien–Schlichting waves in hydrodynamic
flows, wind waves on water, concentration waves during chemical reactions
in a medium, where diffusion occurs, Langmuir waves in plasma, etc. [104].
The Rabinovich–Fabrikant model is described by the following equations:

ẋ1 = x2

(
x3 − 1 + x2

1

)
+ ax1,

ẋ2 = x1

(
3x3 + 1− x2

1

)
+ ax2,

ẋ3 = −2x3 (b+ x1x2) ,

(18)

where two constant parameters a, b > 0. For a < b, the system is dissi-
pative. The system is equivariant with respect to the symmetry [104, 105]
T (x1, x2, x3)→ (−x1, x2, x3) and has five equilibria

X∗0 = (0, 0, 0), (19)

X∗1,2 =

(
±x+, ∓

b

x+

, 1−
(

1− a

b

)
x2

+

)
, (20)

X∗3,4 =

(
±x−, ∓

b

x−
, 1−

(
1− a

b

)
x2
−

)
, (21)

where

x± =

√√√√1±
√

1− ab
(
1− 3a

4b

)

2
(
1− 3a

4b

) .

According to the article [105], we consider a = 0.1, b ∈ (bmin, b
∗) and take

the values of b for which in the phase space there are a chaotic attractor
besides the stable equilibria X∗1,2. In order to integrate system (18) we use
the LIL method of order 4 (MATLAB code taken from [106]).
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Figure 15: (color online). Parameters a = 0.1, b = 0.2715. (a) Blue curves – separatrices
of the X∗3,4 with initial conditions on 1D unstable manifolds, grey curves – trajectory
with initial condition on 2D unstable manifold of X∗0 . (b) Grey sphere – δ–vicinity of
X∗0 , δ = 0.05; green curves – trajectories that attract to equilibrium X∗1 ; purple curves –
trajectories that attract to equilibrium X∗2 ; orange curves – trajectories that tend to ∞
[107].

For parameters a = 0.1, b = 0.2715. it is known analytically that 1)
equilibrium X∗0 is a saddle–focus with 1D stable and 2D unstable manifolds;
2) equilibria X∗1,2 are stable focus–nodes; 3) equilibria X∗3,4 are saddle–foci
with 2D stable and 1D unstable manifolds.

Numerical simulations show that trajectories with initial data from the
δ–vicinity of X0 on the 2D unstable manifold tend to ∞ as t → +∞ (see
Fig. 15(a), grey curves). Separatrices of X∗3,4 either tend to ∞ as t → +∞
or attract to the stable equilibria X∗1,2 (see Fig. 15(a), blue curves).

Around equilibrium X0 we choose a small sphere with radius δ (in our
experiment δ = 0.05) and take N random initial points on it (in our ex-
periment N = 50). Using LIL solver we integrate system (18) with these
initial points in order to explore the obtained trajectories. We repeat this

22



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

−1.5
−1

−0.5
0

0.5
1

1.5 −5

0

5

10−0.2

0

0.2

0.4

0.6

0.8

1

x
2

X
2

∗

X
3

∗

X
0

∗

x
1

X
4

∗

X
1

∗

x 3

−0.1

0

0.1 −0.1

0

0.1−0.1

0

0.1

x
2

X
0

∗

x
1

x 3

(b)

Fig. 15 (continued)
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procedure several times in order to get different initial points for trajectories
on the sphere. We get the following results: all obtained trajectories either
tend to ∞, or attract to the stable equilibria X∗1,2 and do not attract to the
chaotic attractor (see Fig. 15(b)). This gives us the reason to say [107] (but
very carefully, taking into account all the difficulties arising in the numerical
investigation of this system) that the chaotic attractor obtained in system
(18) is hidden (see Fig. 16).
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Figure 16: (color online). Parameters a = 0.1, b = 0.2715. Hidden attractor in the
Rabinovich–Fabricant system (18) [107].

Other examples of hidden attractors can be found in [46, 52, 68–73, 76–
78, 81–83, 91–94, 107–135].

3. Rare attractors and basin stability

Let us consider the externally excited Van der Pol–Duffing oscillator,
given by the equation

ẍ(t)− α(1− x2(t))ẋ(t) + x3(t) = F sin(ωt), (22)
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where α, ω, F are the positive constants that determine the multistability
of the system. In our calculations we have assumed α = 0.2, F = 1.0, and
consider ω as the control parameter. The system in non–autonomous and its
attractor can be identified as the projection on (x, ẋ) plane.

The influence of ω parameter on the dynamics of the considered oscillator
can be observed in Fig. 17. In each subfigure, the basins of attraction of
coexisting attractors for fixed ω value are shown. Each basin is presented
by a different color, while the black points on them denote the points of
the corresponding Poincare maps. In Fig. 17(a) the basins of attractors AT ,
A7T , two A9T and A11T are shown in green, yellow, blue, red and pink colors
respectively. For each of the described states, the lower index kT denotes
the period of solution, where T = 2π/ω, and k ∈ N. As it can be seen,
the green basin (period T solution) is the dominant one for initial conditions
in the neighbourhood of (0, 1) point. As the initial conditions are further
away from this point, the competition between AT and A11T states (green
and pink) increases. When we decrease the parameter to ω = 0.962, in
Fig. 17(b) one can observe that the Neimark–Sucker bifurcation occured for
the states AT and A7T from the previous subfigure, and as the result two
tori appear – AQ and AQ7, with green and yellow basins respectively. The
coexisting periodic solutions are A21T , A35T and two A9T , with corresponding
grey, white, blue and red basins of attraction. With further decrease of the
control parameter, at ω = 0.955 (Fig. 17(c)) the chaotic attractor ACh is
born, which basin shown in green color is clearly the dominant one in the
whole range of the considered initial conditions. One can also observe a
quasiperiodic attractor AQ with yellow basin and three periodic orbits – two
A21T (brown and orange), and A35T (the white one). Finally, in the last
subfigure Fig. 17(d) for ω = 0.945 only three attrators coexist: the A7T with
corresponding yellow basin, and two A14T shown in violet and green. The
latter state is the dominant one. It should be emphasized that for different
values of the control parameter ω many similar structures, with variety of
coexisting attractors, have been found.

As it can be seen, the basins of attraction of some of the states shown
in Fig. 17 are very small in comparison with the basins of other attractors
coexisting in the system (22). For example, in subfigure Fig. 17(d) the basin
of A7T (yellow) is extremally smaller than the basin of A14T , denoted by
the green color. This type of property of the coexisting attractors has been
described by Zakrzhevsky et al. [136], and is known as the concept of rare
attractors. In [25] we have proposed the definition of rare attractors and
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Figure 17: (color online). Basins of attraction of system (22) for different control pa-
rameter values ω. Decreasing from the top to the bottom, ω = 0.975, 0.962, 0.955, 0.945
respectively. The basin of each state is shown with different color and the black dots on
them denote the points of the corresponding Poincare maps [25].
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Fig. 17 (continued)
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described their creation in system (22). Consider the dynamical system (2)
(cf. Sec. 2). Let B ⊂ Rn be a set of all possible initial conditions and
C ⊂ Rk be a set of accessible system parameters. Assume that attractor Ap
exists for p ∈ CA ⊂ C and has a basin of attraction β(Ap). Assuming that
the initial conditions and the system parameters are chosen independently,
the probability that the system is on attractor Ap is equal to

p({Ap : p ∈ CA}) =
µ(CA)

µ(C)µ(B)

∫

CA

µ(β(Ap))dp, (23)

where µ is a set measure (e.g. Lebesgue measure). If p({Ap : p ∈ CA}) is
small (i.e., p({Ap : p ∈ CA}) << 1) attractor Ap is called the rare one. Ac-
cording to the introduced definition, we can indicate the rare attractors of
the considered oscillator for the set of initial conditions as in Fig. 17, i.e.,
B = [−2, 2] × [−2, 3]. In Fig. 17(a) two A9T rare attractors coexist (blue
and red basins), while in Fig. 17(b) rare A21T and A35T orbits are present,
with corresponding grey and white basins respectively. Three coexisting rare
states can be observed in Fig. 17(c) – two A21T (brown and orange basins)
and the A35T one (white basin). Finally, in Fig. 17(d) single rare solution
A7T with yellow basin of attraction is shown.

As one can notice, the concept of rare attractors is strongly related with
the considered set of accessible system parameters C, as well as the set
of possible initial conditions B. As an example let us consider the torus
A7Q shown in Fig. 17(c), with corresponding yellow basin of attraction. For
simplicity, let C = CA = {0.955}. If we consider the set of possible initial
conditions as in subfigure, i.e., B = [−2, 2] × [−2, 3], then according to the
formula (23) the probability of occurrence of solution A7Q equals p(A7Q) =
0.0519, and this attractor can be considered as the rare one. For the chaotic
attractor ACh, which is the dominant one (green basin), the probability is
equal to p(ACh) = 0.9227. Nonetheless, the ’rare’ property of coexisting
attractors can change for different sets of possible initial conditions. We have
considered the second setB′ = [−0.34, 0.33]×[−0.15, 0.17] (shown as the inset
in subfigure), for which the occurrence of the quasiperiodic state A7Q is the
highest and equals p(A7Q) = 0.6982. The second most probable attractor
is the periodic one A35T (white basin) with p(A35T ) = 0.1207, while the
previously dominant chaotic state ACh is now the rare one with probability
at p(ACh) = 0.0785. In Table (1) the probabilities of occurrence for all
attractors in Fig. 17(c) are shown, in both cases of the initial conditions sets
B and B′.
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Attractor (color of basin) p(A) for B p(A) for B′

Chaotic ACh (green) 0.9227 0.0785
Torus AQ7 (yellow) 0.0519 0.6982
Periodic A21T (brown) 0.0087 0.0522
Periodic A35T (white) 0.0086 0.1207
Periodic A21T (orange) 0.0081 0.0504

Table 1: Probabilities of occurrence of coexisting attractors shown in Fig. 17(c) (ω = 0.955)
for two sets of possible initial conditions: B = [−2, 2] × [−2, 3] and B′ = [−0.34, 0.33] ×
[−0.15, 0.17] [25].

The definition of hidden attractors introduced so far in Sec. 1 refers to the
autonomous system, but it can also be generalized to the non–autonomous
dynamical systems (see, e.g. [53]). Let us consider Poincare map P , where
points are taken by the period of external excitation 2π/ω, i.e.
P = {(x(t), ẋ(t)) : t = 2nπ/ω, n = 0, 1, . . .}. We call the attractor of the sys-
tem (22) hidden if its basin of attraction does not touch the neighbourhood
of the equilibrium on such defined Poincare section. Consequently, the at-
tractor is self–excited if its basin of attraction contains the fixed point of map
P . For example, in the Fig. 17(a) for ω = 0.975 we have two fixed points on
Poincare section – the stable (x, ẋ) = (0.072, 1.055) (AT solution) with green
basin of attraction and the unstable (x, ẋ) = (0, 0) equilibrium. The trajec-
tory beginning near the unstable equilibrium gets attracted to A11T solution
(pink basin) and so it is the self–excited orbit. By definition, the rest of the
attractors, i.e., A7T and two A9T (yellow, blue and red basins respectively)
are the hidden ones. In the considered case, two A9T states are also rare,
as it has been described previously. As we can see, there are no peculiar
relations between the hidden and rare properties of the attractors, i.e., the
state can be hidden but not rare (rare, but not hidden), as well as hidden
and rare simultaneously. Both these properties depend on the dynamics of
the system and are independent of each other.

The existence of rare attractors shows that the linear stability analy-
sis is not sufficient to quantify how stable a particular attractor is against
non–small perturbations. Quantification of stability in this sense requires
the complete knowledge of the basin of attraction. This allows to identify
permissible perturbations. As in many dynamical systems attractors basins
are intricate entries which are especially hard to explore in high–dimensions.
Menck et al. [50] introduced the concept of basin stability of attractor A.
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The likehood of the return to the attractor after any random (non–small
perturbations) SA has been taken as the measure of the basin stability. To
illustrate this concept let us go back to the examples shown in Table (1).
If one considers that the perturbations to attractor A are limited to sets B
and B′ then the values of p(A) in both columns of the table represent the
measures of the basin stability of attractor A. The concept of basin stability
is particularly useful in the analysis of high–dimensional systems (e.g. net-
works) as: (i) it follows the probabilistic approach that is compatible with the
natural uncertainty about the strength and direction of perturbations; (ii) it
provides a measure of stability that is clearly defined and easy to calculate.

4. Detection and main properties of hidden attractors

4.1. Localization of hidden attractors

4.1.1. Synthesis of scenario of hidden attractor birth based on homotopy and
continuation

One of the effective methods for the numerical localization of hidden at-
tractors is based on a homotopy and numerical continuation. We construct a
sequence of similar systems such that the initial data for numerically comput-
ing the oscillating solution (starting oscillation) can be obtained analytically
for the first (starting) system. For example, it is often possible to consider a
starting system with a self–excited starting oscillation. Then we numerically
track the transformation of the starting oscillation while passing between the
systems.

In a scenario of transition to chaos in the dynamical system there is
typically parameter λ ∈ [a1, a2], the variation of which gives the scenario. We
can also artificially introduce parameter λ, let it vary in the interval [a1, a2]
(where λ = a2 corresponds to the initial system) and choose parameter a1

such that we can analytically or computationally find a certain nontrivial
attractor when λ = a1 (this attractor has often a simple form, e.g., periodic).
That is, instead of analyzing the scenario of a transition into chaos, we can
synthesize it. Further, we consider the sequence λj, λ1 = a1, λm = a2, λj ∈
[a1, a2] such that the distance between λj and λj+1 is sufficiently small. Then
we numerically investigate the changes to the shape of the attractor obtained
for λ1 = a1. If the change in λ (from λj to λj+1) does not cause a loss of
the stability bifurcation of the considered attractor, then the attractor for
λm = a2 (at the end of procedure) is localized. The application of this
method is demonstrated below.
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4.1.2. Chua circuit: from self–excited periodic to hidden chaotic attractor

Let us consider the Chua’s system in the form

dx

dt
= Px + qψ(rx), x ∈ R3. (24)

Here

P =



−α(m1 + 1) α 0

1 −1 1
0 −β −γ


 , q =



−α
0
0


 , r =




1
0
0


 ,

ψ(σ) = 1/2(m0 −m1)(|σ + 1| − |σ − 1|).

Introduce coefficient k and small parameter ε and represent system (24)
as

dx

dt
= P0x + qεϕ(rx), (25)

where

P0 = P + kqr =



−α(m1 + 1 + k) α 0

1 −1 1
0 −β −γ


 , λP0

1,2 = ±iω0, λ
P0
3 = −d,

ϕ(σ) = ψ(σ)− kσ = 1/2(m0 −m1)(|σ + 1| − |σ − 1|)− kσ.

By the nonsingular linear transformation x = Sy system (25) is reduced to
the form

dy

dt
= Ay + bεϕ(cy), (26)

where

A =




0 −ω0 0
ω0 0 0
0 0 −d


 , b =




b1
b2
1


 , c =




1
0
−h


 .

The transfer function WA(p) of system (26) can be represented as

WA(p) =
−b1p+ b2ω0

p2 + ω2
0

+
h

p+ d
.

Further, using the equality of transfer functions of systems (25) and (26),
one can obtain

WA(p) = r(P0 − pI)−1q.
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This implies the following relations

k =
−α(m1 +m1γ + γ) + ω2

0 − γ − β
α(1 + γ)

, d =
α + ω2

0 − β + 1 + γ + γ2

1 + γ
,

h =
α(γ + β − (1 + γ)d+ d2)

ω2
0 + d2

, b1 =
α(γ + β − ω2

0 − (1 + γ)d)

ω2
0 + d2

,

b2 =
α
(
(1 + γ − d)ω2

0 + (γ + β)d
)

ω0(ω2
0 + d2)

.

(27)

Since by the nonsingular linear transformation x = Sy system (25) can
be reduced to the form (26), for the matrix S the following relations

A = S−1P0S, b = S−1q, c = rS (28)

are valid. Having solved these matrix equations, one can obtain the trans-
formation matrix

S =




s11 s12 s13

s21 s22 s23

s31 s32 s33



′

where
s11 = 1, s12 = 0, s13 = −h,

s21 = m1 + 1 + k, s22 = −ω0

α
, s23 = −h(α(m1 + 1 + k)− d)

α
,

s31 =
α(m1 + k)− ω2

0

α
, s32 = −α(β + γ)(m1 + k) + αβ − γω2

0

αω0

,

s33 = h
α(m1 + k)(d− 1) + d(1 + α− d)

α
.

Introduce the following describing function

Φ(a) =

2π/ω0∫

0

ϕ
(

cos(ω0t)a
)

cos(ω0t)dt. (29)

Theorem 1. Suppose that there exists a number a0 > 0, a0 6= |νi|, such that
the conditions

Φ(a0) = 0, b1
dΦ(a)

da

∣∣∣∣
a=a0

< 0 (30)
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are satisfied. Then for sufficiently small ε > 0 system (26) has a periodic
solution of the form

y1(t) = cos(ω0t)y1(0) +O(ε),

y2(t) = sin(ω0t)y1(0) +O(ε),

y3(t) = exp(−d3t)y3(0) +O(ε),

t ∈ [0, T ] (31)

with the initial data

y1(0) = a0 +O(ε), y2(0) = 0, y3(0) = O(ε) (32)

and with the period

T =
2π

ω0

+O(ε).

Theorem 1 describes the procedure of the search for stable periodic solutions
by the standard describing the function method (see, e.g., generalization of
the theorem in [40, 137]).

By (32), for sufficiently small ε at the first step of multistage localization
procedure one obtains the initial data

x(0) = Sy(0) = S




a0

0
0


 =




a0s11

a0s21

a0s31


 .

Returning to Chua’s system denotations, for the determination of the initial
data of starting the solution for multistage procedure, it can be obtained

x(0) = a0, y(0) = a0(m1 + 1 + k), z(0) = a0
α(m1 + k)− ω2

0

α
. (33)

Consider system (25) with the parameters

α = 8.4562, β = 12.0732, γ = 0.0052, m0 = −0.1768, m1 = −1.1468. (34)

Note that for the considered values of parameters there are three equilibria in
the system: a locally stable zero equilibrium and two saddle equilibria. Now
let us apply the above procedure of hidden attractors localization to Chua’s
system (24) with parameters (34). For this purpose, compute a starting
frequency and a coefficient of harmonic linearization:

ω0 = 2.0392, k = 0.2098 .
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Figure 18: (color online). A road to chaos: the localization of hidden chaotic Chua
attractors. The attractors with corresponding trajectories obtained for different ε values
are shown. Increasing from (a) to (f), ε = 0.1, 0.3, 0.5, 0.8, 0.9, 1.0 respectively.
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Fig. 18 (continued)
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Fig. 18 (continued)

36



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Then, we compute the solutions of system (25) with nonlinearity εϕ(x) =
ε(ψ(x) − kx), sequentially increasing ε from value ε1 = 0.1 to ε10 = 1 with
step 0.1. By (27) and (33) the initial data can be obtained

x(0) = 9.4287, y(0) = 0.5945, z(0) = −13.4705

for the first step of multistage procedure for the construction of solutions. For
ε1 = 0.1, after a transient process the computational procedure reaches start-
ing oscillation x1(t). Further, by the numerical procedure and the sequential
transformation xj(t) with increasing parameter εj, for original Chua’s system
(24) set Ahidden is computed.

The results of the procedure are shown in Fig. 18. For each ε value the
attractors of the system (25) are presented (in Fig. 18(a) one can observe
the enlargement of the trajectories leading to the symmetric attractor). The
dynamics changes from periodic through quasiperiodic, to finally obtaining
the chaotic behaviour (Chua attractors of the Rossler–like type shown in
Fig. 18(f)). The observed states can be unique (symmetric attractor obtained
for ε = 0.1, 0.3, 0.5) or two symmetric states (ε = 0.8, 0.9, 1.0) can coexist.

Also the hidden attractors were computed in modified Chua systems with
smooth nonlinearity tanh(·) [39] and with nonlinearity sign(·) [45].

To present the probability of occurrence of coexisting attractors in Chua
system we have performed the following experiment. Let us consider the 3D
sphere B that contains hidden attractors and generate a bunch of random
points in it. Then we integrate Chua system using obtained random points
as initial conditions. There are three possibilities for the current obtained
trajectory:
(i) it will be attracted to the stable equilibrium F0,
(ii) it will be attracted to one of the hidden attractors,
(iii) it will go to infinity.
The sphere B = (x2 + y2 + z2) ≤ 10 and the possible attractors are shown in
Fig. 19.

In our experiment we have generated 1000 of random initial conditions
from the sphere B. Obtained probabilities of occurence of states (i)–(iii) are
shown in Table (2).

According to our calculations, the probability that the system will go to
infinity is the dominant one. About 9 % of the time one of the hidden atrac-
tors will be obtained and in 0.4 % of cases the trajectory will be attracted
to the fixed point. As one can see, because of the rare character of hidden
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Figure 19: (color online). Sphere B = (x2 + y2 + z2) ≤ 10 and the possible attractors of
the Chua system.

Attractor p(A) for B
Stable zero equilibrium 0.004
Hidden attractors (union of two symmetric attractors) 0.087
Infinity 0.899

Table 2: Probabilities of occurrence of attractors (zero equilibrium, hidden attractors,
infinity) in Chua system with α = 8.4562, β = 12.0732, γ = 0.0052,m0 = −0.1768,m1 =
−1.1468 for the set of possible initial conditions: B = (x2 + y2 + z2) ≤ 10.

attractors (cf. Sec. 3) it is hard to obtain these states from the random data
and so the special methods like the one presented above are very important.

4.1.3. Gluhovsky–Dolzhansky system: from self–excited to hidden chaotic at-
tractor

Let us determine the stationary points of the Gluhovsky–Dolzhansky sys-
tem introduced in Sec. 2, i.e.





ẋ = −σ(x− y)− ayz,
ẏ = rx− y − xz,
ż = −bz + xy,

(35)
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We can show that for positive parameters, if r < 1, system (35) has unique
equilibrium S0 = (0, 0, 0), which is globally asymptotically Lyapunov stable
[100]. If r > 1, then (35) possesses three equilibria: saddle S0 = (0, 0, 0) and
symmetric (with respect to z = 0) equilibria

S1,2 = (±x∗1,±y∗1, z∗1), (36)

where

x∗1 =
σ
√
ξ

σ + aξ
, y∗1 =

√
ξ, z∗1 =

σξ

σ1 + aξ
,

and
ξ =

σ

2a2

[
a(r − 2)− σ +

√
(σ − ar)2 + 4aσ

]
.

Following [103], we let σ = 4 and define the stability domain of equilibria
S1,2. Using the Routh–Hurwitz criterion we can obtain that equilibria S1,2

are stable if

8a2r3 + a(7a− 64)r2 + (288a+ 128)r + 256a− 2048 < 0. (37)
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Figure 20: The stability domain of equilibria S1,2 for σ = 4 [53].

The discriminant of the left–hand side of (37) has only one positive real
root, a∗ ≈ 0.04735. So the roots of the polynomial in (37) are as follows. For
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0 < a < a∗, there are three real roots r1(a) > r2(a) > r3(a); for a = a∗, there
are two real roots: r1(a) and r2(a) = r3(a); for a > a∗, there is one real root
r1(a). Thus, for 0 < a < a∗, equilibria S1,2 are stable for r < r3(a) and for
r2(a) < r < r1(a); and for a > a∗ equilibria S1,2 are stable for r < r1(a) (see
Fig. 20).

Let us construct a line segment on the plane (a, r) that intersects a bound-
ary of the stability domain of equilibria S1,2 (see Fig. 21). We choose point
P1(r = 700, a = 0.0052) as the end point of the line segment. The eigenvalues
for the equilibria of system (35) that correspond to the parameter P1 are the
following:

S0 : 50.4741, −1, −55.4741,

S1,2 : −0.1087± 10.4543i, −5.7826.

This means that equilibria S1,2 become stable focus–nodes. Now we choose
point P0(r = 687.5, a = 0.0052) as the initial point of the line segment.
This point corresponds to the parameters for which system (35) has a self–
excited attractor, which can be computed using the standard computational
procedure. Then, we choose a sufficiently small partition step for the line
segment and compute a chaotic attractor in the phase space of system (35) at
each iteration of the procedure. The last computed point at each step is used
as the initial point for the computation at the next step (the computation
time must be sufficiently large).

In our experiment the length of the path was 2.5 and there were 6 iter-
ations. Here for the selected path and partition, we can visualize a hidden
attractor of system (35) (see Fig. 22). The results of continuation procedure
are given in [102].

Note that the choice of path and its partitions in the continuation pro-
cedure is not trivial. For example, a similar procedure does not lead to
a hidden attractor for the following path on the plane (a, r). Consider
r = 33.51541181, a = 0.04735056... (the rightmost point on the stability
domain) and take starting point P2: r = 33.51541181, a = 0.046 near it
(Fig. 21). If we use the partition step 0.001, then there are no hidden attrac-
tors after crossing the boundary of the stability domain. For example, if the
end point is P3: r = 33.51541181, a = 0.048, there is no chaotic attractor
but only trivial attractors (equilibria S1,2).
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Figure 21: (color online). Paths [P0, P1] and [P2, P3] in the plane of parameters {a, r}
used in the continuation procedure [53].
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Figure 22: (color online). Hidden attractor (blue) coexists with B–attractor (green out-
going separatrix of saddle S0 attracted to red equilibria S1,2) [53].
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4.1.4. Analytical localization of attractor in dissipative dynamical systems

In the previous sections, we have considered the numerical localization
of various self–excited and hidden attractors of system (35). It is natural to
question if these attractors (or the union of attractors) are the only attractors
(the monostable system) or if other coexisting attractors can be found (the
multistable system).

Consider an autonomous differential equation (2) (cf. Sec. 2). Suppose,
that any solution X(t,X0) of (2) such that X(0, X0) = x and X0 ∈ Rn

exists for t ∈ [0,∞) and is unique. Similarly, one can consider the dynamical
system generated by a difference equation

X(t+ 1) = F (X(t)), t = 0, 1, .. . (38)

Here the existence and the uniqueness are satisfied for all t ≥ 0.
The dissipativity property is important when proving the monostability

of the dynamical system and gives an analytical localization of the attractor
in the phase space. The dissipativity of the system, on one hand, proves
that there are no trajectories that tend to infinity as t → +∞ in the phase
space and on the other hand, can be used to determine the boundaries of the
domain that all trajectories enter within a finite time.

Let us introduce the following notation.
A set B0 ⊂ Rn is said to be absorbing for the dynamical system if for any

X0 ∈ Rn there exists T = T (X0) such that X(t,X0) ∈ B0 for any t ≥ T .
Note that the trajectory X(t,X0) with X0 ∈ B0 may leave B0 for only the

finite time before it returns and stays inside for t ≥ T .
In [138] the ball BR = {X ∈ Rn : |X| < R} has been regarded as an ab-

sorbing set. In this case, if there exists R > 0 such that

lim sup
t→∞

|X(t,X0)| < R, for any X0 ∈ Rn,

then it is said that a dynamical system is dissipative in the sense of Levinson
and R is called a radius of dissipativity.

We can effectively prove dissipativity by constructing Lyapunov function
[139, 140]. Consider a sufficient condition of dissipativity [141]. Suppose that
there exists continuously differentiable function V (X) : Rn → R, possessing
the following properties:

I. lim|X|→∞ V (X) = +∞, and
II. there exist numbers R and κ such that for any solution X(t,X0), the

condition |X(t,X0)| > R implies that V̇ (X(t,X0)) ≤ −κ.
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Then if η > 0 is such that B0 = {X ∈ Rn | V (X) ≤ η} ⊃ {X ∈ Rn | ||X|| <
R}, the set B0 is a compact absorbing set.

More general theorems, connected with the application of Lyapunov func-
tions to the proof of dissipativity for dynamical systems can be found in
[142, 143].

It is known that Lorenz system is dissipative (it is sufficient to choose
Lyapunov function V (x, y, z) = 1

2
(x2 + y2 + (z − r − σ)2)). However, for

example, one of Rossler systems is not dissipative in the sense of Levinson
[144] because the outgoing separatrix is unbounded. In the general case, there
is an art in the construction of Lyapunov functions which prove dissipativity.

4.1.5. Gluhovsky–Dolzhansky system: Analytical localization of self–excited
and hidden attractors
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Figure 23: (color online). Absorbing set (grey), hidden attractor (blue), and global B–
attractor (blue, green and red) for system (35) with the parameters r = 700, σ = 4, and
a = 0.0052. η ≈ 247230.5 [53].

Using Lyapunov function approach one can show that Gluhovsky–Dolzhansky
system (35) is dissipative (see, e.g. [53]). The proof is based on Lyapunov
function

V (x, y, z) =
1

2

(
x2 + y2 + (a+ 1)

(
z − σ + r

a+ 1

)2
)
≥ 0.
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For an arbitrary solution x(t) = (x(t), y(t), z(t)) of system (35) we have

V̇ (x, y, z) = x(−σx+ σy − ayz) + y(rx− y − xz) + ((a+ 1)z − (σ + r))(−z + xy)

= −σx2 − y2 − (a+ 1)z2 + (σ + r)z.

Suppose that ε ∈ (0, (a+ 1)), c = min {σ, 1, (a+ 1)− ε} > 0, and x2 +
y2 + z2 ≥ R2. Then positive κ exists such that

V̇ (x, y, z) ≤ −cR2 +
(σ + r)2

4ε
< −κ for R2 >

1

c

(σ + r)2

4ε
.

We choose a number η > 0 such that

{(x, y, z) | V (x, y, z) ≤ η} ⊃
{

(x, y, z) | x2 + y2 + z2 ≤ R2
}
,

i.e., the relation x2 + y2 + z2 ≤ R2 implies that

x2+y2+(a+1)

(
z − σ + r

a+ 1

)2

= x2+y2+z2+az2−2(σ+r)z+
(σ + r)2

a+ 1
≤ 2η.

Since
−2(σ + r)z ≤ 2(σ + r)|z| ≤ 2(σ + r)R,

if we choose η > 0 such that

(a+ 1)R2 + 2(σ+ r)R+
(σ + r)2

a+ 1
≤ 2η, i.e. η ≥ 1

2
(a+ 1)

(
R +

σ + r

a+ 1

)2

,

then system (35) has a compact absorbing set

B0 =

{
(x, y, z) : V (x, y, z) =

1

2

(
x2 + y2 + (a+ 1)

(
z − σ + r

a+ 1

)2
)
≤ η

}
,

which contains all existing self–excited and hidden attractors of the system.

For example, for σ > 1, r > 1, a < 1 we can choose R =
σ + r

a+ 1
and

η = 2(a + 1)R2 (see Fig. 23). Note that for system (35) the ellipsoidal
absorbing set B0 can be improved using special additional transformations
and Yudovich’s theorem (see, e.g. [145]), similarly to [146] for the Lorenz
system.
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4.1.6. Perpetual points and its connection with hidden attractors

The fixed points of any dynamical system are the ones where velocity and
acceleration of the system simultaneously become zero. If the existing fixed
points are unstable then we may get either oscillating solutions or unbounded
ones. If there are oscillating solutions then the fixed points are considered
to be important points in phase space for locating the oscillating attractors,
i.e. these unstable fixed points are considered as reference points and the
initial conditions near to the fixed points lead to the attractors. However,
for the systems having hidden attractors we don’t have such unstable fixed
points. Therefore a natural question can be asked as ”Is there an reference
point for hidden attractors similar to the fixed point for self–excited attrac-
tors?”. In this section we show numerical results which suggest that there are
points, termed as perpetual points, which could be considered as reference
points of hidden attractors.

Consider a general dynamical system (2) (cf. Sec. 2). The fixed points
correspond to where Ẋ = 0, i.e. F (X∗, p) = 0 where ∗ stands for the fixed
points. Let us consider the derivative of Eq. (2) with respect to time, i.e.

Ẍ = FXT (X, p) · F (X, p)

= G(X, p) (39)

where G = FXT (X, p) · F (X, p) may be termed as the acceleration vector
(here T stands for transpose of the vector). This shows the variation of
acceleration in phase space.

Similar to the fixed points estimation where we set velocity vector zero,
we can also get a set of points where Ẍ = G(XPP , p) = 0 in Eq. (39), i.e. the
points corresponding to the zero acceleration. At these points velocity Ẋ
may be either zero or nonzero. This set includes the fixed points (X∗) with
zero velocity as well as a subset of new points with nonzero velocity. These
nonzero velocity points are termed as perpetual points, XPP [51, 52, 147].
The velocity at these points is either maximum or minimum or of inflection
behavior [51]. It has been also observed that these points are important
for better understanding of transient dynamics in the phase space. These
points also show the bifurcation behavior, similar to the fixed points, as the
parameters of the system vary – for details see [51, 52, 147].

The understanding of hidden attractors (cf. Sec. 2), as compared to the
excitable ones, is difficult due to the absence of the fixed points. To locate
the hidden attractors in a given system is even more difficult. However, the
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perpetual points could be used to locate the hidden oscillating attractors,
rare attractors as well as coexisting attractors [51, 52], in both single and
coupled oscillators [52].

The reason why perpetual points lead to hidden states is still not well
understood and more analysis has to be made in this area. Nevertheless, we
present some argumentation in the particular type of the systems, i.e. the
ones for which the potential is known.

Let us consider the dynamical equation of the dumped oscillator, for
which the potential energy function is defined, i.e.

ẍ+ αẋ+
d

dx
V (x) = 0, (40)

where V is the potential and α is the dumping coefficient. Denoting x1 := x
and x2 := ẋ as the position and velocity of the oscillator respectively, the
equations of fixed and perpetual points are as follows.

Fixed points:
{
x2 = 0,
d
dx1
V (x1) = 0.

(41)

Perpetual points:
{
αx2 − d

dx1
V (x1) = 0,

( d2

dx2
1
V (x1))x2 = 0.

(42)

Considering the relation (42) we can observe that x2 6= 0 because oth-
erwise from the first equation d

dx1
V (x1) = 0 and the solution will be the

fixed point. Hence, d2

dx2
1
V (x1) = 0 and d

dx1
V (x1) 6= 0 (otherwise it will also

be the equilibrium). Thus, the perpetual point of system (40) is also an in-
flection point of the potential energy function. In the systems where stable
fixed points exist the inflection points of potential are the natural guidance
to the equilibria. If the trajectory starts from the inflection, it will converge
through the shortest path (in the sense of energy) to the stable solution. This
connection between perpetual and inflection points may clarify the reasons
why the former ones can be useful in finding the attractors.

The application of perpetual points to the systems of complex dynamics,
for which the potential is unknown, can bring useful and valuable results.
Some of these are shown below.
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Firstly, we apply the perpetual points for locating hidden and rare at-
tractors in multistable systems. Below we consider an example of non–
autonomous system, the externally excited van der Pol–Duffing oscillator.
The dynamics is given by equation

ẍ− α(1− x2)ẋ+ x3 = F sin(ωt), (43)

where x is the state variable and α, F, ω are the parameters, which we have
fixed as follow: α = 0.2, F = 1, and ω = 0.962. Depending on the value of ω
constant system (43) can be monostable, having one self–excited attractor,
as well as multistable, having coexisting hidden and self–excited states.

Equation (43) can be easily transformed into a set of first–order au-
tonomous ODEs (the phase space will be three–dimensional), for which the
perpetual points can be calculated (the second derivatives of the state vari-
ables equal zero). We denote x1 as the position (x1 := x) and x2 as the
velocity (x2 := ẋ) of the oscillator, while t is considered as the individual
time–dependent variable, for which the relation ṫ = 1 occurs. As the result,
the equations of perpetual points of the system (43) are given as follows:

{
α(1− x1

2)x2 − x1
3 + F sin(ωt) = 0

−2αx1x2
2 − 3x1

2x2 + ωF cos(ωt) = 0.
(44)

Relation (44) consists of polynomial equations due to variables x1, x2, and
is underdetermined – we have 2 equations of 3 variables. The area of searching
for solutions has been fixed as the box (x1, x2, t) ∈ [−2, 2]×[−3, 3]×[0, 2π/ω),
where ω = 0.962. The reason of choosing such boundaries results from
the dynamics of the system itself. The considered position–velocity plane
intersects with the basins of rare attractors present in the system. The
examples and analysis of these states can be found in [25]. On the other
hand, periodicity of trigonometric functions present in (44) implicates the
area for t variable.

In our considerations we have transformed the equations from (44) into
one rational equation due to variable x1 and then solve it for different values
of t (the Newton’s method has been used for numerical calculations). Also, to
optimize the issue, we have found a simple property of relation (44), i.e. if the
point (x∗1, x

∗
2, t
∗), where t∗ ∈ [0, T/2) for T := 2π/ω is the perpetual point,

then point (−x∗1,−x∗2, t∗+ T/2) is perpetual also. This observation allows to
reduce the boundaries of t variable into t ∈ [0, T/2). However, both points
(x∗1, x

∗
2, t
∗) and (−x∗1,−x∗2, t∗ + T/2) should be examined for the attractors
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Figure 24: (color online). Perpetual points of system (44) for parameters α = 0.2, F = 1,
and ω = 0.962. In (a) the number of coexisting points as a function of time is shown, while
in (b) their projection on (x1, x2) plane is presented. The basins of attraction for single
oscillator and the trajectory points (marked as black dots) when crossing the t = 2π/ω
plane are shown in (c) [52].

because the basins of attraction are asymmetric and the points may lead to
different states.

The results of our calculations are shown in Fig. 24. The number of coex-
isting perpetual points as the function of variable t is presented in Fig. 24(a).
npp parameter denotes the number of existing solutions. As can be seen, there
are 3 possibilities. The perpetual points can be unique, which is observed
for the widest range of t variable values but there can also coexist 2 or 3
such points. As one can observe, there are two very narrow time intervals
for npp = 2 and two wider for npp = 3. The obtained points are presented
in Fig. 24(b), where the projection of calculated solutions of relation (44) on
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(x1, x2) plane is shown. The black color of the curves refers to the solutions
that are unique, while the red and the blue ones to the coexistence of two
and three points respectively.

To determine the states to which the obtained perpetual points lead, we
have run the system from each one of them (initial conditions) and saved the
space coordinates when the trajectory crosses surface t = 2π/ω. The results
of this procedure are shown in Fig. 24(c). As the background we have used
the basins of attraction of system (43) (these change periodically with the
period of the excitation), where each color correspond to the basin of different
attractors. The dynamics of each state is determined using Poincare sections
and the number of the points on the map equals the periodicity of solution
(infinitely many for irregular ones). In the considered example, the red, blue
and green basins are the dominant ones and refer to two 9 periodic and a
quasiperodic attractor respectively. Other solutions can be considered as
the rare attractors as their occurence for randomly chosen initial conditions
is significantly less probable than for the dominating states (for more see
Sec. 3 where the concept of rare attractors has been introduced). The
dynamics is as follows. The white region leads to a 25 periodic solution
and the pink to 35 periodic one. The cyan color refers to two coexisting
attractors of period 70 (their basins can not be separated due to the applied
resolution and limitations of calculations). Likewise, in the yellow region
three possible states can be obtained – two symmetrical 49–periodic and
63–periodic one. System (43) has one unstable fixed point (x1, x2) = (0, 0),
which neighbourhood leads to a quasiperiodic solution (green basin). Hence,
the torus is a self–excited attractor, while the remaining states are hidden.
The points of the trajectories when they cross t = 2π/ω surface are marked
as black dots in Fig. 24(c). As one can observe, the points intersect with
many regions of different colors, including the ones where initial conditions
of rare attractors are located (the examples are marked as black insets in
the Figure). This allows to observe so many states of different behaviour.
Indeed, using perpetual points we have found ten attractors of the model
(43) – nine periodic and one quasiperiodic.

As the second example, let us consider the system in three–dimentional
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Figure 25: (color online). The transient trajectories starting from perpetual points (red
circles) for system (45) at parameter α = −0.05 [51].

phase space, described by equations

ẋ = y,
ẏ = z,
ż = −y + 3y2 − x2 − xz + α.

(45)

System (45) has no fixed point for α < 0 but has one chaotic hidden attractor.
It has two perpetual points, (0, x2PP+, 0) and (0, x2PP−, 0), x2PP± = (1 ±√

1− 12α)/6. These are shown in Fig. 25 with red–circles. The transient
trajectories starting from these PPs are shown in Fig. 25. It clearly shows
that the trajectories starting from the former one goes to the hidden chaotic
attractor (Fig. 25), while the latter one goes to infinity [68]. This confirms
that perpetual point (0, x2PP+, 0) is useful to locate the hidden attractor.

All the results that have been shown suggest that the concept of perpetual
points is correct and can be useful in the studies of hidden attractors in
dynamical systems, especially the ones with complex behaviour. However,
we can easily imagine extremally multistable systems, for which the number
of coexisting attractors exceeds the number of perpetual points. What is
more, recently Hoover et al. [148] have described the system with chaotic
attractor, for which neither fixed nor perpetual points exist. This suggest
that the connection between the perpetual points and the hidden attractors
may be correct in one way, i.e. if the system has perpetual points, then they
may lead to its hidden states.

As it can be seen, the perpetual points give only some possibilities in
the research of dynamical systems. They are not the comprehensive method
in finding hidden attractors but rather represent another imperfect concept
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that we can apply in our studies. The concept still requires more analysis
and investigations to be well understood.

4.2. Controlling evolution of hidden attractors

Over the last few decades the control of oscillating motions in dynamical
systems has been the topic of intense research from both theoretical and ex-
perimental points of view [149–154]. In many practical situations fixed point
solution is desirable, as for example in laser applications [155–160] where a
constant output is needed and fluctuations should be avoided. There are also
other situations where oscillations need to be maintained, as for instance in
brain functioning [161, 162]. In some systems the regular oscillation is nec-
essary rather than the irregular one, e.g. beating of heart [163]. Similarly,
in telecommunication chaotic signal is used as a carrier signal rather than a
periodic one [164]. These different requirements for specific types of motion
suggest that appropriate control strategies are necessary. In this section we
report the recent works which have been used to control the hidden motions.

The control of chaotic motion to periodic one is the most difficult due
to an extreme sensitivity to initial conditions. However, various approaches
have been established to control such motion. Foremost is the OGY method
(named after Ott, Grebogi, and Yorke [165]) where unstable periodic or-
bits are stabilized using a linear feedback method. This method generated
widespread interest and its applications can be found in almost all branches
of science [150]. Another technique for chaos control is the time–delay feed-
back (Pyragus method [153, 154]) where unstable periodic orbits of a chaotic
system are stabilized by the use of a specially designed external oscillator or
by delayed self–controlling feedback without using any external force. There
are other equally important methods, e.g. linear and nonlinear, adaptive
control etc. (see for extensive review of various control schemes in [166]).

Over the last two decades, controlling oscillating motion to the unstable
fixed points has also been a topic of intense research from both theoretical and
experimental points of view [149–152, 167]. This control of chaotic dynamics
to the fixed points is important in many experimental studies; for example,
the removal of power fluctuation in the coupled laser systems [156–158, 160].
One of the important schemes for the stabilization of the fixed point can be
done by using the phenomenon of amplitude or oscillation death [168, 169]
due to interactions between the coupled oscillators. Here the interaction
between two oscillators causes a pair of fixed points to become stable and
attracting. These fixed points can either be the unstable fixed point of the
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uncoupled system, or these can be entirely new fixed points created by the
coupling (recent review of these phenomena can be found in [168, 169]).

Note that all these schemes for controlling dynamical motion have been
developed and used on the systems having self–excited oscillation. How will
these methods perform and what type of appropriate modifications are re-
quired for controlling the hidden attractors is yet to be explored. How to
control hidden motion to another hidden one, e.g. hidden chaotic to hidden
periodic motion? How are unstable periodic orbits organized within a hid-
den chaotic attractor and how are these different from that of self–excited
chaotic attractor? These are the questions which need to be answered for
proper understanding of hidden attractors. Since the concept of the hidden
attractor is in itself new therefore understanding its motion and its control
strategies is very challenging.

Recently, a simple and effective scheme has been proposed to stabilize the
fixed points of a nonlinear oscillatory system by a suitable design of coupling
with a linear dynamical system (termed as scheme of linear augmentation
[170, 171]. Here, the oscillator dynamics is stabilized at the fixed–point state
without changing the internal parameters of the oscillators. This method
has been used for both the self–excited attractors [171–173] as well as the
hidden attractors [118, 174]. We review this method below for controlling
the hidden motions.

Consider a general nonlinear oscillator (2) (cf. Sec. 2). In the scheme of
linear augmentation [171] the system is coupled with linear dynamical system
(U) as

Ẋ = F (X, p) + εU,

U̇ = −kU − ε(X −B) (46)

Here U̇ = −kU is linear system with decay parameter k and ε describes
the coupling strength between the oscillator and the linear system. B is
the other coupling parameter of the augmented system and can be used to
locate the position of the fixed points [171]. In the absence of coupling the
linear system settles at U = 0 for positive k. However, for nonzero coupling
strength full system becomes higher dimensional. This scheme has been used
rigorously for controlling the oscillating dynamics to the fixed point as well
as converting multistable to monostable oscillations. In order to demonstrate
this scheme let us consider the system having the hidden attractor with no
fixed point, coupled with the linear system, as

52



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

ẋ = y,

ẏ = z,

ż = −y + 3y2 − x2 − xz + α + εu,

u̇ = −ku− ε(z − β). (47)

For ε = 0 and α < 0 the nonlinear system does not have any fixed point.
However at α = −0.02 it shows chaotic motion as shown in Fig. 26 (a). Since
there is no fixed point therefore this chaotic motion is termed as a hidden
attractor.

Due to the presence of coupling, full system (47) becomes 4–dimensional

and a new set of fixed points, x∗ = ±
√
α + ε2β

k
, y∗ = 0, z∗ = 0, is created.

Since α = −0.02, the condition for a real fixed point solution is ε2β
k
> α.

The existence and stability of these fixed points depend on the values of
parameters, k, ε and β. Shown in Fig. 26 (b) is the phase space diagram
scanned for parameters β and ε for k = 0.5. Here, the blank region represents
the condition where ε2β

k
> α does not hold and therefore in this regime the

fixed points do not exist. However, the hidden chaotic attractor (Fig. 26
(a)) does continue to exist with small modification due to the presence of the
linear term (Eq. (47)). In the regions of brushup (shaded) by filled–black and

hatched–red colors, the condition ε2β
k
> α is satisfied and thus it leads to the

generation of new fixed points. However, the fixed point is stable in the dark
regime (black color) while it is unstable in the sketched (red color) regime
– the stability is estimated from real part of the largest eigenvalue of the
linearized system i.e. filled–black (stable fixed points – SFP) and hatched–
red (unstable fixed points – UFP) regions correspond to the negative and
positive real parts of the largest eigenvalues respectively. Shown in Fig. 26 (c)
is the limit cycle in the hatched–red region at parameters β = 0.5 = ε where
the fixed point is unstable. This shows that the hidden chaotic attractor
is converted to the limit cycle oscillation. Due to the presence of unstable
fixed points this limit cycle is a self–excited attractor. At higher values of
ε the newly created fixed point becomes stable as shown in Fig. (d) where
the transient trajectory at parameter values β = 0.5 and ε = 1. Therefore,
using this scheme of linear argumentation hidden motion, if it exists, can
be controlled to either limit cycle or fixed point. Note that the routes of
transition from oscillating motion to the periodic and from periodic to fixed
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Figure 26: (color online). (a) Hidden chaotic attractor for system, Eq. (47), for ε = 0
(uncoupled). (b) Phase space diagram in parameter space (β, ε) at k = 0.5. In blank
regime the fixed point doesn’t exist while filled–black and hatched–red regions correspond
to the presence of unstable and stable fixed points respectively. (c) Periodic attractor and
(d) fixed point solution (transient motion) for coupling strengths ε = 0.5 and 1 respectively
at β = 0.5.
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point solutions are different in different regions of parameter space (for details
see [118]).

In dynamical systems, multistability means the coexistence of several
possible asymptotic states for a given set of parameters. These asymptotic
states depend crucially on the initial conditions. The basins (the set of ini-
tial conditions which go to the same attractors) may be very complicated,
e.g. fractal, riddled basins [68, 175–180]. These complicated basins make
the understanding of the systems more difficult. Since this phenomenon of
multistability has been found in almost all areas of science and nature last
few decades have seen great interest in understanding such systems. The
detailed study of multistability and its applications can not be neglected in
a sense that by applying some control scheme one may use multistability to
induce switches between different coexisting states in order to obtain differ-
ent system performance. As multistability creates a dilemma to decide the
final asymptotic state of the system a proper control technique is required
for practical situations, particularly for engineering systems where a target
dynamics is required. Hence, for a certain desired performance of a system
control of multistability is essential. Out of several multistability control
schemes [68, 118, 173, 174], the most effective way to ensure a predefined
behavior of the system is to annihilate all undesired states. However, in
practice, an external control is always a better choice as it may not require
accessibility of the internal parameters of the system.

Considering the importance of understanding the multistability and its
control several attempts have been made in the last decades. An extensive
review of control of multistability has been published by Pisarchik and Feudel
[24] for the self–excited multistable attractors. These schemes of control
have not been used for hidden attractors so far. Recently, the presence of
coexisting hidden attractors with riddled basins has been reported in [68].
It is shown that chaotic as well as periodic hidden attractors may coexist in
single or coupled systems with interesting basins. These types of multistable
hidden attractors are found in many systems. How to control multistability
is challenging. Recently, to control such multistable hidden attractors the
same linear augmentation (Eq. (46)) is used to remove multistability. It
is found that linear augmentation scheme can drive the multistable hidden
attractors to monostable state – for details, see [118, 173].
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5. Dynamics of coupled systems with hidden attractors

The studies of the coupled systems with hidden attractors are the natural
consequence of the development of research in the topic of hidden states.
However, the knowledge in this area is still insufficient and the results are in
very early stage. Some considerations on the issue have been shown in [68].
In the [118, 174] authors discuss the possibility of control of multistability in
the systems where the unit with hidden attractor is coupled with the linear
system. Recently, hidden attractors have been found in coupled systems with
only self–excited attractors [181].

Although we still stand at the beginning of the road to learn and under-
stand the behaviour of the coupled systems with hidden states, the results
obtained so far are very promising. Among the standard types of synchro-
nization that can be found in basic models, we have observed more complex
patterns like clustering of the oscillators or the chimera states [182–191].
The latter ones are quite new phenomenon in dynamical systems and are
very intensively studied by the researchers. Originally chimera states have
been discovered by Kuramoto [182] in his studies about non–locally coupled
phase oscillators. Nowadays, chimeras are being described in many different
areas of science, e.g., in the mentioned phase oscillators [183–185], chemical
oscillators [186, 187], neural models [188] or experimental works [189, 190].
The review of the history and basic properties of chimera states can be found
in [191].

All the phenomena that we have observed in the coupled systems with
hidden attractors (and also the ones that still need to be identified and de-
scribed) arise from the complex nature of the systems themselves. If each
unit that creates the network has hidden attractors itself, it is hard to over-
estimate how many possibilities of dynamics the whole system can exhibit.
What we present in this Section is only the small sample of behaviour that
can be found in the described models.

5.1. Identical systems – types of synchronization, clustering, chimera states
with hidden heads

In our research we have focused on the coupled systems which consist of
identical units with hidden attractors. We present the results obtained for
the smallest possible group, i.e., two coupled oscillators, as well as the effects
of our investigations in large networks. In all our considerations we have
used van der Pol–Duffing oscillator as the basic unit of the studied models.
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5.1.1. System of two coupled oscillators

Let us consider the system of two coupled van der Pol–Duffing oscillators,
which are externally excited by the sine functions. The dynamics is given by
equations

{
ẍ− α(1− x2)ẋ+ x3 + ε(y − x) = F sin(ωt)
ÿ − α(1− y2)ẏ + y3 + ε(x− y) = F sin(ωt),

(48)

where x and y are the state variables which describe the position in phase
space of the corresponding oscillator, α = 0.2, F = 1.0, ω = 0.962 are fixed
parameters and ε is the coupling coefficient. The latter value can be identified
as the stiffness of the spring that couples oscillators in our simulation. The
basins of attraction of coexisting states for such defined van der Pol–Duffing
units can be found in Fig. 24(c) (cf. Sec. 4.1).

In our analysis of possible dynamics we have used the concept of perpetual
points described in Sec. 4.1. The method applied to equations (48) is similar
to the one presented in the quoted Section. Here, we denote x1 (y1) as the
position of first (second) oscillator and x2 (y2) as its velocity. t is identified
as the new time–dependent variable.

Perpetual points of the system (48) are given as the solutions of the set
of equations





α(1− x1
2)x2 − x1

3 + F sin(ωt) + ε(x1 − y1) = 0
−2αx1x2

2 − 3x1
2x2 + ωF cos(ωt) + ε(x2 − y2) = 0

α(1− y1
2)y2 − y1

3 + F sin(ωt) + ε(y1 − x1) = 0
−2αy1y2

2 − 3y1
2y2 + ωF cos(ωt) + ε(y2 − x2) = 0.

(49)

Relation (49) consists of polynomials due to the variables x1, x2, y1 and
y2 and is underdetermined (4 equations of 5 variables). The area of searching
for solutions in five–dimensional phase space is given by (x1, x2, y1, y2, t) ∈
[−2, 2]× [−3, 3]× [−2, 2]× [−3, 3]× [0, 2π/ω). However, it should be noted
that the presented equations can be simplified into two polynomial equations
due to variables x1, x2 (or y1, y2, depending on the transformation) and then
solved for fixed t.

To optimize the issue of finding solutions of relation (49) some useful
properties of these equations can be found, i.e.:
(i) if point (x∗1, x

∗
2, y
∗
1, y
∗
2, t
∗), where t∗ ∈ [0, T/2) for T := 2π/ω is perpetual

one, then point (−x∗1,−x∗2,−y∗1,−y∗2, t∗ + T/2) is perpetual also;
(ii) if (x∗1, x

∗
2, t
∗) is a perpetual point of a single oscillator (without coupling),
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then point (x∗1, x
∗
2, x
∗
1, x
∗
2, t
∗) is a perpetual point of the coupled system for

any value of coupling coefficient ε;
(iii) for the fixed value of ε, if (x∗1, x

∗
2, y
∗
1, y
∗
2, t
∗) is a perpetual point, then

point (y∗1, y
∗
2, x

∗
1, x
∗
2, t
∗) is also a perpetual one.

In our calculations, Newton’s method for solving nonlinear systems of
equations has been used.

The results are presented in Fig. 27. The number of calculated perpetual
points is shown in the left panel of the Figure. Time variable t is fixed
for each plot and the number of points corresponding to the coupling strenth
ε ∈ [0, 2] is denoted by npp parameter. In the first subfigure, for t = 0.1·2π/ω
(Fig. 27(a)) only three states are possible. When the coupling is small,
perpetual points can be unique or five of them can coexist. After reaching
some threshold value, the number of points stabilize on three. When t value
increases, more complex behaviour occurs. In the Fig. 27(b), for t = 0.25 ·
2π/ω npp parameter varies from one to nine, while in Fig. 27(c), for t =
0.95 · 2π/ω it changes from one to seven. As one can observe, the size of
intervals of coupling parameter values where the given number of perpetual
points coexist can change from quite wide to extremely narrow. Also, value of
npp parameter is even in all presented examples, which is a simple conclusion
from the properties (ii)–(iii) described above and the results obtained for
the single oscillator in Sec. 2.2 (for t values considered in Fig. 27 a single
system has one unique perpetual point). In the right panel in Fig. 27 the
corresponding projections of perpetual points on position–velocity plane are
marked by blue dots. The position of points in phase space (on curves)
changes continuously with increasing ε. In addition, we present the trajectory
points of system (48) when they cross fixed subspace t = 2π/ω – these points
are shown as red dots in figure. The distribution of these points in space
suggests, that they intersect with basins of different attractors that coexist
in the system.

Considering calculated perpetual points as the initial conditions of sys-
tem (48) we have obtained the attractors that appear only for the coupled
oscillators and have not been found for the single ones, for the same param-
eter values (i.e., α = 0.2, F = 1 and ω = 0.962). The examples of dynamics
and types of synchronization for fixed coupling parameter values are shown
in Figs. 28–29. In both figures Poincare maps are presented in the left panel
and the projections of trajectories on position–velocity plane in the right one.
The colors on the plots correspond to the legend on the axes (red and blue
colors are used in the case of anti–phase synchronization and the green one
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Figure 27: (color online). The number of coexisting perpetual points (npp parameter) in
the function of coupling strength ε (left panel) and projection of these points on position–
velocity plane (blue dots in the right panel) for system (49). Variable t is fixed for each
diagram and increases from the top to the bottom, t = 0.1 · 2π/ω, 0.25 · 2π/ω, 0.95 · 2π/ω
respectively. The points of trajectories (starting from perpetual points) while crossing
t = 2π/ω surface are marked as red dots in the right panel [52].
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Figure 28: (color online). Poincare maps (left panel) and trajectories (right panel) of
regular attractors obtained from perpetual points, that exist only for coupled oscillators
system (48). Increasing from the top to the bottom, ε = 0.02 (coexisting attractors of
period 25), ε = 0.06 (one common attractor of period 18), ε = 0.27 (one common attractor
of period 4) and ε = 0.65 (coexisting attractors of period 1) [52].
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Figure 29: (color online). Poincare maps (left panel) and trajectories (right panel) of
irregular attractors obtained from perpetual points, that exist only for coupled oscillators
system (48). Increasing from the top to the bottom, ε = 0.3 (one common quasiperiodic
attractor), ε = 0.4 (coexisting chaotic attractors) and ε = 0.62 (coexisting quasiperiodic
attractors) [52].
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in the case of in–phase synchronization).
In Fig. 28 the examples of periodic solutions are presented. In Fig. 28(a)

two states of period 25 coexist, where the trajectories are symmetric around
the origin of the coordinate system and the oscillators are anti–phase syn-
chronized. The example of synchronization is shown in Fig. 28(b), where
subsystems get attracted to 18 period orbit. In both these examples, the at-
tractors bifurcate from the original ones, that can be found in the single van
der Pol–Duffing oscillator (where one 25 period attractor and two 9 period
attractors coexist). Another new states are shown in Fig. 28(c–d), where one
attractor of period 4 (in–phase synchronization) and two solutions of period 1
(anti–phase synchronization) are shown respectively. On the other hand, ir-
regular attractors for coupled system (48) are shown in Fig. 29. In Fig. 29(a)
a torus is presented, on which both units are lag synchronized. The chaotic
behaviour can be found in Fig. 29(b), where oscillators are desynchronized,
although the coexisting states seem to have similar structure. Another ex-
ample of quasiperiodic dynamics is shown in Fig. 29(c), where subsystems
are anti–phase synchronized on two tori.

It should be emphasized, that no state shown in Figs. 28–29 (in the
sense of attractor on which the first or the second oscillator is – red, blue
and green curves in Figures) has been observed for a single system using
perpetual points. This suggests that these states can be born only when the
oscillators are coupled and what is more, that the study of perpetual points
allows us to identify new local behaviour of the dynamical systems.

The presented results have been obtained for the simpliest coupling vari-
ant, where only the linear coupling of the units appears in the equations. We
can generalize the issue by considering other, more complex coupling pat-
terns, although for such systems the obtained equations for perpetual points
can be much more complicated to solve.

5.1.2. Network of oscillators

To investigate more complex behaviour of the coupled dynamical systems
with hidden attractors we have considered the network of coupled van der
Pol–Duffing oscillators introduced above.
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In this case, the system is given by equations





ẋi = yi + d
2P

i+P∑
j=i−P

[xj − xi]

ẏi = α(1− xi2)yi − xi3+Fsinωt+ d
2P

i+P∑
j=i−P

[yj − yi]
(50)

where xi and yi are real dynamic variables (position and velocity of i–th
oscillator respectively), i = 1, . . . , N , N is the size of the network, d is
the coupling parameter, 2P is the number of neighbors in both directions
coupled with the i–th unit (symmetric coupling), and α, F, ω are the local
parameters. An additional parameter connected with the considered system
is the coupling radius, defined as r = P/N . When r = 1/N , the oscillators
are locally coupled and when r = 0.5 we obtain global coupling, otherwise
the units are non–locally coupled. Also, one can observe that there are
two coupling components in system (50) – one for the position coordinates
(coupling by x variables) and the second for the velocity (coupling by y
variables).

For our calculations we have fixed α = 0.2, F = 1.0 and ω = 0.94, for
which values the dynamics of van der Pol–Duffing oscillator is bi–stable and
each unit has exactly two coexisting attractors – chaotic one, which is self–
excited, and period 7 orbit, which is the hidden attractor. The basins of these
are shown in Fig. 30, where the Poincare map of chaotic state is presented
by blue dots, with the corresponding grey basin, while the periodic attractor
is marked by yellow dots, with the corresponding red basin. The size of the
considered network is N = 100.

To analyze the possible behaviour of system (50) we have prepared sim-
ulations with many different, randomly chosen initial conditions. These, for
a single simulation, have been prepared as follows: For each oscillator we
have drawn one of two black boxes shown in Fig. 30, which intersect only
with the basin of one of the attractors and from the chosen area the initial
conditions have been taken randomly, using uniform distribution. The ex-
amples of the observed states for fixed coupling radius r = 0.3 and changing
coupling strength are shown in Fig. 31.

In each subfigure 31(a–e) the snapshot of position in space of each oscil-
lator is shown in the upper left panel (the (i, xi) graph), while in the lower
left panel one can observe the snapshot of mean velocity of each unit (the
(i, ỹi) graph), both plots calculated after fixed transient time. On the other
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Figure 30: (color online). Poincare maps and corresponding basins of attraction of bi–
stable van der Pol–Duffing oscillator. Chaotic attractor is marked by blue dots with
corresponding grey basin, while period 7 orbit is marked by yellow dots with corresponding
red basin. Initial conditions for oscillators have been taken from the black boxes marked
in the figure. Parameters: α = 0.2, F = 1.0 and ω = 0.94.

hand, in the right panel of each subfigure the space–time mean velocity plot
is presented. The colors marked on the snapshots correspond to the local
dynamics of each unit creating the network (50), hence they determine the
groups of different local behaviour of the oscillators.

First, when the coupling value is small (Fig. 31(a), d = 0.005), two differ-
ent solutions of period 7 and one chaotic state are born. Each oscillator gets
attracted to one of them, depending on the color of corresponding dot (blue
and red dots refer to periodic orbits, while the black ones to the chaotic). The
oscillators with regular local dynamics create two branches on the snapshots
of position and mean velocity (the velocity is also fixed in time), while the
rest of them are located randomly – we can observe here typical spatial chaos
structure [192–194]. What should be noted, the blue attractor is the original
state that has been found for the single oscillator (shown in Fig. 30 as yellow
dots), while the second periodic attractor and the chaotic one are new states
that do not appear in the original system for given parameter values. When
the coupling strength increases to d = 0.01, in Fig. 31(b) more complex be-
haviour occurs. The oscillators corresponding to red, blue and black dots are
on two periodic (period 7) and one chaotic attractors respectively, and the
structure of these states is very similar to the ones observed for d = 0.005. A
chimera state with chaotic head (black dots) and spatial chaos regions (in-
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Figure 31: (color online). The examples of dynamics of the system (50) for fixed coupling
radius r = 0.3 and different coupling coefficients. In each subfigure (a)–(e) the snapshots of
position (upper left panel) and mean velocity (lower left panel), and the space–time mean
velocity plot (right panel) are shown. The colors marked on the snapshots correspond
to local dynamics of the oscillators. Coupling strength d increases from the top to the
bottom, d = 0.005, 0.01, 0.02, 0.025, 0.3 respectively.
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Fig. 31 (continued)
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Fig. 31 (continued)
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tersections between black and blue dots) is born. The rest of the oscillators
is devided into four groups of different local dynamics, where the green ones
are on quasiperiodic state, while the pink, yellow and brown are on chaotic
attractors (but none of them is similar to the chaotic attractor in the original
van der Pol–Duffing system). The structure of the mean velocity is similar
to the snapshot of position, and the velocity changes in time according to the
local behaviour of units creating the network. Another example of chimera
state is presented in Fig. 31(c), for d = 0.02. Here, we can observe the state
where all the oscillators are moving periodically. The ones corresponding
to red and blue branches are on period 7 attractors, while the ones marked
by green and brown dots are on period 14 orbits. The chimera consist of
spatial pattern between green and brown clusters, also with two units (that
belong to the red branch) in between those clusters. What is more, the green
structure seems to contain two levels of oscillators, with slight difference in
position between them (what can be seen on the snapshot of the position
in Fig. 31(c)). The portrait of mean velocity shows a continuous pattern
for each group of oscillators. Similar network state has been observed for
d = 0.025 in Fig. 31(d), although in this case the oscillators from green and
brown branches behave quasiperiodically (the ones from red and blue clus-
ters are still on period 7 orbits). Also, these two groups are now separated
from the others and there are no oscillators in between like it was in the
previous scenario. Finally, when the coupling is large enough (Fig. 31(e),
d = 0.03) chimera states disappear and we can observe only clusters of solu-
tions. The local dynamics of oscillators in each of these branches is regular
(red, blue – period 7, green, brown – period 14) and the portrait of mean
velocity corresponds to the snapshot of position. It should be emphasized,
that for each color group described above, the oscillators that belong to one
chosen structure represent the same local dynamics in the qualitative sense.
The attractors on which these oscillators are can exhibit some slight quan-
titative differences, e.g., in the position in space or in the rotation around
some point. Nevertheless, we can suitably describe a sort of representative
attractor, which can properly describe the local behaviour of each oscillator
belonging to the group.

5.2. Influence of parameters mismatch

In Sec. 5.1 the examples of dynamics of coupled systems with hidden
attractors have been shown, both for the smallest system of two and for the
network of hundred units. In all these examples the initial conditions have
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been arbitrary chosen. Although such calculations give us some idea about
the typical behaviour and dynamical properties of the considered systems,
the scenario by which the network transforms from one state to another is
still unknown. Only the bifurcation analysis allows to explain and possibly
understand the issue.

In this Section we have focused on network (50) described above, without
changing the oscillators’ coefficients and the size of the system (α = 0.2, F =
1.0, ω = 0.94 and N = 100). As bifurcation parameters we have chosen the
coupling strength d and the coupling radius r. In each simulation the state
presented in Fig. 31(b) for d = 0.01 and r = 0.3 has been used as a starting
point for further changes in the networks’ parameters.

The results for fixed coupling radius r = 0.3 and coupling strength d
considered as the bifurcation parameter are shown in Fig. 32.

As mentioned above, the starting point is state in Fig. 32(a) for d = 0.01,
and in the first step the coefficient is increased. The color code of the units
on the snapshots is the same as in Fig. 31(b). For d = 0.012 (Fig. 32(b)) the
oscillators marked by pink, yellow and brown dots get attracted to the green
cluster. As a result, we obtain a chimera state with two coherent branches
(green and blue), a chaotic head (black oscillators) and a few units separated
from the main structures (red ones). The spatial chaos regions between
blue and black parts also survived. With further increase to d = 0.021, in
Fig. 32(c) one can observe that oscillators from the chaotic part of chimera
are forming a kind of spatial pattern. The units no longer oscillate randomly
in space like in the previous case, but they have been transformed into two
intersecting levels. What is more, the blue cluster gets narrower due to the
fact that some units escaped to the green one. The described behaviour
occurs for higher values of d. With the increase of the coupling strength
the length of the intersecting region gets smaller (oscillators begin to form
one common branch), and even more units leave the blue cluster. Finally,
for d = 0.028 (Fig. 32(d)) the spatial chaos disappears and a new cluster is
born (the black one). Also, the solitary red units stick to one of the main
branches. With further increase of d parameter the spatial chaos regions
between black and blue structures get smaller and shrink, forming three
separated clusters’ patterns in space. When the coupling is large enough
(d = 0.032), in Fig. 32(e) these clusters glue together and form common
oscillating wave, on which all oscillators are synchronized.

On the other hand, in the next step we have decreased coupling d, also
starting from the state for d = 0.01. At the beginning, the network behaves
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Figure 32: (color online). Bifurcation scenario for network (50) with fixed coupling radius
r = 0.3. In the left panel the snapshots for each value of the coupling strength d (in-
creasing from the bottom to the top, d = 0.001, 0.003, 0.008, 0.01, 0.012, 0.021, 0.028, 0.032
respectively) have been shown. In the right panel the bifurcation diagrams for chosen
oscillators i (increasing from the top to the bottom, i = 7, 15, 25, 45, 99 respectively) have
been presented.
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similarly as in the previous procedure. For d = 0.008 in Fig. 32(f) the
oscillators pink, yellow and brown stick to the green cluster and the rest
remains the same. The differences occur with further decrease of the coupling
strength. In Fig. 32(g), d = 0.003, the green cluster (with single pink,
yellow and brown units) starts to fall apart. As it can be observed on the
snapshot, four units from the left part and one unit from the right one leave
the structure. Also, the red dots divide into two subgroups and no longer
oscillate on the same level. Finally, when the coupling is very small at d =
0.001, the green branch gets destroyed and in Fig. 32(h) we obtain coherent
blue clusters of oscillators and incoherent state of the remaining part of the
system.

To follow the dynamics of the oscillators from one state of the network
to another, in Fig. 32(i–m) bifurcation diagrams have been presented. The
color code of the chosen units refers to the one used on the snapshots in
Fig. 32(a–h). As one can see, oscillators 7th, 15th and 25th (pink, green and
blue dots respectively) behave similarly, i.e. for increasing as well as decreas-
ing coupling strength d they bifurcate through quasiperiodic and periodic
attractors of similar structures to the final states. The dynamics of oscillator
45th (black dot on the snapshot) remains chaotic in the wide interval aroud
d = 0.01, but finally transforms into regular one, which remains mostly for
the rest of coupling values. In the case of unit 99th (red one) the amplitude
of the oscillations changes (increases/decreases) in the same direction as the
value of coupling, until the bifurcation parameter reaches threshold value for
which it stabilizes (approximately d = 0.026 (d = 0.003) for increase (de-
crease) of the coupling strength). All the oscillators synchronize on chaotic
state for d = 0.032 (Fig. 32(e)), which then bifurcate at d = 0.033 to periodic
solution. What should be noted, also in the case d = 0.001 the final attractors
obtained by the considered oscillators seem to be qualitatively similar.

Next, in Fig. 33 we present the results of our analysis for fixed coupling
strength d = 0.01 and coupling radius r considered as the bifurcation param-
eter.

Likewise, the starting point is the state Fig. 33(a) for r = 0.3, and in
the first step the radius is increased. The color code of the units on the
snapshots is the same as previously. For r = 0.32 in Fig. 33(b) only the
oscillators corresponding to pink dots get attracted to the green ones, while
the pattern of the remaining part of the network does not change. The yellow
and brown units remain solitary until r = 0.38 case in Fig. 33(c), when they
also stick to the green cluster, creating one common branch (filled with a
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Figure 33: (color online). Bifurcation scenario for the network (50) with fixed coupling
strength d = 0.01. In the left panel the snapshots for each value of the coupling radius r
(increasing from the bottom to the top, r = 0.03, 0.15, 0.26, 0.3, 0.32, 0.38, 0.5 respectively)
have been shown. In the right panel the bifurcation diagrams for chosen oscillators i (in-
creasing from the top to the bottom, i = 7, 15, 25, 45, 99 respectively) have been presented.
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few gaps corresponding to the separated red dots). Further increase of the
bifurcation parameter does not change the spatial pattern of the network but
the larger the coupling radius r is, the less the coherent branches wave in
time. In the extreme case, for global coupling in Fig. 33(d) (r = 0.5) blue
and green clusters only oscillate (at any moment of time t they are placed
horizontally in space). As one can observe, in this case the spatial behaviour
of most of the oscillators has remained unchanged.

For the case of decreasing radius r the results are as follows (likewise, we
have begun the bifurcations from the network state for r = 0.3). The initial
behaviour is identical as in the previous considerations, i.e. for r = 0.26
(Fig. 33(e)) the pink oscillators stick to the green ones and nothing else
changes. However, with further decrease of the radius the structures begin
to fall apart. As can be seen in Fig. 33(f) for r = 0.15, the oscillators
get separated for the blue clusters to the green one, which in fact starts to
become filled with more gaps and discontinuities and loses its stability. The
process of destruction continues and an example of possible final state of the
system is shown in Fig. 33(g) for r = 0.03. The whole pattern has become
incoherent.

The bifurcation diagrams of a few chosen oscillators are presented in
Fig. 33(h–l) (we have chosen exactly the same units as in the case of bi-
furcations with parameter d). The diagrams of oscillators 7th, 15th and
25th (pink, green and blue dots respectively) while increasing the bifurca-
tion parameter are quite similar – all of them transform through chaotic and
quasiperiodic/periodic states to obtain the final attractor. In the reverse bi-
furcations from r = 0.3 to r = 0.01 the oscillators get attracted to chaotic
and quasiperiodic states (quasiperiodic windows can be seen). On the other
hand, the dynamics of unit 45th (black dots) is completely different. We can
observe only chaotic behaviour all the way through the bifurcation parame-
ters. Also for oscillator 99th (red one) the transformation from one state to
another proceeds differently. The curves on the diagram intersect and change
their direction. Also the amplitude in much lower than in the previous exam-
ples. What should be noted, the final dynamics of the oscillators is also not
the same, as it was the case with the bifurcation parameter d. For r = 0.5
only the 7th and 15th oscillators are on the same quasiperiodic attractor,
while the 25th and 99th present different local dynamics. In contrast, the
45th unit remains on the chaotic state. For r = 0.01 7th, 15th, 25th and
45th oscillators exhibit similar chaotic behaviour, while the dynamics of the
99th one seems quasiperiodic.
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f(e)e f G(s)r Σ+
−

c

Figure 34: Nonlinear control system. G(s) is a linear transfer function, f(e) is a single–
valued, continuous, and differentiable [195].

6. Experimental observations of hidden attractors

Hidden attractors can be observed in various nonlinear control systems,
like this schematically shown in Fig. 34. In 1950s–1960s, the studies of the
well–known Markus–Yamabe’s [196], Aizerman’s [197], and Kalman’s [195]
conjectures on absolute stability led to the discovery of the possible coexis-
tence of a hidden periodic oscillation and a unique stable stationary point
in automatic control systems (see [42, 44, 48, 198–202]; the corresponding
discrete examples were considered in [203]). In 1957 R.E. Kalman stated the
following [195]: “If f(e) in Fig. 1 [see Fig. 34] is replaced by constants K cor-
responding to all possible values of f ′(e), and it is found that the closed–loop
system is stable for all such K, then it is intuitively clear that the system
must be monostable; i.e., all transient solutions will converge to a unique,
stable critical point.” Kalman’s conjecture is a strengthening of Aizerman’s
conjecture [197], which considers nonlinearities belonging to the sector of lin-
ear stability. Note that these conjectures are valid from the standpoint of
simplified analysis such as the linearization, harmonic balance, and describ-
ing function methods (DFM), which explains why these conjectures were put
forward.

Nowadays, various counterexamples to these conjectures (nonlinear sys-
tems where the only equilibrium, which is stable, coexists with a hidden
periodic oscillation) are known (see [42, 44, 48, 198–201, 204]; the corre-
sponding discrete examples are considered in [203, 205]). For example, the
system:

ẋ1 = −x2 − 10f(e),
ẋ2 = x1 − 10.1f(e),
ẋ3 = x4,
ẋ4 = −x3 − x4 + f(e),

(51)

where e = x1 − 10.1x3 − 0.1x4 and f(e) = tanh(e) has the only equilibrium
(green dot in Fig. 35(a)) which is stable, while the nonlinearity (blue curve

74



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

in Fig. 35(c)) and its derivative belong to the linear stability sector (K ∈
(0, 9.9), red lines in Fig. 35(c)). At the same time the system admits a stable
periodic solution, which is the hidden attractor (blue curve in Fig. 35(b) and
the projection of the attractor on the plane (x1, x2) shown as green curve in
Fig. 35(a)).
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Figure 35: (color online). System (51) as the counterexample to the Kalman conjecture.
In (a) the stable fixed point (green dot) and the projection of periodic solution (green
curve) are shown, while in (b) the periodic behavior of e component is presented. The
nonlinearity (blue curve) and the linear stability sector (red lines) are shown in (c).

Similar situation with linear stability and hidden oscillations occurs in the
analysis of aircrafts and launchers control systems with saturation [206, 207].
In [33] the crash of aircraft YF–22 Boeing in April 1992, caused by the
difficulties of rigorous analysis and design of nonlinear control systems with
saturation, is discussed and the conclusion is drawn that “since stability in
simulations does not imply stability of the physical control system (an example
is the crash of the YF22), stronger theoretical understanding is required”.

Hidden attractors can be easily observed in various simple electronic cir-
cuits. As the first example let us consider the circuit shown in Fig.36 This
circuit is the realization of the chaotic flow with a line equilibrium [132]
described in Sec. 2. The equations are as follows:

dνc1
dt

= 1
R1C1

R8

R7
νc2 ,

dνc2
dt

= − 1
R2C2

+ 1
10R3C2

νc2νc3 ,
dνc3
dt

= − 1
R4C3

− 1
10R5C3

− 1
10R6C3

νc1νc3 .

(52)

This circuit includes four operational amplifiers, eight resistors, three ca-
pacitors and three analog multipliers. The values of electronic components
are selected as R1 = R2 = R4 = R7 = R8 = 100kΩ, R3 = R6 = 10kΩ,
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Figure 36: Circuit exhibiting hidden attractors with a line equilibrium.

R7 = 0.588kΩ and C1 = C2 = C3 = 1nF . The Multisim results are shown in
Fig. 37 which display the hidden chaotic attractor in different planes.

As the second example consider the circuit illustrated in Fig. 38. The
circuit is the realization of a four–dimensional continuous–time autonomous
system without equilibrium [71]. The circuital equations are given by:

dνc1
dt

= − 1
R7C1

νc1 + 1
R7C1

(
R5

R4
νc2 − R5

R1
νc1 + R5

R3
νc1

)
,

dνc2
dt

= − 1
R15C2

νc2 + 1
R15C2

(
−R13

R8
νc2 + R13

10R11
νc1νc2 + R13

R12
νc4 + R13

R10
νc2

)
,

dνc3
dt

= − 1
R22C3

νc2 + 1
R22C3

(
R20

R18
V1 − R20

10R17
νc1νc2 + R20

R19
νc2

)
,

dνc4
dt

= − 1
R27C4

νc4 + 1
R27C4

(
−R25

R23
νc1 + R25

R24
νc4

)
.

(53)

The circuit is implemented by using common off–the–shelf components such
as: operational amplifiers, resistors, capacitors and analog multipliers. The
values of electronic components in Fig. 38 are chosen as follows R1 = R4 =
114.94kΩ, R2 = R3 = R5 = R6 = R10 + R16 = R18 = R19 = R20 = R24 =
R25 = 100kΩ, R7 = R15 = R22 = R27 = 1kΩ, R8 = R14 = R23 = R26 =
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Figure 37: (color online). Hidden chaotic attractors of the circuit (52) with a line equilib-
rium in different planes: (a) νc1νc2 , (b) νc1νc3 , (c) νc2νc3 .

200kΩ, R9 = 9.8kΩ, R11 = R17 = R21 = 10kΩ, R12 = 500kΩ, V1 = 1VDC
and C1 = C2 = C3 = C4 = 100nF . We use the oscilloscope to display the
hidden chaotic attractors. The experimental results are shown in Fig. 39.

There are some precautions for designing an analog circuit that emulates
the dynamics of chaotic flow, especially when the attractor is hidden:
(a) The components of the analog circuit must be selected carefully to match
the mathematical model. Choosing correct off–the–shelf discrete components
is a practical challenge. For example, it is easy to change the parameters and
the eigenvalues of the chaotic system with one stable equilibrium when in-
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Figure 38: Circuit exhibiting hidden attractors without equilibrium.

appropriate values of the electronic components are used. In such cases, the
dynamics of the system can change radically.
(b) The limits of operational amplifiers and analog multipliers, such as sat-
uration, power supply voltages, nonlinearities, frequency limitations and ac-
ceptable inputs must be considered. For example, in a chaotic system like

78



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(a)

(b)

(c)

νC1

νC1

νC1

νC2

νC3

νC4

5-5

20

-20

0

5-5

20

-20

0

5-5

20

-20

0

[V]

[V]

[V]

[V]

[V]

[V]

Figure 39: (color online). Hidden chaotic attractors of the circuit (53) without equilibrium
in different planes: (a) νc1νc2 , (b) νc1νc3 , (c) νc1νc4 .

NE4 [66], the amplitudes of the variables are much greater than the other
cases (see Fig.1 in [66]).

7. Conclusions

We give evidence that the hidden attractors can be expected in a great
number of dynamical systems ranging from low–dimensional (2–dimensional)
ones to the high–dimensional networks of coupled oscillators. Recently, these
state have been also observed in maps (see, e.g. [203, 205, 208]). In many
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cases hidden attractors have small basins of attractions and the system’s evo-
lution on them is very sensitive towards external perturbations (noise), ini-
tial conditions and small changes of the system’s parameters. Typically even
small perturbation can lead to an unexpected switch to a different attractor.
In applied systems this switch is equivalent to the catastrophic bifurcation
from the desired to the undesired regime. Such bifurcations in ecological or
climate models can explain the events like the collapse of an overharvested
population or ancient climatic changes. In engineering systems the catas-
trophic bifurcations can lead to the damages of the commercial devices. To
avoid such unexpected events one needs to identify all hidden attractors, es-
timate its basins of attraction and apply an appropriate controlling scheme.

Contrary to the self–excited attractors the hidden attractors do not touch
unstable fixed points in their basins of attractions. To localize them one can-
not use transient processes leading to the attractors from the neighborhoods
of the unstable fixed points. For numerical uncovering of hidden attractors
it is necessary to develop special analytical–numerical procedures (e.g. evo-
lutionary algorithms [209, 210]). Typically such procedures are based on the
knowledge of the system topology. As this knowledge can be very limited,
particularly in the case of high–dimensional systems an approach based on
perpetual points (defined in Sec. 4) has been proposed. We give evidence
that if the system has perpetual points, then the transient processes initiating
from them lead to hidden attractors.

The dynamics of the network consisting of such units with hidden attrac-
tors can become very complex. Chimera states, cluster synchronization and
other dynamical structures are only a few patterns that can be found in such
systems. Here, we have only scratched the surface and all the analysis pre-
sented in the Sec. 5 are the prelude to more complex considerations. These
can include different types and sizes of networks, methods of coupling as well
as systems which dynamics exhibit high multistability (a great number of
coexisting self–excited and hidden attractors).

Hidden atttractors are robust and can be observed experimentally. We
briefly describe the cases of the occurences of such attractors in experimental
systems. The examples of the circuit implementations of the systems with
hidden attractors are given.
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