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We explained vascular plant species richness patterns in a 286 km2 fragmented landscape 
with a notable human influence. The objective of this study was two-fold: to test the rela-
tive importance of landscape, topography and geodiversity measures, and to compare three 
different landscape-type variables in species richness modeling. Moreover, we tested if 
results differ when only native species are considered. We used generalized linear model-
ing based variation partitioning and generalized additive models with different explanatory 
variable sets. Landscape and topography explained the majority of the variation but the 
relative importance of topography and geodiversity was higher in explaining native species 
richness than in explaining total species richness. Differences between the three landscape 
type variables were small and they provided complementary information. Finally, topog-
raphy and geodiversity often direct human action and can be ultimate causes behind both 
landscape variability and species richness patterns.

Introduction

Biodiversity, which can be defined as the varia-
tions in ecosystems, species, and genes, is often 
measured using vascular plant species richness 
as a proxy. While plants are just one taxon and 
partly depend on other organisms, they are the 
base of the food chain (Whittaker et al. 2001). 
Species richness is explained widely with spe-
cies–energy relationships (e.g. Evans et al. 2005) 
and species–area relationships (e.g. Connor and 

McCoy 1979). There are also other factors that 
affect biodiversity. These factors include climate, 
which has partly same components as energy, 
historical factors, stress, stability, disturbance, 
ecological interactions (Fraser and Currie 1996, 
Whittaker et al. 2001), and environmental het-
erogeneity, which includes between-habitat and 
within-habitat variability, together with climatic, 
soil, and topographical heterogeneity (Stein et 
al. 2014). One part of environmental heterogene-
ity, which is often analyzed separately, is geodi-
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versity. Geodiversity can be defined as the vari-
ability of the Earth’s surface materials, forms, 
and physical processes (Gray 2013), and it has 
been found to have an effect on biodiversity 
(Anderson and Ferree 2010, Parks and Mulligan 
2010, Hjort et al. 2012, Ruddock et al. 2013, 
Lawler et al. 2015).

When species richness is modeled on land-
scape scale, perhaps the most often used predic-
tor variables are topographic variables (Guisan 
and Zimmerman 2000). Other predictors include, 
for example, different remotely-sensed variables, 
such as normalized difference vegetation index 
as a proxy of productivity (Nagendra 2001, 
Turner et al. 2003, Parviainen et al. 2009) and 
heterogeneity of spectral information as a proxy 
of habitat heterogeneity (Rocchini et al. 2010, 
2011). Usually, when remotely-sensed data or 
spectral information is used in species richness 
mapping, traditional pixel-based analyses are 
used. Some of the methodologies that are widely 
used in landscape mapping, such as object-based 
image analysis, in which pixels are merged into 
meaningful objects (Blaschke et al. 2014), have 
not been tested in species richness mapping 
(Rocchini et al. 2010).

Thematic land-cover data that are based on 
remote sensing are often used in species richness 
models (Honnay et al. 2003, Thuiller et al. 2004). 
There are, however, few studies where thematic 
land-cover and continuous remote-sensing data, 
such as spectral values and indices, are compared. 
One example is research by Cord et al. (2014) 
which compared continuous remote-sensing data 
with land-cover data in mapping single tree-spe-
cies occurrences. To the best of our knowledge, 
there are no studies in which different approaches 
for assessing landscape heterogeneity are com-
pared. We tested different landscape heterogene-
ity measures in mapping vascular plant species 
richness. Two of these measures were object-
based and one was based on spectral heterogene-
ity of remote sensing data.

Topographic variables can be considered to 
be parts of geodiversity, and they are widely 
used in explaining species richness. Studies, 
in which other geodiversity measures such as 
geomorphology (when not equated to topog-
raphy), hydrology and soils are included, are 
fewer (Heikkinen and Neuvonen 1997, Lobo et 

al. 2001, Pausas et al. 2003, Titeux et al. 2009, 
Hjort et al. 2012). In addition, there are few stud-
ies where geodiversity measures are explicit, and 
where testing is systematic (Hjort et al. 2012). 
It has been observed that geodiversity measures 
improve species richness models in boreal land-
scapes in near-natural state (Hjort et al. 2012). 
We analyzed if explicit measures of geodiver-
sity explain vascular plant species richness in a 
landscape which is fragmented primarily due to 
human influence.

The goal of this study was to (1) analyze the 
relative importance of landscape heterogeneity, 
geodiversity, and topography in modeling vas-
cular plant species richness in a southern-boreal 
vegetation zone rural landscape in Finland, (2) 
compare three different approaches to assess-
ing landscape heterogeneity, and (3) investigate 
if results differ when only native species are 
taken into account. Geodiversity was measured 
in terms of geological and hydrological rich-
ness. Two of the used landscape-heterogene-
ity measures were object-based and one of the 
object-based measures was based on species’ 
habitat preferences (Rossi and Kuitunen 1996) 
and should have stronger ecological background. 
We compared how well a habitat type classifica-
tion system that is based on species identification 
literature explains species diversity as opposed 
to spectral information and land-use/land-cover 
classification. We modeled native species rich-
ness and total species richness separately, since 
non-native species are rich in human habitats 
while the relative proportion of native species is 
higher in areas with less human disturbance. We 
tested if the relative role of different variables 
and variable groups differ in explaining native 
species richness versus total species richness. 
We also discuss the interrelationships between 
different explanatory variables and the role of 
human influence in species richness patterns.

Material and methods

Study area

We studied a 286 km2 rural area (Fig. 1) in 
southern Finland (Kuitunen 2014) in the south-
ern-boreal vegetation zone (Ahti et al. 1968). 
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The geographic coordinates (WGS84) of the site 
are 61°16´–61°30´N and 24°26´–24°55´E. The 
main land-cover and land-use types in the area 
are coniferous and deciduous forests followed 
by (in descending order) lakes, agricultural areas 
and peatlands. Most of the forest area is used for 
timber production with rotation-based forestry 
and most of the peatlands are drained for forestry 
purposes. Agricultural areas (mostly fields), 
roads, and settlements are found in most parts of 
the area, and the landscape is fragmented. There 
are 742 (80–415 in each 1-km2 grid cell) vascu-
lar plant species identified in the area (Kuitunen 
2014). A total of 387 (68–242 in 1-km2 grid cell) 
of these plants are native species.

Data sets

We used the following data: a Corine Land Cover 
(CLC) 2006 land-use/land-cover data from the 
Finnish Environment Institute at 25-meter res-
olution (©Finnish Environment Institute 2010, 
partly ©Finnish Forest Research Institute, Min-
istry of Agriculture and Forestry, National Land 

Survey, Population Register Centre), a habitat 
type classification (HTC, see Appendix 1), three-
band (green, red, near infra-red) aerial imagery 
at 40-cm resolution taken in summer 2011 (Ter-
raTec Oy, Helsinki, Finland; ©Finnish Forest 
Centre Pirkanmaa), airborne laser scanning 
data from years 2008 and 2012 together with a 
1:10 000 resolution topographic database from 
the year 2010 (©National Land Survey of Fin-
land), 1:20 000 digital Quaternary deposit (here-
after soil, ©Geological Survey of Finland 2007) 
and 1:200 000 digital bedrock maps (©Geolog-
ical Survey of Finland 2009), as well as the 
vascular plant species inventory data (Kuitunen 
2014).

In the used vascular plant species inventory 
data (Kuitunen 2014), the presence of vascu-
lar plant species inside 1-km2 grid cells were 
surveyed between 1983 and 2011. Overall, 286 
grid cells were inventoried. For each grid cell, 
the presence of different species was recorded 
but other factors such as species abundances 
were not collected. We used the overall number 
of species observed in each grid cell. Each of 
the grid cells was initially surveyed once by 

Fig. 1. A black and white 
version of color-infrared 
aerial image over the 
study area. Studied 1-km2 
grid cells are marked with 
squares. In the upper left 
corner, a map of Finland 
is shown with the black 
dot showing the study 
area. (Aerial imagery 
reprinted with permission 
from ©TerraTec Oy).
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one person. In some grid cells, additional spe-
cies were later detected and added to the data 
after the initial inventory (Kuitunen 2014). The 
sampling effort of different grid cells varied a 
bit, but it should not have an effect on the spe-
cies richness results. One of the grid cells was 
cross-checked by two persons, and there was a 
5% difference in the number of species. A total 
of 20 grid cells were only partly inventoried. In 
those grid cells, the biotopes in the non-inven-
toried parts were similar to the biotopes in the 
inventoried parts; and thus, we did not expect 
to find significant number of new species from 
the unsurveyed parts of the grid cells. We also 
tested some of the analyses without these 20 
partly-inventoried grid cells and the differences 
were small. For instance, the amount of deviance 
explained was 2 percentage-points greater in a 
generalized additive model with all variables 

when partly inventoried cells were omitted. With 
the help of Hämet-Ahti et al. (1998), we divided 
plants in the data set into two groups: native 
plants and other plants.

Overview of the methodology

The workflow of the methodology is illustrated 
in Fig. 2. First, we used already existing or con-
structed GIS layers that represented different 
landscape, topography or geodiversity features. 
Second, from each layer, we calculated one to 
three variables. We calculated these variables 
inside 1-km2 grid cells that were the same grid 
cells as in the vascular plant species inventory 
data. Third, we removed multicollinear vari-
ables using variation inflation factor calculation.  
Fourth, we used calculated variables as explana-

Fig. 2. Workflow of the 
used methodology. GLM 
refers to generalized 
linear model and GAM 
to generalized additive 
model.
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Table 1. Explanatory variables used in generalized linear modeling and generalize additive modeling. Variables that 
were used in the modeling after collinearity screening are set in boldface. VIF refers to variation inflation factors that 
are shown only for variables that were left after collinearity screening.

Group/layer Variable Min Max Median VIF

Landscape
 habitat type classification (HTC) no. of types 5 16 11 2.567
 no. of patches 13 385 148.5 1.876
 Corine Land Cover (CLC) no. of types 3 26 14 4.110
 no. of patches 6 328 171.5 2.408
 spectral heterogeneity (SH) no. of types 11 47 30 2.420
 no. of patches 27 196 108.5 –
Topography (topo)
 elevation (elev) (m a.s.l.) mean 87.45 156.75 108.63 1.954
 SD 0.06 19.79 5.42 –
 range 1.08 65.59 26.91 –
 slope (°) mean 0.02 7.34 3.17 –
 SD 0.11 6.75 2.89 2.604
 range 2.71 45.71 21.85 –
 solar radiation (SR) (WH m–2) mean 653318 689543 673908 1.539
 SD 1366.52 51415 20695.1 –
 range 59647.3 513024 224682 –
 SAGA wetness index (SWI) mean 10.56 21.09 14.38 –
 SD 0.09 5.13 2.70 –
 range 1.88 16.40 12.70 2.026
Geodiversity (GD)
 bedrock no. of rock types 1 5 2 1.208
 Soil no. of soil types 1 7 4 1.705
 hydrology no. of hydrological features 1 5 2 1.711

tory variables with which we explained species 
richness of the grid cells using generalized linear 
and generalized additive models.

Explanatory variables

We divided the explanatory variables into three 
groups: landscape, topography, and geodiversity 
(Table 1). We calculated all explanatory vari-
ables inside 1-km2 grid cells. The data sets had 
higher resolutions than 1 km2 but we generalized 
finer resolution information to grid cells using 
variables that are elaborated below.

The landscape variables consisted of vari-
ables calculated from the HTC, spectral het-
erogeneity (SH), and CLC 2006 land-use/land-
cover classifications. The HTC included 22 dif-
ferent habitat types (Table A1), and it is based 
on species identification literature (Hämet-Ahti 
et al. 1998). Based on the habitat preferences 
of different species, suitable habitat types were 
defined (Rossi and Kuitunen 1996). Our HTC 

does not directly tell that some habitat type has 
specific species composition. Instead, it should 
be interpreted to indicate that some species can 
exist in a specific habitat. We wanted to test if 
the theoretical HTC can explain observed spe-
cies richness patterns. From the HTC, we cal-
culated the number of habitat types and habitat 
patches per 1 km2. SH refers to spectral informa-
tion available in remote sensing data. SH can be 
seen as a proxy of environmental heterogeneity. 
Similar heterogeneity measures were used also 
previously in species richness mapping (Roc-
chini et al. 2010, 2011). We calculated SH based 
on the aerial imagery set (collected by Terratec) 
from the year 2011. We resampled all three color 
bands of the aerial images to 10-meter resolu-
tion using band and pixel-wise mean values. 
From the resampled combined image of the 
whole area, we calculated the first principal 
component (PC) to reduce the dimensionality of 
data. According to eigenvalues, PC1 could rep-
resent 85% of the total variation. We generalized 
the PC1 values using a segmentation technique 
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in which pixels are merged into homogenous 
objects called segments (see Blaschke et al. 
2014). We used a segmentation technique that 
was identical to the segmentation used in habitat 
type classification (see Appendix 1). We calcu-
lated a mean value of PC1 per segment. Finally, 
we quantized these segment-related values to 64 
classes using equal intervals. We calculated the 
continuous values for all segments and trans-
formed them to classes to get meaningful objects 
and to reduce noise that is present in remote 
sensing data (for other benefits, see Blaschke et 
al. 2014). In initial evaluations, we tested differ-
ent quantization options and 64 classes had the 
highest correlation with the response variable. 
From each 1-km2 grid cell, we calculated the 
number of patches and the number of different 
principal component class values. From the CLC 
classification level four (see Appendix 2), we 
calculated the number of patches and variety of 
land-use/land-cover classes per 1 km2. The level 
four is a Finnish modification and specification 
of the European CLC level three made to match 
the data set better with the Finnish context (see 
Appendix 2).

Topographic variables are used widely in 
species richness mapping and they are among 
the most important predictor variables (e.g. 
Guisan and Zimmermann 2000). In our case, 
topographic variables give information about, 
e.g., moisture conditions and microclimatic vari-
ations inside the area. We calculated the topo-
graphic variables based on the airborne laser 
scanner data. We constructed a digital terrain 
model at 10-meter resolution by triangulating 
points classified as ground. From the digital ter-
rain model, we filled empty spots and pits. From 
the filled digital terrain model, we calculated the 
following layers: slope, solar radiation, and a 
SAGA wetness index. Solar radiation indicates 
how much irradiation each point in a landscape 
receives from the sun. We estimated total amount 
of solar irradiation per year from one day in each 
week in 30 minutes intervals using ArcGIS 10.2 
(Esri, Redlands, CA, USA) and its Area Solar 
Radiation tool. The SAGA wetness index models 
moisture conditions using local and neigh-
borhood slope and upslope contributing area 
(Böhner and Selige 2006). It is a modification of 
the standard topographic wetness index in which 

only local slope is taken into account. For these 
four layers, i.e. elevation, slope, solar radiation, 
and SAGA wetness index, we calculated mean 
values, standard deviations and ranges per 1-km2 
grid cells.

We compiled geodiversity variables from the 
digital soil and bedrock maps, and from the 
National Land Survey of Finland topographic 
database. More precisely, we computed measures 
of geodiversity by simply summing the total 
number of different soil types (e.g. clay, sand, 
till), rock types (e.g. gabbro, granodiorite, mica 
schist) and hydrological features (i.e. springs, 
streams, rivers, ponds and lakes) in the 1-km2 
study grid cells (Hjort and Luoto 2010). For 
example, the soil richness is the sum of different 
soil types regardless of the number and cover of 
the specific features in the study grid cells. The 
approach to compile geodiversity information 
was highly simplified but, in previous studies, 
it has been shown to describe variability in the 
Earth’s surface materials, forms, and physical 
processes well at the landscape scale (Hjort and 
Luoto 2010, 2012).

Statistical analyses

We performed two sets of statistical analyses: 
one to explain and predict the total species rich-
ness per grid cell, and the other to the native 
species richness per grid cell. We acknowledged 
that native species and total species richness 
were highly correlated (Pearson’s r = 0.92) but 
we wanted to analyze if their distributions had 
different explanations.

We used two approaches in the analyses. 
Using generalized linear models (GLM, Nelder 
and Wedderburn 1972), we examined the relative 
importance of different variable groups with 
variation partitioning (Real et al. 2003, Heikki-
nen et al. 2004). We used generalized additive 
models (GAM, Hastie and Tibshirani 1986) to 
test the relative strengths of different variables 
and variable groups. We tested, if they explain 
a larger proportion of the variation in species 
richness than GLMs and if there are non-lin-
ear dependencies between explanatory variables 
and dependent variables. In GAMs, the depen-
dence between a dependent variable and explan-
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atory variables is modeled semi-parametrically 
with smoother functions. GLMs and GAMs are 
among the most widely used statistical tech-
niques in the species distribution models and 
they have been used successfully many times 
(e.g. Guisan et al. 2002, Guisan and Thuiller 
2005). Some of the main advantages of these 
two methods are that different residual error 
distribution models can be assumed and that 
temporal and spatial dependencies can be taken 
into account. In addition, the probably non-linear 
effect of each explanatory variable to the (often 
transformed) response variable can be visualized 
for GAM models as we show below in results. 
Due to the overdispersion of the dependent vari-
ables, we used a quasipoisson distribution with 
a log-link function (Zuur et al. 2009) for the 
response. As an example, dispersion parameter 
was estimated to be 3.65 in our GLM run with 
all species and lasso penalty variable selection 
(Tibshirani 1996).

To deal with multicollinearity, we calcu-
lated variance inflation factors (Zuur et al. 2009) 
of potential explanatory variables. We used a 
threshold value of five for variance inflation 
factors (Zuur et al. 2009). First, from each topo-
graphic layer, we left only the topographic vari-
able which had the highest correlation with the 
total plant species richness in the model. Second, 
we removed the variable which indicated the 
number of SH patches from the model. We used 
a total of 12 explanatory variables in the model 
(Table 1).

Variation partitioning refers to techniques in 
which variation of the response can be divided 
into several components. In variation partition-
ing, partial GLMs and a full GLM are calcu-
lated. In each partial GLM some variable group 
is left out of the model so that the importance 
of that group in explanation can be measured. 
We divided variation into seven components: 
into the pure effects of landscape, topography, 
and geodiversity as well as into the combined 
effects of each combination of two or three pure 
components. For detailed instructions how to do 
the calculations, see e.g. Real et al. (2003) and 
Heikkinen et al. (2004). We performed variable 
selection using lasso penalty (Tibshirani 1996) 
available the R package lqa (ver. 1.0-3., Ulbricht 
2012) with R (ver. 2.15.2, R Core Team 2013). 

We sought an optimal regularization parameter 
with intervals of 0.1 using five-fold cross-val-
idation and by minimizing deviance loss. In 
variation partitioning, we included also quadratic 
terms of explanatory variables.

We fitted GAM models with the R package 
mgcv (Wood 2006, 2011). In the smoothing 
parameters, we let the degrees of freedom vary 
between zero and four and we used restricted 
maximum likelihood estimation. We selected the 
variables by implementing an extra penalty term 
as suggested by Marra and Wood (2011). To 
analyze the effect of each landscape variable 
and geodiversity variables, we compared eight 
GAM models: (1) full model including all vari-
ables, three models that included topographic 
and geodiversity variables but only one land-
scape variable, i.e. (2) HTC, (3) CLC, or (4) SH 
type richness, (5) model omitting patch diver-
sity variables, and three models including (6) 
only topography variables, (7) topography and 
geodiversity variables and (8) topography and 
landscape variables. We performed a six-fold 
cross-validation for model comparison. Finally, 
spatial autocorrelation of the full GAM residuals 
was minor (Moran’s I was at maximum 0.15, p < 
0.001). Therefore, we decided not to take spatial 
autocorrelation into account in the models. Over-
all, all model assumptions were met in different 
GLM and GAM runs and there were no clear 
structure in residual plots.

Results

According to the variation partitioning results, 
landscape and topographic variables explained 
most of the variation of the vascular plant spe-
cies richness (Fig. 3). Independently, geodiver-
sity explained little (0.2% to 1.8%) of the varia-
tion but the combined effect of geodiversity and 
landscape (6.8% to 16.1%) as well as all vari-
able groups (14.7% to 15.4%) was considerable. 
Results were slightly different for the total spe-
cies richness and native species richness. Most 
notably, the fraction explained by topographic 
diversity was greater for native species richness 
whereas the fractions explained by landscape, 
landscape and geodiversity together, and land-
scape and topography together were smaller for 
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native species richness. The fraction of unex-
plained variation was larger for native species 
richness.

Many of the variables did not have great 
effects on the total or native species richness 
(Fig. 4). For instance, bedrock type richness and 
range of SAGA wetness index smoothers were 
both penalized to zero in both models. Some 
variables had clear positive or negative effects 
(Fig. 4). Different landscape-type diversity vari-
ables had rising or bell-shaped curves whereas 
the mean elevation showed a clear negative 
trend.

GLM with all variables explained a slightly 
greater proportion of the total species richness 
(75.6%) than GAM with all variables (74.6%; 
Table 2) because some explanatory variables had 
been penalized to zero in GAM. In explain-
ing native species richness, GLM and GAM 
explained similar proportion of the total devi-
ance. In cross-validation, GAM had greater 
Spearman’s rank correlation between observed 
and predicted species richness (rS = 0.828) than 
GLM (rS = 0.823). Of the GAMs which included 
only a subset of variables, the models excluding 
patch variables (74.3%) or geodiversity vari-
ables (73.8%) explained little less of the species 
richness than the full model (74.6%). Actually, 
the model without geodiversity (rS = 0.838) had 
higher prediction capability in cross-validation 
than the full model (rS = 0.828). Of the GAMs 

that included only one landscape variable, GAM 
with CLC types had slightly higher prediction 
capability than GAMs with HTC types or SH 
types in explaining the total species richness 
and predicting total and native species rich-
ness. GAM with SH types outperformed by 
narrow margin GAM with HTC in all compar-
isons. GAM with geodiversity and topography 
variables had higher explanation and predic-
tion capability than the GAM with topography 
variables only. The explanation and prediction 
capability of these topography-only models was 
lower than of all the other models (Table 2).

Discussion

The role of landscape, topography and 
geodiversity

A large part of the variance in vascular plant 
species richness could be explained using topo-
graphic and landscape variables (Fig. 3). Of dif-
ferent explanatory variables, mean elevation and 
different landscape type diversity variables had 
the most pronounced relationships with species 
richness (Fig. 4). Generally, the number of spe-
cies was higher in areas with larger landscape 
variability (Stein et al. 2014; Fig. 4). Usually the 
areas with larger landscape variability have also 
stronger human influence, i.e., include agricul-
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Fig. 3. Percentages of variance explained divided into different fractions based on partial and full generalized linear 
models. Fractions are independent contributions of three variable groups and shared contributions of different vari-
able groups. Results are shown for (a) all species and (b) native species.
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Fig. 4. Generalized additive model smooth estimates of the models with all variables for (a) total species richness 
and (b) native species richness. Two standard errors above and below the estimates are also plotted with dashed 
lines. The statistical significance of each variable (p value) in the model is given next to the name of the variable. 
x-axes represent explanatory variable values and y-axes are smoother-function values used in predicting the 
log-transformed response variable. When the drawn curve is above zero, then at those values the explanatory vari-
able increases the total or native species richness, and when the curve is below zero, at those values the explana-
tory variable decreases the species richness as compared with the baseline set by the intercept term of the model. 
In the y-axes labels, edf = estimated degrees of freedom of the smoother function. Abbreviations of explanatory 
variables are given in column LAYER of Table 1.
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tural or artificial areas, and the areas with stron-
ger human influence incorporate more species 
(Honnay et al. 2003, Wania et al. 2006, Pautasso 
2007). It is argued that in areas affected by 
humans, the degree of disturbance and nutrient 
availability varies; hence, there may exist more 
niches for different plant species (Honnay et 
al. 2003). Nevertheless, the GAM smoothers 
of spectral heterogeneity (SH) types were bell-
shaped (Fig. 4). There were, thus, weak indica-
tions that species richness could decrease in very 
fragmented areas with many different habitat 
types. Other explanation is that the thematic res-
olution of SH is too fine. Inside one meaningful 
landscape or habitat type, different spectral types 
can be found. These spectral types can look 
different in the remote sensing data but can be 
essentially identical habitats and have similar 
species composition.

Topographic variables were among the vari-
ables with the highest explanatory power and 
topography explained the greatest amount of 
variance in variation partitioning (Figs. 3 and 4, 
Table 2). In previous studies, topography vari-
ables are frequently used and they are noticed to 
be working well (e.g. Guisan and Zimmermann 
2000, Stein et al. 2014). In this study, mean ele-
vation was the most important topographic vari-
able (Fig. 4). Also in previous studies in boreal 

landscapes, mean elevation was among the pre-
dictors with the highest explanatory capability 
(e.g. Heikkinen and Neuvonen 1997, Parviainen 
et al. 2008). Those study areas were located fur-
ther north and the elevational differences were 
greater. In a relatively flat landscape, such as our 
study area, elevation does not have a large cli-
matic effect since the difference between highest 
and lowest mean elevation was not more than 
70 m. Nonetheless, mean elevation is probably a 
proxy for other factors such as soil productivity 
and moisture as well as proximity of waterbod-
ies. In addition, human influence and land-use 
history concentrate in the areas close to water-
bodies and on productive lands. Elevation may 
also be a proxy for human influence and has an 
effect on landscape type patterns.

Geodiversity variables were not among 
the most important explanatory variables and 
geodiversity explained independently little of 
the variation in variation partitioning analy-
sis (Figs. 3 and 4). Its explanatory power was 
slightly greater in explaining the native species 
richness than the total species richness (Fig. 3). 
In a previous study, where geodiversity measures 
were included (Hjort et al. 2012), geodiversity 
explained more of the variation in vascular plant 
species richness than climatic and topographic 
variables. In their study, study areas were pre-

Table 2. Results of full generalized linear model (GLM) and different generalized additive model (GAM). We calcu-
lated explained deviance, r 2 (adjusted) values and Spearman’s rank correlation coefficients (rs) between observed 
and predicted species richness for the different model. A six-fold cross-validation was used and presented values 
are mean values of six calibration or test sets. Topo refers to topography, GD to geodiversity, HTC to habitat type 
classification, CLC to Corine Land Cover and SH to spectral heterogeneity.

 All species Native species
  
 Calibration Test Calibration Test
    
  explained r 2 rs rs explained r 2 rs rs
  deviance (%) adjusted   deviance (%) adjusted

GLM all variables 75.6  0.863 0.823 68.3  0.823 0.777
GAM all variables 74.6 0.743 0.860 0.828 68.3 0.673 0.826 0.794
 topo + GD + HTC 64.6 0.643 0.809 0.780 62.2 0.611 0.787 0.759
 topo + GD + CLC 71.5 0.706 0.845 0.818 62.8 0.613 0.817 0.791
 topo + GD + SH 68.8 0.677 0.830 0.793 63.4 0.625 0.789 0.763
 patches omitted 74.3 0.742 0.858 0.827 67.9 0.670 0.826 0.797
 topography only 46.4 0.448 0.690 0.663 49.0 0.476 0.660 0.617
 topo + GD 59.4 0.583 0.778 0.745 57.8 0.561 0.747 0.718
 topo + landscape 73.8 0.736 0.855 0.838 66.0 0.652 0.818 0.808
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dominantly natural, and landscape measures 
were not included. In our study, the explanatory 
power of models including topography and geo-
diversity was about the same magnitude as the 
explanatory power of geodiversity, topography 
and climate by Hjort et al. (2012). Moreover, in 
Hjort et al. (2012), geodiversity included a mea-
sure of geomorphological richness. Inclusion 
of geomorphology could potentially increase 
the explanatory power of geodiversity mea-
sures. Nevertheless, geomorphological mapping 
requires a skilled interpreter and is time-con-
suming whereas other geodiversity measures are 
rather quick to quantify over larger areas using 
existing GIS data sets.

It has been found that geodiversity is pos-
itively linked with habitat diversity (Jačková 
and Romportl 2008). The greater the geodi-
versity values are the more diverse landscapes 
are in regards of habitat or land-use/land-cover 
types. In our study, where geodiversity explained 
independently little of the total deviance, the 
combined effect of geodiversity and landscape 
was greater than the effect of geodiversity alone 
(Fig. 3). Some geodiversity features such as 
mafic and intermediate bedrock types or esker 
deposits were also used in constructing the 
habitat type classification (Appendix 1). Addi-
tionally, agricultural areas, residential areas or 
human influence are not distributed evenly or 
randomly. Human influence is usually strongest 
on, e.g., high productive soils and near water-
bodies, which both can be regarded as mea-
sures of geodiversity. Geodiversity may, together 
with topography, direct landscape variability and 
human influence. It can be possible that geodi-
versity and topography are the ultimate factors in 
explaining biological diversity but especially in 
areas with notable human influence, more prox-
imate factors such as landscape features may 
have stronger explanatory power. More research 
is needed to check if this argument is correct. 
Furthermore, in the study area, some portions of 
geodiversity, such as rock types have a stronger 
effect on the richness of bryophytes than vascu-
lar plant species (Kuitunen 2014). Finally, the 
role of geodiversity could be greater if, other 
types of geodiversity variables than simple rich-
ness, i.e. number of types in grid cells, would be 
used (e.g. Ruban 2010, Beier et al. 2015).

Landscape type variables

Corine Land Cover (CLC) and spectral hetero-
geneity (SH) had as high or higher explana-
tory capabilities than habitat type classification 
(HTC) (Fig. 4 and Table 2). This was somewhat 
surprising since CLC and SH do not have an eco-
logical background as opposed to the used HTC. 
According to the GAM results, CLC had higher 
explanatory capability than HTC in explaining 
total species richness, whereas in explaining 
native species they were on par (Table 2). One 
reason behind this difference might be that in 
CLC there are more agricultural and artificial 
area classes (number of classes is 12) than in 
HTC (five classes) (Appendices 1 and 2). Most 
of the non-native species in the area inhabit these 
human habitats whereas native species are more 
diverse in natural habitats. Among natural areas, 
CLC had only a little more classes (19 classes) 
than HTC (17 classes) and the classes were 
different. SH had a higher correlation with CLC 
than with HTC. The reason is probably that, 
based on visual interpretation, SH had a higher 
variation in artificial and agricultural areas than 
HTC.

Based on the GAM results (Table 2), all three 
landscape heterogeneity measures gave comple-
mentary information, probably because classes 
were divided differently in all three measures. 
We, therefore, advise to use different habitat type 
or land-use/land-cover type classifications in 
species richness modeling, if the intention is to 
explain as much as possible of the variation. Yet, 
different landscape type variables can be collin-
ear. In our case, HTC and CLC type variables 
were rather highly correlated and they had the 
highest variance inflation factor values (Table 1) 
but the values were under the suggested thresh-
olds (Zuur et al. 2009).

According to our results, the variable 
derived directly from remotely-sensed data, SH, 
explained slightly less of the variation in species 
richness than CLC but slightly more than HTC 
(Fig. 4 and Table 2). In the study by Cord et 
al. (2014), continuous remote-sensing variables 
outperformed thematic land-cover data. Their 
remotely sensed variables included numerous 
temporal, net primary productivity and seasonal-
ity metrics derived from multi-temporal MODIS 
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satellite data and they studied a single tree-spe-
cies in the whole area of Mexico. Even simple 
remotely-sensed measures, such as SH, can be 
on par with thematic data but more specific mea-
sures based on remotely-sensed data can reveal 
unseen features in thematic data. At our scale 
and study area, more specific measures may not 
work as well as in the study by Cord et al. (2014) 
due to rather high local landscape variability in 
a rather fine-scale data. In our case, metrics — 
such as normalized difference vegetation index, 
— would merely be proxies of landscape het-
erogeneity than productivity which they ideally 
should measure (see e.g. Pettorelli et al. 2005). 
These indices are probably more applicable on 
natural areas than on natural-agricultural mosaic 
(see e.g. Parviainen et al. 2009).

Two of our used landscape measures, HTC 
and SH, were object-based instead of pix-
el-based. While we did not compare pixel-based 
measures with object-based measures per se, 
object-based measures worked well since HTC 
and SH variables explained a significant amount 
of the variation of species richness. In initial 
analyses, object-based SH had stronger correla-
tions with species richness than pixel-based SH, 
but pixel-based and object-based measures were 
highly collinear. In future studies, pixel-based 
measures should be compared with object-based 
measures to test if their predictive capabilities 
differ.

Differences between native species 
richness and total species richness

The correlation between native species rich-
ness and total species richness was considerable 
(Pearson’s r = 0.92) and native species were a 
subset of total species. In other words, the pat-
tern in which the relative strength of different 
explanatory variables was approximately similar 
in explaining both native and total species rich-
ness (Fig. 3), may be an artifact, i.e. trivial but 
real (see Palmer et al. 2008).

Despite the strong correlations between 
native and total species richness there were some 
differences in the results (Fig. 3 and Table 2). 
Topographic variables and geodiversity variables 
were more important in explaining native spe-

cies richness than in explaining total species 
richness. Vice versa, the relative effect of land-
scape was smaller on native species richness. 
One reason behind this difference might be that 
human influence does not increase native spe-
cies richness as much as it increases total spe-
cies richness. It can also point out the fact that 
geophysical factors have an effect on species 
richness, but due to human intervention this 
effect is not always visible and straightforward. 
On the other hand, when native species richness 
was the dependent variable, a smaller amount of 
variance could be explained. This might high-
light the importance of other factors and random 
processes in explaining native species richness. 
More research is needed in evaluating the rela-
tionship between native species richness and 
total species richness and if their distributions 
have different explanations.

Comparison of GLM and GAM

GLM and GAM had approximately similar 
explanatory and predictive capabilities (Table 2). 
Most of the relationships modeled with GAM 
were linear (Fig. 4) and it can be thought that 
there was little need to model nonlinear rela-
tionships. Although GAM did not have a higher 
explanatory and predictive capability than GLM, 
GAM revealed that some of the variables had 
nonlinear relationships with species richness 
(Fig. 4). Those were not revealed with GLM. We 
argue that modeling with GAMs is not needed 
in many cases unless the relationships between 
the dependent and the explanatory variables are 
expected to be nonlinear, or if the shape of the 
relationship is not known at all.

Conclusions

We explained vascular plant species richness in a 
fragmented landscape with notable human influ-
ence. We examined the relative role of landscape, 
topography, and geodiversity, compared three 
different landscape heterogeneity measures, and 
modeled total and native species richness sep-
arately using GLMs and GAMs. Based on the 
results, we draw three main conclusions. Firstly, 
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majority of species richness was explained with 
landscape and topography variables whereas 
geodiversity explained little of the variation. 
Topography and geodiversity often direct human 
action and can thus be ultimate causes behind 
both landscape heterogeneity and species rich-
ness. Secondly, three landscape heterogeneity 
measures (HTC, SH, CLC) gave complementary 
information. Differences between the measures 
were small with CLC having the highest explan-
atory capability. Although HTC had a stronger 
ecological background, it was outperformed by 
the other two measures. Thirdly, in explain-
ing native species richness, the relative role of 
topography and geodiversity, and the amount of 
unexplained variation was larger than in explain-
ing total species richness. It may be that human 
influence is smaller and random processes more 
important on native species richness than on 
total species richness, but this must be addressed 
in future research.
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Appendix 1

Overview of the used habitat type classification (HTC) approach

Data sets and calculated layers and features

In the habitat type classification (HTC), we used the following GIS and remote sensing data: two sets 
of aerial imagery; an airborne laser scanner data from the National Land Survey of Finland; 1:20 000 
resolution digital Quaternary deposit (hereafter soil) and 1:200 000 resolution digital bedrock maps 
from the Geological Survey of Finland; forestry planning polygons and polygons of Forest Act hab-
itats from the Finnish Forest Centre Pirkanmaa from years 2000–2010; as well as a 1:10 000 resolu-
tion topographic database and a 1:50 000 resolution SLICES land-use database from the year 2010 
from the National Land Survey of Finland.

The first set of aerial imagery was taken in the summer of 2011 by TerraTec Oy for the Finnish 
Forest Centre Pirkanmaa. It consisted of three bands: green, red and infra-red in 40 cm spatial reso-
lution. The other aerial image set was taken by the National Land Survey of Finland during springs 
2010, 2011 and 2012 using an Intergraph DMC camera. The spatial resolution of the data was 50 cm 
and it consisted of four bands: blue 400–580 nm, green 500–650 nm, red 590–675 nm, and near infra-
red 675–850 nm.

The airborne laser scanner data were collected in the springs of 2008 and 2012 by the National 
Land Survey of Finland. Data contained at least 0.5 points per 1 m2 and the flying altitude was on 
average 2000 meters. The used scan angle was ±20° and the laser pulse footprint in terrain approxi-
mately 50 cm. The mean error in the elevation information is at maximum 15 centimeters and in the 
planar information at maximum 60 cm. The data was delivered as point clouds with automatic classi-
fication to ground hits, low vegetation hits, low error hits and unclassified hits.

From the airborne laser scanner data, we constructed two primary layers. A digital terrain model 
was constructed by triangulating the points classified as ground. A digital surface model was con-
structed by triangulating the first hits only. Moreover, we excluded the hits classified as unclassified 
or low points from the analysis. Before the triangulation, we thinned the surface to 1-m2 resolution. 
We constructed a canopy height model by subtracting the digital terrain model from the digital 
surface model. To eliminate unrealistic values, we further manipulated the canopy height model 
to include values only between zero and 40 m. We processed the airborne laser scanner data using 
LAStools (rapidlasso, Gilching, Germany).

We did not use the digital terrain model in the analysis as such, but we derived five layers from 
it. SAGA wetness index models moisture conditions using local and neighborhood slope and upslope 
contributing area (Böhner and Selige 2006). It is a modification of standard topographic wetness 
index in which only local slope is taken into account. We quantified SAGA wetness index, because 
the topographic wetness index is known to underestimate the extent and the contiguity of wetlands 
(Grabs et al. 2009, Murphy et al. 2009). Terrain ruggedness index quantifies the amount of elevation 
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difference locally (Riley et al. 1999), topographic position index measures the relative altitudinal 
position of a pixel (Guisan et al. 1999) and multiresolution index for valley bottom flatness identi-
fies the areas that are relatively low or flat (Gallant and Dowling 2003). In a distance to water layer, 
a slope raster was used as a cost surface and, from each pixel, a cost distance to a stream or a water 
body was calculated (Murphy et al. 2007, 2009). We calculated the terrain ruggedness index using 
3 × 3-pixel window size, the topographic position index with the radius of 100 m, and the multireso-
lution index for valley bottom flatness using the value of 28 for initial threshold for slope as suggested 
by Gallant and Dowling (2003). In calculating the distance to water layer, we modeled streams using 
a D∞ flow direction and a 40 000 m2 threshold value using TauDEM tools (ver. 5.0, http://hydrology.
usu.edu/taudem/taudem5/index.html). We calculated the distance to water layer using ArcGIS (ver-
sion 10.1, Esri, Redlands, CA, USA) and the other topographic layers using SAGA-GIS (ver. 2.0.8, 
http://www.saga-gis.org/).

Classification of habitat types

Our habitat type classification workflow is a simplified version of the analysis by Räsänen et al. 
(2014). In this study, we modified the classification workflow to match with the available local data 
sets and to classify all habitat types used in Rossi and Kuitunen (1996). We classified 22 habitat types 
using object-based image analysis (OBIA) and ancillary data (Table A1).

In the first phase, we used OBIA methodology in mapping three forest habitat types. We per-
formed Fractal Net Evolution Approach segmentation in eCognition Developer 8.8 software (Trim-
ble, Sunnyvale, CA, USA) using a scale parameter value 10 together with a parameter value 0.5 
both to color and to compactness. In segmentation, we used all aerial image bands together with the 
airborne laser scanner-based canopy height model and SAGA wetness index layers in 10-meter reso-

Table A1. Different habitat types mapped and different approaches or data sets used in mapping them.

Habitat type Approach/data set

Herb-rich and other deciduous forests OBIA
Esker forests OBIA, soil map
Dry upland forest sites OBIA
Moist upland forest sites OBIA
Rich fen Forest Act habitats polygons
Open mires NLS topographic database
Pine mires NLS topographic database
Spruce mires NLS topographic database
Oligotrophic lakes NLS topographic database
Eutrophic lakes NLS topographic database
Streams and rivers NLS topographic database
Springs NLS topographic database, Forest Act habitats polygons
Riparian habitats NLS topographic database, Forest Act habitats polygons
Flooded areas NLS topographic database, Forest Act habitats polygons
Beaches NLS topographic database, Soil map
Non-calcareous rocky areas NLS topographic database
Calcareous rocks and quarries NLS topographic database, Bedrock map
Dry meadows NLS topographic database, Forest Act habitats polygons, Forestry 
 planning polygons
Wet meadows NLS topographic database
Cultivated areas NLS topographic database
Parks and gardens NLS topographic database, SLICES land use database
Industrial and urban areas NLS topographic database, SLICES land use database
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lution. We resampled the aerial image bands to ten meter resolution by calculating mean values. We 
gave all layers an equal weight.

For all segments, we calculated 122 feature values based on the aerial imagery and the airborne 
laser scanner data. For all 13 layers, we calculated mean values and standard deviations per segment. 
For all aerial imagery bands and the canopy height model, we calculated 12 Gray-Level Co-occur-
rence Matrix (GLCM) and Grey-Level Difference Vector (GLDV) texture features proposed by 
Haralick et al. (1973) using eCognition Developer 8.8. We calculated the features to all directions 
using 8 bit quantization and they were the following: GLCM homogeneity, contrast, dissimilarity, 
entropy, angular 2nd moment, mean, standard deviation, and correlation as well as GLDV angular 
2nd moment, entropy, mean, and contrast.

Of the 98 196 segments, whose size range was 100–19 000 m2, we used 3790 as training data in 
a random forest classifier (Breiman 2001) which was trained using the package randomForest (Liaw 
and Wiener 2002) in R (ver. 2.15.2, http://www.R-project.org/.). In random forest, a majority vote 
over several bootstrapped classification trees is taken. When a tree is built, approximately 1/3 of the 
data is left out of the bootstrap sample and is called out of bag (OOB) data. The OOB data are used for 
error rate estimation, which is averaged over all trees. Because of the OOB, independent test data or 
cross-validation is not needed when random forest is used (Breiman 2001, Breiman and Cutler 2007).

For the training data segments, we obtained habitat types from the corresponding forestry plan-
ning polygons. The forestry planning data consisted of 4227 polygons, a total of 57.8 km2, and had 
information, for instance, about the habitat type and tree stand. We classified the data into three hab-
itat types based on habitat type and tree species in the data set. Initially, we divided all habitat types 
into four successional stages based on stand development class information. In this study, however, 
we considered all successional stages of each habitat type as one class. Because of the recent open 
regeneration areas, we manually modified the habitat type of some forestry planning polygons and 
deleted some of the polygons altogether to match the aerial images. In total, we used 49.3 km2 of the 
data. We used as training data all those segments that had at least a 60% share of area inside one hab-
itat type based on the reference polygons.

After the OBIA classification, we classified forested peatlands of the National Land Survey topo-
graphic database into spruce and pine mires based on predicted forest habitat type. We classified all 
segments, whose majority soil type was esker deposit, as esker habitats. We updated the rest of the 
habitat types to the HTC straight according to ancillary layers (Table A1). Within these habitat types, 
we made the following adjustments. We classified a lake as eutrophic if inside a 100-m buffer around 
the lake over 50% of land-use was cultivated areas or meadows. We mapped riparian areas using 
15-m buffers for lakes and streams as well as a 5-meter buffer for small streams, brooks, creeks, and 
ditches. We did not map 5-meter buffers to peatland areas. For 15-m lakeside buffers, we classified 
all areas that were on a mineral soil as beaches. For springs, we used a 5-meter buffer. We classified 
a rocky area as calcareous, if the bedrock type was calcareous or mafic or intermediate based on the 
classification by Kalliola (1973). We classified a meadow as dry meadow, if it was on mineral soil 
(excluding clay) and if its mean SAGA wetness index value was smaller than 15. When all habitat 
types had been classified, we converted the vector data set into a 10-meter resolution raster data set.

Classification accuracy analysis

The classification accuracy of the HTC was calculated using forestry planning polygons as a refer-
ence with a simple pixel-based cross-tabulation matrix. All area that was mapped as forests in the 
classification as well as in the reference was used in the classification accuracy calculation. Addition-
ally, an OOB error rate of the random forest classifier was calculated on a segment level.

The classification accuracy of the HTC was 47% in the areas classified as forest habitat types if 
different successional stages were considered separate classes. A rather similar result was given by 
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random forest OOB error rate which was 49%. When only three different forest habitat types were 
classified, classification accuracy was 60%.

The major reason for the low classification accuracy is probably noisy training data. The infor-
mation about habitat type and boundaries might not always be accurate in forestry planning data sets, 
since they are not principally intended to be used in this kind of task. Another reason is that we mea-
sured only the classification accuracy in the classification of forest habitat types. Forest habitat types 
can be difficult to interpret also by skilled professionals in the forest and their differences in remotely 
sensed data are often small.

Appendix 2

List of different land-use/land-cover types in Corine Land Cover classification

Code CLC type

1110 Continuous urban fabric
1120 Discontinuous urban fabric
1210 Industrial or commercial units
1220 Road and rail networks and associated land
1310 Mineral extraction sites
1320 Dump sites
1421 Summer cottages
1422 Other sport and leisure facilities
2111 Non-irrigated arable land, in use
2112 Non-irrigated arable land, abandoned
2220 Fruit trees and berry plantations
2310 Pastures
3111 Broad-leaved forest on mineral soil
3112 Broad-leaved forest on peatland
3121 Coniferous forest on mineral soil
3122 Coniferous forest on peatland
3123 Coniferous forest on rock exposure
3131 Mixed forest on mineral soil
3132 Mixed forest on peatland
3133 Mixed forest on rock exposure
3241 Transitional woodland/shrub, canopy cover < 10%
3242 Transitional woodland/shrub, canopy cover 10%–30%, on mineral soil
3243 Transitional woodland/shrub, canopy cover 10%–30%, on peatland
3244 Transitional woodland/shrub, canopy cover 10%–30%, on rock exposure
3247 Transitional woodland/shrub, abandoned agricultural land
3320 Bare rock
4111 Inland marshes, on land
4112 Inland marshes, on water
4121 Peatbogs
5110 Water courses
5120 Waterbodies


