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To solve difficulties related to the use of nuclear density functional theory applied in its beyond-mean-field
version, we introduce a semicontact three-body effective interaction. We show that this interaction is a good
candidate to replace the widely used density-dependent effective interaction. The resulting new functionals are
able to describe symmetric, neutron, polarized, and neutron polarized nuclear matter as well as the effective mass
properties simultaneously.
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Strongly interacting fermions can exhibit peculiar behavior
in the infinite system limit from very dilute to very dense
matter. In such systems, the zero-temperature equation of state
(EOS), or energy per particle E/A, can be displayed in terms
of the densities of various constituents. Rather commonly,
specific medium effects take place and lead to an energy
that is a functional that depends on noninteger powers of the
density. This stems from the fact that a natural expansion
parameter for a homogenous infinite system is the Fermi
momentum kF , which is proportional to ρ1/3, where ρ is the
matter density. A seminal example is the Lee-Yang formula
for E/A, which holds for any diluted Fermi systems with
short-range interaction [1,2] and contains a term proportional
to ρ4/3. A more recent example is the universal class of
Fermi systems at unitarity, where a ρ2/3 dependence [3] is
supported by ab initio calculations. Cold atoms or neutron
matter at a low density can enter into this class of systems [4,5].
In phenomenological approaches, as in the nuclear density
functional theory (DFT) [6], this density dependence of the
functional has to be mimicked in one way or another. Indeed,
in nuclear systems, indirect evidence of the necessity of having
a term that behaves like ρ1+α with 1/6 � α � 1/3 in the
energy is the difficulty of reproducing both the compression
modulus of nuclear matter and the quasiparticle effective mass
at saturation with integer powers of the density only [6].

A clear view of the density dependence of the energy is
crucial for the design of an accurate DFT for the considered
many-body problem. In finite systems, it might be necessary
to go beyond the mean-field approximation by accounting
for quantum fluctuations in collective space and restoring
some symmetries that were broken to include correlations
in a compact functional. An example is the treatment of
superfluidity in small superconductors or nuclei that can be
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included by breaking the U(1) symmetry [7,8]. It was shown
recently that symmetry restoration within DFT requires a
functional that is strictly derived from an N-body Hamiltonian
to avoid pathologies in the energy of the symmetry restored
states (see, for instance, [9–11]). It is, for instance, not
possible to use a functional that depends on noninteger powers
of the density [12], due to the necessity of extending the
functional theory to the complex plane. The aforementioned
pathologies are rooted in the violation of the Pauli principle
and the occurrence of self-interaction. This has renewed the
interest in deriving a DFT from a pseudopotential approach.
In this case, the Hartree-Fock expression obtained from an
effective Hamiltonian is used to provide the functional, whose
parameters have to be fitted—at the mean-field level or
beyond—to the data.

Recently, efforts have been made to extend functionals
based on zero-range interactions of increasing complexity
to overcome the difficulties arising from beyond-mean-field
calculations [13,14]. While very useful to get a local density
approximation (LDA) for the functional, it is not yet clear
if contact interactions can be used to provide a convenient
solution to the problem. For this reason, DFT based on
finite-range pseudopotentials might appear to be an alternative
solution [15–17]. A first step in that direction was made in
Ref. [18], where a three-body force was proposed to describe
fermions in the low-density limit.

Here, we explore the possibility of using a density-
independent three-body interaction to get a functional that
mimics noninteger power dependences. By imposing the
translational invariance, a three-body interaction can only
depend on the Jacobi coordinates rij = (ri − rj ), Rk

ij = rk −
(ri + rj )/2, where (ri ,rj ,rk) are the coordinates of three
particles (i,j,k) in an arbitrary frame. A general three-body
interaction can a priori have a finite range for both these
coordinates. Below, we consider the case where the interaction
is a contact interaction in Rk

ij and call it a three-body
semicontact interaction. It has the advantage of being more
flexible than a three-body contact interaction. To characterize
it further, we consider three particles with spin (and possibly
isospin) degrees of freedom that interact through v̄ijk =
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TABLE I. Correspondence between the coefficients (c1,c2) and
the interaction strengths. Coefficients ykα defined as ck = ∑

k ykαvα

are reported.

cSM
1 cSM

2 cNM
1 cNM

2 cPM
1 cPM

2 cPNM
1 cPNM

2

v0 1 −1/4 1 −1/2 1 −1/2 1 −1
vσ 1/2 −1/2 +1/2 −1 1 −1/2 1 −1
vτ 1/2 −1/2 1 −1/2 1/2 −1 1 −1
vστ 1/4 −1 +1/2 −1 1/2 −1 1 −1

(vijk + vikj + vkij )/3, with

vijk = {V0(r) + Vσ (r)Pσ + Vτ (r)Pτ + Vστ (r)PσPτ }

× δ

(
rk −

[
ri + rj

2

])
, (1)

where the short-hand notation r = |ri − rj | is used, while Pσ

(Pτ ) exchanges the projections of spin (isospin) of particles i
and j . Note that the interaction can be used without isospin
exchange operators in the case where it is applied to fermions
with spin degrees of freedom only by omitting the two terms
with Pτ in Eq. (1). The functions Vα(r) with α = 0, σ , τ , and
στ correspond to the two-body interaction acting in different
channels. For simplicity, we assume that they can be written in
terms of a smooth normalized function g as Vα(r) = vαg(r),
where v0, vσ , vτ , and vστ are independent strength parameters.

The functional associated with the semicontact three-
body interaction is directly obtained from its Hartree-Fock
expression for the energy. We focus here on infinite systems
and introduce the Fermi momentum kF and the density of the
Fermi gas ρ = d k3

F /(6π2), where d is the degeneracy, which
depends on the specific situation. We consider the following
four cases: symmetric nuclear matter (SM) with d = 4, neutron
matter (NM) and spin polarized matter (PM) with d = 2, and
spin polarized neutron matter (PNM) with d = 1. A lengthy but
straightforward calculation shows that the energy per particle
can be written

Eρρρ

A
= c1

ρ2

6

∫
d3r g(r)[1 − c3f (kF r/2)2]

+ c2
ρ2

6

∫
d3r g(r)[f (kF r)2 − c3f (kF r)f (kF r/2)2],

(2)

where the function f is expressed in terms of the first spherical
Bessel function as f (x) = 3j1(x)/x. The coefficients c1, c2,
and c3 depend on the specific channel. One has c3 = 1/2
for SM, 1 for both NM and PM, and 2 for PNM. The
correspondences between the coefficients c1 and c2 and the
parameters vα are listed in Table I. Equation (2) can serve,
given a specific function g associated with the range a, to
get expansions in powers of (kF a) and obtain the low-density
behavior. Note that if a two-body interaction is used with the
same finite-range part as in Eq. (1), the energy is identical
to Eq. (2) with c3 = 0 and ρ2/6 → ρ/2. In this case, the
functional is denoted Eρρ . In SM, the limit for zero-range
two-body and three-body interactions is obtained by setting

g(r) = δ(r) and gives

E
ρρ
zero

A
= 3

8
t3ρ,

E
ρρρ
zero

A
= t3

8
(1 − c3)ρ2, (3)

with t3 = 4(c1 + c2)/3. Note that for NM, PM, and PNM, Eρρρ
zero

cancels out as expected.
In the present work, we are interested in the intermediate-

density region (around the equilibrium configuration) where
deviation from the limits, (3), is anticipated for finite-range
interactions. To progress further, we assume that g is a
normalized Gaussian function g(r) = e−(r2/a2)/(a

√
π )3. In this

case, using the same technique as in Ref. [16], integrals in
Eq. (2) become analytical functions of x = (akF ), leading to

Eρρρ

A
= ρ2

6
{c1[1 − c3F1(x)] + c2[F1(x/2) − c3F2(x)]}

≡ ρ2

6
F3(akF ), (4)

with

F1(x) = 12

x6

(
1 − e−x2) − 6

x4

(
3 − e−x2) + 6

√
π

x3
Erf(x)

and

F2(x)= 288

x8

( − e− x2

4 − e−x2) − 24

x6

(
12 + e−x2 − 7e− x2

4
)

+12

x4

(
4e− x2

4 −7e−x2)+ 6
√

π

x3

[
8 Erf(x)−7 Erf

(
x

2

)]

+36
√

π

x7

(
4

x2
− 9

) [
Erf(x) − 2 Erf

(
x

2

)]
.

Therefore, a density dependence ρ1+α for the energy per
particle (as given by the commonly used density-dependent
Skyrme or Gogny interactions) can be locally obtained if
F3(akF ) ∝ (akF )3(α−1) ∝ ρα−1. Adjusting the parameters c1

and c2, our semicontact three-body interaction can thus
approximate the desired density dependence in a given range
of densities. This is illustrated in Fig. 1, for α = 1/3 and
α = 2/3. The functional associated with the three-body force
can fairly well reproduce the effect of a density-dependent
interaction with a noninteger power of the density. Systematic
analyses have shown that the present interaction is suitable for
the density dependence ρ1+α of the energy per particle with
0 � α � 1. However, for very small α, i.e., α � 1/6, the fit
starts to deteriorate.

One of the recurrent difficulties of nuclear DFT based on
zero-range interactions is the impossibility to conjointly get
the proper EOSs in infinite matter and reasonable behavior of
the effective mass [19,20]. The use of a finite-range three-body
interaction automatically induces a contribution to the effective
mass given by

�
2

2m∗ = ρ2
0a

2

4

[
cSM

1

24
M1

(
x

2

)
− cSM

2

3
M1(x) + cSM

2

8
M2(x)

]

in SM, with

M1(x) = 12

x6

(
e−x2 − 1

) + 6

x4

(
e−x2 + 1

)
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FIG. 1. (Color online) F3(kF a) as a function of (akF ) obtained
by adjusting the cSM

1 and cSM
2 to get a dependence similar to 1/(akF )

(α = 2/3) [solid (red) line] or 1/(akF )2 (α = 1/3) [dashed (blue)
line]. The reference curves 1/(akF ) [filled (red) circles] and 1/(akF )2

[filled (blue) diamonds] are also shown. The dotted horizontal line
indicates the zero-range three-body interaction limit (α = 1). The
fit was made for (akF ) ∈ [1.25,1.75]; note that in nuclear physics
(akF ) � 1.5 at saturation.

and

M2(x) = 576

x8

(
e−x2 − e− x2

4
) + 288

x6

+ 144
√

π

x7

(
2

x2
− 3

) [
2 Erf

(
x

2

)
− Erf x

]
.

As can be done for the energy, the three-body interaction
parameters can be adjusted to reproduce specific behavior of
the effective mass as a function of the density. For instance,
it might be used to get the proper ρ2/3 dependence predicted
by the Galitskii formula (see Eq. (11.62) in Ref. [2] and see
Ref. [21] for a recent discussion). An alternative situation
is presented below, where we show that the three-body
semicontact interaction conjointly used with a two-body
density-independent interaction can appropriately describe the
Skyrme prescription, i.e., (m∗/m) ∝ (1 + θρ)−1, where the
expression of the parameter θ can be found in Ref. [22].

In the nuclear context, it has recently become evident that
the LDA-DFT with noninteger powers of the density leads
to severe problems in describing fluctuations along collective
coordinates or restoring broken symmetries [12]. Here, we
show that the semicontact three-body interaction can replace
the density-dependent term used with standard functionals.
For this to be considered as a practical tool, we should be
able to find a set of parameters that (i) provides a reasonable
description of all spin/isospin channels simultaneously and
(ii) conjointly describes the expected density dependence of
the effective mass. In the past, requirements (i) and (ii) have
been successfully fulfilled using a density-dependent term.
More recently, a zero-range density-independent interaction
that could meet these criteria was introduced [14] using three-
body velocity-dependent terms. While possibly more difficult
to implement, the semicontact three-body interaction limits
the need for velocity-dependent terms, with the advantage
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FIG. 2. (Color online) (a) Scalar-isoscalar effective mass and
(b) equations of state for SM (red), NM (blue), PM (green), and
PNM (black) as a function of the density obtained with the SLy5
functional (symbols) and with the Skyrme (two-body) + three-
body functional (lines), called SLy53b. Inset: Contribution of the
three-body functional to the energy per particle in symmetric matter.
A simple function proportional to ρ1+α has been adjusted on it with
α � 1/3 for an optimal fit in the vicinity of the saturation density.

that it might give better control of unwanted finite-range
instabilities [23].

To illustrate that the new interaction can be employed
successfully in the nuclear DFT context, we have considered
two commonly used functionals based on density-dependent
interactions, namely, a Skyrme (zero-range) [22,24,25] and a
Gogny (finite-range) [26,27] functional. More precisely, we
considered the SLy5 [28] and D1M [29] sets of parameters,
respectively. These two functionals are known to provide a
meaningful description of the EOSs in different spin-isospin
channels as well as the reasonable effective mass (see Figs. 2
and 3) and serve below as reference EOSs.

We consider the original functionals and replace the
density-dependent term with the functional deduced from
the three-body semicontact interaction. Doing this means
that the energy density functional (EDF) can then be truly
considered as the Hartree-Fock functional derived from a
many-body Hamiltonian. Then a global fit is made using
the new functionals, which are labeled SLy53b and D1M3b,
respectively, below. The parameters have been adjusted to
reproduce the four EOSs (SM, NM, PM, and PNM) and the
(scalar-isoscalar) effective masses simultaneously. The details
of the fitting protocol are given in the Appendix. The range
a = 1.2 fm, which is optimal for the fit to the D1M results,
was chosen for the range of the semicontact term. Note that all
parameters have been used for the fit except the ranges of the
two-body part, which have been kept equal to the original D1M
case. Altogether, the fit was made using 10 and 12 parameters
for the SLy53b and D1M3b, respectively. Optimal parameter

011302-3
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FIG. 3. (Color online) Same as Fig. 2, except that the Gogny
D1M (symbols) and D1M3b (lines) are shown. Inset: Again, α � 1/3
is found to be optimal.

values are listed in Table II. As shown in both Fig. 2 and Fig. 3,
an accurate reproduction of the original EOSs is obtained,
along with the proper density dependence of the effective mass.
In particular, the SM properties, which are difficult to grasp
if a strict zero-range interaction is used, are well accounted
for. We see that the properties that characterize the saturation
point in SM, i.e., the saturation density ρsat, binding energy per
particle B, effective mass m∗/m, and compression modulus
K∞, are reproduced with deviations between targeted and
obtained values that are typical for nuclear EDFs. The values
of these quantities obtained from SLy5 and D1M are compared
with those computed from the new functionals in Table III.

The new functionals, SLy53b and D1M3b, where the
density-dependent term is replaced with the semicontact
three-body interaction, provides a very good reproduction
of the saturation properties of the reference functionals,
SLy5 and D1M, for all considered cases. In particular, the
compression modulus, which was one of the motivations for
the introduction of the ρα term in the Skyrme and Gogny
interactions, has a reasonable value.

In the present work, a simplified three-body interaction is
used to construct a DFT. It is shown that this new interaction
can mimic the behavior of density-dependent interactions used
in the nuclear context. This interaction solves two important
difficulties encountered in the applicability of nuclear DFT.
First, it provides a correct description of the saturation
properties and a reasonable description of the infinite matter
EOSs in various spin-isopin channels as well as the effective
mass density dependence for a wide range of densities. Second,
as we have replaced the pathological term ρα in the functional
with a density-independent interaction, the new functionals
can be used in a DFT multireference framework, for instance,
to restore symmetries or to account for configuration mixing
beyond the independent particle picture.

TABLE II. Parameters of the SLy53b and D1M3b. We use here
standards for the two-body interaction parameters (see Refs. [28]
and [29]). In both cases, the range is fixed to a = 1.2 fm. In the Gogny
force case, the finite ranges of the two-body interaction have been kept
equal to their original D1M values, μ1 = 0.5 fm and μ2 = 1.0 fm.
Uncertainties in parameter values (indicated as percentages) were
obtained using standard covariance analysis.

SLy53b

t0 (GeV fm3) −1.283 (0.05%)
t1 (GeV fm5) 0.874 (0.18%)
t2 (GeV fm5) −0.808 (0.69%)

x0 0.29 (1.8%)
x1 0.51 (1.8%)
x2 −1.08 (0.03%)

v0 (GeV) −15.03 (0.56%)
vσ (GeV) 24.13 (0.82%)
vτ (GeV) 24.99 (0.65%)
vστ (GeV) −42.12 (0.25%)

D1M3b

W1 (GeV) 7.60 (1.3%)
B1 (GeV) 2.54 (5.4%)
H1 (GeV) 2.18 (5.8%)
M1 (GeV) −1.47 (8.0%)

W2 (MeV) −1047.97 (0.80%)
B2 (MeV) −86.54 (10%)
H2 (MeV) −681.06 (1.3%)
M2 (MeV) 47.07 (10%)

v0 (GeV) −14.65 (1.1%)
vσ (GeV) 30.06 (0.82%)
vτ (GeV) 19.02 (0.96%)
vστ (GeV) −42.71 (0.49%)

It is clear that the use of a finite-range interaction and the use
of a true Hamiltonian as a starting point to construct an EDF
offers less flexibility than the conventional strategy based on a
density-dependent interaction, eventually differing in the mean
field and pairing channel. In particular, the present interaction
should overcome the following two difficulties. First, the three-
body interaction supplemented with a two-body interaction
should also be validated in finite nuclei. In particular, its
surface properties are not constrained by uniquely fitting the
EOS in infinite systems. The use of a finite-range interaction
is anticipated to be much more demanding numerically
compared to the LDA-EDF and specific techniques should
be used. Work along this line is in progress. Second, an aspect

TABLE III. Values of the saturation density ρsat, binding energy
E/A, compression modulus K∞, and isoscalar effective mass m∗/m

for functionals considered in this work.

SLy5 SLy53b D1M D1M3b

ρsat (fm−3) 0.160 0.161 0.165 0.165
B/A (MeV) −15.98 −15.42 −16.02 −15.82
K∞ (MeV) 229.92 236.59 224.98 228.58
m∗/m 0.697 0.691 0.746 0.744
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that is not specific to the present work is related to the use of
the same interaction in both particle-hole and particle-particle
channels. In particular, an interaction that is suited for the mean
field should also lead to a pairing that is not too strong. In the
present work, we have shown that keeping the same range of
the three-body interaction in all channels is already enough to
treat the mean-field energy. Therefore, we used a simplified
form of the interaction. To get reasonable pairing, one might
eventually consider more flexible situations where the range
is optimized for each spin-isospin channel.

We thank M. Bender, J. Dobaczewski, T. Duguet, and M.
Kortelainen for discussions. This work was supported in part
by the Academy of Finland and University of Jyväskylä within
the FIDIPRO program.

APPENDIX: FITTING PROTOCOL AND RESULTS

The parameters (10 parameters for a two-body Skyrme
interaction with a semicontact three-body interaction and 12
parameters for a two-body Gogny interaction with a semi-
contact three-body interaction) are determined by minimizing
a penalty function based on pseudodata calculated with the
Skyrme SLy5 or Gogny D1M interaction. This function is

χ2 = χ2
sat + χ2

SM + χ2
NM + χ2

PM + χ2
PNM + χ2

eff . (A1)

The last term, i.e., χ2
eff , is only considered for the fit of D1M3b,

which has two more parameters than SLY3b
5 and, thereby, more

flexibility to adjust the effective mass. The total number of
constraints is Nc = 84 for SLY3b

5 and Nc = 104 for D1M3b.
Among these constraints, four are imposed directly on the
nuclear matter saturation properties:

χ2
sat =

(
P


P

)2

+
(

E/A − (E/A)0


E/A

)2

+
(

K∞ − K0
∞


K∞

)2

+
(

�
2

2m∗ − (
�

2

2m∗
)0


 �2

2m∗

)2

, (A2)

where P is the pressure, E/A the energy per particle, K∞
the compression modulus, and �

2/2m∗ the (inverse) effective
mass, all calculated at the saturation density in symmetric
matter. These four quantities (and the saturation density) are
calculated with the parameters of the interaction we want to
fit, while the correponding quantities with a 0 exponent are
calculated with the original Skyrme (SLy5) or Gogny (D1M)
interaction. The tolerances are 0.1% for E/A, K∞, and �

2/2m∗
and 10−3 MeV for the pressure.

Then the penalty function contains four terms to constrain
the EOS in different states of matter,

χ2
X =

20∑
i=1

(
Ei/A − (Ei/A)0


Ei/A

)2

, (A3)

where X = SM, NM, PM, or PNM, and Ei/A is the energy per
particle calculated for 20 values of ρ0,i = i × δρ0, with δρ0 =
0.025 fm−3 (i.e., from 0.025 to 0.5 fm−3). The tolerances

Ei/A are 0.2 MeV in SM and NM and 0.5 MeV in PM
and PNM.

The last term, used only for D1M3b, constrains the effective
mass in symmetric matter at densities ρ0,i = i × δρ0,

χ2
eff =

20∑
i=1

(
�

2/2m∗
i − (�2/2m∗

i )0


�2/2m∗
i

)2

, (A4)

with 
�
2/2m∗

i = 0.1 MeV.
This merit function contains constraints in order to

reproduce correctly (on average) the different EOSs for
the entire density range and gives an additional focus
on the saturation point. In the case of the fit to D1M
it also constrains the effective mass to have the desired
density dependence over the entire considered interval of
densities.
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