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We determined the spontaneous fission lifetime of 238U by a minimiza-
tion of the action integral in a three-dimensional space of collective vari-
ables. Apart from the mass-distribution multipole moments Q20 (elon-
gation) and Q30 (left–right asymmetry), we also considered the pairing-
fluctuation parameter λ2 as a collective coordinate. The collective poten-
tial was obtained self-consistently using the Skyrme energy density func-
tional SkM∗. The inertia tensor was obtained within the nonperturbative
cranking approximation to the adiabatic time-dependent Hartree–Fock–
Bogoliubov approach. The pairing-fluctuation parameter λ2 allowed us to
control the pairing gap along the fission path, which significantly changed
the spontaneous fission lifetime.
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This study of spontaneous-fission lifetimes is based on the energy-density-
functional (EDF) theory and relies on the collective potential and inertia
determined within the adiabatic time-dependent Hartree–Fock–Bogoliubov
(ATDHFB) approach. In practical calculations, we use the Skyrme EDF
parametrization SkM* [1] and density-dependent pairing. The methodology
adopted in this work strictly follows Refs. [2–4].

The ATDHFB inertia is calculated as

MC
ij =

1

2q̇iq̇j

∑
αβ

(
F i∗αβF

j
αβ + F iαβF

j∗
αβ

)
Eα + Eβ

, (1)

where q̇i and q̇j represent time derivatives of the collective coordinates. The
sum is evaluated over all quasiparticle states and Eα denotes the quasipar-
ticle energy. Matrices F i are obtained from

−F i∗ =
(
BT ∂ρ

∂qi
A+BT ∂κ

∂qi
B −AT ∂κ

∗

∂qi
A−AT ∂ρ

∗

∂qi
B

)
q̇i , (2)

where A and B are the Hartree–Fock–Bogoliubov (HFB) matrices, obtained
self-consistently from the constrained HFB equations. The particle and pair-
ing densities, ρ and κ respectively, are determined uniquely from A and B.

The total Routhian is

H ′HFB = ĤHFB −
∑
l=2,3

qlQ̂l0 −
∑
τ=p,n

(
λτ N̂τ − λ2τ

(
N̂2
τ −

〈
N2
τ

〉))
, (3)

where ĤHFB is the HFB Hamiltonian, Q̂20 and Q̂30 are quadrupole and
octupole moments, respectively, and N̂τ is particle-number operator. The
terms associated with λ2τ modify the pairing correlations of the system [2, 5]
that can be assessed through the average pairing gaps

∆τ =
Tr′ ∆̂τρτ
Tr ρτ

, (4)

where ∆̂τ is the pairing field and Tr′A =
∑

nAnn̄, with bar over n indicating
the time-reversed state.

Calculations presented in this work were performed in a three-dimensional
(3D) collective space, where moments Q20 and Q30 control axial nuclear
shapes and λ2 = λ2p = λ2n allows for simultaneously changing proton and
neutron pairing correlations. An early discussion of the effect of pairing
fluctuations on fission dynamics was presented, for example, in Refs. [6, 7]
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(see Ref. [2] for a comprehensive list of references). Although the potential
energy V increases as the pairing gap deviates from the HFB value, the
collective inertia behaves as ∼ 1/∆2 and, therefore, the minimum-action
path favors stronger pairing correlations [2].

In this contribution, we carry out a comparative study of 238U, assuming
axial geometry. The role and importance of other degrees of freedom, such
as triaxiality [2], will be discussed elsewhere.

Potential energy surfaces shown in Fig. 1 allow us to study competition
between the deformation and pairing effects. It turns out that the pairing
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Fig. 1. Potential energy surfaces of 238U in the (Q20–Q30) plane for λ2 = 0.0 (left)
and in the (Q20–λ2) plane for Q30 = 0.0 (right).

fluctuations are more important around the first saddle than in the ground-
state energy minimum. As it is shown in Fig. 2, with increasing pairing, the
potential energy increases, whereas the mass tensor, in general, decreases.
Such a competition significantly affects the fission lifetimes. For example,
our 2D calculations (along the λ2 = 0 path) yield TSF = 2.34× 1021 y, while
the 3D calculations including pairing predict TSF = 3.63 × 1017 y, which
is closer to the experimental value of 8.2 × 1015 y. This is consistent with
findings of recent Refs. [8, 9] based on Gogny–EDF framework.

In summary, we performed a preliminary axial-symmetry study of spon-
taneous fission of 238U, in which pairing fluctuations were treated dynami-
cally by minimizing the collective action. Using the microscopic input based
on the ATDHFB approach, we obtained a fair agreement with experiment.
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Fig. 2. The quadrupole diagonal inertia (solid line) and potential energy (dashed
line) as functions of the pairing-fluctuation parameter λ2. The multipole moments
(Q20 = 55b and Q30 = 0) correspond to the fission barrier. The vertical line marks
the value of λopt2 that corresponds to the calculated dynamical fission path.
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