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Abstract. Internet-of-Things (IoT) is envisioned to provide connectiv-
ity to a vast number of sensing or actuating devices with limited com-
putational and communication capabilities. For the organizations that
manage these constrained devices, the monitoring of each device’s oper-
ational status and performance level as well as the accounting of their re-
source usage are of great importance. However, monitoring and account-
ing support is lacking in today’s IoT platforms. Hence, this paper stud-
ies the applicability of the Constrained Application Protocol (CoAP), a
lightweight transfer protocol under development by IETF, for efficiently
retrieving monitoring and accounting data from constrained devices. On
the infrastructure side, the developed prototype relies on using stan-
dard building blocks offered by the AMAAIS project in order to collect,
pre-process, distribute, and persistently store monitoring and account-
ing information. Necessary on-device and infrastructure components are
prototypically implemented and empirically evaluated in a realistic sim-
ulation environment. Experiment results indicate that CoAP is suited
for efficiently transferring monitoring and accounting data, both due to
a small energy footprint and a memory-wise compact implementation.

1 Introduction

Internet-of-Things (IoT) represents a vision for the future of information and
communications technology wherein a variety of real-world “things” will be in-
teracting and communicating with other virtual and physical entities through a
global Internet infrastructure [1]. It is envisioned that up to 50 Billion of devices
will be Internet-connected by 2020 [2]. Many of these devices will be so-called
constrained devices, i.e., devices with constraints on their memory size, comput-
ing power, communication capabilities, and/or available power [3].

In some application scenarios, e.g., as envisioned in the A4-Mesh project3,
constrained devices are deployed in remote areas, where they run unattended for

3 https://a4-mesh.unibe.ch/



months or years, possibly without mains power. Users of these devices should
have the possibility to monitor their operational status – e.g., available memory,
remaining energy level, or detected errors – without the need to physically visit
the deployment site. Resource usage may need to be accounted, too, both for
network management purposes and, especially in case of multiple organizations
requesting information from devices, for any potential charging and billing pur-
pose. These information needs necessitate the implementation of an infrastruc-
ture to support an efficient monitoring and accounting for constrained devices.

The resource constraints of wireless sensor nodes impose constraints on suit-
able monitoring and accounting approaches and communication protocols. Since
monitoring and accounting involves on-device metering of a device’s technical
parameters and resource usage, this metering process should be conservative in
memory, code space, and power expenditure, to accommodate limited capabili-
ties and restricted battery power of the devices. This may render an application
of traditional approaches – e.g., those based on Simple Network Management
Protocol (SNMP) [4] – suboptimal for devices with strong resource constraints.

Hence, this paper aims at extending IoT applications with monitoring and ac-
counting functionality. Rather than introducing a new communications protocol
to implement this functionality, this paper focuses on studying the applicability
of a standard communication protocol for constrained devices – in particular, the
Constrained Application Protocol (CoAP) that was introduced as a lightweight
alternative to HTTP and optimized to work in constrained environments [5]. The
research question addressed in this paper can be formulated as follows: Is it fea-
sible to utilize CoAP as a transfer protocol for retrieving the information needed
for monitoring and accounting purposes as metered on constrained devices?

To support the efficient processing and storage of this information, this work
relies on using the accounting and monitoring infrastructure produced by the
Accounting and Monitoring of Authentication and Authorization Infrastructure
Services (AMAAIS) project [6] which provides components for accounting and
monitoring of IT services. In response to the research question, the design and im-
plementation of a prototype has been undertaken. Specifically, the functionality
of AMAAIS is extended with (i) a metering component deployed on constrained
devices in order to obtain relevant operational parameters and resource usage
information, and (ii) a networked accounting application component. This net-
worked accounting application is integrated with the core AMAAIS infrastruc-
ture and communicates with the metering component using CoAP as a transfer
protocol. Finally, the performance of the prototype is evaluated regarding mem-
ory footprint and power consumption of the on-device metering process.

The reminder of this paper is organized as follows. In the next section, rele-
vant terminology is introduced, and related work in the domain of constrained
device management is overviewed. Key elements of the AMAAIS infrastructure
are described in Section 3, along with the changes needed to make it applicable
to a constrained environment. Details of the prototype implementation and its
performance evaluation are presented in Section 4. Finally, in Section 5, obtained
results are summarized, and directions to further work are outlined.



2 Background and related work

This section provides definitions for relevant terms, and overviews management
mechanisms available for constrained devices in general and for retrieving mon-
itoring and accounting information in particular.

Terminology. Constrained devices can be categorized into (i) Class-0 devices
(�10 kByte of RAM and �100 kByte of ROM) only capable of engaging in
simple communication scenarios with the help of a proxy or gateway, (ii) Class-
1 devices (≈10 kByte of RAM and ≈100 kByte of ROM) powerful enough to
directly communicate with their peers in the Internet via lightweight protocols,
and (iii) Class-2 devices (≈50 kByte of RAM and ≈250 kByte of ROM) whose
capabilities are sufficient to support full-fledged protocols used in conventional
network nodes [3]. Among these three categories, Class-1 devices, being both
inexpensive and capable of communicating with their peers in the Internet, are
believed to play an important role in emerging IoT applications [5]. Class-1
devices therefore determine the main focus of this work.

The management of constrained devices requires a broad set of functional-
ity to be implemented to efficiently configure, monitor, and control them. As
these devices are managed as a part of the network to which they belong, the
core operational network management functions that are conventionally grouped
along the five functional areas of fault, configuration, accounting, performance
and security [7], are also relevant for managing constrained devices and networks
thereof [8]. Many of these functions are enabled by the so-called metering process
whereby technical parameters of a particular resource are identified and current
usage of the resource is determined. The metering process can be triggered by
signaling or other external polling events, or alternatively it can be performed
periodically or according to a statistical sampling scheme [9].

In the context of this paper, the focus is restrained to accounting functionality
and performance management (specifically, performance monitoring) functions.
Extensions to include other management functions are outside of the scope of
this paper – they are left for further work.

Requirements for managing networks with constrained devices are being defined
by the Constrained Management (COMAN) – a recently established IETF ac-
tivity [10]. On a general level of a management architecture/system, the set of
requirements relevant to monitoring and accounting functions include the follow-
ing needs: (i) to minimize the state maintained on constrained devices, (ii) to
support devices that are not always on-line, (iii) to support lossy and unreliable
links, through in-built resilience mechanisms and through a limited data rate,
(iv) to keep the encoding of management data compact, and (v) to optionally
compress management data or complete messages. At the implementation-level,
with the aim of minimizing communication overhead, two mandatory require-
ments are stated:

– Avoid complex application layer transactions with large messages, since they
require large memory buffers and increase the volume of re-transmissions.



– Avoid the fragmentation and reassembly of messages at multiple protocol
stack layers, e.g., by limiting the size of application layer messages.

Ersue et al. [10] specify a number of monitoring functions for Class-1 devices;
among these, only the monitoring of device status and energy level are considered
mandatory, whereas all other are optional to implement depending on the device
type and management needs. The document also mandates a number of security
functions, including the need for authentication and access control (both on
constrained devices and in the management system) as well as the need for a
security bootstrapping mechanism.

The focus in this paper is on the acquisition of dynamic information for
monitoring and accounting purposes, and an assumption is taken that static
management information can be obtained out of band by other means. Specif-
ically, this paper aims at equipping IoT applications with the mandatory mon-
itoring functionality set in [10], including device status monitoring and energy
status monitoring, while also satisfying the respective other architectural- and
implementation-level requirements.

Management architecture and protocols for constrained devices. The resource
constraints of wireless sensor nodes impose constraints on suited communica-
tion protocols and management methods. In order to cope with the specifics of
networked constrained devices, Ruiz et al. have introduced MANNA [8], a man-
agement architecture for Wireless Sensor Networks (WSN) based on manager-
agent interactions. The authors specified relevant management functions and
considered the WSN information model, although an empirical evaluation of the
proposed architecture has not been reported. Likewise, an agent-manager inter-
action is assumed in the WSN management system [11] which relies on SNMP
and implements configuration, performance, and fault management functions for
TinyOS devices. The system has been prototypically implemented; however, the
performance of the management architecture and its overhead are not reported.

A number of studies were aimed at applying standard IP tools, such as SNMP
and NETCONF [12] – a protocol used for manipulating the configuration of a
network device – for device management purposes. Under the assumption that
standard SNMP tools require a large Management Information Base (MIB) and
result in noticeable message overhead, attempts are made at optimizing the
SNMP architecture and tailoring these protocols, e.g., by limiting the set of
functionality, or by introducing a gateway to mediate between standard protocols
and tailor-made monitoring agents on constrained devices. In particular, this
approach is followed by the LoWPAN Network Management Protocol (LNMP)
[13], 6LoWPAN-SNMP [14], and EmNetS Management Protocol (EMP) [15].

Kuryla and Schönwälder [4] have studied the feasibility of implementing SN-
MPv1 and SNMPv3 message processing models as an SNMP agent for Contiki
OS. To meet the hardware constraints, only Get, GetNext and Set operations
were implemented, and simplifications to the modular SNMP architecture were
made. The implementation reportedly has a relatively modest memory footprint
and a short processing delay of 40–120 ms; however, it does not support notifica-



tions (Trap and Inform), and thus implies the need for the manager component
to explicitly request information from an on-device agent. Sehgal et al. [16] have
empirically compared SNMP against a lightweight version of NETCONF, with-
out subtree filtering and the edit-config operation, in the context of constrained
devices. As NETCONF relies on the exchange of relatively large XML messages,
its use in constrained devices results in longer processing time, as well as in an
increased memory footprint [16].

Instead of tailoring traditional protocols designed for non-constrained de-
vices, an alternative approach is to re-use CoAP for device management pur-
poses. CoAP is a new transfer protocol introduced as a lightweight alternative
to HTTP. It is optimized to work in constrained environments [5,17]. CoAP re-
lies on UDP as a transport, and offers a simple in-built stop-and-wait reliability
mechanism. It uses a compact four-byte binary header with a total header size
of 10 to 20 Byte, and defines four methods – GET, POST, PUT, and DELETE
– enabling a RESTful architectural style. Importantly, the protocol supports an
asynchronous retrieval of information by using the “Observe” option: by issuing
specially crafted GET requests, clients subscribe to the updates of a resource
of interest; after that, the device asynchronously notifies its observers about re-
source changes, without the need for explicit polling requests. All that makes
messages compact, minimizes the overall volume of the transferred data, and
reduces the complexity of implementation – all crucial characteristics in con-
strained environments.

To the best knowledge of the authors, the use of CoAP for device manage-
ment purposes has not been tried in practice yet, though this is considered in
the LightweightM2M standard under development by OMA4. Sehgal et al. [16]
suggest the suitability of CoAP for accessing on-device configuration data, while
also indicating the lack of practical experience. For these considerations, the
applicability of CoAP for the purpose of retrieving metering information from
constrained devices is investigated in this paper.

3 Adapting AMAAIS infrastructure to IoT applications

The AMAAIS project aims at supporting the accounting and monitoring of IT
services by offering a set of enabling components and facilitating their integration
with an authentication and authorization infrastructure [6]. The infrastructure
produced by AMAAIS is well suited for federatively aggregating, processing, and
storing accounting and monitoring information. This infrastructure, however,
has not been designed for constrained devices, and hence needs to be tailored
to be suitable in constrained environments. This section overviews the AMAAIS
infrastructure and considers the changes that are needed for making it work in
applications with Class-1 devices.

The interplay of AMAAIS accounting applications and AMAAIS core com-
ponents is visualized in Figure 1(a). Any service-specific Accounting Application

4 http://member.openmobilealliance.org/ftp/Public_documents/DM/

LightweightM2M/

http://member.openmobilealliance.org/ftp/Public_documents/DM/LightweightM2M/
http://member.openmobilealliance.org/ftp/Public_documents/DM/LightweightM2M/


(AA) is responsible for generating events, e.g., by parsing system log files and
extracting any information of interest from them. Once a new event is created,
the Accounting Client (AC) API is called. Both AA and AC are running on
the same host as a daemon. Once an event generated by an AA is pushed to
the AC, it enters the AC pipeline. The event will pass along the AC’s pipeline,
will be then transmitted to one or multiple Accounting Servers (AS), pass along
the respective AS pipeline(s), and will be persisted to database eventually. The
communication between AC and AS is based on exchanging Security Assertion
Markup Language (SAML) messages. AC and AS pipelines are constituted from
so-called Sources and Sinks. Sinks are used to receive and process events, and
Sources are components that produce events. AMAAIS provides purpose-specific
sub-types of Sinks and Sources.
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Fig. 1. AMAAIS components and adaptations for constrained environments

In principle, it is possible to enable monitoring and accounting functionality
on constrained devices by deploying AA and AC components directly on the
device. However, for Class-1 devices (which determine the main focus in this
paper), this is not feasible due to memory constraints and the lack of Java
support, not to mention a large computational and data communication overhead
while being engaged in an exchange of SAML messages.

Hence, in order to cope with the limitations of constrained devices, it is rea-
sonable to implement the AA and AC outside of any constrained device, for
instance, on a gateway between constrained and unconstrained networks, or on
another unconstrained node, as shown in Figure 1(b). This way, the function-
ality to be kept on constrained device can be limited to a lightweight agent –
a meter – responsible for executing the metering process and transmitting the
metered information to the AA executed on a remote host by using a suitable
communication protocol (thus, called Networked AA in Figure 1(b)). CoAP is
used as a data transfer protocol for this part of the communication.



4 Empirical evaluation

Prototype implementation. For prototyping purposes, existing AMAAIS com-
ponents have been extended by a networked AA and an on-device meter, as
described below.

The meter software agent has been implemented for TmoteSky, a sensor mote
platform featuring an MSP430 16-bit 3.9 MHz CPU, a CC2420 radio chip, as
well as 48 kByte of program flash and 10 kByte of RAM. A ready set of software
components, including Contiki OS and networking libraries were utilized in the
implementation. For evaluation purposes, the meter software has been deployed
in the Cooja simulation environment, which emulates TmoteSky motes and en-
ables a simultaneous simulation at network level, operating system level, and
machine code instruction set level [18].

As the CoAP engine for Contiki OS, the Erbium CoAP implementation [19]
has been used. The meter agent is responsible for gathering and transmitting
the following attributes: event identifier, remaining battery level, operational
status of the device, available memory, as well as the name of the device and
the uptime at which the metering process has been performed. The number of
packets sent, received, or dropped has not been metered in the prototype, as
these attributes are considered optional for constrained devices. Along with the
management attributes listed above, also temperature and light sensor readings
are transferred. Integrating such application payload with the accounting and
monitoring information within a single message allows data communications
overhead to be minimized and hence battery lifetime at a device to be prolonged.

In order to avoid packet fragmentation and reassembly, the size of a CoAP
message shall not be longer than 80 Byte [20]. This is also important, since
CoAP’s “Observe” option assumes short notification messages, fitting into a
single packet. Therefore, to keep messages compact and to simplify the imple-
mentation, a simple comma-separated value (CSV) format was used for message
encoding. While the Efficient XML Interchange (EXI) representation defined by
SenML [20] may offer a more compact encoding that allows messages to be com-
pressed to as little as 3% of the original size [17], the CSV encoding was also
found sufficiently compact, allowing the message size to be below 80 Byte.

The metering process was implemented to be executed periodically, with a
configurable metering interval. Both subscribing to periodic metering updates
and setting of the metering interval are done in a RESTful manner by issuing
GET (with the “Observer” option set) and PUT requests, respectively.

In order to reduce energy consumption by the transmitter, the meter uses
the ContikiMAC radio duty cycling (RDC) protocol [21]. Two versions of the
meter were implemented:

– With RDC enabled all the time. This version is aimed at application sce-
narios where a device needs to be constantly available, e.g., for retrieving
metered information or for device configuration. For instance, a weather
monitoring station may need to be ready to deliver instant measurements of
wind strength and direction whenever requested.



– With radio disabled between communication sessions and only being switched
on for a relatively short duration of time (10 s) to acquire and transmit
metered information or re-configure the device. This version is suitable for
scenarios where energy efficiency is of prime concern, and where periods of
unavailability can be tolerated.

The networked AA (NAA) has been implemented in Java and integrated with
the AMAAIS core components5. For communication with constrained devices,
the NAA employs the Californium Java framework6 that implements CoAP com-
munication primitives. Once launched, the NAA connects to each of the con-
strained devices and subscribes to the metering information updates by issuing
GET requests with the “Observe” option.

From that point on, the NAA periodically receives messages with metered in-
formation, parses them, and forms accounting events which are then dispatched,
through the AC API, to a pre-defined processing pipeline. For prototypical pur-
poses, a simple pipeline was configured consisting of a filtering Sink and two per-
sistence Sinks as well as the respective communication channels between them.
The filtering Sink allows individual attributes to be excluded from further pro-
cessing; for simplicity, the filter in the prototype was configured to let all the
event attributes pass. In turn, the persistence Sinks are responsible for storing
newly created events in two separate databases.

Performance evaluation. As was discussed in Section 2, in applications dealing
with constrained devices, the management functionality shall acquire and expose
at the very minimum information about device status and about device energy
parameters. Further, this functionality should require a minimal state to be
maintained on the devices, support lossy and unreliable links, and keep the
encoding of management data compact. Finally, authentication, access control,
and security bootstrapping mechanisms shall be provided.

These requirements have been taken into account when designing and im-
plementing the prototype. In particular, the prototype enables acquiring and
delivering mandatory information, i.e., device status and energy level, as well as
the optional information about available memory. By means of CoAP resilience
mechanisms, support for lossy and unreliable network connection is provided.
The use of CSV as a data encoding format allows the encoding to be compact
and hence helps avoid any need for fragmentation and message reassembly. A
compact representation, along with the RESTful methods of CoAP, also enable
simple and small application level transactions. It shall be noted that security
mechanisms were omitted when implementing the prototype; implementing them
has been postponed until the CoAP DTLS security specifications are finalized.

The implementation of the meter is quite compact and requires only 1286
Byte of ROM and 158 Byte of RAM. Together with the operating system and
other necessary libraries (RPL, uIP, ContikiMAC, Erbium, etc.), the overall
application memory footprint is 48638 Byte of ROM and 8732 Byte of RAM.

5 Available at http://www.csg.uzh.ch/research/amaais.html
6 Available at http://people.inf.ethz.ch/mkovatsc/californium.php
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Both versions of the meter were experimented with. The power consumption
at a constrained device has been estimated with the help of the Contiki OS’
Energest module [22], which traces the time a device spends in different modes of
operation. Five different metering intervals were used: 10 s, 30 s, 120 s, 300 s, and
1200 s. For each metering interval value, the operation of the meter was simulated
over a duration of 50 metering intervals, and the medians of the obtained power
consumption estimates have been evaluated, as shown in Fig. 2.
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Fig. 2. Power consumption at a constrained device, both total and according to modes
of operation including CPU active (cpu), low power mode (lpm), transmission (tx), and
reception (rx): (a) RDC always on; (b) RDC on periodically. Note that a logarithmic
scale is used for the metering interval shown on the x-axis.

With the version of the meter with the RDC always on, the radio receiver
periodically awakes, by default with a frequency of 8 Hz, to check for radio
activity. This is valuable when a device needs to be always available for metering
and/or reconfiguration. However, as a result, even for longer metering intervals,
the incurred reception-related energy footprint remains significant (τ → ∞ ⇒
Prx → const > 0, where τ is the length of the metering interval), as visible in
Fig. 2(a).

On the other hand, for the second version of the meter, which disables the
radio completely between metering and communications sessions, the reception-
related energy drainage is minimized (τ → ∞ ⇒ Prx → 0, cf. Fig. 2(b)). Due
to this, the power consumption at the device decreases rapidly as the metering
interval grows, at the expense of the device being available only periodically.

Assuming that a constrained device is powered by a pair of AA Zync-carbon
batteries, the expected battery lifetime has been estimated and is reported in
Table 1. As the table indicates, even with short metering intervals of 10 s, the
battery lifetime is approaching half a year. With RDC always enabled, the bat-
tery lifetime increases insignificantly with the metering interval, extending the
battery lifetime maximum by less than a month. On the other hand, when RDC
is enabled periodically, the battery lifetime can be extended to 1.5 years and
above, thus, approaching the self-discharge time of a battery.



Table 1. Estimated constrained device’s battery lifetime (in days)

Radio mode Interval, s
10 30 120 300 1200

RDC is always enabled 169 189 194 197 196
RDC is on periodically 167 324 484 550 588

It shall be noted that energy consumption at a constrained device is affected
by multiple factors, including the overhead of the routing protocol, the type of
low power mode used, the time needed for sensors to initialize after being turned
on again, etc. Therefore, the absolute numbers of energy consumption estimates
reported above shall be used with care, as they are likely to differ to a certain
extent depending on case-specific implementation details.

5 Summary and concluding remarks

The management of constrained devices in general, and in particular, the moni-
toring of their operational status and performance level, as well as the accounting
of resource usage of these devices are of great importance for applications in the
emerging IoT field. For organizations implementing or deploying IoT applica-
tions, the availability of monitoring and accounting information offers numerous
benefits, such as better granularity of charging and billing information, support
for device status monitoring and troubleshooting, and support for performance
optimization and network planning.

This work has studied the applicability of CoAP, a lightweight IETF proto-
col under development, for acquiring and transmitting management information
from the constrained devices. As a part of the study, a meter component re-
sponsible for acquiring and transmitting the management information has been
prototypically implemented. On the infrastructure side, for storing, processing,
and distributing management information retrieved from constrained devices,
the meter has been integrated with AMAAIS core components, which provide
standard building blocks for the accounting and monitoring of IT services.

Based on results obtained from experiments with the implemented proto-
type, CoAP has been found suitable for transferring monitoring and accounting
information from constrained devices. Its strong sides include the simplicity and
compactness of the implementation, as well as a small energy footprint attributed
to a small size of messages being transferred and the use of the observer design
pattern. The protocol is especially suitable in application scenarios where it is
also utilized for exchanging application-specific information, since in this case
the protocol implementation code can be reused and hence the size of memory
required can be minimized.

The impact of the metering process on device battery lifetime depends on
whether a constrained device needs to be constantly available. In case periods of
unavailability can be tolerated, estimated battery lifetime is rather long, reaching
1.5 years in the experiments conducted. On the other hand, making a constrained



device available all the time shortens the battery lifetime considerably, with the
maximum of circa six months according to estimates obtained in the experiments.

The use of CoAP also imposes some constraints on the management func-
tionality implementation. Specifically, it restricts the volume of information that
can be retrieved without making the implementation more complex and/or less
energy efficient. This is due to the fact that the use of the “Observe” option of the
protocol assumes that information is transmitted within a single CoAP package,
which, to avoid packet fragmentation and reassembly, effectively limits the size
of a message to circa 80 Byte – leading in the prototype to a reduced number of
messages transmitted, implying a positive effect on energy consumption.

The use of the “Observe” option also brings the need to confirm successful
message reception, as otherwise, according to CoAP specifications, the subscrip-
tion to metered information updates is canceled. This implies that a connection
loss will nullify a subscription, and its re-initiation shall be implemented by the
networked Accounting Application. It should be mentioned that the CoAP stan-
dardization process is not completed yet, and therefore some changes may still
be introduced, possibly making these side effects less restrictive.

While this work was, thus, able to provide an answer to its research question,
it sees several limitations that shall be addressed in future work. In particular,
the prototype implementation shall be expanded to allow additional ways of
triggering the metering process, include additional attributes to be metered at
constrained devices, and allow a reconfiguration of metering process parameters.
Once the specification of CoAP DTLS security is finalized, the prototype shall
be equipped with the required security mechanisms. Finally, performance char-
acteristics of the prototype shall be empirically evaluated in field experiments.
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