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Abstract
A time-dependent extension to the Landauer–Büttiker approach to study transient
quantum transport in arbitrary junctions composed of leads and conducting devices
is developed. The nonequilibrium Green’s function approach is employed for de-
scribing the charge and heat transport dynamics. The importance of the developed
method is that it provides a closed formula for the time-dependent density matrix
in both electronic and phononic systems. In the electronic case the nonequilibrium
conditions are due to a switch-on of a bias voltage in the leads or a perturbation in
the junction whereas in the phononic case the central region of interest is coupled
to reservoirs of different temperatures. In both cases the time-dependent density
matrices, and furthermore other transport properties such as local charge and heat
currents, may be evaluated without the necessity of propagating individual single-
particle orbitals or Green’s functions

More precisely, an analytic solution to the Kadanoff–Baym equations of motion for
both electronic and phononic Green’s functions describing an arbitrarily shaped
and sized noninteracting lattice connected to an arbitrary number of noninter-
acting wide-band terminals, also of arbitrary shape and size, is provided. In the
electronic case, the initial equilibrium state is properly described by the addition of
an imaginary track to the Keldysh time contour, on which the equation of motion
is described. From the solution the time-dependent electron and phonon densities
and currents within the junction are extracted. The final results are analytic expres-
sions as a function of time, and therefore no time propagation is needed – either in
transient or in steady-state regimes.

As the formalism allows for studying time-dependent transport in noninteracting
but arbitrary molecular systems coupled to wide band leads, several applications
are presented and discussed. Especially, transient charge dynamics in graphene
nanoribbons of different geometries is studied. The transient time scales are found
to exceed several hundreds of femtoseconds while displaying a long time oscillatory
motion related to multiple reflections of the density wave in the nanoribbons at the
ribbon–lead interface. This finding strongly vouches for the need for a fully time-
dependent description of the quantum transport processes. The time-dependent
current through a graphene nanoribbon has a shape that scales with the length
of the ribbon and is modulated by fast oscillations described by intra-ribbon and
ribbon–lead transitions. Furthermore, time-dependent quantum transport is stud-
ied in curved graphene nanoribbons. The curvature is found to trigger temporally
and spatially focused electric currents which might prove pivotal for a robust de-
sign of graphene sensors and circuitries. Further simulations in a superconducting
benzene-like molecule attached to normal metal leads show formation of Cooper
pairs within the molecule related to Andreev reflection processes. In addition, tran-
sient heat transport in atomic chains is studied where the transient oscillations are
found to be related to the transitions between the chain’s vibrational modes.
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1 Introduction

1.1 Quantum transport and nanoscale electronics

Roughly speaking we can divide a field in physics in two parts: statics and dynam-
ics. Statics, as the Greek word suggests, is concerned with balance and equilibrium
of objects. Dynamics, on the other hand, deals with something that is changing in
time. We might further separate kinematics from dynamics as a mere mathematical
description of motion and leave the cause and the laws of motion under dynamics.
In quantum transport the key element typically is to describe the dynamics of charge
in a studied structure. Charge is a quantity related to electrons so let us start with
electronic transport by asking: What is it that the electrons do in a circuit? As al-
ready realized, we could put this in a simple way and say that they have an internal
property called charge and they move.

Atoms, as the building blocks of materials, contain electrons in a cloud-like shape
around the nucleus. This cloud is a collection of electrons trapped in the atomic
orbitals whose number and the overall structure depends on the element we are
dealing with. Typically it takes a considerable amount of energy for the electrons
to escape from their orbitals, especially when the orbital in question is close to the
nucleus. Some elements are identified as metals, for which the outer layers of the
atomic orbitals are not attached to the nucleus so strongly, and it is possible for
individual electrons to move from one atom’s outer orbital to another atom’s outer
orbital. When we have a collection of metal atoms composing a material the outer
orbitals behave as a sea of mobile electrons. Just like in regular water, this electron
sea can have currents. The difference in gravitational potential causes water to
flow in a river whereas electrical potential causes electrons to flow in a metal. This
electrical potential could be caused by a battery, setting higher voltage to some part
of the metal and lower voltage to another part. If we form a circuit with potential
differences as a closed path in the electron sea, we have a continuous current. It is,
however, important to notice that applying a voltage on a metal structure, only the
electrons in the outmost orbitals are affected since the electrons in orbitals closer to
the nucleus would require rather assertive batteries to break them free.

As discussed above, the outer layers are the ones important for electric circuitries,
and there also most of the chemistry happens. If neighbouring metal atoms share
their outmost orbitals so that there are no vacancies but the electrons completely
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2 Introduction

occupy the orbitals evenly, the metal is called an insulator as there is no possibil-
ity for the electrons to move about. Some materials, on the other hand, have free
electrons and free space in their outmost orbitals which means the electrons can be
moved with very small voltages (fractions of volts), and these materials are called
conductors. These materials can also be engineered as devices of intermediate forms
or combinations of insulators and conductors (called semi-conductors) where exter-
nal forces (e.g., electro-magnetic fields) may be used to move or trap electrons into
a particular configuration. This movement may further generate electro-magnetic
fields or heat which may, in turn, affect the flow of electrons even more.

One milestone in the development of molecular electronics, which studies molecular
building blocks as electronic components, was put forward by Aviram and Ratner
in 1974 when they proposed a molecular rectifier as a single organic molecule
functioning as a one-way conductor of electric current [6]. After this idea and from
then onward, experiments have been designed to measure transport properties, like
the conductance, in molecular scale [7–9]. Furthermore, based on the measurement
of the transmission of electrons through an atomic contact many diagnostic and
spectroscopical tools have been developed, e.g., scanning tunneling microscope [10]
by Binnig and Rohrer for which they received the Nobel prize in 1986 [11], atomic
force microscope [12], point-contact spectroscopy [13], inelastic electron tunneling
spectroscopy [14] and resonant inelastic tunneling spectroscopy [15].

However, starting already from the discovery of the transistor in 1948 by Shockley,
Bardeen and Brattain (for which they received the Nobel prize in 1956 [16]), the
field of electronics was slowly but surely converging towards the atomic scale as the
building blocks kept getting smaller and smaller, also famously predicted by Moore
in 1965 [17]. Vacuum tubes [18] and diodes [19] were soon after the second world
war replaced by transistors, which in turn were soon composed into integrated
circuits [20] leading to the early stages of microprocessors [21–24] which we now
carry around us in our everyday devices, see Fig. 1.1.

From this development we notice two approaches towards roughly the same des-
tination.

i. The technological approach, ultimately leading to a present day hot topic of
nanotechnology [26–28], pushes the existing ideas and technology to their
limits towards smaller scale.

To include a few examples, molecular wires, two- and three-terminal transistor-like
devices including molecule-electrode contacts and local heating are discussed in
Ref. [29] reviewing experimental progress over the past decade. Also, graphene
and carbon nanotube based transistors’ performance has recently been analyzed
thoroughly [30, 31].
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Fig. 1.1: Development of electronic components. Picture from Ref. [25].

ii. The fundamental science approach constructs new ideas from known basic
principles of nature ultimately leading to a concrete realization of technolog-
ical importance.

To include few examples also on the theoretical advances, density-functional the-
ory [32–34], nonequilibrium Green’s functions [35–42], density-matrix renormal-
ization group [43, 44], dynamical mean field theory [45–47] and quantum Monte
Carlo [48, 49] are amongst the most commonly studied and used methods.

This thesis concentrates on the latter approach: New theoretical methods, particu-
larly in the field of nonequilibrium Green’s functions, are studied in order to shed
light on various nanoscale and molecular electronics phenomena such as charge
and heat transport in a molecular junction.

The quantum transport problems are typically time dependent; there is no guaran-
tee that the system would in an instant relax to a steady-state configuration once
the junction is “switched on” (as in connecting different devices or driving them
out of equilibrium by an external perturbation). In contrast, there are transient
effects depending on, e.g., the system’s geometry [50–53], its predisposition to ex-
ternal perturbations [54–57], the physical properties of the transported quanta and
their mutual interactions [58–63]. In future applications these nanoscale devices
are pursued to operate at very fast switching time scales meaning how fast the
device can be switched on and off. This essentially relates to, e.g., microprocessors’
operation times and efficiencies to perform floating-point arithmetic operations. If
the quantum transport problem was completely solved, we would have specific
information about the electron density regarding the studied structure, as in how
many electrons there are in a particular configuration within the structure at certain
moment in time and, more importantly, how we could control this. This outcome
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in determining materials’ electronic properties is a key point in modern electron-
ics and nanotechnology, and a logically and consistently formulated theory gives
a basis for the development of technological applications. Even though the tech-
nological applications are an integral part of science and they steer the ways of
research, even more important is the underlying understanding of nature. Without
basic understanding of the fundamental mechanisms that dictate, e.g., the electrical
conduction in a molecular junction, there is no application.

This discussion, interestingly, is not limited to charge transport and electrons only
but there are other possibilities for quantum transport as well. Oscillations and vi-
brations in a solid stemming from thermal energy may be regarded as mechanical
waves or phonons traversing along the solid in question. In principle, the transport
of phonons relates to heat transfer in a studied structure [64–66]. Also, very recently
there have been efforts in manufacturing photonic circuits where the information
flow would be handled as photon transport [67]. In addition, in the field of cosmol-
ogy the fundamental question of asymmetry between the matter and antimatter
content in the universe is remotely related to quantum transport. The standard
model in cosmology [68] incorporates inflation – an early period of very fast expan-
sion of the universe; the dynamical mechanism responsible for creating baryons
after inflation is not known but the description of this baryogenesis involves set-
ting up transport equations for relativistic quantum systems in out-of-equilibrium
conditions [69, 70].

1.2 Quantum physics of many particles

Just like in the field of classical physics, also in quantum physics there are rules,
cf. Newton’s laws of motion. The rules are, however, invented by us, humans, and
they should agree with our experience of nature. Naturally, this sets a limitation
on how nature can be perceived by us or by the apparatus we build. The rules of
quantum physics are typically called postulates as they are not something that can
be deduced from the knowledge in classical physics. The postulates of quantum
physics are stated in almost every textbook on the field (see e.g. [71]); the exact
form of the statements is not important here. However, most importantly, once
the set of rules is given, the consequences are to be calculated and then compared
with experiments. If the calculations do not agree with the experiment, then the
underlying set of rules is wrong. (This, of course, applies to any field of science.)
The last step is the most important one since the postulates are not similar to, e.g.,
axioms in mathematics; the postulates can only be justified by comparison with the
theory they lead to and our experience of nature.

One of the postulates discussed above is about the time-evolution of a system de-
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scribed by a state vector |Ψ (t)〉 at time t. This is given by the Schrödinger equation [72–
74] (we use ~ = 1 unless stated otherwise)

i
d
dt
|Ψ (t)〉 = Ĥ(t)|Ψ (t)〉, (1.1)

where the Hamiltonian, which can be time-dependent, Ĥ = T̂ + Û represents the
total energy (kinetic + potential) of the system. This is a first-order linear differential
equation which can be solved uniquely with an initial condition |Ψ (t = 0)〉. Equa-
tion (1.1) tells us that the dynamics of the system is completely determined by the
Hamiltonian. The actual (physical) properties of the system are encoded into the
state vector |Ψ〉. More explicitly, this is an element of a complex Hilbert space H ,
and it gives a mathematical representation of the state of the system. (In fact, this is
another postulate.) When expressed in a specific basis, this object is also related to
the wave function or the probability amplitude which further relates to the probability
of finding the system in a physical state represented by the state vector.

In general, the state vector |Ψ〉might include a huge amount of information. When
studying systems of atoms, molecules and solids we are typically dealing with
electron configurations ranging from N = 1 particle to 1 mole of particles (N ∼ 1023

particles). (This is not limited to electrons only.) The state vectors, or further, wave
functions, Ψ (x1, x2, . . . , xN, t), might include an enormous number of variables for
each spatial coordinate of each particle, for instance. In principle, we know the rules
that describe the dynamical evolution of the system of interest; we only need to
solve the Schrödinger equation (1.1). In practice, however, this is not possible since
the number of equations to be solved, even numerically by using highly efficient
supercomputers, is simply out of reach. There is, however, a way around this which
does not solve the actual problem but helps us in dealing with it. In this field of
many-particle quantum physics, a very important observation is that rather many
interesting properties of many-particle systems that are observed in experiments
involve observables related to only a few particles such as densities and currents.
Then, to evaluate these quantities from the underlying theory to be compared with
experiments might be possible in terms of a reduced quantity. This means, that we do
not need the full and complicated state vector or wave function for every particle of
the system but we might be able to theoretically describe an observable and predict
its properties by looking at less complicated quantities.

The use of reduced quantities is the key in the theory of nonequilibrium Green’s
functions (NEGF) and in density-functional theory (DFT). In the Green’s function
approach the state of the system is described in terms of NEGFs, G(x, t; x′, t′), de-
pending only on two spatial and time coordinates (spin may also be included in
the spatial coordinate). We will consider these in more detail in the next Chap-
ter but it should be noted that the time-coordinates t, t′ lie on the contour in
Fig. 1.2. In DFT the state of the system is described in terms of densities, n(x, t) =
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N
∫

dx2 · · ·
∫

dxN|Ψ (x, x2, . . . , xN, t)|2, where the remaining (unimportant) coordinates
have been integrated out. In fact, the densities and Green’s functions are related
by n(x, t) = ±iG<(x, t; x, t) (‘<’ denotes the lesser Green’s function) where the sign
is + for bosons and − for fermions [73]. Even if we discuss the properties of the
system in terms of a reduced quantity, such as the NEGF, we should still follow the
underlying set of rules. The description therefore is to be completely equivalent to
the Schrödinger equation although the dynamical equations of motion might take
modified forms, e.g., Kadanoff–Baym equations [38, 73, 75] (the spatial and spin
coordinates are suppressed for clarity)

[i∂t − ĥ(t)]G(t, t′) = δ(t, t′) +

∫
γ

dt̄Σ(t, t̄)G(t̄, t′). (1.2)

Instead of the form of a differential equation in Eq. (1.1) for a function |Ψ (t)〉 of one
time variable, in Eq. (1.2) we have an integro–differential equation for a function
of two time variables G(t, t′). Also, in contrast to the Schrödinger equation, in
Eq. (1.2) the Hamiltonian is split so that ĥ represents the noninteracting part and
the interactions are encoded in the integral kernel or the self-energy Σ on the right-
hand side. The self-energy may be thought of as an effective medium (in macroscale)
or as a scattering potential (in microscale). Including or excluding particular types
of interactions can then be done by approximating this object Σ. In addition, the
integrals are performed on a contour γ in a complex time plane, the Keldysh
contour [39, 73], see Fig. 1.2. The addition of a complex-time track to the contour
is a trick to include equilibrium weight, i.e., initial correlations to the evolution of
the Green’s function. In DFT, and in time-dependent DFT (TDDFT), the dynamical

Fig. 1.2: Keldysh contour on the complex time plane has a forward (−) and a backward
branch (+) on the real-time axis, [t0,∞[ and a vertical branch on the imaginary axis,
[t0, t0− iβ] with inverse temperature β. (The contour is slightly shifted from the axes
for clarity.)

equations of motion for the system are given by the Kohn–Sham equations [33, 34,
76]

[T̂ + v̂KS(t)]ϕ j(t) = i
dϕ j(t)

dt
, (1.3)
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where T̂ is the kinetic part of the Hamiltonian,ϕ j(t) are the (time-dependent) Kohn–
Sham orbitals, from which the density is obtained as n(t) =

∑
j∈occ |ϕ j(t)|2, and

v̂KS[n(t), t] = v̂ext(t) + v̂H[n(t)] + v̂xc[n(t)] is the Kohn–Sham potential composed of
the external potential, Hartree potential and the exchange–correlation potential
which, in principle, are functionals of the above density. The interacting part of the
Hamiltonian, Û, enters the Hartree potential and the exchange–correlation potential
in a way similar to the self-energy in the Kadanoff–Baym equation (1.2). In fact,
between these objects (typically to be approximated in a practical calculation) there
is a connection [77].

The original simplicity and the intuition in the Schrödinger equation for a state
vector |Ψ〉 is unfortunately gone by introducing the Green’s functions or the den-
sity functionals as the description of the dynamics of the system becomes highly
complicated. However, this is the price to pay in order to perform calculations in
practice.

1.3 Lattice models for electronic transport studies

In order to model particle transport in a structure of interest we need to construct
a quantum description for the movement of the particles in every point of the
structure, as in a lattice.

A (many-particle) Hamiltonian representing N particles with coordinates x j, mo-
menta p j and masses m j in a potential V, which in general may be time-dependent,
is written (in first quantization) as

Ĥ(t) =

N∑
j=1

 p̂2
j

2m j
+ V̂(x j, t)

 +
∑
j<k

Ŵ(x j, xk) C
N∑

j=1

ĥ(x j, t) +
∑
j<k

Ŵ(x j, xk), (1.4)

where the inter-particle interactions are given by the function W whose strength
typically depends on the distance |x j − xk|, like in the Coulomb potential. A (many-
particle) wave function Ψ j(x1, . . . , xN, t) satisfies the time-independent Schrödinger
equation, ĤΨ j = E jΨ j, returning the energy E j corresponding to the j-th eigen-
state of the time-independent Hamiltonian. On the other hand, if the Hamilto-
nian is time-dependent, e.g. consisting of a perturbation V(t), then the dynamics
of a many-particle state is given by the time-dependent Schrödinger equation,
i∂tΨ (t) = Ĥ(t)Ψ (t), with an initial condition arising from the time-independent
problem. In addition, the many-particle wave function obeys the spin–statistics the-
orem [78] stating that when interchanging two particles the wave function is ei-
ther symmetric (bosons) or antisymmetric (fermions), Ψ (x1, . . . , x j, . . . , xk, . . . , xN) =
±Ψ (x1, . . . , xk, . . . , x j, . . . , xN). In this context we consider fermions only.
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Instead of quantizing the particles’ coordinates and momenta it is often advanta-
geous to quantize the wave function itself. Let us then introduce electronic field
operators Ψ̂ (†)(x) which, when acting to an N-particle state vector |x1, . . . , xN〉, re-
move (create) an electron from (to) coordinate x. (It is possible to include also a spin
degree of freedom by denoting x = (r, σ).) More explicitly,

Ψ̂ †(x)|x1, . . . , xN〉 = |x1, . . . , xN, x〉, (1.5)

Ψ̂ (x)|x1, . . . , xN〉 =

N∑
k=1

(−1)N−kδ(x − xk)|x1, . . . , xk−1, xk+1, . . . , xN〉. (1.6)

The structure in the latter equation is a little more involved because it has to take
into account all the possibilities on how one of the particles (from 1 to N) could
be removed from coordinate x. Creating and removing particles by the field oper-
ators means that any N-particle state may be constructed by consecutively acting
with a creation operator to the vacuum state: |x1, . . . , xN〉 = Ψ̂ †(xN) · · · Ψ̂ †(x1)|0〉.
On the other hand, trying to remove a particle from the vacuum state yields
a null state (zero) Ψ̂ (x)|0〉 = |∅〉. It can, further, be shown [73] that the proper
(anti)symmetrization of the N-particle wave function is encoded in the field oper-
ators as anticommutation relations{

Ψ̂ (†)(x), Ψ̂ (†)(x′)
}

= 0 ,
{
Ψ̂ (x), Ψ̂ †(x′)

}
= δ(x − x′). (1.7)

Using the field operators the N-particle Hamiltonian may then be written (in second
quantization) as [73]

Ĥ(t) =

∫
dxΨ̂ †(x)ĥ(x, t)Ψ̂ (x) +

1
2

"
dxdx′Ψ̂ †(x)Ψ̂ †(x′)Ŵ(x, x′)Ψ̂ (x′)Ψ̂ (x). (1.8)

The next question is: What is a suitable basis for expanding the field operators, and
therefore, expressing the many-particle Hamiltonian in Eq. (1.8)? Here we may be
very general and choose a one-particle state | jσ′〉 labelling both an orbital index j
and a spin orientation σ′ along a chosen axis (e.g., the z-direction). We may express
this in the position-spin space, |x〉 = |rσ〉, as a projection 〈rσ| jσ′〉 C ϕ jσ′(x) = ϕ j(r)δσσ′ .
Since

∫
dx|x〉〈x| = 1̂, this relates to the one-particle state | jσ′〉 being created by acting

on the vacuum state with a creation operator

d̂†jσ′ B
∫

dxϕ jσ′(x)Ψ̂ †(x). (1.9)

A similar description applies to the annihilation operator

d̂ jσ′ B

∫
dxϕ∗jσ′(x)Ψ̂ (x). (1.10)
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Now, if the set of the one-particle states, {| jσ′〉}, forms an orthonormal basis, we may
expand the field operators in this basis by

Ψ̂ (†)(x) =
∑

jσ′
ϕ(∗)

jσ′(x)d̂(†)
jσ′ . (1.11)

In practical calculations the basis functions ϕ are related to the (physical) proper-
ties of the studied system. One popular model description, by Pariser, Parr and
Pople [79, 80], considers each atomic site j in a lattice being described by one lo-
calized orbital, and these orbitals are assumed to be almost perfectly localized, i.e.,
that the overlap integral is [73]∫

dxϕ∗jσ′(x)ϕkσ′(x) =

1 when j = k,
δ when j, k nearest neighbours.

(1.12)

However, when the overlap between neighbouring sites is nonzero, the orbitals do
not form an orthonormal basis. It is still possible to construct one by expanding in
small δ

Φ jσ′(x) B ϕ jσ′(x) −
δ
2
ϕ( j+1)σ′(x) −

δ
2
ϕ( j−1)σ′(x), (1.13)

and use this finite basis to expand the field operators. As the field operators would in
this case be expressed in terms of the localized orbitals, the corresponding operators
d̂(†)

jσ′ remove (create) an electron from (at) the atomic site j with spin orientation σ′.

Inserting the field operators from Eq. (1.11) into Eq. (1.8) leads to a representation
for the Hamiltonian

Ĥ(t) =
∑
jk,σ

T jk(t)d̂†jσd̂kσ +
1
2

∑
jklm,σσ′

U jklmd̂†jσd̂
†

kσ′ d̂lσ′ d̂mσ , (1.14)

where we defined the hopping and Coulomb integrals

T jk(t) =

∫
drϕ∗j(r)ĥ(r, t)ϕk(r), (1.15)

U jklm =

"
drdr′ϕ∗j(r)ϕ∗k(r

′)Ŵ(r, r′)ϕl(r′)ϕm(r). (1.16)

Even though U is called the Coulomb integral, any type of interaction, say Yukawa,
is possible to include as a different form for the function W. Also, in the hopping
integral, technically only the off-diagonal terms ( j , k) may be regarded as hoppings.
In principle, these integrals need to be evaluated in order to accurately model a
realistic system by the Hamiltonian in Eq. (1.14) but it is also possible to regard
them as parameters. By choosing a proper parameter set, the full Hamiltonian
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matrix with the hopping and interaction matrices can be constructed. For instance,
in the tight-binding approximation, we would assume the matrix T in Eq. (1.15) to be
very close to a diagonal one; the diagonal elements would represent the lattice’s on-
site energies and the first off-diagonal elements the hopping probabilities between
the neighbouring lattice sites.

Even though the above formulations can incorporate electronic interactions by
the Coulomb integrals, in practice (computationally) this inclusion can be a very
demanding task. However, many nanosystems of general interest may be grown to
be perfect conductors meaning that the electrons can travel considerable distances
without encountering any obstacles; these sort of systems are typically referred to
as ballistic conductors [81, 82]. With this in mind, in many of the example simulations
presented in this thesis we will be concentrating on graphene structures. Graphene,
a thin carbon film of hexagonal (or honeycomb) geometry, can be regarded as a two-
dimensional material as one dimension is highly suppressed to be only one atomic
layer thick, see Fig. 1.3. Graphene holds promise for technological advances due to
its beneficial properties such as conductivity, mechanical strength and transparency
for light [83].

Although in realistic configurations the tight-binding approximation might be too
crude, in the field of ultracold atom gases it is common practice to construct so-called
optical lattice structures by using laser grids [84–86]. The lasers are used to create
trapping potentials in a way similar to periodic potentials in a crystal structure. The
cold atoms in a gas trapped by the lasers further act as generic particles which can
further be used as a model for electrons in a transport setup. Because of the recent
progress in the laser technology, the applicability and control in these arbitrary
lattice systems is very exceptional and novel. It is therefore possible to relate our
tight-binding model systems to an experimental setup.

Fig. 1.3: Graphene is a two-dimensional monoatomic thick building block of a car-
bon allotrope. The nearest-, the second-nearest- and the third-nearest-neighbour
distances are, respectively, a = 1.42 Å, b = 2.46 Å and c = 2.84 Å [87].

In many computational tools, such as the Atomic Simulation Environment (ASE) [88],
graphene structures (among others) can be tailored and the (x, y, z)-coordinates of
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the atomic configuration can be extracted. The (nonzero) elements of the hopping
matrix for a graphene structure can therefore be constructed from known parame-
ters [89] by

T jk =


γ1 = 2.70 eV if d jk = a
γ2 = 0.20 eV if d jk = b
γ3 = 0.18 eV if d jk = c,

(1.17)

where the distance is evaluated by d jk =
√

(x j − xk)2 + (y j − yk)2 + (z j − zk)2. Other
models for, e.g., hydrogen passivation and impurities can be implemented in a
similar fashion [90].

1.4 A brief overview on (time-dependent) quantum
transport studies

The formalism developed by Landauer in 1957 [91] and later complemented by
Büttiker in 1986 [92] provides an intuitive physical framework of the current flowing
in a junction composed of leads and a central conducting device, i.e., a molecule.
First, the current Iαβ in lead β, carried by the scattering states originating from lead
α , β, is calculated. In this calculation, the current Iαβ is essentially given by an
integral of the transmission probability for an electron to go from lead α to lead β.
Then, the difference Iαβ − Iβα between the currents flowing into and out of the lead
β over all terminals α , β is calculated. This gives the current Iβ in terminal β in
steady-state regime.

Based on the time-dependent Schrödinger equation (1.1), Caroli et al. presented in
1971 a microscopic derivation of a tunneling current in a transport setup (which
would nowadays be called a Landauer–Büttiker formula) [93, 94]. In these works,
the leads are considered to be initially uncontacted from the central conducting
device so that they are in equilibrium at different chemical potentials. Then the
contact is switched on suddenly, and the Landauer–Büttiker formula is recovered
as the long-time limit t → ∞ of the expectation value of the current operator. As
this approach of suddenly switching on a contact in a junction might not have
resembled the way the experiments are typically carried out, Cini proposed in
1980 an alternative approach [95]. In this work the whole system is considered to
be initially contacted and in equilibrium at a unique chemical potential. Then the
system is driven out of equilibrium by an applied bias voltage to the leads. Even
though the initial setups in these works are different, the same Landauer–Büttiker
formula is recovered since the way the system is prepared does not affect the steady-
state properties as was shown later in 2004 by Stefanucci and Almbladh [96].
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The formalism of Landauer’s and Büttiker’s may also be derived using NEGFs as
studied by Meir and Wingreen in 1992 [97]. This mathematical tool when applied
to quantum transport in multi-terminal junctions provides a natural framework to
calculate the current at all times, and it is not limited to the steady state. This leads to
several studies of generalizing the Landauer–Büttiker formula to transient regime.
Around the same time as the work of Meir and Wingreen, in 1991, Pastawski de-
rived a formula using NEGFs for Iβ(t) using the approach of Caroli’s (in partitioning
the transport setup) in the linear response and adiabatic regime [98]. Also, in 1994 a
calculation of Iβ(t) was done by Jauho et al. where the same (partitioned) approach
was used to write Iβ(t) as a double integral over time and energy; the corresponding
integrand consists of a combination of Green’s functions in the central region [99].
Later, in 2004, Stefanucci and Almbladh further realized that when the leads are de-
scribed within wide-band approximation and when the central conducting device
consists of only a single level, it is possible to perform the time integral analyti-
cally and obtain a time-dependent extension to the Landauer–Büttiker formula [96].
In addition, they used the approach of Cini’s (without partitioning the transport
setup), and thus confirmed the loss of memory of the initial preparation in the
steady state. A step forward in deriving a time-dependent Landauer–Büttiker for-
mula for arbitrary junctions was done by Perfetto et al. in 2008 where also the spin
was added to the single-level junction [100].

As a part of this thesis, the results of Ref. [100] are further generalized to junctions
of any shape and dimensions within the wide-band approximation for the leads
and noninteracting electrons; see Sec. 2.2, Pub. [I] and Ref. [73]. An extension to
time-dependent bias profiles was derived by Ridley et al. in Ref. [101]; here this is
briefly discussed in Sec. 2.4.3. Furthermore, also an analytic formula for the time-
dependent one-particle density matrix is derived separately at zero and arbitrary
temperatures and for perturbed and superconducting central regions; see Secs. 2.3
and 2.4 and Pubs. [II, IV]. The result for the density matrix can be used to calculate
the local density and current density in the central region, e.g., in graphene samples;
see Chap. 3 and Pubs. [II, III]. Similar to the discussion of electronic transport in
the framework of Landauer and Büttiker, also a derivation in the case of phononic
transport for the time-dependent one-particle density matrix is presented in Sec. 2.5
and in Pub. [V]. This result can further be used to study local heat currents within
the central region in the transient regime.
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2.1 Introduction to quantum transport problems

In this section the basic concepts of Green’s functions stemming from the time-
dependent Schrödinger equation will shortly be introduced, and we will briefly
consider the applicability of the Green’s functions in a two-terminal transport prob-
lem.

2.1.1 Green’s functions as propagators

Let us start with a consideration of a system whose properties are determined by a
time-independent Hamiltonian Ĥ. In the Schrödinger picture a state Ψ evolves by
a unitary operator Û so that

|Ψ (t)〉 = Û(t, t0)|Ψ (t0)〉. (2.1)

The time evolution operator Û itself satisfies the equation of motion due to the
Schrödinger equation (1.1)

i
d
dt

Û(t, t0) − ĤÛ(t, t0) = 0 (2.2)

which is a homogeneous, first order, ordinary differential equation. To solve the
equation we need an initial condition which is provided by the nature of a time-
evolution operator; it must be Û(t0, t0) = 1̂, i.e., propagating a state from t0 to t0 is a
unit operator. The solution to Eq. (2.2) reads simply

Û(t, t0) = e−iĤ(t−t0). (2.3)

We can use this expression also for propagating backwards in time since it is valid
for t < t0 also. The above discussion could also be performed for time-dependent
Hamiltonians Ĥ(t) by using chronological and anti-chronological time-ordering
operators [73] but here we would like to make an introduction to the use of NEGF
formalism in a transport setup with as little complexity as possible.

13
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From the solution for the time-evolution operator we may define two new operators
depending on the propagation direction in time by employing a step function
representation:

ĜR/A(t, t0) = ∓iθ(±(t − t0))Û(t, t0). (2.4)

Because the time-evolution operator Û is unitary, we have a relation between the
two operators defined in Eq. (2.4)

[ĜR(t, t0)]† = ĜA(t0, t). (2.5)

By direct differentiation and using the equation of motion for the time-evolution
operator we may also write the following equation of motion for ĜR/A

i
d
dt

ĜR/A(t, t0) − ĤĜR/A(t, t0) = δ(t − t0). (2.6)

In contrast to Eq. (2.2) this is a non-homogeneous differential equation. If the source
term (on the right-hand side) is of the form of a delta function, the functions
satisfying this type of equation are typically called Green’s functions or propagators.
The distinction between the propagation direction in time, denoted by R/A, is then
called either retarded or advanced Green’s function.

By looking at Eqs. (2.3) and (2.4) we also see how the retarded and advanced
Green’s functions depend only on the time difference t − t0. Using this property it
is often useful to express these quantities in the frequency space. Using an integral
representation for the step function in Eq. (2.4)

θ(t − t0) = lim
η→0+

−1
2πi

∫
∞

−∞

dω
e−iω(t−t0)

ω + iη
, (2.7)

which can be proven using the residue theorem, we get for the retarded Green’s
function

ĜR(t − t0) = −i lim
η→0+

(
−1
2πi

) ∫ ∞

−∞

dω
e−iω(t−t0)

ω + iη
e−iĤ(t−t0)

= lim
η→0+

∫
∞

−∞

dω
2π

e−i(ω+Ĥ)(t−t0)

ω + iη
. (2.8)

Changing the integration variable as ω′ = ω + Ĥ we may manipulate this to take
the form of the Fourier transform

ĜR(t − t0) =

∫
∞

−∞

dω′

2π
e−iω′(t−t0)ĜR(ω′) (η→ 0+), (2.9)

where ĜR(ω) B [ω−Ĥ+ iη]−1. It is worth noticing that above we have operator iden-
tities for which a spectral representation can be written in terms of the eigenstates
of Ĥ. As in the time domain, also here a symmetry relation holds

[ĜR(ω)]† = ĜA(ω), (2.10)
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and then we may formally express the propagators as

ĜR/A(ω) = [(ω ± iη)1̂ − Ĥ]−1 (2.11)

or, equivalently, the equation of motion (2.6) in frequency domain as

[(ω ± iη)1̂ − Ĥ]ĜR/A(ω) = 1̂. (2.12)

The positive infinitesimal η accounts for proper causal structure in the retarded and
advanced Green’s functions; ĜR is analytic in the upper-half plane whereas ĜA is
analytic in the lower-half plane. In the above discussion essentially nothing more
than the Schrödinger equation was used to introduce the concept of propagators.
The interpretation of the system’s properties in terms of these propagators [based
on the system’s Hamiltonian in Eq. (2.11)] is therefore completely equivalent to the
Schrödinger equation.

All the above discussion is very general. The retarded and advanced Green’s func-
tions follow, in this case, from the time-evolution operator in Eq. (2.3) for a time-
independent Hamiltonian. Had we included time-dependency in the Hamiltonian,
the time-evolution operator would only take a little more intricate form due to the
chronological time-orderings [73]. As was briefly discussed in Eq. (1.2) with Fig. 1.2,
it is possible to include the system’s properties at equilibrium to the time-evolution
by adding an imaginary-time propagation, i.e., the vertical track in the Keldysh
contour. In addition to the retarded and advanced Green’s functions, we will en-
counter other Keldysh components of the Green’s functions depending on the time
arguments; we will see these forms more explicitly in the next section.

2.1.2 Nonequilibrium density matrix in a two-terminal setup

Let us then apply the Green’s function description to a more explicit calculation
in an atomic-scale junction. We look at a specific setup of partitioning the system
of interest in a transport sense into left (L) and right (R) leads and to a central
conducting device (C), see Fig. 2.1. We wish to see what the Green’s functions
look like for these sort of setups, and how the corresponding components are
evaluated. We assume that the basis of the studied LCR system can indeed be
divided accordingly. We let the Hamiltonian be of the form (we drop the hats in the
notation for now)

H =

HLL HLC 0
HCL HCC HCR

0 HRC HRR

 . (2.13)

This means the leads are coupled only through the central region as the direct
couplings between them are zero. Now, we project the equation of motion (2.12)
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Fig. 2.1: Division of the transport system basis into three blocks. Each atom can be
described with several basis functions for different orbitals.

for the retarded Green’s function onto the CC subspace to extract an expression for
the propagator on the central region embedded into the lead environment. The CC
and αC elements of Eq. (2.12) read (where α ∈ {L,R})

(ω ± iη)GR/A
CC (ω) −HCCGR/A

CC (ω) −
∑
α

HCαGR/A
αC (ω) = 1, (2.14)

(ω ± iη)GR/A
αC (ω) −HαCGR/A

CC (ω) −HααGR/A
αC (ω) = 0. (2.15)

Here we may multiply the second row from left by the propagator in the lead α
(denoted by a lower-case g), and then use the corresponding equation of motion
gR/A
αα (ω)[(ω± iη)−Hαα] = 1 to extract an expression for the coupling propagator GR/A

αC

GR/A
αC (ω) = gR/A

αα (ω)HαCGR/A
CC (ω). (2.16)

Inserting this back into the first row closes the equation for GR/A
CC (ω) and we may

write the solution as

GR/A
CC (ω) = [(ω ± iη) −HCC − (Σem,L)R/A

CC (ω) − (Σem,R)R/A
CC (ω)]−1, (2.17)

where we defined the embedding self-energy as

(Σem,α)R/A
CC (ω) = HCαgR/A

αα (ω)HαC. (2.18)

[Hopefully, the lead index R (cursive symbol) will not be confused with the retarded
component R (upright symbol).] It is to be noted, as can be seen from the definition,
that the embedding self-energy is a matrix defined on the CC subspace. Even though
in the subscript there also is a lead index α, it is not to be confused with objects in
the lead subspace. We call this quantity an embedding self-energy as it stems from
the coupling between the central region and the lead environment. Later we will
also encounter many-body self-energies taking into account the interactions within
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the studied system. A common definition together with the embedding self-energy
is the level-width function

(Γα)CC(ω) = i[(Σem,α)R
CC(ω) − (Σem,α)A

CC(ω)] = −2 Im[(Σem,α)R
CC(ω)] (2.19)

for which we have the same notation as for the embedding self-energy; also this is a
matrix defined on the CC subspace. Similarly, we very often encounter a difference
of the retarded and advanced Green’s functions, called the spectral function, as

ACC(ω) = i[GR
CC(ω) − GA

CC(ω)]. (2.20)

As the Green’s functions depend on the self-energies originating from the lead
environment, we get a contribution from both leads by manipulating Eq. (2.20) as

ACC(ω) = iGR
CC(ω)[(GA

CC(ω))−1
− (GR

CC(ω))−1]GA
CC(ω)

= iGR
CC(ω)[−i(ΓL)CC(ω) − i(ΓR)CC(ω)]GA

CC(ω)
= GR

CC(ω)[(ΓL)CC(ω) + (ΓR)CC(ω)]GA
CC(ω) = (AL)CC(ω) + (AR)CC(ω), (2.21)

where we inserted Eqs. (2.17) and (2.19). Also, we notice from Eq. (2.19) that the
imaginary part of the embedding self-energy function gives rise to the broadening
of the band. This is intuitively understood by looking at Eq. (2.17): the real part
of the embedding self-energy could be absorbed into the Hamiltonian HCC, thus,
only shifting the poles of the Green’s function, whereas the imaginary part of the
embedding self-energy gives the width of the peaks.

Granted the simplicity of Eq. (2.21), it leads to a very important result. As it describes
the spectral density in the central region due to the lead self-energy, we may weigh
this function by the occupation probability (given by the Fermi distribution) and
integrate over the frequency to obtain

ρCC =

∫
∞

−∞

dω
2π

f (ω)[(AL)CC(ω) + (AR)CC(ω)], (2.22)

where f (ω) = [eβ(ω−µ) + 1]−1 is the Fermi function with chemical potential µ and
inverse temperature β = (kBT)−1. This is the nonequilibrium density matrix for the
central region C, and it could readily be generalized to an arbitrary number of
leads. We will look at an example calculation in the next section, after deriving also
a current formula of the similar form of Eq. (2.22).

2.2 Time-dependent quantum transport

So far we have discussed only time-independent or stationary transport. There is,
however, no guarantee that this steady-state description would capture the essential
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physics in, say, atomic-scale junction operating at high-frequency regime where bits
are being switched from zeros to ones at an appreciable pace. Therefore, we need
an accurate theory for describing the full time-dependence.

Before diving into the formal development of the time-dependent quantum trans-
port in terms of the nonequilibrium Green’s functions in Pub. [I], let us briefly
look at other theoretical approaches and computational methods for this task. As
briefly touched upon in Chap. 1 the time-dependent density in a system of inter-
est may be evaluated from Eq. (1.3) (according to the Runge–Gross theorem [34]).
From the Kohn–Sham orbitals it is possible to define a (Kohn–Sham) current den-
sity which is equivalent to the true current density when considered via a surface
integral relating to the system’s geometry [102–104]. This is the essential starting
point for a (partition-free) scheme based on TDDFT to treat the time-dependent
current response, even in fully interacting systems. Another widely used method,
which was also briefly mentioned in Chap. 1, is the density matrix renormalization
group (DMRG). DMRG is, also in the context of time-dependent problems, a power-
ful technique especially in case of one-dimensional interacting quantum systems. It
has been successfully used in the study of real-time dynamics (as in time-dependent
quantum transport) where a certain hierarchy of equations for the time-evolution
operator and the density matrix is solved using specific approximations [105–108].
In one-dimensional systems the matrices describing the transport setup are sparse
as there are fewer connections between the relevant basis states, and together with
DMRG a time-evolving block decimation algorithm is often used [109–111]. However,
arguably the most used technique in time-dependent quantum transport is the
NEGF formalism with its natural connection to the traditional Landauer approach
as we will see in the following.

Next, in this section, we introduce a multi-terminal quantum transport model for
which the dynamical equations of motion for the Green’s function can be solved
analytically. We first have a look at the Hamiltonian, Green’s functions, and the
equations connecting them, and we derive in a steady-state limit important results
known as the Meir–Wingreen [97] and the Landauer–Büttiker [91, 92] formulae.
Furthermore, an analytically solvable time-dependent quantum transport model
will be discussed, for which the full solution to the equations of motion in tran-
sient regime will be presented in the next section, thus extending the traditional
Landauer–Büttiker formalism into time domain without losing the intuitive inter-
pretation or increasing the computational cost. The presented derivations follow
the theoretical framework set forward in Pubs. [I, II].
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2.2.1 Hamiltonian, Green’s functions, and the equations connect-
ing them

We start by describing the system’s Hamiltonian Ĥ = Ĥ0 + Ĥint, where the nonin-
teracting part is in second quantization [see Eq. (1.14)]

Ĥ0 =
∑
kα,σ

εkαd̂†kα,σd̂kα,σ +
∑
m,n,σ

Tmnd̂†m,σd̂n,σ +
∑

m,kα,σ

[
Tmkαd̂†m,σd̂kα,σ + Tkαmd̂†kα,σd̂m,σ

]
. (2.23)

The first term accounts for the α-th lead with kα being the k-th basis function of
the α-th lead, the second term is for the central molecule, and the last term is
for the coupling between the central part and the α-th lead. The corresponding
annihilation (creation) operators for these states are denoted in Eq. (2.23) by d̂(†)

obeying the fermionic anticommutation rules {d̂xσ, d̂†yσ′} = δxyδσσ′ . The interacting
part can be written in terms of the Coulomb integrals vi jmn as [see Eq. (1.14)]

Ĥint =
1
2

∑
i jmn,σσ′

vi jmnd̂†i,σd̂
†

j,σ′ d̂m,σ′ d̂n,σ. (2.24)

This sum is restricted to molecular indices only, i.e., the interactions are described
only between the electrons within the central molecule. It is worth noticing that
we may still keep the interacting Hamiltonian in our derivation even if, later in
this thesis, we consider only free electrons occupying the lattice system without
interacting with each other. The setup is depicted in Fig. 2.2.

Fig. 2.2: Transport model corresponding to Eq. (2.23) where a central molecule (C) of
arbitrary shape and size is connected to arbitrary number of leads, also of arbitrary
shape and size (the structure is for illustration only.)
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The transport and nonequilibrium conditions are as follows:

1. The system is initially (t < t0) in thermal equilibrium at inverse temperature
β and in chemical potential µ, when the density matrix is of the form ρ̂ =
1
Z

e−β(Ĥ−µN̂) with N̂ and Z being the particle number operator and the grand-
canonical partition function, respectively.

2. At times t > t0 the system is driven out of equilibrium with an external field
by raising suddenly the energy levels of every lead εkα → εkα + Vα.

From the nonequilibrium conditions we get that after t = t0 charge carriers start
to flow through the central molecule. To calculate time-dependent nonequilibrium
quantities we use the equations of motion for the one-particle Green’s function
on the Keldysh contour γ. This quantity is defined as the ensemble average of
the contour-ordered product of particle creation and annihilation operators in the
Heisenberg picture [73]

Grs(z, z′) = −i〈Tγ[d̂r,H(z)d̂†s,H(z′)]〉, (2.25)

where the indices r, s can be either indices in the leads or in the central region and
the variables z, z′ run on the contour. The contour has a forward and a backward
branch on the real-time axis, [t0,∞[, and also a vertical branch on the imaginary
axis, [t0, t0 − iβ] with inverse temperature β, see Fig. 1.2 and, e.g., Refs. [73, 112]. For
a function k(z, z′) on the Keldysh contour the components lesser (<), greater (>),
retarded (R), advanced (A), left (d), right (e) and Matsubara (M) are defined as [73]

k<(t, t′) = k(t−, t′+), (2.26a)
k>(t, t′) = k(t+, t′−), (2.26b)
kR(t, t′) = +θ(t − t′) [k>(t, t′) − k<(t, t′)] , (2.26c)
kA(t, t′) = −θ(t′ − t) [k>(t, t′) − k<(t, t′)] , (2.26d)
kd(τ, t′) = k(t0 − iτ, t′), (2.26e)
ke(t, τ) = k(t, t0 − iτ), (2.26f)

kM(τ, τ′) = k(t0 − iτ, t0 − iτ′). (2.26g)

The matrix G with matrix elements Grs satisfies the equations of motion [38, 73][
i

d
dz
− h(z)

]
G(z, z′) = δ(z, z′)1 +

∫
γ

dz̄Σmb(z, z̄)G(z̄, z′), (2.27)

G(z, z′)

−i
←

d
dz′
− h(z′)

 = δ(z, z′)1 +

∫
γ

dz̄G(z, z̄)Σmb(z̄, z′), (2.28)

with a boundary condition such that the Green’s function is antiperiodic along
the contour γ (Kubo–Martin–Schwinger boundary conditions). On the right-hand
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side of Eqs. (2.27) and (2.28), the many-body self-energy Σmb takes into account the
many-body interactions due to Eq. (2.24) [73]. This object is now different from the
embedding self-energy defined earlier. Here h(z) is the single-particle Hamiltonian
which, in the basis kα and m, has the following block structure

h =


h11 0 · · · h1C

0 h22 · · · h2C
...

...
. . .

...
hC1 hC2 · · · hCC

 , (2.29)

where (hαα′)kk′ = δαα′δkk′εkα corresponds to the leads, (hαC)km = Tkαm is the coupling
part, and (hCC)mn = Tmn accounts for the central molecule. Accordingly, the matrix
structures for the Green’s function and for the many-body self-energy are

G =


G11 G12 · · · G1C

G21 G22 · · · G2C
...

...
. . .

...
GC1 GC2 · · · GCC

 ; Σmb =


0 0 · · · 0
0 0 · · · 0
...
...
. . .

...
0 0 · · · (Σmb)CC

 , (2.30)

where, as mentioned earlier, all the interactions are contained in the component
(Σmb)CC, i.e., the leads are described within a noninteracting framework. This as-
sumption makes (Σmb)CC[GCC] to be a functional of GCC only. As we are mainly
interested in the dynamical quantities within the central molecule, it is convenient
to project the equation of motion in Eq. (2.27) onto states CC and αC. This is a
similar procedure we already performed in Sec. 2.1. The projection involves some
book-keeping with the matrix products, and this process is outlined as follows:

i
d
dz

GCC(z, z′) −
∑
α

hCα(z)GαC(z, z′) − hCC(z)GCC(z, z′)

= δCC(z, z′) +
∑
α

∫
γ

dz̄(Σmb)Cα(z, z̄)GαC(z̄, z′) +

∫
γ

dz̄(Σmb)CC(z, z̄)GCC(z̄, z′), (2.31)

i
d
dz

GαC(z, z′) − hαα(z)GαC(z, z′) − hαC(z)GCC(z, z′)

= δαC(z, z′) +
∑
β

∫
γ

dz̄(Σmb)αβ(z, z̄)GβC(z̄, z′) +

∫
γ

dz̄(Σmb)αC(z, z̄)GCC(z̄, z′), (2.32)

where we may use the facts (Σmb)αβ, (Σmb)αC, δαC = 0 to get[
i

d
dz
− hCC(z)

]
GCC(z, z′) = δ(z, z′) +

∑
α

hCα(z)GαC(z, z′)

+

∫
γ

dz̄(Σmb)CC(z, z̄)GCC(z̄, z′) (2.33)

[
i

d
dz
− hαα(z)

]
GαC = hαC(z)GCC(z, z′). (2.34)
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Then we multiply Eq. (2.34) with the Green’s function of the isolated α-th reservoir,
gαα(z, z′), whose equation of motion is

[
i d

dz − hαα(z)
]

gαα(z, z′) = δ(z, z′) (due to no
interactions in the lead sector), and integrate over the Keldysh contour γ. This way
we obtain∫

γ

dz̄gαα(z, z̄)
[
i

d
dz̄
− hαα(z̄)

]
GαC(z̄, z′) =

∫
γ

dz̄gαα(z, z̄)hαC(z̄)GCC(z̄, z′). (2.35)

Due to the occurring delta function on the left-hand side, the integral readily gives

GαC(z, z′) =

∫
γ

dz̄gαα(z, z̄)hαC(z̄)GCC(z̄, z′). (2.36)

Then, from Eq. (2.36) we may insert GαC into Eq. (2.33) to obtain[
i

d
dz
− hCC(z)

]
GCC(z, z′) = δ(z, z′)

+
∑
α

hCα(z)
∫
γ

dz̄gαα(z, z̄)hαC(z̄)GCC(z̄, z′) +

∫
γ

dz̄(Σmb)CC(z, z̄)GCC(z̄, z′)

⇒

[
i

d
dz
− hCC(z)

]
GCC(z, z′) = δ(z, z′)

+

∫
γ

dz̄
[
(Σmb)CC(z, z̄) +

∑
α

hCα(z)gαα(z, z̄)hαC(z̄)
]
GCC(z̄, z′). (2.37)

Here we notice that the second term in the square parentheses on the right-hand
side is exactly the embedding self-energy Σem we defined in Sec. 2.1. Then, we obtain
the equation of motion for the Green’s function projected onto the central molecule[

i
d
dz
− hCC(z)

]
GCC(z, z′) = δ(z, z′) +

∫
γ

dz̄ [(Σmb)CC(z, z̄) + (Σem)CC(z, z̄)] GCC(z̄, z′).

(2.38)
The adjoint equation of motion can be derived in a similar manner. So far, we
did not specify the type of interaction or any explicit form for the self-energy
Σmb. For practical calculations these forms typically need to be approximated; see,
e.g., [113, 114]. Otherwise the equations of motion for the Green’s function are
general integro–differential equations which can be solved numerically using time-
stepping schemes [73, 75, 115].

2.2.2 Meir–Wingreen formula

It is worth stressing that everything so far has been very general; we are dealing
with a multi-terminal junction with interacting central region, and in addition to the
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equation of motion, we have obtained a Green’s function in Eq. (2.36) to describe
the propagation of a particle from lead α to the central region. This turns out to
be a very convenient quantity since we can relate it to the current in the interface
between the central region and the lead. Let us consider current in lead α as a rate of
change in particle number, Iα(t) = q d

dtNα(t) with q being the charge of the particles.
Furthermore, the particle number, Nα(t), is the ensemble average of the number
operator in the Heisenberg picture, 〈N̂α〉 = 〈

∑
kσ d̂†kα,σd̂kα,σ〉, for which we have the

equation of motion as [73]

Iα(t) = q
〈 d

dt
N̂α(t)

〉
= −iq

〈[
N̂α(t), Ĥ(t)

]〉
= −iq

〈 ∑
kσ,k′α′σ′

[
d̂†kα,σ(t)d̂kα,σ(t) , εk′α′ d̂†k′α′,σ′(t)d̂k′α′,σ′(t)

]
+

∑
kσ,mnσ′

[
d̂†kα,σ(t)d̂kα,σ(t) , Tmnd̂†m,σ′(t)d̂n,σ′(t)

]
+

∑
kσ,mk′α′σ′

[
d̂†kα,σ(t)d̂kα,σ(t) , Tmk′α′ d̂†m,σ′(t)d̂k′α′,σ′(t)

]
+

∑
kσ,mk′α′σ′

[
d̂†kα,σ(t)d̂kα,σ(t) , Tk′α′md̂†k′α′,σ′(t)d̂m,σ′(t)

] 〉
. (2.39)

A nonzero current follows from a voltage shift in the lead Hamiltonian as raised
energy level εkα → εkα + Vα. Since the number operator commutes with the lead
and molecule part of the Hamiltonian, the first two commutators in the above
expression give simply zero. The nonzero contribution comes from the coupling
terms which we can expand as follows

Iα(t) = −iq
〈 ∑

kσ,mk′α′σ′

{
Tmk′α′ d̂†m,σ′

[
d̂†kα,σ(t)d̂kα,σ(t) , d̂k′α′,σ′(t)

]
+ Tk′α′m

[
d̂†kα,σ(t)d̂kα,σ(t) , d̂†k′α′,σ′(t)

]
d̂m,σ′(t)

} 〉
. (2.40)

Next, using [AB,C] = A{B,C}−{A,C}B for the commutator and the anticommutation
relations for the creation and annihilation operators we further get

Iα(t) = −iq
〈∑

mk,σ

[
−Tmkαd̂†m,σ(t)d̂kα,σ(t) + Tkαmd̂†kα,σ(t)d̂m,σ(t)

] 〉
. (2.41)

Here we may identify the equal-time lesser Green’s function [Eqs. (2.25) and (2.26a)]
for the αC block in Eq. (2.36) and use the following symmetry relation

[G<(t, t′)]† =
[
−i

〈
d̂†(t′)d̂(t)

〉]†
= i

〈
d̂†(t)d̂(t′)

〉
= −G<(t′, t). (2.42)

Also, using the fact that the hopping matrix is hermitian, summing over the spin
index σ, and using the identity z + z∗ = 2 Re z for a complex number z in Eq. (2.41),
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we get
Iα(t) = 4q

∑
mk

Re
[
TmkαG<

kαm(t, t)
]
. (2.43)

The summation in Eq. (2.43) corresponds to a trace over the molecular indices m ∈ C
of the matrix product hCαGαC, so we may also write the current as

Iα(t) = 4q Re
{
TrC

[
hCαG<

αC(t, t)
]}
. (2.44)

We may expand the product inside the trace using Eq. (2.36) as

hCα(z)GαC(z, z′) =

∫
γ

dz̄hCα(z)gαα(z, z̄)hαC(z̄)GCC(z̄, z′) =

∫
γ

dz̄(Σem,α)CC(z, z̄)GCC(z̄, z′),

(2.45)
where we noticed the definition of the embedding self-energy for lead α, (Σem,α)CC.
Then we should take the lesser component of Eq. (2.45). Different components of the
functions on the Keldysh contour, see Eqs. (2.26a)–(2.26g), are related by the Langreth
rules [73, 116]. Using these rules in Eq. (2.45) and then inserting to Eq. (2.44) we
have

Iα(t) = 4q Re
{
TrC

[
(Σem,α)<CC · G

A
CC + (Σem,α)R

CC · G
<
CC + (Σem,α)eCC ? GdCC

]
(t, t)

}
, (2.46)

where we defined time-convolutions on the Keldysh contour as

[ f · g](t, t) =

∫
∞

t0

dt̄ f (t, t̄)g(t̄, t); [ f ? g](t, t) = −i
∫ β

0
dτ f (t, τ)g(τ, t). (2.47)

Equation (2.46) is a very general formula for the current through the interface
between the central region and theα-th lead since it is already in the transient regime
(t-dependency) and it properly takes the vertical track of the Keldysh contour into
account (last term). This term is responsible for the initial couplings and correlations
in the system. Importantly, if the Green’s functions appearing in Eq. (2.46) satisfy
the equation of motion (2.38), also the interactions are properly included to the
description.

Let us study some limiting cases of Eq. (2.46). First, in the steady-state limit (t→∞)
we may assume that the dependency of the initial state is washed out [96], i.e., we
may drop the last term in the square brackets. Furthermore, the functions (Σem,α)CC

and GCC (of two time variables) become functions of the time difference only and we
may employ the Fourier transform. Then, the convolutions become products of the
corresponding Fourier transformed functions, and we may obtain an expression
for the steady-state current by

Iα = lim
t→∞

Iα(t)

= 2iq
∫

dω
2π

TrC

{
(Σem,α)<CC(ω)i

[
GR

CC(ω) − GA
CC(ω)

]
− i

[
(Σem,α)R

CC(ω) − (Σem,α)A
CC(ω)

]
G<

CC(ω)
}
, (2.48)
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where we again used Re z = (z + z∗)/2. In Eq. (2.48) we notice the definitions of the
spectral function and the level-width function [see Eqs. (2.19) and (2.20)], and we
may write the steady-state current as

Iα = 2iq
∫

dω
2π

TrC

[
(Σem,α)<CC(ω)ACC(ω) − (Γα)CC(ω)G<

CC(ω)
]
. (2.49)

Furthermore, we limit ourselves to a two-terminal setting and calculate the total
current through the central region as I = IR− IL, and insert a fluctuation–dissipation
type of relation for the embedding self-energy (Σem,α)<CC(ω) = i fα(ω)(Γα)CC(ω) [73],
where fα is the Fermi function for the α-th lead; this is defined as fα(ω) = [eβ(ω−µ−Vα)+
1]−1 for the biased Fermi level. Then, we get the Meir–Wingreen formula [97, 117]

I = 2iq
∫

dω
2π

TrC

{[
fL(ω)(ΓL)CC(ω) − fR(ω)(ΓR)CC(ω)

] [
GR

CC(ω) − GA
CC(ω)

]
+ [(ΓL)CC(ω) − (ΓR)CC(ω)] G<

CC(ω)
}
. (2.50)

Since Eq. (2.50) follows as the long-time limit of Eq. (2.46), we may regard Eq. (2.46)
as a time-dependent generalization of the Meir–Wingreen formula which also takes
the initial correlations into account.

2.2.3 Landauer–Büttiker formula

Let us then consider another well-known steady-state result, and start from Eq. (2.49).
In the absence of interactions we may write the lesser Green’s function simply in
terms of the embedding self-energy as (since the many-body self-energy is zero) [73]

G<
CC(ω) = GR

CC(ω)(Σem)<CC(ω)GA
CC(ω), (2.51)

where (Σem)<CC(ω) =
∑
α(Σem,α)<CC(ω). In this case, we may also insert the same

fluctuation–dissipation relation for the lesser self-energy as above, and we obtain
for the current through the interface between the central region and the α-th lead

Iα = 2iq
∫

dω
2π

∑
β

TrC

[
i fα(ω)(Γα)CC(ω)GR

CC(ω)(Γβ)CC(ω)GA
CC(ω)

− i fβ(ω)(Γα)CC(ω)GR
CC(ω)(Γβ)CC(ω)GA

CC(ω)
]

= 2q
∫

dω
2π

∑
β

[
fβ(ω) − fα(ω)

]
Tαβ(ω), (2.52)

where we defined the transmission function

Tαβ(ω) = TrC

[
(Γα)CC(ω)GR

CC(ω)(Γβ)CC(ω)GA
CC(ω)

]
. (2.53)
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Limiting ourselves again to a two-terminal setting, we may evaluate the current
through the noninteracting system as a difference I = IR − IL

I = 4q
∫

dω
2π

[
fL(ω) − fR(ω)

]
TrC

[
(ΓL)CC(ω)GR

CC(ω)(ΓR)CC(ω)GA
CC(ω)

]
(2.54)

which is typically called the Landauer–Büttiker formula [73, 91, 92, 117]. If we know
the transmission function T(ω) = TLR(ω), the conductance of the central region may
be calculated from the Landauer formula [91, 117]

G =
2e2

h
T(ω) =

2e2

h
TrC

[
(ΓL)CC(ω)GR

CC(ω)(ΓR)CC(ω)GA
CC(ω)

]
, (2.55)

where e is the electron charge and h the Planck’s constant. The factor G0 = 2e2/h is
often termed the conductance quantum.

2.2.4 Basic concepts and an example calculation

Let us illustrate the basic concepts in quantum transport and the use of the Landauer–
Büttiker formalism discussed above by means of an example. Consider an ethylene
molecule C2H4 and a single π-orbital structure around the two carbon atoms. We
choose accordingly the basis as the states |1〉 and |2〉, where the π-electron is local-
ized around either the 1st or the 2nd carbon atom. The Hamiltonian then takes the
form

HCC =

(
ε0 −t
−t ε0

)
, (2.56)

where ε0 is the on-site energy for a carbon atom and t is a probability amplitude
for an electron to jump from one carbon atom to the other. The energies and the
corresponding stationary states of the Hamiltonian are

ε± = ε0 ± t, |ε±〉 =
1
√

2
(|1〉 ∓ |2〉) . (2.57)

We could then express the Hamiltonian also in the molecular orbital basis as

H̃CC =

(
ε− 0
0 ε+

)
. (2.58)

Then, we want to couple the molecule to two leads, and the coupling is described
by the embedding self-energy

(Σem,α)R
CC(ω) = −idiag(γ−,α/2, γ+,α/2), (2.59)
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(a) Transport setup for a molecule (dis-
crete spectrum) attached to two leads
(continuum spectrum). The Fermi energy
is in the HOMO–LUMO gap.

(b) Transmission of the two-level molecule
as a function of energy. The inset shows the
transport setup through the π orbitals and
the parameters corresponding to Eq. (2.60).

Fig. 2.3: Basic concepts in a transport setup explained by an example calculation.

i.e., (Γα)CC(ω) = (Γα)CC = diag(γ−,α, γ+,α) with γ∓,α being positive (real) constants.
As the level-width functions are frequency independent, this is also called wide-
band approximation (WBA) since the frequency dependency of the lead states is
considered constant when compared to the two discrete states of the central region.
In this approximation, also the real parts of the embedding self-energy may be
dropped due to Kramers–Kronig relations [73, 118] (if the imaginary part of the
embedding self-energy is constant, then the real part becomes zero), or they may
be absorbed into ε±. In addition to the simple π-orbital framework, there are also
σ orbitals in the ethylene molecule to keep the structure together. However, the π
orbitals give, in this case, the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) which then are responsible for the electron
transport through the structure. We will not describe these orbitals rigorously here
but only state that the level structure of the central region is, in principle, more
complicated than in Eq. (2.57). More generally, the transport setup is something
like in Fig. 2.3a. Here the levels below the Fermi level are occupied whereas the
states above the Fermi level are unoccupied. The leads’ continuum of states and the
discrete spectrum of the molecule may also be shifted in energy to model voltage
profiles, i.e., biasing and gating.

Typically we are only interested in the channels responsible for the transport, in this
case, the π orbitals, and we may evaluate the transmission function by inserting the
matrix structures into Eqs. (2.17) and (2.53) and find

T(ω) = TrC

[
(ΓL)CCGR

CC(ω)(ΓR)CCGA
CC(ω)

]
=

γ−,Lγ−,R
(ω − ε−)2 + (γ−,L + γ−,R)2/4

+
γ+,Lγ+,R

(ω − ε+)2 + (γ+,L + γ+,R)2/4
. (2.60)
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We plot the transmission in Fig. 2.3b with parameters ε+ = −ε− and γ−,L = γ+,L =
γ−,R = γ+,R = |ε−|/10. We notice that the transmission approaches one when the en-
ergy is in resonance with the molecular orbitals and that it decays asω−2 elsewhere.
This means that when we expose the system to the amount of energy correspond-
ing to the resonances, we get a functioning transmission channel. The transmission
and further the conductance given by the Landauer formula in Eq. (2.55) work in
this way as response functions: they describe the system’s response to an external
perturbation, in this case, given by the parameters leading to the resonant energy
levels. The width of the resonance peaks is determined by the parameters γ∓,α. This
means that when the coupling of the molecule to the leads is stronger the resonances
become wider and it is easier to get a nonzero transmission and conductance even
if the external perturbation did not match the resonant level exactly.

2.2.5 Equations of motion for a noninteracting central molecule
within the wide-band approximation

When deriving the equations of motion (2.38) in the previous section we defined the
embedding self-energy, Σem, accounting for the coupling between the molecule and
the lead environment. In addition to the isolated Green’s function Gαα this quantity,
as well, is independent of the electronic interactions, and is completely specified by
the Hamiltonian of the reservoirs

(Σem,α)R
mn(ω) =

∑
k

(hCα)mk[gR
αα(ω)]kk(hαC)kn =

∑
k

Tmkα
1

(ω + iη) − (εkα + Vα)
Tkαn ,

(2.61)
where we wrote explicitly the diagonal elements of the lead Hamiltonian on the
horizontal branch of the Keldysh contour. The imaginary part of the embedding
self-energy is related to the level-width function

(Γα)mn(ω) = 2π
∑

k

Tmkαδ(ω − εkα − Vα)Tkαn. (2.62)

Also, as seen in the example calculation in the previous section, for these objects
WBA is often assumed, i.e., that the eigenvalues of the Hamiltonian for the central
molecule are well inside the continuum spectrum of the reservoirs εkα. In WBA the
level-width function is assumed frequency independent and the retarded Keldysh
component of the embedding self-energy becomes [see also Eq. (2.11)] for indices
m,n ∈ C

(Σem,α)R
mn(ω) ≈ −

i
2

(Γα)mn. (2.63)

This means that when the energy bands of the leads are ‘wide’ the embedding self-
energy can be assumed to be a purely imaginary constant with respect to frequency
ω.
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Employing WBA for the embedding self-energy in time domain therefore gives

(Σem,α)R
mn(t, t′) =

∫
∞

−∞

dω
2π

e−iω(t−t′)(Σem,α)R
mn(ω) = −

i
2

(Γα)mnδ(t − t′). (2.64)

Even though the form of this function is, at this stage, rather abstract, this is a
key step when we start solving the equations of motion (2.38). When we drop the
interactions, i.e., consider the limit of free electrons or ballistic transport, and set
Σmb = 0, we are left with the contribution only from the embedding self-energy on
the right-hand side of Eq. (2.38). In addition to this, when we employ the WBA for
the embedding self-energy as in Eq. (2.64) the equation of motion for G becomes a
closed differential equation which can be solved analytically.

Now we apply the assumption of a noninteracting central molecule. Then the
many-body self-energy for the central part Σmb in Eq. (2.38) vanishes and we are
left with the embedding self-energy Σem only. The equations of motion simplify
correspondingly (let us also lighten the notation by dropping the subscripts ‘CC’
and ‘em’ as there should be no danger of misunderstanding any more)[

i
d
dz
− h(z)

]
G(z, z′) = δ(z, z′) +

∫
γ

dz̄Σ(z, z̄)G(z̄, z′), (2.65)

G(z, z′)

−i
←

d
dz′
− h(z′)

 = δ(z, z′) +

∫
γ

dz̄G(z, z̄)Σ(z̄, z′). (2.66)

(Let us, from now on, also call the embedding self-energy simply as the self-energy
since it is the only self-energy contribution left.) By using the Langreth rules [73,
116] in these equations of motion, (2.65) and (2.66), we are able to extract the lesser
Green’s function, G<, from which many interesting physical quantities, such as
electron densities and currents, can be obtained. We are mainly interested in the
time-diagonal of the lesser Green’s function G<(t, t) since this is directly related to
the one-particle density matrix as ρ(t) = −iG<(t, t), and this quantity can be obtained
by subtracting Eq. (2.66) from Eq. (2.65), then setting z = t− and z′ = t′+, and then
taking the time-local limit t+ → t−. This procedure involves somewhat tedious
bookkeeping for which the details can be found in Pub. [I] and we state here only
the result

i
d
dt

G<(t, t) − [h(t),G<(t, t)] = −
[
GR
· Σ< + G<

· ΣA + Ge ? Σd
]

(t, t) + h.c. (2.67)

with the time-convolutions on the Keldysh contour being defined in Eq. (2.47). This
is the final form for the equation of motion for the lesser Green’s function in the
equal-time limit we are trying to solve. The underlining assumption in deriving
Eq. (2.67) is the neglecting of the electron–electron interactions. Although not yet
explicitly present in Eq. (2.67), the WBA for the self-energy is another assumption
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we do in order to have a closed equation for G. This seems a rather unreasonable
price to pay but the reward is that Eq. (2.67) may be solved analytically. If we
lift the assumptions, we are left with solving numerically the full Kadanoff–Baym
equations (2.27) and (2.28) which itself is a very demanding task although the
reward is the more complete description of the underlining physical processes in
the quantum transport setup.

From Eq. (2.67) we may already extract some physical information about the trans-
port setup. If we set the right-hand side to zero, we have a reduction to a Liouville-
type equation for the one-particle density matrix ρ = −iG< of the isolated central
region. The self-energy, by construction, accounts for the openness of region C. The
terms inside the square brackets also have a transparent physical interpretation.
The first term is a convolution between the propagator in region C, GR and the
probability of finding an electron in the lead Σ<. This can be interpreted as a source
term describing the injection of electrons into region C. The second term has the
opposite structure: a propagator in the leads, ΣA, is convolved with G< which is
proportional to the probability of finding an electron in region C. This term can
therefore be interpreted as a drain term and is responsible for damping and equili-
bration effects. The last term accounts for the initial preparation of the system. In the
partitioned approach, where the terminals are considered initially uncontacted and
in equilibrium at different chemical potentials, this term would be zero since the
hopping integrals Tkαm = 0 in equilibrium [93, 94, 99]. However, in the partition-free
approach [95, 96], where the system is initially contacted and in equilibrium at a
unique chemical potential and then driven out of equilibrium by a potential be-
tween the terminals, this term is nonzero and accounts for the initial coupling of
the central region to the leads.

2.3 Solving the equations of motion for the Green’s
function

As we have now obtained an integro–differential equation of motion (2.67) for
the equal-time lesser Green’s function, we would like to solve this equation in a
closed form. For closing the equation for G<, i.e., that the solution does not involve
any iteration or time-propagation schemes, we would need the time-convolutions
on right-hand side of Eq. (2.67). In particular, the time-convolution involving G<

should be coupled with the terms on the left-hand side. For this, we employ the
wide-band approximation discussed in the previous section.

First, we see how the different Keldysh components of the self-energies can be
obtained from the WBA result for the retarded/advanced self-energy. Second, we
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will evaluate the corresponding Green’s function components to be inserted in
the convolution integrals in Eq. (2.67). Once we have expressions for the time-
convolutions, the remaining differential equation may be solved uniquely. Most of
the details of the derivations will be deferred to appendix.

2.3.1 Effective Hamiltonian and the corresponding eigenbasis

Before solving Eq. (2.67) we need to find expressions for the time-convolutions
inside the square brackets on the right-hand side. This procedure starts from the
WBA for the self-energy; from the retarded and advanced Keldysh components we
get an expression for the Matsubara component, and further from this we can derive
expressions for the left/right and greater/lesser components. Similarly, when we
know the Matsubara self-energy, we may express the Matsubara Green’s function,
and further use this to derive the left/right components of the Green’s function.
From the WBA we also readily get the retarded/advanced Green’s functions. These
derivations of the different Keldysh components are straightforward but a little
technical so we shift the details to Appendix A.1.1, and state here only the necessary
expressions in order to proceed. For further convenience, we introduce a non-
hermitian effective Hamiltonian as

heff = h −
i
2
Γ; h†eff = h +

i
2
Γ, (2.68)

where Γ =
∑
α Γα is a positive semi-definite matrix accounting for the total con-

tribution from the coupling of the central molecule to leads α, see Eq. (2.63). Due
to non-hermiticity this object has separate left and right eigenvectors forming a
mutually biorthogonal set {|ΨL

j 〉, |Ψ
R
j 〉}with〈ΨL

j |heff = ε j〈Ψ
L
j |,

heff |Ψ
R
j 〉 = ε j|Ψ

R
j 〉,

(2.69)

where the eigenvalues ε are, in general, complex. By the biorthogonality we have
〈ΨL

j |Ψ
R
k 〉 = δ jk〈Ψ

L
j |Ψ

R
j 〉, where we can choose an appropriate normalization of the

diagonal elements. The resolution of identity in terms of the left/right eigenbasis
also works pairwise

1̂ =
∑

j

|ΨR
j 〉〈Ψ

L
j |

〈ΨL
j |Ψ

R
j 〉

=
∑

j

|ΨL
j 〉〈Ψ

R
j |

〈ΨR
j |Ψ

L
j 〉
. (2.70)
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2.3.2 Terms in the equation of motion (2.67)

The Keldysh components of the self-energies and Green’s functions in Eq. (2.67) in
terms of the effective Hamiltonian read (see App. A.1.1)

Σ<α,mn(t, t′) = iΓα,mn

∫
dω
2π

f (ω − µ)e−i(ω+Vα)(t−t′), (2.71)

Σdα,mn(τ, t) = Γα,mn
1
−iβ

∑
q

e−ωqτ

∫
dω
2π

ei(ω+Vα)t

ωq − ω + µ
, (2.72)

GR(t, t′) = −iθ(t − t′)e−iheff(t−t′), (2.73)

Ge(t, τ) = e−ihefft

[
GM(0, τ) −

∫ t

0
dt′eihefft′

∫ β

0
dτ̄Σe(t′, τ̄)GM(τ̄, τ)

]
, (2.74)

where the sum over q is a sum over Matsubara frequencies ωq =
(2q+1)π
−iβ and f is the

Fermi function. The advanced self-energy can be found from Eq. (2.64) by conju-
gating. Inserting these expressions into the definitions of the time-convolutions in
Eq. (2.67) leads to (see App. A.1.2)[

GR
· Σ<

]
(t, t) = i

∑
α

∫
dω
2π

f (ω − µ)
[
1 − ei(ω+Vα−heff)t

]
GR(ω + Vα)Γα, (2.75)

[
G<
· ΣA

]
(t, t) =

i
2

G<(t, t)Γ, (2.76)[
Ge ? Σd

]
(t, t) = i

∫
dω
2π

f (ω − µ)
∑
α

ei(ω+Vα−heff)tGR(ω)Γα. (2.77)

2.3.3 Time-dependent density matrix and its interpretation

Then the expressions in the above equations may be inserted into Eq. (2.67), and
this way we find

i
d
dt

G<(t, t) − [h,G<(t, t)]

= −

i
∑
α

∫
dω
2π

f (ω − µ)
[
1 − ei(ω+Vα−heff)t

]
GR(ω + Vα)Γα +

i
2

G<(t, t)Γ

+ i
∫

dω
2π

f (ω − µ)
∑
α

ei(ω+Vα−heff)tGR(ω)Γα

 + h.c. (2.78)
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which is a nonhomogeneous, linear, first-order differential equation for G<(t, t) and,
therefore, it can be solved explicitly. The solution is worked out in A.1.3 and reads

−iG<(t, t) =

∫
dω
2π

f (ω − µ)
∑
α

{
Aα(ω + Vα)

+ Vα

[
ei(ω+Vα−heff)tGR(ω)Aα(ω + Vα) + h.c.

]
+ V2

αe−ihefftGR(ω)Aα(ω + Vα)GA(ω)eih†eff
t
}
, (2.79)

where we introduced the partial spectral function as [cf. Eq. (2.21)]

Aα(ω) = GR(ω)ΓαGA(ω) . (2.80)

The full nonequilibrium spectral function is A(ω) =
∑
α Aα(ω).

In Eq. (2.79) we have an explicit closed formula for the equal-time G< or, equiva-
lently, for the time-dependent reduced one-particle density matrix (TD1RDM). This
is a generalization of the static density matrix derived in the framework of Lan-
dauer and Büttiker, in Sec. 2.1, see Eq. (2.22). We see that the first row of Eq. (2.79),
i.e., the time-independent part exactly corresponds to the form in Eq. (2.22) (with
the addition of a bias voltage). Now, we may investigate what is the role of time-
dependence, since all the terms inside the frequency integral in Eq. (2.79) may be
calculated separately, and no time-propagation nor self-consistency algorithms are
needed. By analyzing the terms we extract the following properties:

1. With no external bias, Vα = 0, only the first row contributes. This term correctly
gives the equilibrium value of the equal-time G< since at zero bias

∑
α Aα(ω)

is the equilibrium spectral function, see also Eq. (2.22).

2. Both the second and the third row vanish exponentially in the long-time limit,
and the equal-time G< approaches a unique steady-state value.

3. The transient dynamics is given by the second and the third row. By inserting
a complete set of eigenstates of the effective Hamiltonian heff, see Eq. (2.69),
we notice that:

(a) The second row gives rise to oscillations with frequency ω j = |µ + Vα −

Re ε j|. These oscillations correspond to transitions between the biased
Fermi level of the leads and the resonant levels of the central molecule
(at comparatively low enough temperature).

(b) The third term accounts for intramolecular transitions and gives rise to
oscillations with frequency ω jk = |Re ε j − Re εk|. These oscillations are
visible only if the effective Hamiltonian heff does not commute with Γα.
In the case that [heff, Γα] = 0 the time dependence of the third term is of
the form e−ihefft+ih†eff

t = e−Γt.
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2.3.4 Time-dependent Landauer–Büttiker formula

As discussed earlier in Sec. 2.2.2 the time-dependent current through the interface
between the central region and the α-th lead is calculated simply by

Iα(t) = 4q Re
{
Tr

[
Σ<α · G

A + ΣR
α · G

< + Σeα ? Gd
]

(t, t)
}
, (2.81)

where we shall use q = −1 for the electron charge and Re{Tr[A]} = Tr{A + A†}/2
for the trace. Each of the terms in Eq. (2.81) carries similar information as already
discussed with Eq. (2.67). For the terms inside Eq. (2.81) we may use previously
obtained results in Eqs. (2.75), (2.76) and (2.77) with minor modifications:[

Σ<α · G
A
]

(t, t) = i
∫

dω
2π

f (ω − µ)ΓαGA(ω + Vα)
[
1 − e−i(ω+Vα−h†eff

)t
]
, (2.82)[

ΣR
α · G

<
]

(t, t) = −
i
2
ΓαG<(t, t), (2.83)[

Σeα ? Gd
]

(t, t) = i
∫

dω
2π

f (ω − µ)ΓαGA(ω)e−i(ω+Vα−h†eff
)t, (2.84)

and correspondingly for the complex conjugated ones. In addition, we may use the
already obtained result for G<(t, t) in Eq. (2.79). After some algebra (see App. A.1.4)
we arrive at

Iα(t) = −2
∫

dω
2π

f (ω − µ)
∑
β

Tr
{

ΓαGR(ω + Vβ)ΓβGA(ω + Vβ) − ΓαGR(ω + Vα)ΓβGA(ω + Vα)

+ Vβ

[
Γαei(ω+Vβ−heff)tGR(ω)

(
−iδαβGR(ω + Vβ) + Aβ(ω + Vβ)

)
+ h.c.

]
+ V2

βΓαe−ihefftGR(ω)Aβ(ω + Vβ)GA(ω)eih†eff
t
}
. (2.85)

The physical interpretation of the terms in Eq. (2.85) is similar to the one after
Eq. (2.79). We have a steady-state part given by the first two rows, which can be
identified as the Landauer–Büttiker formula in Eq. (2.54). The time-dependent part
is given by the second and the third rows, and it vanishes exponentially in the
long-time limit and the oscillations in the current have the same structure as in the
reduced one-particle density matrix.

2.3.5 Evaluating the densities and currents in practice

Looking at the final formulae in Eqs. (2.79) and (2.85) we are left with numerical
integration. These are one-dimensional integrals over the frequency ω but they
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may be tedious to perform, at least for larger systems. The integrands (related to
the spectral functions) for larger systems are, in fact, heavily oscillatory and spiked
functions. Although we know the positions of the spectral peaks (as the real parts
of the eigenvalues of heff), the dense frequency grids (even if adaptive) to model
the spectral peaks accurately might be computationally rather expensive. There
is, however, a way around this problem by looking at the matrix structures more
carefully.

We may expand the results in Eq. (2.79) and (2.85) in terms of the eigenbasis of the
non-hermitian effective Hamiltonian heff. As noticed earlier in Eq. (2.69), this object
has separate left and right eigenvectors, hence, extra care must be taken. We notice
that in Eq. (2.79), in every term there is heff on the left and h†eff

on the right. This in
mind, and looking at how the matrix operates in Eq. (2.69), we choose to expand
in the “left–left” eigenbasis, i.e., we multiply the density matrix ρ(t) = −iG<(t, t) in
Eq. (2.79) from left by a row vector 〈ΨL

j | and from the right by a column vector |ΨL
k 〉.

This gives

ρ jk(t) B 〈ΨL
j |ρ(t)|ΨL

k 〉

=
∑
α

∫
dω
2π

f (ω − µ)
{
〈ΨL

j |
1

ω + Vα − heff
Γα

1
ω + Vα − h†eff

|ΨL
k 〉

+ Vα

[
〈ΨL

j |e
i(ω+Vα−heff)t 1

ω − heff

1
ω + Vα − heff

Γα
1

ω + Vα − h†eff

|ΨL
k 〉 + h.c.

]
+ V2

α〈Ψ
L
j |e
−ihefft 1

ω − heff

1
ω + Vα − heff

Γα
1

ω + Vα − h†eff

1
ω − h†eff

eihefft
|ΨL

k 〉

}
.(2.86)

From Eq. (2.69) we know how the effective Hamiltonian heff operates on its eigen-
vectors, and we obtain

ρ jk(t)

=
∑
α

∫
dω
2π

f (ω − µ)
{

1
ω + Vα − ε j

〈ΨL
j |Γα|Ψ

L
k 〉

1
ω + Vα − ε∗k

+ Vα

[
ei(ω+Vα−ε j)t 1

ω − ε j

1
ω + Vα − ε j

〈ΨL
j |Γα|Ψ

L
k 〉

1
ω + Vα − ε∗k

+ h.c.
]

+ V2
αe−iε jt 1

ω − ε j

1
ω + Vα − ε j

〈ΨL
j |Γα|Ψ

L
k 〉

1
ω + Vα − ε∗k

1
ω − ε∗k

eiε∗kt

}
. (2.87)

This can be written in a very compact form by introducing

Γα, jk = 〈ΨL
j |Γα|Ψ

L
k 〉, (2.88)

Λα, jk =

∫
dω
2π

f (ω − µ)
(ω + Vα − ε j)(ω + Vα − ε∗k)

, (2.89)
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Πα, jk(t) =

∫
dω
2π

f (ω − µ)ei(ω+Vα−ε j)t

(ω − ε j)(ω + Vα − ε j)(ω + Vα − ε∗k)
, (2.90)

Ωα, jk =

∫
dω
2π

f (ω − µ)
(ω − ε j)(ω + Vα − ε j)(ω + Vα − ε∗k)(ω − ε

∗

k)
. (2.91)

Then, the density matrix elements in the left–left eigenbasis become

ρ jk(t) =
∑
α

{
Γα, jkΛα, jk + VαΓα, jk

[
Πα, jk(t) +Π∗α,kj(t)

]
+ V2

αΓα, jke
−i(ε j−ε∗k)tΩα, jk

}
. (2.92)

It is important to notice that we only expressed the earlier result in a particular basis
but the original complexity in the frequency integrals is still present in evaluating
Eqs. (2.89), (2.90) and (2.91).

In Pub. [II] we evaluated the integrals in Eqs. (2.89), (2.90) and (2.91) analytically
in the zero-temperature limit. The Fermi function in the zero-temperature limit re-
duces to the Heaviside function, and adjusting accordingly the integrals’ limits, we
get the following explicit expressions (the superscript ‘0’ denotes zero temperature)

Λ0
α, jk

=
Log(ε∗k − µα) − Log(ε j − µα)

2π(ε∗k − ε j)
, (2.93)

Π0
α, jk(t)

=
e−i(ε j−µα)t

{
F[i(ε∗k − µα)t] +

ε∗k−ε j−Vα

Vα
F[i(ε j − µα)t] −

ε∗k−ε j

Vα
F[i(ε j − µ)t]

}
2π(ε∗k − ε j)(ε∗k − ε j − Vα)

, (2.94)

Ω0
α, jk

=
1

2π
[
(ε∗k − ε j)V3

α − (ε∗k − ε j)3Vα

] {
(ε∗k − ε j + Vα)

[
Log(ε∗k − µα) − Log(ε j − µ)

]
+ (ε∗k − ε j − Vα)

[
Log(ε j − µα) − Log(ε∗k − µ)

]}
, (2.95)

where we defined µα = µ + Vα and

F(z) =

ez [2πi − E1(z)] , if Arg(z) ∈] − π,−π/2]
−ezE1(z) , otherwise.

(2.96)

Log is the principal branch complex logarithm function, Arg the principal argument
and E1 the exponential integral function:

E1(z) =

∫
∞

1

e−zt

t
dt. (2.97)
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The piecewise definition of the function F is due to branch cuts in the z-plane.
Now, the complexity of the numerical integration is overcome as we have analytic
expressions where we can simply insert our system parameters. (However, this
finding does not necessarily mean the final expressions would not be complicated.)
It is still to be noted, that the expressions include a special function (the exponential
integral) which again, in principle, needs a numerical integration. However, the
algorithms presented in Ref. [119] offer a very fast and accurate treatment.

As can be seen from expressions in Eqs. (2.93), (2.94) and (2.95) the case of degenerate
eigenvalues ε j (when the imaginary part is zero) leads to unphysical results because
of denominators going to zero. It is, regardless of that, possible that the structure
of the single-particle Hamiltonian h would together with the coupling matrices Γα
produce such an effective Hamiltonian heff with ε j = ε∗k. In this case, consider the
left/right eigenbasis of the effective Hamiltonian heff. Since heff = h− i

2Γ, where h and
Γ are hermitian matrices, then

ε j〈Ψ
L
j |Ψ

L
j 〉 = 〈ΨL

j |heff|Ψ
L
j 〉 = 〈ΨL

j |h|Ψ
L
j 〉 −

i
2
〈ΨL

j |Γ|Ψ
L
j 〉, (2.98)

and we may solve for the eigenvalue

ε j =
〈ΨL

j |h|Ψ
L
j 〉

〈ΨL
j |Ψ

L
j 〉
−

i
2〈Ψ

L
j |Γ|Ψ

L
j 〉

〈ΨL
j |Ψ

L
j 〉

. (2.99)

Since the expectation values are real and the norms positive, we get

Im ε j = −
1
2

〈ΨL
j |Γ|Ψ

L
j 〉

〈ΨL
j |Ψ

L
j 〉

< 0 (2.100)

meaning that the eigenvalues of heff lie in the lower-half plane (and correspondingly
the ones of h†eff

in the upper-half plane). Then, suppose that Im ε j = 0. This gives
〈ΨL

j |Γ|Ψ
L
j 〉 = 0, and since the level-width matrices are calculated from the tunneling

matrices by Γ ∼ T†T, we get

〈ΨL
j |T
†T|ΨL

j 〉 = 0 ⇒ 〈ΦL
j |Φ

L
j 〉 = 0, (2.101)

where |ΦL
j 〉 = T|ΨL

j 〉. Having then a zero-norm vector |ΦL
j 〉 it means that vector itself

must be zero: 0 = |ΦL
j 〉 = T|ΨL

j 〉 for all j. This means that |ΨL
j 〉 is an eigenvector of T

with zero eigenvalue. In particular, Γ|ΨL
j 〉 = T†T|ΨL

j 〉 = 0, and hence

Γ jk = 〈ΨL
j |Γ|Ψ

L
k 〉 = 0, ∀ j, k. (2.102)

Therefore, we do not have to calculate anything when Im ε j = 0 because then the
Γα, jk terms in the final formula [Eq. (2.92)] give zero contribution.
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Recently, in Pub. [IV] the integrals in Eqs. (2.89), (2.90) and (2.91) were also per-
formed analytically for arbitrary nonzero temperatures in the Fermi functions.1 As
this is a somewhat technical extension to the above formalism (evaluating com-
plex integrals with Matsubara poles), only the final expressions are given here (the
details can be found in Pub. [IV] and Ref. [120])

Λα, jk =
i

ε∗k − ε j

{
1

eβ(ε∗k−µα) + 1
+

1
2πi

[
ψ

(
1
2
−
β(ε∗k − µα)

2πi

)
− ψ

(
1
2
−
β(ε j − µα)

2πi

)]}
,

(2.103)

Πα, jk(t) =
i

(ε∗k − ε j)(ε∗k − ε j − Vα)

{
e−i(ε j−ε∗k)t

eβ(ε∗k−µα) + 1
+ ie−πt/βe−i(ε j−µα)t

×[
F̄(ε∗k − µα, t, β) +

ε∗k − ε j − Vα

Vα
F̄(ε j − µα, t, β) −

ε∗k − ε j

Vα
F̄(ε j − µ, t, β)

]}
,

(2.104)

Ωα, jk =

i
eβ(ε∗k−µ)

+1
−

1
2π

[
ψ

(
1
2 −

β(ε j−µα)
2πi

)
− ψ

(
1
2 −

β(ε∗k−µ)
2πi

)]
(ε∗k − ε j)(ε∗k − ε j + Vα)Vα

−

i
eβ(ε∗k−µα)

+1
−

1
2π

[
ψ

(
1
2 −

β(ε j−µ)
2πi

)
− ψ

(
1
2 −

β(ε∗k−µα)
2πi

)]
(ε∗k − ε j)(ε∗k − ε j − Vα)Vα

, (2.105)

where ψ is the digamma function [121] and we defined another special function by

F̄(z, t, β) =
1

iβz + π
2F1

(
1,

1
2

+
iβz
2π
,

3
2

+
iβz
2π
, e−2πt/β

)
(2.106)

with 2F1 being the hypergeometric function [122]. Inserting Eqs. (2.103), (2.104)
and (2.105) into Eq. (2.92) gives then the TD1RDM at arbitrary temperature. When
the asymptotic behaviour of the digamma and hypergeometric function is studied,
the results in Eqs. (2.103), (2.104) and (2.105) can be shown to reduce to those in the
zero-temperature limit [Eqs. (2.93), (2.94) and (2.95)], i.e., when β→∞.

Having now the full one-particle density matrix expressed in a general basis of the
central region, we typically want to work specifically in a localized site basis of
the central region. Evaluating the TD1RDM in the site basis (or in any physically
relevant basis), {|m〉, |n〉}, is then readily done as a basis transformation from the
‘left–left’ eigenbasis to the desired one

〈m|ρ(t)|n〉 =
∑

jk

〈m|ΨR
j 〉

〈ΨL
j |Ψ

R
j 〉

〈ΨR
k |n〉

〈ΨR
k |Ψ

L
k 〉
〈ΨL

j |ρ(t)|ΨL
k 〉, (2.107)

1To be supplemented in Ref. [120]
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where {|ΨR
〉} are the right eigenvectors of heff; this form in Eq. (2.107) follows from the

biorthogonality of the left/right eigenvectors of a non-hermitian matrix. In the case
of site basis, the diagonal elements of the density matrix give the charge densities
corresponding to each atomic site of the central region whereas the off-diagonal
elements give rise to transitions between sites, i.e., bond currents. Since the Green’s
function in Eq. (2.25) is of the form Gnm = −i〈T (d̂nd̂†m)〉, and the density matrix is
calculated from the lesser component as ρnm = −iG<

nm = 〈d̂†md̂n〉, the bond-current
operator may be defined, corresponding to current from site n to m,

Ĵmn = −i
(
Tmnd̂†md̂n − h.c.

)
, (2.108)

where Tmn = T∗nm are the hopping matrix elements in the central region. The expec-
tation value of Eq. (2.108) then gives the bond currents

〈 Ĵmn〉 = Jmn = 2Tmn Im
[
ρnm

]
. (2.109)

Between the charge densities and bond currents there is an obvious continuity
property

∂tnm =
∑

n

Jmn (2.110)

meaning that the currents flowing in and out of site m must add up to the temporal
change of density in that site.

2.4 Perturbations, superconductivity and time-depen-
dent fields

In the previous sections we have introduced a time-dependent quantum transport
model for which we could find an analytic solution reducing to earlier known results
by Meir and Wingreen and Landauer and Büttiker. We also performed the frequency
integrals analytically so that the final expressions could be implemented in terms of
special functions such as the exponential integrals, digamma and hypergeometric
functions.

In this section we further extend the transport model to include local perturbations
in the central region. In practice, this amounts to adding separate Hamiltonians for
the central region for the vertical and horizontal branches of the Keldysh contour;
in equilibrium (Matsubara) the Hamiltonian takes the same form as in the previous
section where as out of equilibrium we will consider another Hamiltonian includ-
ing, e.g., on-site potential terms or complex phases for the hopping terms. It turns
out, that this inclusion does not complicate the equations of motion considerably,
and similar solution as in the previous section may be obtained.
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2.4.1 Gate voltages, general potential profiles or magnetic fields
within the central region

When studying transport in systems that are larger than, say few atoms, the step
potential for the lead bias window may be questionable. In order to model a more
realistic voltage profile, we could take a linear gate voltage within the central region,
ranging from the left-lead biased energy levels to the right-lead biased energy levels.
The gate profile in the central region could, for instance, take the following form

u(x) = −
2V
L

x + V, (2.111)

where ±V is the bias window in the leads, L is the length of the central region and x
is the coordinate in the central region, measured from the left lead’s interface. A gate
voltage of this form would then be included as on-site terms to the Hamiltonian of
the central region

h̃ = h +
∑
n,σ

und̂†n,σd̂n,σ. (2.112)

Let us, however, keep the perturbation as general as possible, and simply state that
the perturbed Hamiltonian of the central region is

h̃mn = Tmn + umn , (2.113)

where h = T is the non-perturbed Hamiltonian for the central region (ground state,
Matsubara) and u is the perturbation in the central region which can take arbitrary
forms. This means that we are not restricted to only additional on-site terms since
[̃h, h] , 0, in general.

Let us also briefly discuss the inclusion of a magnetic field; this contribution for
the central region may be added by the Peierls substitution [123–125]. Instead of
adding a perturbation u as in Eq. (2.113) we now transform the central region’s
Hamiltonian in terms of the phase factors αmn which appear in the hopping matrix
elements as

h̃mn = Tmneiαmn (2.114)

with αmn = −αnm. Along a closed loop these factors yield the magnetic flux (nor-
malized to the flux quantumΦ0 = h/2e). Let us look at the phase factors more thor-
oughly. Consider a lattice shown in Fig. 2.4 where we have an external magnetic
field pointing in the negative z direction whereas the lattice itself is located in the xy-
plane. The magnetic field therefore has the form ~B = −Bêz for which we may choose
the corresponding vector potential (in a convenient gauge) as ~A = B

2 (y,−x, 0)T. It is
easily verified that ~∇ × ~A = ~B. The magnetic flux is defined as a surface integral

Φ =

"
S

~B · d~S =

∮
γ

~A · d~r, (2.115)
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Fig. 2.4: Lattice in an external magnetic field.

where S is, in this case, a surface within the xy-plane in Fig. 2.4. By writing the
magnetic field ~B in terms of the vector potential and using Stokes’ theorem we may
also write the second identity in Eq. (2.115) where γ is a path encircling the surface
S counter-clockwise. By looking at Fig. 2.4 we see that the closed loops for the path
integral are composed of paths between lattice points j and k: ~r jk = ~rk −~r j. Between
the lattice points j and k we may therefore parametrize the path as

~γ jk(t) = (1 − t)~r j + t~rk with t ∈ [0, 1] and
d
dt
~γ jk(t) = −~r j + ~rk. (2.116)

Then, the phase corresponding to the flux between lattice points j and k can be
calculated as

Φ jk =

∫
γ jk

~A · d~γ jk =

∫ 1

0

~A(~γ jk(t)) ·
d
dt
~γ jk(t)dt

=

∫ 1

0

B
2

(
(1 − t)y j + tyk,−(1 − t)x j − txk, 0

)
·

(
−x j + xk,−y j + yk,−z j + zk

)
dt

=
B
2

(xky j − x jyk). (2.117)

The Peierls phase factors are indeed related to the magnetic flux by αmn = e
~

∫ ~rn

~rm

~A·d~r,

where the line integral of the vector potential ~A goes from site m to site n [123, 125–
127]. The prefactor e/~will therefore render the exponent in Eq. (2.114) dimension-
less. (In Gaussian units an extra factor of the speed of light, c, appears.) Inclusion
of the magnetic flux density B in the hopping matrix is therefore done by

Tmn → Tmnei e
~

B
2 (xn ym−xm yn) = Tmne2πiB(xn ym−xm yn)/Φ0 , (2.118)

where we inserted the flux quantum Φ0. We see, that the transformation along a
closed loop (2π) normalizes exactly to the flux quantum, the magnetic flux orig-
inating from ∼ Bx2. For these considerations, it is also sometimes advantageous
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to introduce a quantity called magnetic length, lB =
√
~/eB, for which the physical

meaning is the length of electron trajectory along which this electron gains a phase
factor comparable with 2π from the magnetic field. Normally, the magnetic length
is a rather large distance but when it is comparable to the lattice constant, it means
that the magnetic field strength is comparable with electric field strength in the
atom (which is a rare situation).

In the case of perturbed central region, we also need to adjust the bond current in
Eq. (2.109) to include the corresponding hopping matrix elements as

Jmn = 2 Im[Tmneiαmnρnm]. (2.119)

Now that we have two different Hamiltonians for the central region, one for the
unperturbed and one for the perturbed system, we have to adjust the derivation
for the TD1RDM worked out earlier. By carefully studying the steps we notice that
nothing changes in the equations of motion or in the self-energy calculations. It is
only the Green’s functions’ components in Eqs. (2.73) and (2.74) that need to be
adjusted according to either unperturbed or perturbed Hamiltonians. We see that
the Matsubara Green’s function should include only the ground-state Hamiltonian
h. On the other hand, for Green’s functions having components on the horizontal
branch of the Keldysh contour, also the perturbation is present, hence, there we use
the Hamiltonian h̃.

In Eq. (A.11) we have to deal with both h and h̃ and we get

Ge(t, τ) = e−ĩhefft

[
GM(0, τ) −

∫ t

0
dt′eĩhefft′

∫ β

0
dτ̄Σe(t′, τ̄)GM(τ̄, τ)

]
. (2.120)

Similarly for the retarded Green’s function in Eq. (A.17)

GR(t − t′) = −iθ(t − t′)e−̃heff(t−t′). (2.121)

Then, in the derivation, we should change all the rest accordingly. First, introduce
a notation for the Green’s functions: If the function is to be evaluated with the
perturbed Hamiltonian, we put a tilde above, otherwise it is evaluated with the
unperturbed Hamiltonian (i.e., as before)

G̃R(ω) =
1

ω − h̃eff

, GA(ω) =
1

ω − h†eff

, and so on. (2.122)

Because of these changes, also some terms in the equation of motion change:[
GR
· Σ<

]
(t, t) = i

∑
α

∫
dω
2π

f (ω − µ)
[
1 − e−i(ω+Vα−̃heff)t

]
G̃R(ω + Vα)Γα (2.123)
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and [
Ge ? Σd

]
(t, t) = i

∫
dω
2π

f (ω − µ)
∑
α

ei(ω+Vα−̃heff)tGR(ω)Γα. (2.124)

Equation (2.124) here requires some thinking (going through the derivation in
App. A.1.2 and checking what changes). In Eq. (2.124) the retarded Green’s function
(without a tilde) follows from the analytic continuation of the Matsubara Green’s
function, and therefore it is calculated from the unperturbed Hamiltonian.

The equation of motion, to be solved for G<(t, t), is then

i
d
dt

G<(t, t) −
[̃
h(t),G<(t, t)

]
= −

i
∑
α

∫
dω
2π

f (ω − µ)
[
1 − ei(ω+Vα−̃heff)t

]
G̃R(ω + Vα)Γα +

i
2
ΓG<(t, t)

+i
∫

dω
2π

f (ω − µ)
∑

a

ei(ω+Vα−̃heff)tGR(ω)Γα

 + h.c.. (2.125)

This may be solved in a similar fashion as earlier, see App. A.1.5. The solution is

−iG<(t, t) =

∫
dω
2π

f (ω − µ)
∑
α

{
G̃R(ω + Vα)ΓαG̃A(ω + Vα)

+
[
ei(ω+Vα−̃heff)tGR(ω)ṼαG̃R(ω + Vα)ΓαG̃A(ω + Vα) + h.c.

]
+e−ĩhefftGR(ω)ṼαG̃R(ω + Vα)ΓαG̃A(ω + Vα)Ṽ†αGA(ω)eĩh†eff

t
}
,(2.126)

where Ṽα = Vα1 − u. Equation (2.126) is the final result for the TD1RDM in the
case of perturbed central regions. This can easily be checked to reduce to the earlier
result in Eq. (2.79) when u = 0 and h̃ = h. The interpretation of the different terms
is naturally the same as earlier in Eq. (2.79) as Eq. (2.126) includes a mere extension
to the Hamiltonian for the central region.

Similarly as earlier in Sec. 2.3.5, we are now, in Eq. (2.126), left with a same type
of frequency integral. This integral may be evaluated analytically by expanding
in bases {|ΨL

〉, |ΨR
〉} (for heff) and {|Ψ̃L

〉, |Ψ̃R
〉} (for h̃eff). Because h and h̃ do not

necessarily commute (in the case of non-diagonal perturbations, etc.), not only do
the eigenvalue spectra differ (more than for a constant shift) but also the left/right
eigenstates are non-trivially separate. In the second row of Eq. (2.126), for instance,
we need to insert a complete set of left/right eigenstates of heff, as a resolution
of identity, in between the first exponential and GR, and so on. Then, we end up
having sums and overlaps between the unperturbed and perturbed bases. When
the perturbation vanishes (u→ 0) these overlaps should reduce to the unperturbed
result.
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The density matrix expanded in the ‘left–left’ eigenbasis of the perturbed effective
Hamiltonian h̃eff reads (see App. A.1.5)

ρ jk(t) =
∑
α

[
Γ̃α, jkΛ̃α, jk + Π̃α, jk(t) + Π̃∗α,kj(t) + Ω̃α, jk(t)

]
(2.127)

with

Γ̃α, jk = 〈Ψ̃L
j |Γα|Ψ̃

L
k 〉, (2.128)

Λ̃α, jk =

∫
dω
2π

f (ω − µ)
(ω + Vα − ε̃ j)(ω + Vα − ε̃∗k)

, (2.129)

Π̃α, jk(t) =
∑
mn

〈Ψ̃L
j |Ψ

R
m〉〈Ψ

L
m|Ṽα|Ψ̃R

n 〉Γ̃α,nk

〈ΨL
m|Ψ

R
m〉〈Ψ̃

L
n |Ψ̃

R
n 〉

∫
dω
2π

f (ω − µ)ei(ω+Vα−ε̃ j)t

(ω − εm)(ω + Vα − ε̃n)(ω + Vα − ε̃∗k)
,

(2.130)

Ω̃α, jk(t) =
∑
mnpq

〈Ψ̃L
j |Ψ

R
m〉〈Ψ

L
m|Ṽα|Ψ̃R

n 〉Γ̃α,np〈Ψ̃R
p |Ṽ†α|ΨL

q 〉〈Ψ
R
q |Ψ̃

L
k 〉

〈ΨL
m|Ψ

R
m〉〈Ψ̃

L
n |Ψ̃

R
n 〉〈Ψ̃

R
p |Ψ̃

L
p 〉〈Ψ

R
q |Ψ

L
q 〉

× e−i(̃ε j−ε̃∗k)t
∫

dω
2π

f (ω − µ)
(ω − εm)(ω + Vα − ε̃n)(ω + Vα − ε̃∗p)(ω − ε∗q)

, (2.131)

where the eigenvalues ε and ε̃ refer to the complex eigenvalues of heff and h̃eff,
respectively. In the limit h̃eff → heff this result can be checked to reduce to the
earlier result in Eq. (2.92). In Pub. [II] we also evaluated these integrals in the
zero-temperature limit (the superscript ‘0’ refers to zero temperature)

Γ̃0
α, jk = 〈Ψ̃L

j |Γα|Ψ̃
L
k 〉, (2.132)

Λ̃0
α, jk =

Log(̃ε∗k − µα) − Log(̃ε j − µα)

2π(̃ε∗k − ε̃ j)
,

(2.133)

Π̃0
α, jk(t)

=
∑
m,n

〈Ψ̃L
j |Ψ

R
m〉〈Ψ

L
m|Ṽα|Ψ̃R

n 〉Γ̃α,nk

〈ΨL
m|Ψ

R
m〉〈Ψ̃

L
n |Ψ̃

R
n 〉

e−i(̃ε j−µα)t

2π(̃ε∗k − ε̃n)(̃ε∗k − εm − Vα)

×

{
F[i(̃ε∗k − µα)t] −

ε̃∗k − εm − Vα

ε̃n − εm − Vα
F[i(̃εn − µα)t] +

ε̃∗k − ε̃n

ε̃n − εm − Vα
F[i(εm − µ)t]

}
,

(2.134)
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Ω̃0
α, jk(t)

=
∑
mnpq

〈Ψ̃L
j |Ψ

R
m〉〈Ψ

L
m|Ṽα|Ψ̃R

n 〉Γ̃α,np〈Ψ̃R
p |Ṽ†α|ΨL

q 〉〈Ψ
R
q |Ψ̃

L
k 〉

〈ΨL
m|Ψ

R
m〉〈Ψ̃

L
n |Ψ̃

R
n 〉〈Ψ̃

R
p |Ψ̃

L
p 〉〈Ψ

R
q |Ψ

L
q 〉

e−i(̃ε j−ε̃∗k)t

2π

×

[
Log(εm − µ)

(εm − ε̃n + Vα)(εm − ε̃∗p + Vα)(εm − ε∗q)
+

Log(̃εn − µα)
(̃εn − εm − Vα)(̃εn − ε̃∗p)(̃εn − ε∗q − Vα)

+
Log(ε∗q − µ)

(ε∗q − εm)(ε∗q − ε̃n + Vα)(ε∗q − ε̃∗p + Vα)
+

Log(̃ε∗p − µα)

(̃ε∗p − εm − Vα)(̃ε∗p − ε̃n)(̃ε∗p − ε∗q − Vα)

 ,
(2.135)

where the electro-chemical potential is as earlier µα = µ + Vα and the function F
is as in Eq. (2.96). Also these results can be checked to reduce to the earlier results
when ε̃→ ε. Inserting Eqs. (2.133), (2.134) and (2.135) into Eq. (2.127) gives then the
TD1RDM for perturbed central regions at the zero-temperature limit.

Yet another extension is to be presented in Ref. [120] where also the correspond-
ing results for Eq. (2.127) at nonzero temperatures are written in terms of the
digamma and hypergeometric functions [see the discussion after Eqs. (2.103), (2.104)
and (2.105)]. We list the final expressions here for completeness

Λ̃α, jk

=
i

ε̃∗k − ε̃ j

{
1

eβ(̃ε∗k−µα) + 1
+

1
2πi

[
ψ

(
1
2
−
β(̃ε∗k − µα)

2πi

)
− ψ

(
1
2
−
β(̃ε j − µα)

2πi

)]}
, (2.136)

Π̃α, jk(t)

=
∑
mn

〈Ψ̃L
j |Ψ

R
m〉〈Ψ

L
m|Ṽα|Ψ̃R

n 〉Γ̃α,nk

〈ΨL
m|Ψ

R
m〉〈Ψ̃

L
n |Ψ̃

R
n 〉

×

i
(̃ε∗k − ε̃n)(̃ε∗k − εm − Vα)

{
e−i(̃ε j−ε̃∗k)t

eβ(̃ε∗k−µα) + 1
+ ie−πt/βe−i(̃ε j−µα)t

×[
F̄(̃ε∗k − µα, t, β) −

ε̃∗k − εm − Vα

ε̃n − εm − Vα
F̄(̃εn − µα, t, β) +

ε̃∗k − ε̃n

ε̃n − εm − Vα
F̄(εm − µ, t, β)

]}
,

(2.137)
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Ω̃α, jk

=
∑
mnpq

〈Ψ̃L
j |Ψ

R
m〉〈Ψ

L
m|Ṽα|Ψ̃R

n 〉Γ̃α,np〈Ψ̃R
p |Ṽ†α|ΨL

q 〉〈Ψ
R
q |Ψ̃

L
k 〉

〈ΨL
m|Ψ

R
m〉〈Ψ̃

L
n |Ψ̃

R
n 〉〈Ψ̃

R
p |Ψ̃

L
p 〉〈Ψ

R
q |Ψ

L
q 〉

e−i(̃ε j−ε̃∗k)t
×{

1
(εm − ε̃n + Vα)(εm − ε̃∗p + Vα)(εm − ε∗q)

1
2π
ψ

(
1
2
−
β(εm − µ)

2πi

)
+

1
(̃εn − εm − Vα)(̃εn − ε̃∗p)(̃εn − ε∗q − Vα)

1
2π
ψ

(
1
2
−
β(̃εn − µα)

2πi

)
+

1
(ε∗q − εm)(ε∗q − ε̃n + Vα)(ε∗q − ε̃∗p + Vα)

[
i

eβ(ε∗q−µ) + 1
+

1
2π
ψ

(
1
2
−

β(ε∗q − µ)

2πi

)]
+

1
(̃ε∗p − εm − Vα)(̃ε∗p − ε̃n)(̃ε∗p − ε∗q − Vα)

 i

eβ(̃ε∗p−µα) + 1
+

1
2π
ψ

1
2
−

β(̃ε∗p − µα)

2πi


 ,

(2.138)

where F̄ is given by Eq. (2.106). Inserting Eqs. (2.136), (2.137) and (2.138) into
Eq. (2.127) gives then the TD1RDM for perturbed central regions at arbitrary tem-
peratures.

2.4.2 Extension to normal metal – superconducting – normal metal
(NSN) junctions

In Pub. [IV] (and in Ref. [120]) we also consider an extension to the central regions
being superconducting. The transport setup is otherwise similar to Sec. 2.2 but we
will discuss the extension via Nambu matrices [128–131].

In order to model a superconducting island, we add a pairing field operator ∆̂ to
the Hamiltonian of the central region by

ĤCC =
∑
mnσ

Tmnd̂†mσd̂nσ +
∑

mn,σσ′

(
∆mn,σσ′ d̂†mσd̂

†

nσ′ + ∆
∗

mn,σσ′ d̂mσ′ d̂nσ

)
. (2.139)

This may be rewritten in a compact form by introducing the 4-component Nambu
spinors [128, 132, 133]

Φ̂m =


Φ̂1

m
Φ̂2

m
Φ̂3

m
Φ̂4

m

 =


d̂m↑

d̂m↓

d̂†m↑
d̂†m↓

 ;
{
Φ̂µ

m, (Φ̂
ν
n)†

}
= δmnδ

µν, (2.140)
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where the anticommutation relation is to be understood component-wise ({µ, ν} ∈
{1, 2, 3, 4}). Quantities in the 4-by-4 Nambu space will be denoted by an underline.
The Hamiltonian for the central region now reads

ĤCC =
∑
mn

(Φ̂m)†ξ
mn
Φ̂n , (2.141)

with

ξ
mn

=


Tmn/2 0 ∆mn,↑↑ ∆mn,↑↓

0 Tmn/2 ∆mn,↓↑ ∆mn,↓↓

∆∗mn,↑↑ ∆∗mn,↓↑ −Tmn/2 0
∆∗mn,↑↓ ∆∗mn,↓↓ 0 −Tmn/2

 (2.142)

similar to the form of Bogoliubov–de Gennes [134, 135]. Expanding Eq. (2.141) gives
Eq. (2.139) (under the assumption of a symmetric hopping matrix which typically
is the case) modulo a constant

∑
m Tmm which can be regarded as a reference point

to the total energy. The constant follows from the anticommutation relations of
the creation and annihilation operators. For the lead and coupling parts of the
Hamiltonian similar interpretation is done although we will keep the leads as
normal metal. We have the lead Hamiltonian of the form (2.142) but without the
off-diagonal terms

Ĥαα =
∑

kα

(Φ̂kα)†εkα(Φ̂kα) (2.143)

with εkα = [εkα +θ(t)Vα]diag(1, 1,−1,−1)/2. Also here, by expanding Eq. (2.143), the
lead part of the Hamiltonian in Eq. (2.23) (with the bias voltage Vα added to the
energy spectrum) is recovered modulo a constant

∑
kα εkα which can be regarded as

a reference to the total energy. The central region’s m-th site will be coupled to the
k-th basis function of the α-th lead via Tmkα, and there will be no pairing potential
in the coupling Hamiltonian either [133]

ĤCα =
∑
mkα

(Φ̂m)†χ
mkα
Φ̂kα; ĤαC = (ĤCα)† (2.144)

with χ
mkα

= Tmkαdiag(1, 1,−1,−1). Also in this case the coupling part of the Hamil-
tonian in Eq. (2.23) follows by expanding Eq. (2.144) assuming the hopping matrix
to be symmetric. This time, however, no extra constants arise since the creation and
annihilation operators in different regions (α,C) anticommute. The one-electron
Green’s function in the above setup is defined as a time-ordered tensor product of
the spinor field operators [132]

Gxy(z, z′) = −i〈Tγ[Φ̂x(z) ⊗ Φ̂
†

y(z′)]〉, (2.145)

where the time-ordering operator Tγ is taken for the variables z, z′ on the Keldysh
contour γ. The form in Eq. (2.145) automatically handles both normal and anoma-
lous components of the Green’s function [136]. The matrix elements in the Green’s
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function in Eq. (2.145) (indices x, y belonging either to the leads or to the central
region) label the transport setup in the following block form

h =


h11 0 · · · h1C
0 h22 · · · h2C
...

...
. . .

...
hC1 hC2 · · · hCC

 ; G =


G11 G12 · · · G1C
G21 G22 · · · G2C
...

...
. . .

...
GC1 GC2 · · · GCC

 (2.146)

with (hαα′)kk′ = (hαα′)kk′(t) = εkαδαα′δkk′ for the leads, (hCC)mn = ξ
mn

for the central
region, and (hCα)mkα = χ

mkα
for the couplings. We denote the matrices for the full

transport setup as boldface symbols. As earlier, we notice how the lead blocks,
hαα = hαα(z), are different for the vertical and horizontal branches of the Keldysh
contour due to the shift in energy levels at t > 0. Also, notice that the block structure
in Eq. (2.146) does not refer to the Nambu space but it is of dimension (Nlead + 1) ×
(Nlead + 1) where Nlead is the number of leads. Each block then accounts for the
individual dimension of the corresponding partition. We may derive the equation
of motion for the Green’s function by

i∂zGxy(z, z′) = ∂z

[
θ(z, z′)〈Φ̂x(z) ⊗ Φ̂

†

y(z′)〉 − θ(z′, z)〈Φ̂
†

y(z′) ⊗ Φ̂x(z)〉
]
, (2.147)

where the step function is defined, as earlier, on the Keldysh contour γ according
to the time-ordering operator Tγ [73]. Evaluating the derivative gives

i∂zGxy(z, z′) = δ(z, z′)
〈 {
Φ̂x(z), Φ̂

†

y(z′)
} 〉
− i〈Tγ[i∂zΦ̂x(z)] ⊗ Φ̂

†

y(z′)〉, (2.148)

where the anticommutator gives simply δxy1 (here 1 refers to a unit matrix in
Nambu basis), and the evolution of the spinor operator can further be derived from
its equation of motion

i∂zΦ̂x(z) = [Φ̂x(z), Ĥ] = [Φ̂x(z), Ĥαα] + [Φ̂x(z), ĤCC] + [Φ̂x(z), ĤCα] + [Φ̂x(z), ĤαC].
(2.149)

The above commutators with Eqs. (2.141), (2.143), and (2.144) may be evaluated
using [A,BC] = {A,B}C−B{A,C} and the anticommutation relations in Eq. (2.140). It
is important to notice here that the index x may belong to any region in the transport
setup. For example, if x ∈ C, then only the corresponding commutators are nonzero

i∂zΦ̂
µ
x (z) =

∑
nζ

ξµζxnΦ̂
ζ
n +

∑
kαζ

χµζxkαΦ̂
ζ
kα. (2.150)

Inserting this into Eq. (2.148) and using the definition of the Green’s function in
Eq. (2.145) gives

i∂zGxy(z, z′) = δ(z, z′)δxy1 +
∑

l

(ξ
xl

+ χ
xl

)Gly(z, z′) (2.151)



2.4 Perturbations, superconductivity and time-dependent fields 49

with l being a general index either in the central region or in the lead sector.
The adjoint equation can be derived similarly, and we may generalize to the full
equations of motion for the whole transport setup as (here 1 refers to a unit matrix
in the combined transport and Nambu basis)[

i
d
dz

1 − h(z)
]

G(z, z′) = δ(z, z′)1, (2.152)

G(z, z′)

−i
←

d
dz′

1 − h(z′)

 = δ(z, z′)1, (2.153)

which the Green’s function satisfies being antiperiodic along the contour (Kubo–
Martin–Schwinger boundary condition). As the equations of motion are exactly the
same as those in Eqs. (2.65) and (2.66), we may in similar fashion using the Langreth
rules [73, 116] derive the following equation for the lesser Green’s function with
indices on the central molecule G<

CC (for which we will right away drop the subscript
‘CC’ as we are only interested in the quantities within the central region)

i
d
dt

G<(t, t) − [hCC(t),G<(t, t)] = −
[
GR
· Σ< + G<

· ΣA + Ge ? Σd
]

(t, t) + h.c., (2.154)

where the time-convolutions on the horizontal and vertical branches of the Keldysh
contour are defined as before. Also here, we describe the leads within the WBA,
where the electronic levels of the central region are in a narrow range compared
to the lead bandwidth, and the retarded Keldysh component of the self-energy
becomes

ΣR
α,mn(ω) =

∑
k

χ
mkα

1
ω − εkα + iη

χ
kαn
≈ −iΓα,mn/2. (2.155)

Looking at Eq. (2.154) and the earlier equation of motion (2.67) we may use the
fact that the same equations have the same solutions, i.e., including the pairing
field in the Hamiltonian of the central region adds no extra complication to the
evolution of the Green’s function. The only difference is in the interpretation of the
matrices in Nambu space. In particular, the lesser Green’s function in the equal-time
limit, ρ(t) = −iG<(t, t), can be solved analytically as we have done earlier, and this
gives the time-dependent reduced one-particle density matrix. The lesser Green’s
function is commonly expressed in terms of the normal (G≶σσ′) and anomalous (F≶σσ′)
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components [131]:

−i(G<)mn(t, t) = −i


(G<
↑↑

)mn(t, t) (G<
↓↑

)mn(t, t) (−F>
↑↑

)nm(t, t) (−F>
↓↑

)nm(t, t)
(G<
↑↓

)mn(t, t) (G<
↓↓

)mn(t, t) (−F>
↑↓

)nm(t, t) (−F>
↓↓

)nm(t, t)
(F̄<
↑↑

)mn(t, t) (F̄<
↓↑

)mn(t, t) (−G>
↑↑

)nm(t, t) (−G>
↓↑

)nm(t, t)
(F̄<
↑↓

)mn(t, t) (F̄<
↓↓

)mn(t, t) (−G>
↑↓

)nm(t, t) (−G>
↓↓

)nm(t, t)


=


〈d̂†n↑(t)d̂m↑(t)〉 〈d̂†n↓(t)d̂m↑(t)〉 〈d̂n↑(t)d̂m↑(t)〉 〈d̂n↓(t)d̂m↑(t)〉
〈d̂†n↑(t)d̂m↓(t)〉 〈d̂†n↓(t)d̂m↓(t)〉 〈d̂n↑(t)d̂m↓(t)〉 〈d̂n↓(t)d̂m↓(t)〉
〈d̂†n↑(t)d̂

†

m↑(t)〉 〈d̂
†

n↓(t)d̂
†

m↑(t)〉 〈d̂n↑(t)d̂†m↑(t)〉 〈d̂n↓(t)d̂†m↑(t)〉
〈d̂†n↑(t)d̂

†

m↓(t)〉 〈d̂
†

n↓(t)d̂
†

m↓(t)〉 〈d̂n↑(t)d̂†m↓(t)〉 〈d̂n↓(t)d̂†m↓(t)〉


(2.156)

which is obtained by expanding the product in Eq. (2.145). Here we will not write
the full expressions for the TD1RDM anymore because the same results from earlier,
Eqs. (2.92) and (2.127), apply by only interpreting the indices in Nambu space, see
also Pub. [IV].

Let us motivate the discussion for the NSN setup by means of a simple example.
We simplify the pairing field to be spatially local and only couple opposite spins
(as in Cooper pairs)

∆̂ =
∑

m

∆md̂†m↑d̂
†

m↓. (2.157)

Consider a single dot connected to two leads for which the Hamiltonian can be
written as Ĥ = Ĥlead + Ĥtun + Ĥdot with

Ĥlead =
∑
kασ

εkαd̂†kασd̂kασ , (2.158)

Ĥtun =
∑
kασ

tkα0d̂†kασd̂0σ +
∑
kασ

t∗kα0d̂†0σd̂kασ , (2.159)

Ĥdot = ε0

∑
σ

d̂†0σd̂0σ + ∆0d̂†0↑d̂
†

0↓ + ∆∗0d̂0↓d̂0↑ (2.160)

with εkα giving the level structure of the leads α ∈ {L,R}, tkα0 corresponding to the
tunneling strength between the leads and the dot, and ε0, ∆0 being the energy and
the pairing strength in the dot, respectively. The creation and annihilation operators
d̂†, d̂ obey the usual fermionic operator algebra: {d̂xσ, d̂†yσ′} = δxyδσσ′ for {x, y} ∈ {kα, 0}

and {σ, σ′} ∈ {↑, ↓}. Let us introduce a new set of anti-operators ˆ̃dxσ = d̂†xσ which
naturally obey the same commutation relation { ˆ̃dxσ,

ˆ̃d†yσ′} = δxyδσσ′ . The Hamiltonian
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can now be rewritten in terms of the new and old operators as

Ĥ =
∑

kα

εkαd̂†kα↑d̂kα↑ +
∑

kα

(−εkα) ˆ̃d†kα↓
ˆ̃dkα↓ +

∑
kα

εkα

+
∑

kα

(
tkα0d̂†kα↑d̂0↑ + t∗kα0d̂†0↑d̂kα↑

)
+

∑
kα

[
(−tkα0) ˆ̃d†0↓

ˆ̃dkα↓ + (−t∗kα0) ˆ̃d†kα↓
ˆ̃d0↓

]
+ ε0d̂†0↑d̂0↑ + (−ε0) ˆ̃d†0↓

ˆ̃d0↓ + ε0 + ∆0d̂†0↑
ˆ̃d0↓ + ∆∗0

ˆ̃d†0↓d̂0↑ , (2.161)

where the constant shift, ε0 +
∑

kα εkα, occurs due to the anticommutation relations.
The constant does not modify the overall structure but sets a reference point to
the total energy. We could even choose the dot energy to be ε0 = −

∑
kα εkα for

convenience, or we could assume the leads to be in half-filling with
∑

kα εkα = 0,
etc. The important thing is that the other terms in the Hamiltonian have a similar
structure, and we may model the dot part as in the following figure

where the matrix is of the form of Eq. (2.142) and the corresponding eigenvalues

are ε± = ±
√
ε2

0 + |∆0|
2. The transport setup corresponding to Eq. (2.161) can then be

viewed through the following energy diagram

The coupling terms tkα0 connect separately the spin-up and spin-down particles
between the leads and the dot, and the pair strength term∆0 acts as a hopping term
flipping the spins within the dot. This setup can also be made more general by a
non-local ∆ as in Eq. (2.142).

According to this picture for the NSN setup and the Nambu structure in Eq. (2.156)
we will adjust the expressions for the local bond currents in Eq. (2.119) as

Jmn(t) = −
∑
σ

[
Tmn(G<

σσ)nm(t, t) + h.c.
]
, (2.162)
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where the spin is explicitly taken into account. The Cooper pair density may be
evaluated by

Pm(t) = i(F>
↓↑

)mm(t, t)e2iTmmt. (2.163)

Together these expressions satisfy the continuity equation [131]

d
dt

nm(t) =
∑

n

Jmn(t) − 4 Im[∆∗mPm(t)e−2iTmmt], (2.164)

where the site density is the expectation value nm = 〈n̂m〉 of n̂m =
∑
σ d̂†mσd̂mσ. In the

Nambu representation of the lesser Green’s function the diagonal blocks therefore
give rise to the bond current, whereas the off-diagonal blocks correspond to the
Cooper pair density. In the continuity equation (2.164) the two different terms on
the right-hand side can also be identified as the normal current and the supercurrent.

2.4.3 Arbitrary time-dependence in the bias profile

In 2015, Ridley et al. derived an extension to the formalism presented in this the-
sis [101]. This is an obvious and very useful extension of the present work, and it de-
serves a short discussion. In their work, they consider an arbitrary time-dependence
for the bias voltage Vα(t) in the α-th lead. The key finding in their work is that this
time-dependent part of the Hamiltonian

V̂(t) =
∑
kα,σ

Vα(t)d̂†kα,σd̂kα,σ (2.165)

commutes with the rest of the Hamiltonian for eachα separately. Hence, the contour
ordering can be omitted when calculating the corresponding evolution operator.
In other words, these terms can be removed from the contour-ordered product of
Hamiltonians in the time evolution. This leads to the fact that the expressions for
the creation and annihilation operators in the Heisenberg representation can be
written as

d̂kα,σ(t) = d̂kα,σe−iφkα(t,t0) = [d̂†kα(t)]† (2.166)

with t0 being the time when the voltage is switched on, and

φkα(t, t0) = (t − t0)εkα +

∫ t

t0

dτVα(τ) = (t − t0)εkα + ψkα(t, t0). (2.167)

Then, similar derivations for the different Keldysh components for the self-energies
and Green’s functions as presented in this thesis may be carried out. In addition, in
Ref. [101] the whole two-time plane for the Kadanoff–Baym equations is considered,
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and they arrive at the following expression for the lesser and greater two-time
Green’s functions

G≷(t1, t2) = ∓i
∫

dω
2π

f (∓(ω − µ))
∑
α

Sα(t1, t0, ω)ΓαS†α(t2, t0, ω), (2.168)

Sα(t, t0, ω) = e−iheff(t−t0)
[
GR(ω) − iKα(t, t0, ω)

]
, (2.169)

Kα(t, t0, ω) =

∫ t

t0

dt′e−i(ω−heff)(t′−t0)e−iψα(t′,t0), (2.170)

ψα(t, t0) =

∫ t

t0

dτVα(τ). (2.171)

This can be checked to reduce to the equal-time lesser Green’s function in Eq. (2.79)
when the bias voltage is constant: Vα(τ) = Vα. It is important to notice that in the
present thesis (and in Pubs. [I, II] herein) only the equal time lesser Green’s function
is derived as this is sufficient to calculate the densities and currents in the studied
structures. However, the two-time Green’s functions in Eq. (2.168) are required for
the calculation of other physical quantities such as noise spectra [137–139].

2.5 Phononic heat transport in the transient regime

So far, the presented theoretical models have only considered electronic transport.
We have based the description of our system of interest into the nonequilibrium
Green’s function whose time-evolution has provided us with the transient informa-
tion of the transport mechanisms. By introducing two rather strong assumptions –
noninteracting particles and wide-band approximation for the lead environment,
we have managed to solve analytically the time-evolution governing equations of
motion for the Green’s function. In this section, we discuss similar methodology
applied to a harmonic lattice describing the transport of phonons, i.e., it is a model for
heat transport. The discussion follows the structure for the theoretical development
in Pub. [V].

It is worth pointing out that in the electronic case we were consistently employing
the partition-free approach with the systems being initially contacted in a global
thermal equilibrium. Then, the bias was switched on instantaneously and all the
nonequilibrium behaviour followed from that perturbation. Here, in the case of the
phonon transport, instantaneous switch of a temperature difference is problematic
and we consider a partitioned approach with the subsystems being initially un-
contacted at separate temperatures. Admittedly, this is a somewhat artificial initial
configuration of the entire system, which might not be easy to reproduce experi-
mentally, and the transient behaviour is partly induced by the contacting and not
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only by the temperature difference. In steady state, however, this information about
the initial condition is washed away.

2.5.1 Transport setup and assumptions

We model heat transport in a nanomechanical device composed of harmonic lattices
of different temperatures connected as coupled quantum oscillators. The descrip-
tion is for noninteracting phonons only. The Hamiltonian for this sort of a setup
can be written in terms of momentum and displacement field operators (~ = 1) [56,
140] (which obey the canonical commutation relation)

Ĥ =
∑

j

p̂2
j

2m j
+

∑
j,k

1
2

û jK jkûk (2.172)

with indices { j, k} ∈ N running over the basis of the studied system, m j being the
mass of the j-th atom, and K jk being the elements of the positive definite force
constant matrix. We will define new field operators as mass-normalized ones û′j =
√m jû j and p̂′j = p̂ j/

√m j obeying the same commutation relations, and write further

Ĥ =
∑

j

1
2

(p̂′j)
2 +

∑
jk

1
2

û′jK
′

jkû
′

k =
1
2

∑
jk,µν

φ̂µjΩ
µν

jk φ̂
ν
k , (2.173)

where also the spring constant matrix was transformed as K′jk = K jk/
√m jmk, and

we composed new field operators as

φ̂ j =

φ̂1
j

φ̂2
j

 =

(
û′j
p̂′j

)
. (2.174)

The matrix elements of the block matrix Ω jk are then given by

Ω jk =

(
Ω11

jk Ω12
jk

Ω21
jk Ω22

jk

)
=

(
K′jk 0
0 δ jk

)
. (2.175)

Matrices in the 2× 2 up-basis are from now on denoted with boldface symbols. The
motivation behind the “spinor”-like φ̂-operator representation is that when we
study the time evolution we will get first order (differential) equations instead of
second order equations in time [56, 141–143]. (Compare also the up-spinor represen-
tation to the Nambu spinor representation in the previous section.) The canonical
commutation relations are encoded in the field operators φ̂ as[

φ̂µj , φ̂
ν
k

]
= δ jkα

µν with α =

(
0 i
−i 0

)
. (2.176)
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The matrix α therefore encodes the commutation relations, and it also holds α2 = 1.
We will accordingly define the phononic Green’s function for time arguments on
the Keldysh contour ({z, z′} ∈ γ) as

Dµν

jk (z, z′) = −i〈Tγ[φ̂µj (z)φ̂νk(z′)]〉, (2.177)

whereTγ is the contour-time ordering operator and 〈·〉 is an ensemble average [141,
142]. The equations of motion for the Green’s function can be expressed through
the time evolution of the field operators φ̂, and they read as (see App. A.2.1)

i∂zD jk(z, z′) = αδ jkδ(z, z′) +
∑

q

αΩ jqDqk(z, z′), (2.178)

−i∂z′D jk(z, z′) = αδ jkδ(z, z′) +
∑

q

D jq(z, z′)Ωqkα. (2.179)

It is also worth noticing that, as we dropped the indices µ, ν, Eqs. (2.178) and (2.179)
are matrix equations in the 2 × 2 up representation (boldface symbols).

Let us look more specifically at a transport setup shown in Fig. 2.5. Similarly as in
the electronic case, the full Hamiltonian can be expressed as a composition of three
parts: the left reservoir (L), the central system (C), and the right reservoir (R)

Ω =

ΩLL ΩLC 0
ΩCL ΩCC ΩCR

0 ΩRC ΩRR

 , (2.180)

i.e., the different subsystems are coupled apart from a direct coupling between the
reservoirs. In Eq. (2.180) each diagonal block is a 2NC-by-2NC or 2Nλ-by-2Nλ matrix
for λ ∈ {L,R}. (In the electronic case, we denoted the leads by an index α but this
symbol is now reserved for the up-commutator matrix in Eq. (2.176); we denote
the reservoirs in the phononic case with an index λ.) The block structures for the
diagonal elements are simply those discussed earlier

(ΩCC) jCkC =

(
K′jCkC

0
0 δ jCkC

)
; (Ωλλ) jλkλ =

(
K′jλkλ

0
0 δ jλkλ

)
. (2.181)

The different regions, however, couple only through the displacement term, so the
block structures for the off-diagonal elements are given by

(ΩCλ) jCkλ =

(
K′jCkλ

0
0 0

)
; (ΩλC) jλkC =

(
K′jλkC

0
0 0

)
(2.182)

for λ ∈ {L,R}.

We are mainly interested in the transport properties of the central system, so we
extract the component corresponding to the central region, CC, from the equations



56 Theoretical background

Fig. 2.5: Heat transport setup where a central system of interest is connected to two
reservoirs of different temperatures. The internal structures and couplings (drawn
only as a visualization) are defined by the force constant matrices K. The coupling
refers to partitioned approach where the different systems are uncoupled at times
t < 0 and coupled at times t ≥ 0 when the system is driven out of equilibrium.

of motion (2.178) and (2.179). We lighten the notation here a little by letting C
label the elements in the central region and λ the elements in the reservoirs. This
procedure leads to the following set of equations (see App. A.2.1)

(i1CC∂z − αCCΩCC)DCC(z, z′) = αCCδ(z, z′) + αCCICC,1(z, z′), (2.183)

DCC(z, z′)(−i1CC
←

∂z′ −ΩCCαCC) = αCCδ(z, z′) + ICC,2(z, z′)αCC, (2.184)

ICC,1(z, z′) =

∫
γ

dz̄ΠCC(z, z̄)DCC(z̄, z′), (2.185)

ICC,2(z, z′) =

∫
γ

dz̄DCC(z, z̄)ΠCC(z̄, z′), (2.186)

ΠCC(z, z′) =
∑
λ

ΩCλdλλ(z, z′)ΩλC, (2.187)

(i1λλ∂z − αλλΩλλ)dλλ(z, z′) = αλλδ(z, z′). (2.188)

In the derivation, we introduced dλλ as the isolated phonon Green’s function in
the reservoir λ satisfying the equation of motion (2.188) with the reservoir Hamil-
tonian Ωλλ. We also wrote αCC B α ⊗ 1CC and αλλ B α × 1λλ as 2NC × 2NC and
2Nλ×2Nλ matrices, respectively. Also, as we consider only noninteracting phonons
(no electron–phonon or phonon–phonon interactions), the self-energy term ΠCC in
the collision integrals (2.185) and (2.186) is given solely as the embedding self-energy
defined in terms of the coupling Hamiltonians ΩCλ in Eq. (2.187). From Eq. (2.183)
and its adjoint equation (2.184) we can derive an equation of motion for the lesser
Green’s function D<

CC by using the Langreth rules [73, 116] for the collision inte-
grals. Particularly, we are interested in the time-dependent phonon density matrix
given by the equal-time lesser Green’s function ρ(t) = iD<

CC(t, t), and for this we
simply consider only the time-diagonal elements. The procedure involves subtract-
ing Eq. (2.184) from Eq. (2.183) which, in the equal-time limit, leads to the partial
derivatives adding up to the total derivative, and in total we get

i
d
dt

D<(t, t)−
[
αΩD<(t, t) −D<(t, t)Ωα

]
= −{[DR

·Π<]+[D<
·ΠA]+[De?Πd]}(t, t)α+h.c.,

(2.189)
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where we defined, similarly as in the electronic case, the time-convolutions on the
contour γ as [a · b](t, t) =

∫
∞

0
dt̄a(t, t̄)b(t̄, t) and [a ? b](t, t) = −i

∫ β

0
dτ̄a(t, τ̄)b(τ̄, t) for

Keldysh functions a and b, and we also dropped the subscripts CC as there should
be no room for misunderstanding. Strictly speaking the derivation of Eq. (2.189)
requires a single inverse temperature β = 1/T for the whole system because of the
convolution along the imaginary axis. As we will consider partitioned systems,
imaginary-time convolutions vanish and we can assign different temperatures to
different subsystems. The interpretation for Eq. (2.189) is exactly the same as in the
electronic case, see Eq. (2.67): If we did not have the central system embedded into
the environment, the self-energy terms would simply be zero, and we would be left
with a Liouville-type equation for the time-evolution of the one-phonon reduced
density matrix for an isolated central region. The self-energy terms, therefore, ac-
count for the open transport setup where a finite central region is embedded into
the environment.

So far, the discussion has been rather general, and Eq. (2.189) also applies to many
different setups beyond the present study. Similarly as in the electronic case, our
aim is to solve (analytically) this integro-differential equation for D< and then
extract dynamical quantities such as heat currents from the time-dependent phonon
density matrix. As the equations to solve are almost equivalent to the electronic
transport (the difference being in the matrix α and furthermore the composed up-
representation of the Green’s function components), it is easy to follow a very
similar path in deriving the analytic result for the phonon density matrix.

For solving the equation (2.189) we need to make some approximations, first one
being the partitioned approach, i.e., all regions in the transport setup are initially
(t < 0) uncoupled and in separate thermodynamical equilibrium. At t = 0 we cou-
ple the different regions and drive the systems out of equilibrium via a temperature
difference, see Fig. 2.5. In contrast to the electronic case, this procedure disregards
the initial couplings: ΩλC = 0 in equilibrium, so the integrations along the vertical
track of the Keldysh contour in Eq. (2.189) are simply left out. The remaining two
terms can be interpreted as a source/drain and a damping/equilibration term. The
drain (source) term is a convolution between the propagator in the central region,
DA (h.c.), and the lesser embedding self-energy Π< which is proportional to the
probability of finding a phonon in the reservoirs, i.e., it describes the extraction
(insertion) of phonons out of (into) the central region. The second term is a con-
volution between the propagator in the reservoirs, ΠR (h.c.) and the lesser Green’s
function in the central region D< which is proportional to the probability of finding
a phonon in the central region, i.e., it is responsible for damping (equilibration)
effects.

Next, we need an approximation for the embedding self-energy, ΠR, typically ex-
pressed as a wide-band approximation where the energy scale of the central region
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is much more narrow than the energy scale of the reservoirs. This makes the self-
energies in time domain to be proportional to delta functions (and derivatives of
delta functions) which, in turn, closes the equation for D<. Given an approximation
for ΠR, we may derive Π< from a fluctuation–dissipation relation and DR from a
Dyson-type of equation.

2.5.2 Embedding self-energy and frequency cut-off

Let us start by considering the coupling of the central region to the reservoirs and
the embedding self-energy. For Eq. (2.187) we need the coupling Hamiltonians and
the reservoir Green’s function. And, as we are considering the retarded component
of the embedding self-energy, we need to find an expression for dR. For the isolated
phonon Green’s function in the reservoir λ we have the following expression

dλλ(z, z′) = −iαλλθ(z, z′) f̄λ(Ωλλαλλ)e−iΩλλαλλ(z−z′)

−iαλλθ(z′, z) fλ(Ωλλαλλ)e−iΩλλαλλ(z−z′) (2.190)

which can be checked to satisfy Eq. (2.188) by direct differentiation. In the above
expression f̄λ = 1 + fλ and fλ(ω) = (eβλω − 1)−1 is the Bose–Einstein distribution
(for reservoir λ). This will also give the density matrix for an isolated system when
z′ → z+. By using the above expression for the uncoupled Green’s function we
may derive different Keldysh components and calculate the retarded embedding
self-energy from Eq. (2.187), see App. A.2.2. We find that the real and imaginary
parts of the retarded embedding self-energy

ΠR
λ(ω) =

(
ΠR
λ(ω) 0
0 0

)
C Λλ(ω) −

i
2
Γ′λ(ω) (2.191)

are, respectively, even and odd functions in frequencyω. We will accordingly make
approximations so that

Λλ(ω) ≈ Λλ(ω = 0) = Λ0,λ , (2.192)

Γλ(ω) ≈ ω
∂Γλ
∂ω

∣∣∣∣∣
ω=0

= ωΓ′0,λ. (2.193)

In contrast to the conventional wide-band approximation in electronic transport,
now the retarded embedding self-energy is not a purely imaginary constant. In-
stead, the imaginary part will be frequency dependent (linearized approximation)
whereas the real part will be constant. Also, as the matrices K are by construc-
tion positive definite, then from Eq. (2.192) we get that Λ0,λ is negative definite
[also see Eq. (A.96)] and from Eqs. (2.191) and (2.193) that Γ′0,λ is positive definite.
This approximation for the real and imaginary parts of the embedding self-energy
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Fig. 2.6: Frequency dependency of the retarded embedding self-energy for the infinite
coupled spring model: Solid blue line is the real part and dashed red line is the
imaginary part. The axes are scaled with the inter atom spring constant kλ.

function does not satisfy the Kramers–Kronig relations [73, 118], and for this rea-
son we momentarily consider a frequency cut-off regulating divergent behaviour.
Compared to Eqs. (2.192) and (2.193) similar wide-band-like approximations for
the self-energy have been proposed in Refs. [144, 145] where the embedding self-
energy is approximated as a purely imaginary sign function. However, due to the
structure of the sign function, this approximation also violates the Kramers–Kronig
relations.

This approximation also corresponds to the form calculated explicitly for a uniform
one-dimensional system of N coupled springs [146]. We will take this model for
our reservoirs (Nλ sites coupled with equal springs) and construct the embedding
self-energy accordingly. In this model, the force constant matrix Kλλ has diagonal
elements 2kλ + kλ,0 and the first off-diagonal elements −kλ. For simplicity, we let the
on-site term be zero kλ,0 = 0 as it only corresponds to a shift in the phonon band.
In the limit Nλ → ∞ the retarded embedding self-energy is given by ΠR

λ(ω) = −kλz
where z is the solution to the quadratic equation (see Sec. 7 in Ref. [146])

kλz−1 + (ω + iη)2
− 2kλ + kλz = 0. (2.194)

The solutions are plotted in Fig. 2.6 (η → 0) against ω. The imaginary part of the
self-energy will be nonzero for |ω| < 2

√
kλ introducing the phonon bandwidth. The

behaviour of the approximations in Eqs. (2.192) and (2.193) around ω = 0 is also
visible in Fig. 2.6.

In contrast to Ref. [146] small adjustments are still in order for the values in
Eqs. (2.192) and (2.193): In our setup the coupling strength between the reservoirs
and the central region is not the same as the spring constants inside the reservoirs or
inside the central region. In this case, the retarded embedding self-energy is written
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as

ΠR(ω) = −
k2
λC

kλ
z(ω), (2.195)

z(ω) =
1

2kλ

[
2kλ − ω2 + ζλ(ω)ω

√
(ω − 2

√
kλ)(ω + 2

√
kλ)

]
(2.196)

with ζλ(ω) = sgn(ω + 2
√

kλ) and where z still satisfies Eq. (2.194). The phonon
bandwidth in this setup, |ω| < 2

√
kλ, is similar to the electron bandwidth in one-

dimensional tight-binding lattice |ε| < 2thop [73], where thop is the hopping integral
between the tight-binding lattice sites, since

√
kλ can here be understood as a

harmonic oscillator’s characteristic mode ω =
√

k/m. Within our approximation in
Eqs. (2.192) and (2.193) we get Λ0,λ = ReΠR(ω = 0) = −k2

λC/kλ. Approximating the
imaginary part (when |ω| < 2

√
kλ) is evaluated as the first order expansion at ω = 0

as in Eq. (2.193): ImΠR(ω) = ∂ω ImΠR(ω)
∣∣∣
ω=0

ω = k2
λC/k

3/2
λ ω giving Γ′0,λ = 2k2

λC/k
3/2
λ .

It would also be possible to include the terminal site of the reservoirs into the
description of the central region; we have an arbitrary matrix structure for the
central region inΩCC, so this would not add any complications. In this way, also the
coupling of the central region to the reservoirs is included in the central region’s
description and the parameter for the coupling strength can be chosen equal to the
coupling parameter within the reservoirs. However, we continue with the form in
Eq. (2.195).

Since the embedding self-energy only has nonzero components in the ‘uu’ block,
we express it now in the following form

ΠR
λ(ω) =

(
Λ0,λ −

iω
2 Γ
′

0,λ 0
0 0

)
= Λ0,λ −

iω
2
Γ′0,λ , (2.197)

where each element of the 2 × 2 matrix is an NC × NC matrix. Also, summing over
the different reservoirs λ gives the total embedding self-energy: ΠR =

∑
λ=L,RΠ

R
λ,

and this also applies to the real and imaginary parts Λ0 and Γ′0.

Compared to the conventional wide-band approximation here we might run into
problems with our approximation for the embedding self-energy because of the
unboundedness of the imaginary part ωΓ′0/2 when |ω| → ∞. For this reason, we
introduce a cut-off frequencyωc above which the approximation for the embedding
self-energy would simply be zero

ΠR
λ(ω) = θ(ωc − |ω|)(Λ0,λ −

iω
2
Γ′0,λ). (2.198)

A natural choice for the cut-off frequency would be the phonon bandwidth; we
could tune the considered frequency range by varying the reservoir parameters,
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see Fig. 2.6. The lesser component of the embedding self-energy is then simply
given by the fluctuation–dissipation relation [73]

Π<
λ(ω) = θ(ωc − |ω|)[−i fλ(ω)ωΓ′0,λ]. (2.199)

The cut-off frequencyωc, on the other hand, also gives an energy scale above which
the central system does not feel the embedding. In our partitioned approach, this
relates to a time scale, after the contact, when the system is embedded. Since in the
equation of motion our Green’s functions DR,A appear together with the embedding
self-energy, we will regard them as embedded ones, meaning they are calculated for
the coupled system. In principle, there is a contribution from isolated Green’s
functions, dR,A, but our approximation for the embedding self-energy together with
the cut-off frequency neglects this. There is a more thorough discussion about the
motivation for the cut-off frequency in App. A.2.3.

2.5.3 Solving the equations of motion

Based on our approximations discussed in the previous section we may now derive
expression for the time convolutions in Eq. (2.189). More detailed calculations are
presented in App. A.2.3 and we state here only the results.

For the convolution between the retarded (advanced) Green’s function and lesser
embedding self-energy the cut-off frequency is explicitly present as a step function,
as in Eq. (2.199)[

DR
·Π<

]
(t, t) = −i

∑
λ=L,R

∫
∞

−∞

dω
2π

[
1 − ei(ω−Ωeff)t

]
DR(ω)θ(ωc − |ω|)ω fλ(ω)Γ′0,λ. (2.200)

As the frequency integral is cut off, we evaluate DR in the limit ωc,λ → ∞ [see
Eq. (A.101)]:

DR(ω) =
1

ω −Ωeff

1
α + i

2Γ
′

0

. (2.201)

By conjugating Eq. (2.200), we also get[
Π<
·DA

]
(t, t) = −i

∑
λ=L,R

∫
∞

−∞

dω
2π
θ(ωc − |ω|)ω fλ(ω)Γ′0,λDA(ω)

[
1 − e−i(ω−Ω†

eff)t
]
,

(2.202)
where DA is found by conjugating Eq. (2.201). Here we defined the effective (non-
hermitian) Hamiltonian as

Ωeff =
1

α + i
2Γ
′

0

(Ω + Λ0). (2.203)
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It is worth noticing that in Eqs. (2.200) and (2.202) the integrands are proportional to
ω f (ω) which is unbounded when ω→ −∞. This diverging nature of the frequency
integrals is then regulated by the cut-off frequency.

For the convolution between the lesser Green’s function and the retarded/advanced
embedding self-energy the cut-off frequency is more implicitly taken into account.
As the lesser Green’s function gives rise to oscillation frequencies corresponding to
the physical setup, we may compare these frequencies to the ones encoded in the
retarded/advanced embedding self-energy whose oscillation frequencies depend
on the choice for the cut-off frequency. If we choose the cut-off frequency consid-
erably higher than typical energy scales of the studied system we may regard the
retarded/advanced embedding self-energies as in the limit ωc → ∞, see details in
App. A.2.3. The second convolution is then evaluated as[

D<
·ΠA

]
(t, t) = D<(t, t)Λ0 +

∂D<(t, t′)
∂t′

∣∣∣∣∣
t′=t

Γ′0
2
, (2.204)

and by conjugating we also get[
ΠR
·D<

]
(t, t) = Λ0D<(t, t) +

Γ′0
2
∂D<(t, t′)

∂t

∣∣∣∣∣
t=t′
. (2.205)

If we, on the other hand, fix the cut-off frequency at the phonon bandwidth, and
want this description to be a good approximation, we should tune our system
parameters such that the characteristic frequencies fall well into the cut-off regime,
i.e., the spectrum of the studied system is narrow compared to the bandwidth of
the reservoirs.

An important thing to notice is that the convolutions in Eqs. (2.204) and (2.205)
depend not only directly on D< but also on the time-derivative of D< at equal-
time limit. This means that inserting these expressions back into the equation of
motion does not immediately close the equation for D<. However, we may insert
the explicit time-evolution from Eqs. (2.183) and (2.184) for the derivative terms
and then couple the terms accordingly. As Eqs. (2.183) and (2.184) include the same
convolutions, we will gain similar terms by this procedure. But, as it turns out, this
procedure still closes the equation for D<.



2.5 Phononic heat transport in the transient regime 63

Now we are ready to insert Eqs. (2.200), (2.202), (2.204), and (2.205) into Eq. (2.189):

i
d
dt

D<(t, t) −
[
αΩD<(t, t) −D<(t, t)Ωα

]
= α

−i
∑
λ=L,R

∫
dω
2π
θ(ωc − |ω|)ω fλ(ω)Γ′0,λDA(ω)

[
1 − e−i(ω−Ω†

eff)t
]

+Λ0D<(t, t) +
Γ′0
2
∂D<(t, t′)

∂t

∣∣∣∣∣
t=t′

]
−

[
D<(t, t)Λ0 +

∂D<(t, t′)
∂t′

∣∣∣∣∣
t′=t

Γ′0
2

−i
∑
λ=L,R

∫
dω
2π
θ(ωc − |ω|)ω fλ(ω)

[
1 − ei(ω−Ωeff)t

]
DR(ω)Γ′0,λ

α. (2.206)

Then, we will insert ∂D(t, t′)/∂t and ∂D(t, t′)/∂t′ from Eqs. (2.183) and (2.184), and
accordingly insert the consequent convolutions from Eqs. (2.200), (2.202), (2.204),
and (2.205). By combining terms and simplifying we end up with (see App. A.2.4)

i
dD<(t, t)

dt
−ΩeffD<(t, t) + D<(t, t)Ω†eff

= −i
∑
λ=L,R

∫
dω
2π
θ(ωc − |ω|)ω fλ(ω)

{
αΓ′0,λDA(ω)

[
1 − e−i(ω−Ω†

eff)t
]

−

[
1 − ei(ω−Ωeff)t

]
DR(ω)Γ′0,λα

}
. (2.207)

In the above expression, all the terms involving derivatives of the lesser Green’s
function [inserted ∂D(t, t′)/∂t and ∂D(t, t′)/∂t′ from Eqs. (2.183) and (2.184)] van-
ished as we noticed, by evaluating simple matrix products, that

Γ′0,(λ)αΛ0 = Λ0αΓ′0,(λ) = Γ′0,(λ)αΓ
′

0,(λ) = 0. (2.208)

All the higher order derivatives are also truncated based on these matrix struc-
tures. In Eq. (2.207) we now have a linear, first order, nonhomogeneous differential
equation for D< which can be solved uniquely with an initial condition. Solving
the differential equation is done almost identically to the electronic case but the
procedure is still outlined in App. A.2.4; the solution is

iD<(t, t) = iD<
0 (t, t) +

∑
λ=L,R

∫ ωc

−ωc

dω
2π

fλ(ω)
[
1 − ei(ω−Ωeff)t

]
Bλ(ω)

[
1 − e−i(ω−Ω†

eff)t
]

(2.209)

with the initial condition

iD<
0 (t, t) = e−iΩefftα fC(Ωα)eiΩ†

efft (2.210)
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stemming from the uncoupled lesser Green’s function in the central region as in
Eq. (A.87) where the Bose–Einstein distribution function fC is then defined via
an equilibrium temperature for the central region before coupling. The spectral
function Bλ(ω) = DR(ω)ωΓ′0,λDA(ω) can be evaluated as

Bλ(ω) =
1

ω(α + i
2Γ
′

0) −Ω − Λ0
ωΓ′0,λ

1
ω(α − i

2Γ
′

0) −Ω − Λ0
. (2.211)

Equation (2.209) is our final result for the time-dependent one-particle phonon
density matrix. Remarkably, it is a closed expression, i.e., no time propagation is
needed for evaluating the time-dependent density matrix, as was the case in the
electronic transport as well. The form of the solution in Eq. (2.209) also follows the
general structure of a Landauer–Büttiker type: a frequency integral over spectral
(“transmission”) functions [143, 147]. The transient behaviour is encoded in the
exponentials: we have oscillations with frequencies ω jk = |Reω j,eff − Reωk,eff| as
transitions between the vibrational frequencies of the central region. Here ωeff are
the complex eigenvalues of the effective Hamiltonian Ωeff. Finally, ω fλ(ω) is well-
behaving at ω = 0 (although fλ(ω) diverges at zero), and the cut-off frequency ωc

regulates the unbounded behaviour at ω→ −∞.

It is instructive to investigate few limiting cases for Eq. (2.209). At t = 0 the square
brackets will simply vanish due to the exponentials being unit matrices, and there-
fore we are left with the uncoupled result, as should be the case due to the initial
condition. This also happens if the systems remain uncoupled, i.e.,Λ0 = 0 = Γ′0; then
we are left with the free evolution of the initial state as Ωeff → αΩ and Bλ(ω)→ 0.
The steady-state result comes from the limit t → ∞ when the exponentials vanish
due to the non-hermitian structure ofΩeff:

ρSS =
∑
λ=L,R

∫ ωc

−ωc

dω
2π

fλ(ω)
1

αω −Ω − (Λ0 −
iω
2 Γ
′

0)
ωΓ′0,λ

1
αω −Ω − (Λ0 + iω

2 Γ
′

0)
. (2.212)

Within our self-energy approximation, ΠR/A(ω) = θ(ωc − |ω|)(Λ0,λ ∓
iω
2 Γ
′

0,λ), we may
write Eq. (2.212) as

ρSS =
∑
λ=L,R

∫
∞

−∞

dω
2π

fλ(ω)DR(ω)Γλ(ω)DA(ω), (2.213)

i.e., our time-dependent result reduces in the steady-state limit to the one derived
in Ref. [148].

In addition, we notice that also in this case of phonon transport the integrals in
Eq. (2.209) are possible to carry out analytically in a similar way as in Pub. [II].
This result for the time-dependent one-phonon density matrix can be expanded in
the eigenbasis of the non-hermitian matrix Ωeff. Further, when the Bose function
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is expressed as a Padé series [149, 150], the resulting frequency integrals may be
written in terms of complex logarithms and exponential integral functions.

As the derived result provides information about the one-particle density matrix
in the central region, we are interested in local quantities in this region. The local
energy in the central region may be calculated as a sum over the ‘uu’ and ‘pp’ blocks
of the product of the Hamiltonian and the density matrix [56, 143]

E(t) =
i
2

Tr
[
ΩD<(t, t)

]
. (2.214)

The local heat current between the sites of the central region may be derived by
considering the temporal change in local energy in a given site; this should amount
to the sum of heat currents flowing in and out of that site [151–153]. The local energy
for site j can be written as an expectation value ε j = 〈Ĥ j〉 of the local Hamiltonian
Ĥ j = [(p̂′j)

2 +
∑

k û′jK
′

jkû
′

k]/2. (This is chosen so that Ĥ =
∑

j Ĥ j.) Then, for Ĥ being the
total Hamiltonian for the central region [see Eq. (2.173)], we get from the Heisenberg
equation

dε j

dt
= −i〈[Ĥ j, Ĥ]〉 =

∑
k

1
2

K′jk
(
〈û′jp̂

′

k〉 − 〈û
′

kp̂
′

j〉
)
, (2.215)

where we used the commutation algebra of the momentum and displacement
operators. This motivates to define the local (net) heat current between sites j and
k as the up component of the density matrix

JQ
jk(t) =

1
2

K′jk
(
〈û′jp̂

′

k〉 − 〈û
′

kp̂
′

j〉
)

(t), (2.216)

where the two terms can be regarded as “in-coming” (from k to j) and “out-going”
(from j to k) heat current. This definition in Eq. (2.216) deviates a little from the
conventional definitions for the heat current between a reservoir and the central
region [56, 143] (see also the next subsection) since in our case there may be multiple
(arbitrary) contacts between the sites in the central region contributing to the heat
current through a given site.

2.5.4 Meir–Wingreen and Landauer like formulae

Although we can already evaluate local heat currents in transient regime within
the central region by applying the result for the time-dependent density matrix
in Eq. (2.209) and Eq. (2.216), we could also wonder about the thermal currents
through the interface between the central region and the reservoirs. The following
discussion is very similar to the one in Sec. 2.2.2 for electronic transport.
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Energy or heat current from the λ-th reservoir to the central region can be defined
through the rate of change in energy, or in the expectation value of the Hamiltonian,
in reservoir λ

JQ
λ (t) = −

〈
dĤλ

dt

〉
= −i

〈[
Ĥλ, Ĥtot

]〉
, (2.217)

where the second identity is due to the Heisenberg equation of motion;

Ĥλ =
1
2

∑
j∈λ
k∈λ

(
p̂λj p̂λk δ jk + ûλj Kλλ

jk ûλk
)

(2.218)

is the Hamiltonian for reservoir λ and

Ĥtot =
1
2

∑
jk

(
p̂ jp̂kδ jk + û jK jkûk

)
(2.219)

is the full Hamiltonian (the indices j, k belonging to any sub-block L,C,R). The
reservoir Hamiltonian commutes with itself and with the Hamiltonian of the central
region (indices j, k ∈ C). The only nonzero contribution to the commutator therefore
comes from the coupling part (with mixed components):[

Ĥλ, Ĥtot

]
=

[1
2

∑
jk

(
p̂λj p̂λk δ jk + ûλj Kλλ

jk ûλk
)
,

1
2

∑
jk

(
ûλj KλC

jk ûC
k + ûC

j KCλ
jk ûλk

) ]
= −

i
2

∑
j∈λ
k∈C

[
KλC

jk p̂λj (t)ûC
k (t) + KCλ

kj ûC
k (t)p̂λj (t)

]
, (2.220)

where we used [AB,C] = A[B,C] + [A,C]B for the commutator and the canonical
commutation relations [p̂ j, û j] = −iδ jk, [û j, ûk] = 0 = [p̂ j, p̂k], and expressed the dis-
placement and momentum operators in the Heisenberg picture. As we are dealing
with mass-normalized operators we may use u̇ = p and further rewrite this as[

Ĥλ, Ĥtot

]
= −

i
2

∑
j∈λ
k∈C

[
KλC

jk
∂
∂t′

ûλj (t′)ûC
k (t) + KCλ

kj ûC
k (t)

∂
∂t′

ûλj (t′)
]

t′=t
. (2.221)

Then, by inserting into Eq. (2.217), the thermal current becomes

JQ
λ (t) = −iTr

[
ΩCλ

∂
∂t′

D<
λC(t′, t)

]
t′=t
, (2.222)

where we identified the definition of the Green’s function, and replaced the sum
over the block indices by a matrix product and a trace over the states in the central
region. In App. A.2.1 we derived an expression for the Green’s function DλC in
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Eq. (A.82). Similar to the derivation of the Meir–Wingreen formula in the electronic
case in Sec. 2.2.2 we may use the Langreth rules [73, 116] for this Green’s function
to be inserted in Eq. (2.222). This procedure leads to the following expression in the
transient regime

JQ
λ (t) = −iTr

∫
∞

t0

dt̄
[
∂
∂t′
Π<

CC(t′, t̄)DA
CC(t̄, t) +

∂
∂t′
ΠR

CC(t′, t̄)D<
CC(t̄, t)

]
t′=t

, (2.223)

where we identified the embedding self-energy Π from Eq. (2.187). Similar to
Eq. (2.46), this result is very general as it is valid for any time t. In addition, if
the Green’s functions satisfied the full equations of motion, also the interactions
would be taken into account. This derivation, however, was done based on the
partitioned approach, and especially for small t the transient is affected by the
contacting. In any case, at t → ∞ the information about the initial configuration
is washed away. More specifically, the only difference, compared to the electronic
case, is in the contour and the corresponding Keldysh components coming from
the Langreth rules; here the contour does not have a vertical complex part since the
reservoirs are uncorrelated before the switch is turned on at t0. The vertical contour
would also be problematic to define for a system with two different temperatures.

In the steady-state limit we can extend t0 → −∞, and the functions of two time
variables become functions of the time difference only, and we may use the relation
between the time-convolutions and Fourier transforms. The time-derivative will
return a factor of −iω from the exponential in the Fourier transform:

JQ
λ,SS = −

∫
∞

−∞

dω
2π
ωTr

[
Π<

CC(ω)DA
CC(ω) +ΠR

CC(ω)D<
CC(ω)

]
. (2.224)

The heat current must be real, so we may symmetrize this result by

JQ
λ,SS =

1
2

[
JQ
λ,SS + (JQ

λ,SS)∗
]

= −

∫
∞

−∞

dω
4π
ωTr

[
D<

CC(ω)Π>
CC(ω) −D>

CC(ω)Π<
CC(ω)

]
, (2.225)

where we used (Π<)† = −Π<, (D<)† = −D<, i(DR
−DA) = i(D>

−D<) and i(ΠR
−ΠA) =

i(Π>
− Π<) [73]. Here, it is also possible to separate the integration from −∞ to 0

and from 0 to∞ and using similar symmetry relations as above [73] we may write
the heat current as

JQ
λ,SS =

∫
∞

0

dω
2π
ωTr

[
D<

CC(ω)Π>
CC(ω) −D>

CC(ω)Π<
CC(ω)

]
, (2.226)

cf. Refs. [146, 154]. The above expressions for the steady-state heat current are
equivalent representations of the Meir–Wingreen formula for phonon transport. Yet
another, commonly presented expression is in a two-terminal setting for the dif-
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ference JQ
SS = JQ

R,SS − JQ
L,SS in terms of the spectral functions and using a fluctuation–

dissipation relation for the lesser self-energy Π<(ω) = −i f (ω)Γ(ω)

JQ
SS = i

∫
∞

−∞

dω
4π
ωTr

{[
fL(ω)ΓL(ω) − fR(ω)ΓR(ω)

] [
DR

CC(ω) −DA
CC(ω)

]
+ [ΓL(ω) − ΓR(ω)] D<

CC(ω)
}
, (2.227)

cf. Eq. (2.50). If we further explicitly assume noninteracting central region, we may
write the lesser Green’s function as D<

CC = DR
CCΠ

<
CCDA

CC. Using the same fluctuation
relation for the lesser self-energy we get

JQ
λ,SS =

∫
∞

−∞

dω
4π

∑
β

ω
[

fβ(ω) − fλ(ω)
]

Tr
[
Γλ(ω)DR

CCΓβ(ω)DA
CC(ω)

]
. (2.228)

Limiting ourselves to a two-terminal setting and evaluating the difference JQ
SS =

JQ
R,SS − JQ

L,SS gives the Landauer–Büttiker formula for phonon transport

JQ
SS =

∫
∞

0

dω
2π
ω

[
fL(ω) − fR(ω)

]
Tr

[
ΓR(ω)DR

CCΓL(ω)DA
CC(ω)

]
, (2.229)

cf. Ref. [146]. The thermal conductance could further be defined via lim∆T→0 JQ
SS/∆T

where ∆T is the difference in the temperatures in the reservoirs. This would lead to
otherwise similar formula as Eq. (2.229) but with a derivative of the Bose functions
with respect to temperature.



3 Results

In this chapter, a selection the results in Pubs. [I–V] is summarized (Secs. 3.2–3.7).
Before that we have a brief introduction (Sec. 3.1) to the transport simulations in
specific model systems. In this introductory part we assess the validity, accuracy,
and computational cost of the methodology discussed in the previous chapter
when compared to different numerical methods. For the purpose of a self-contained
presentation, figures from the publications will be replicated when necessary.

3.1 Transport simulation comparisons between differ-
ent methods

3.1.1 Transport setup and the comparative methods

We will first look at few numerical examples of transport studies based on the
formalism discussed in Chap. 2. As the developed method of solving the equations
of motion for noninteracting systems in WBA is new, we would like to see how
it compares with other methods. To this end, we will study transport through
simple systems, e.g., molecules consisting of one or two energy levels, simple one-
dimensional atomic chains of moderate lengths (in the order of tens of atoms) and
also a bit larger graphene based nanostructures. The transport setup is generally
of the form in Fig. 3.1 where tC, tα and tαC are the hopping parameters in the
central region, in the leads, and between one and another, respectively (although
not restricted to only one parameter per region). The resonance widths Γα depend
on the hopping parameters. The possible parameters for the central region also
include arbitrary potential profile u and superconducting gap ∆. Environmental
conditions are handled by the parameters for the bias voltage Vα (with respect to
the chemical potential µ) and inverse temperature β.

We will use the developed time-dependent extension to the Landauer–Büttiker for-
malism, here referred to as ‘LB’. As a comparison we will solve the equations of
motion for the Green’s function numerically using an embedding scheme [112].
This involves a time-stepping algorithm in propagating the Kadanoff–Baym equa-
tions [73, 113], here referred to as ‘KB’. More specifically, in the KB solver Eq. (2.38) is

69
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Fig. 3.1: General transport setup for the comparison simulations to be presented in
this section.

decomposed into real-time equations for each Keldysh component and then prop-
agated in the two-time plane. For the single-particle Hamiltonian we may choose
exactly the same description as in LB. As we are benchmarking a noninteracting
model in LB, we put the many-body self-energy to zero in KB and only include the
embedding part. For the embedding self-energy in KB we are, however, not limited
by the WBA but we may include the exact energy band structure for the leads.

We will also, as a comparison, perform a simple calculation of propagating single-
particle Hartree–Fock orbitals of a finite system [155, 156] using the implicit mid-
point rule, i.e., the Crank–Nicholson method [157] (referred to as ‘HF’); the finite
system is composed of two leads and a central system of interest, and the leads
are chosen long enough to avoid reflections and other finite-size effects. More
specifically, in the HF solver a finite system for the leads and the central region
is composed as a single-particle tight-binding Hamiltonian Ĥ. The Hamiltonian
may vary in time, so we may include the bias voltage for the lead parts as on-site
terms. As we are comparing with a noninteracting model in LB we do not consider
interactions even though they could be included here in the Hartree–Fock level.
The time-evolution of the single-particle orbitals ϕ(t) is obtained as a numerical
solution to a linear system [157], Âϕ(t +∆t) = b, where Â = 1̂+ i∆tĤ(t +∆t/2)/2 and
b = [1̂−i∆tĤ(t+∆t/2)/2]ϕ(t). In addition, in HF we are not limited by the embedding
scheme (or the WBA either) since the full finite system is solved explicitly.

As the LB method presented in Chap. 2 provides computational simplification when
quantities of interest can be expressed in closed form, we would like to compare the
computational cost with KB and HF. The numerical implementation of Eqs. (2.79),
(2.85) and (2.126) is straightforward:

1. The Hamiltonian matrix for the central region and the coupling matrices
between the central region and the leads are constructed.
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2. The effective Hamiltonian, Green’s functions and spectral functions are con-
structed. Diagonalization of heff is needed for eigendecomposition.

3. Numerical integration over the frequency ω is performed, preferably in an
adaptive grid due to the spiky behaviour of the spectral functions.

(4. As each time step can be evaluated separately, the computation is considerably
sped up by parallelization.)

When the frequency integrals are evaluated analytically, we end up with the imple-
mentation of Eqs. (2.92) and (2.127) which is computationally less demanding but
implementation-wise perhaps more tedious due to the collection of complex special
functions. For the phonon density matrix in Eq. (2.209) the procedure is the same
as above. A computationally inclined reader might be interested in the repositories
in Refs. [158, 159] although these codes are to be taken with a grain of salt.

The difference between numerical time propagation of the Kadanoff–Baym equa-
tions and using the extended Landauer-Büttiker formalism is something to be
considered, at least when the studied systems become larger. We performed the
comparisons using a regular desktop computer with Intel Core i5-2400 CPU @ 3.10
GHz × 4, 4 GB RAM and GCC version 4.7.2. These calculations were done using
only a single core to better benchmark the computational cost between different
methods. In the end of this section, when we benchmark the LB method further, we
also discuss the parallelization for multi-core clusters.

3.1.2 Time-dependent current between the interface of a one-level
system and a lead

The first example is simply a one-level system sandwiched between two leads at
zero temperature. This model was studied in Ref. [96], so the comparison results
between different methods presented here should be compared with the cited paper.
We let, for simplicity the on-site energy of the central level be zero and set the
chemical potential also to this value. We fix the tunneling rate between the central
level and the leads to be ΓL = ΓR = Γ and relate the other parameters to this energy
scale. This means the hopping strength tαC between the leads and the central level,
and the hopping strength in the leads tα are related by Γα = 2t2

αC/|tα| in WBA. We
bias the left lead to VL = 5Γ (with respect to the chemical potential µ = 0) and let the
right lead remain unbiased VR = 0. In Fig. 3.2a we show the time-dependent current
through the right interface, i.e., between the central level and the right lead. The
calculations involved 500 time steps of length ∆t = 0.006 Γ−1. In the HF calculation
the finite leads were of length 60 atoms in a chain. A value of Γ = 0.2 was assigned
for the tunneling rate.
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Fig. 3.2: Comparison of the time-dependent current using three different methods.
Computation wall-times are marked in the legend.

We see how all the methods give qualitatively similar results with varying compu-
tational cost. The model is very simple, and the observed oscillation of the current
is simply due to one relevant energy scale in the setup: the difference between the
biased left lead and the zero energy of the central system. The chosen tunneling
energy scale Γ = 0.2 is of moderate strength (compared to other parameters), and
we expect LB to compare moderately with the full embedding in KB. In fact, using
the WBA in LB overestimates the beginning of the transient since the tunneling
rate is assumed too large for the channels close to the band edge. This, however,
is correctly taken into account in KB and HF where the energy dependency of the
tunneling for different channels is handled accordingly. At later times this does not
give considerable differences and LB and KB are essentially on top of each other. HF,
however, starts to behave differently at later times as the finite-size effects start to
play a role; a virtual oscillation around the steady-state current is due to reflections
from the system boundaries.

3.1.3 Time-dependent current through the interface of a molecule
of two energy levels and a lead

The second example is a two-level molecule (say, HOMO and LUMO) attached to
two leads at zero temperature. We let the molecular energy levels be {ε0 − δ, ε0 + δ}
and couple both levels to the leads with equal strength Γ. This model is a textbook
example in [73] where a similar calculation was performed. Also here, the hopping
strength tαC between the leads and the central levels, and the hopping strength in the
leads tα are related by Γα = 2t2

αC/|tα| in WBA. We bias the left lead to VL = 2ε0 (with
respect to the chemical potential µ = 0) and let the right lead remain without a level
shift VR = 0. In contrast to the previous example, we now look at weak coupling,
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in which we expect WBA to be rather similar to the embedded KB propagation. We
let ε0 = 500Γ, δ = 20Γ and Γ = 0.001.

In Fig. 3.2b we show the time-dependent current through the left interface, i.e.,
between the central levels and the left lead. Because of the weak coupling, the calcu-
lations involved a bit longer simulation: 1000 time steps of length ∆t = 0.00025 Γ−1.
In the Hartree–Fock calculation the finite leads were chosen to be of length 250
atoms in a chain, which was tested to be appropriate for the studied time scales.
In this case also, we see how all the methods give roughly similar results. Now the
beginning of the transient is described correctly also by LB as WBA is a fairly good
approximation. The slight discrepancies between LB and KB for later times is due to
numerical integration: weak coupling causes very narrow and intense peaks in the
spectral functions to be integrated in LB. We can, however, go around this problem
by performing more accurate numerical integration which naturally increases the
computational cost (although relatively low) in LB. Also here HF, for later times,
starts to show finite-size effects due to reflections. It is also important to notice that
as we go towards the parameter range of WBA the propagation times and system
sizes in KB and HF increase. This means a nice ‘bonus’: Using LB for this parameter
range gives reliable results in just a fraction of computation time.

3.1.4 Time-dependent bond current through an atomic chain

Next, let us look at a larger system, yet something that can be computed using the
full KB propagation. For larger calculations we are limited by the RAM of the bench-
mark computer because storing the Green’s function elements for larger systems
and longer time propagations needs a rapidly increasing amount of memory [114].
Also in HF propagation, as the size of the central region grows and the transient
saturation takes a longer time, we need to allocate longer leads to avoid finite-size
effects. We take a 10-site tight-binding chain as the central region in between two
metallic, semi-infinite leads; this setup could model transport through a long alkane
molecule, for instance. We fix the hopping in the central region as tC = −1.0, and
relate the other parameters to this energy scale. We choose weak coupling regime
for WBA to work, and choose accordingly the coupling and lead parameters as
tαC = tC/5 and tα = 8tC so that the resonances are narrow: Γα = 2t2

αC/tα = |tC|/100. We
bias the leads symmetrically to VL = V = −VR = 2|tC| and keep the system at finite
temperature β = 10/|tC|. Although this is a nonzero temperature (kBT = |tC|/10), it
is still in a very low (sub-Kelvin) range for the thermal excitations compared to the
other energy scales in the setup.

We evaluate the current through the central region as the bond current in the middle
(between the fifth and the sixth site) by using the full KB propagation, finite-size HF
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Fig. 3.3: Comparison of the time-dependent current using three (panel a) and two
(panel b) different methods. Computation wall-times are marked in the legend.

with one-dimensional leads of length 500 sites, and LB with analytical expressions
in terms of digamma and hypergeometric functions in Eqs. (2.103), (2.104) and
(2.105). Total of 500 time steps of length 0.005Γ−1 were computed and the results
can be seen in Fig. 3.3a. For larger systems the difference in the computational
cost between the propagation methods (KB and HF) and the closed solution (LB)
becomes immense. Still, the results are very congruent; HF only starts to deviate
from the rest when the finite-size effects start to have an influence (around tΓ = 1.3).
The small discrepancies between KB and LB are mainly numerical errors as the step
length might affect the KB results rather strongly [113, 114].

3.1.5 Time-dependent bond current through a graphene ribbon

The advantages in LB method indeed lie in studying large systems, and therefore we
present yet another comparison which, however, is too large for a full KB calculation,
so we only compare HF and LB. We have an armchair graphene nanoribbon of 120
sites (more specifically, a 6-aGNR of length ∼ 4 nm [160]) as the central region
and two-dimensional rectangular tight-binding leads of 3 × 400 = 1200 sites (rows
× columns) for the HF propagation. The graphene nanoribbon is parametrized in
a single π-orbital framework with nearest-neighbour hopping −2.7 eV [89], and
the coupling between the central region and the leads is constructed so that the
tunneling rate becomes Γα = 0.1 eV for each lead. The system is in zero temperature
and is driven out of equilibrium by a one-sided bias voltage on the left lead:
VL = 2.5 eV, VR = 0.

For the LB calculation we use the analytic expression in Eqs. (2.93), (2.94) and (2.95)
in terms of logarithms and exponential integral functions. Due to a rather large
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Fig. 3.4: Comparison of two different methods. Computation wall-times are marked
in the legend.

system, we perform a calculation of only 60 time steps of length ∆t = 0.07Γ−1 (even
the HF propagation is rather tedious), and in Fig. 3.3b we show the total current
through the nanoribbon as a sum over individual bond currents through an interface
in the middle of the ribbon. Also in this case, the LB captures, at least qualitatively,
the essential features of the transient oscillation in a fraction of computational cost
compared to the HF. It is worth mentioning, however, that these data points only
represent the very beginning of a considerably longer transient, and already for this
large leads in the HF propagation, the finite-size effects come out during the first
transient oscillation.

3.1.6 Time-dependent current and Cooper pair density in an NSN
junction

As a last benchmark for this section we consider a superconducting central region
together with a potential profile. We have a benzene-like molecule, 6 carbon atoms
on a ring with 2 hydrogen atoms on the edge, as the central region connected to
two-dimensional leads. (This is exactly the setup depicted in Fig. 3.1.) The molecule
is described like a hydrogen-passivated graphene ribbon, a single π-orbital lattice
with nearest-neighbour hopping |tC| = 2.7 eV and modified tight-binding param-
eters ε′ = 0.66tC, t′C = 2.2tC for hydrogen on-site energies and hydrogen–carbon
hopping, respectively [90]. In this “toy model” for superconductivity we introduce
a pairing field (i.e., the superconducting gap) for the molecule as ∆ = |tC|/10. The
molecule in its normal state is already semiconducting, so the full energy gap de-
pends on both the tight-binding parameters and the pairing strength parameter
∆. We bias the molecule symmetrically V = VL = −VR = |tC| and put an on-site
gating potential u ∈ {|tC|/2, 0,−|tC|/2} so that the potential decreases linearly from
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the left to the right lead over the central molecule: the two left-most carbon atoms
have an on-site potential |tC|/2, the two carbon and the two hydrogen atoms in
the middle are non-gated while the two right-most carbon atoms have an on-site
potential −|tC|/2. The molecule is coupled to the leads so that the resonance widths
are Γα = 0.001 eV for each lead, and the transport is set up at inverse temperature
β = 10/|tC|, hence, for the LB method we will be using the formulae in Eqs. (2.136),
(2.137) and (2.138).

We only compare LB to KB because, as have been shown in the previous examples,
the HF method only gives rise to finite-size effects which is seen as a deviation
from the embedded methods (KB and LB). This simulation acts as a check for the
parametrization of the superconducting central region and the overlaps between
the unperturbed and perturbed bases of the central region in Eq. (2.127). In Fig. 3.4
we show the simulation of 500 time steps of length ∆t = 0.00002Γ−1, and we plot the
time-dependent current through the molecule (panel a) and the Cooper pair density
within the molecule (panel b). There is minor numerical discrepancy between KB
and LB in the current computation due to the small absolute value (∼ 10−5) of
the current. However, for the Cooper pair density, which is naturally evaluated
from the same density matrix, the match is perfect. We also notice the increased
computational cost in LB compared to earlier simulations as we now have the central
region perturbed by a potential profile, and the overlaps between the unperturbed
and perturbed bases need to be evaluated as in Eq. (2.127).
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3.1.7 Computational cost and parallelization

A general remark for the simulations presented in this section: The time-dependent
Landauer–Büttiker formalism compares well with the existing methods of propa-
gating the Kadanoff–Baym equations for the Green’s function and the single-particle
Hartree–Fock orbitals. When WBA can be assumed, the results are very congru-
ent. Importantly, also, the computational cost is brought down considerably, see
Fig. 3.5a, as the time-stepping in KB scales as N2

t [113, 114] and in HF as Nt [157]
with Nt the number of time steps. In LB the cost depends only on numerical inte-
gration or on the evaluation of the special functions in the derived formulae.

Also, as time is only a parameter in LB, the implemented formulae parallelize triv-
ially; separate time steps of the transient can be computed on separate processors
as they operate without exchanging information. Only exceptions are the initializa-
tion of the studied structure and collecting the results in the end. As an example of
the scaling of the parallelization we computed the time-dependent density matrix
for armchair-oriented graphene nanoribbons connected to two-dimensional tight-
binding leads, similar to one of the examples above but for bigger systems. Here we
do not list a detailed description of the transport setup, as these comparisons were
already presented, and for this simulation we only want to compare the computa-
tion times. In Fig. 3.5b we show the computation wall-times (in seconds) for small,
medium and large graphene structures (NC = {280, 384, 720} sites in the central
region, respectively). For small systems the overall computation time is small, and
the initialization and collecting the results might take longer time to execute than
the essential part of the calculation. Still, we see how the parallelization is rather
trivial up to one thousand processes, and it gets even better for larger systems.

3.2 Electronic transport through a ring-shaped junc-
tion

Although the main result in Pub. [I] was the derivation of Eqs. (2.79) and (2.85),
here we will review the numerical considerations presented in this article for a six-
site tight-binding ring connected to two leads as shown schematically in Fig. 3.6.
This could vaguely be understood as a study of transport through a benzene-like
molecular ring with the wave function perfectly localized around the carbon atoms
– also similar to one of the comparison examples presented in the previous section.
The parameters in the setup were tC = −2.0 for the hopping strength in the ring, µ =
0 for the chemical potential and β = 100 for the zero-temperature limit (compared
to other parameters it was as if β → ∞). The hopping tL = tR in the left/right lead
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Fig. 3.6: Six-site ring coupled symmetrically to one-dimensional TB leads.

was chosen to be much larger than any other energy scale, so that the wide-band
limit with Γα = 2t2

αC/tα was a good approximation; ΣA
α (ω ∼ µ) = i t2

αC/tα + O(1/t2
α)

with tαC being the hopping between the ring and the leads. The system was driven
out of equilibrium by the sudden switch-on of a bias voltage, i.e., the energy levels
of the leads were raised by VL = V = −VR. In order to study the system’s response
to the external bias voltage, we evaluated numerically the frequency integrals in
Eq. (2.85).

In Pub. [I] there is a thorough analysis of the transient features captured by the
derived formulae in Eqs. (2.79) and (2.85) with almost a plethora of graphs as
evidence. Here we only review the main findings which include different transitions
occurring during the transient given by the different terms of Eq. (2.85), and an
underlying selection rule for the hexagonal structure. Indeed, the time-dependence
in the second row of Eq. (2.85) (the term linear in the bias voltage) gave rise to
molecule–lead transitions with oscillation frequencies ω j = |µ + Vα − Re[ε j]| with
ε j the complex eigenvalue of the effective Hamiltonian heff. On the other hand,
the intramolecular transitions were captured by the third row of Eq. (2.85) (the
term quadratic in the bias voltage) with the oscillation frequencies being ω jk =
|Re[ε j] − Re[εk]|. Interestingly, however, not all the possible transitions within the
transport setup were visible in the transient behaviour; a selection rule was found
for some of the levels which did not participate in the transport process. This was
a special case caused by the symmetries of the molecule and the coupling to the
leads. These inert states only affected the static part of the density matrix and did not
contribute to the dynamics since the states were given by wave functions having
nodal planes exactly at the sites coupled to the leads. If this symmetry was broken
either by asymmetric coupling or by deforming the molecule (modified hopping
parameter between some of the sites), also the remaining transitions became visible.

In Figs. 3.7 and 3.9 we display the transient current through the right interface of
the transport setup, i.e., the bond between the ring and the right lead. In Figs. 3.8
and 3.10 we have the corresponding Fourier transforms of the transient currents.
In Fig. 3.7 we varied the bias voltage and in Fig. 3.9 the coupling strength leading
to different values for the broadening Γ. Also, in Fig. 3.7 we scaled the axes due
to equal value for the coupling strength, so the transient scales could be compared
better. In Fig. 3.9, on the other hand, the axes were not scaled due to varying Γ.
Clearly, increasing the bias voltage (widening the bias window) opened up more
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levels as transport channels and the steady-state current grows. The oscillation
frequencies corresponding to transitions between the molecular levels in the ring
remained unchanged while the oscillation frequencies corresponding to transitions
between the ring and the leads varied (some of the Fourier peaks moved while
some did not), see Fig. 3.8. By increasing Γ, and hence by widening the resonances,
electrons could flow even with intermediate bias voltages. Correspondingly, the
steady-state value of the current increased, the relaxation times decreased whereas
the oscillation frequencies remained invariant (peaks did not move), see Fig. 3.10.
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3.3 Edge-state transitions in graphene nanoribbons

In Pub. [II] we presented an extension to the results in Eqs. (2.79) and (2.85). We ex-
pressed the frequency integrals in Eq. (2.79) in the eigenbasis of the effective Hamil-
tonian heff, and this way we were able to perform the integrations analytically in the
zero-temperature limit. The results were expressed in terms of logarithms and spe-
cial functions called the exponential integral in Eq. (2.92). This procedure allowed
for even larger scale calculations in the time-dependent Landauer–Büttiker formal-
ism since one bottleneck, the numerical integration of spiked spectral functions,
was overcome.

3.3.1 Classification of the ribbons

We used this extended formalism in Pub. [II] to study local bond currents in
graphene nanoribbons (GNR) of different geometries; the transport setup is shown
in Fig. 3.11. The leads were semi-infinite with their terminal sites coupled to the

Fig. 3.11: Transport setup of a (zigzag) graphene nanoribbon connected to metallic
leads: contacts to leads are between doubly-coloured bonds; bridge (explained in
text) is shown by the green cutting line. The structure of the leads is shown for
illustratory purposes. Voltage profile is shown below the structure.

GNR in the center. The GNR was modelled by a single-orbital π-electron network,
parametrized by nearest neighbour hopping tC = −2.7 eV [89]; second and third
nearest neighbour hoppings [89] were neglected but they could trivially be included
at the same computational cost. The size and the orientation [zigzag (zGNR) or
armchair (aGNR)] of the central region was arbitrary as well as the structure of
the leads. The level-width functions, Γα, depended on the couplings between the
central region and the leads, and also on the internal properties of the leads. In
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principle, Γα could be any positive semidefinite matrix [161, 162] but here it was
taken simply as Γα,mn = γα ∆α,mn where ∆α,mn = δmn when m,n labeled edge atoms
contacted to lead α and ∆mn,α = 0 otherwise. In the calculations we chose the cou-
pling strengths so that γα = 0.1 eV for each lead α. Also in this study, the system was
driven out of equilibrium by a sudden symmetric bias voltage between source and
drain electrodes, i.e., Vα = ±Vsd/2. The bias voltage, or the level shift in the leads,
was set with respect to the chemical potential µ = 0 (i.e., we had a charge neutral
GNR in equilibrium). The potential profile within the central region could be, e.g.,
linear or sinusoidal as illustrated in Fig. 3.11, or of any other shape. The strength
of this potential was given by the parameter Vg. For the numerical simulations we
considered a virtual interface in the middle of the studied structure by a cutting
line or a bridge and calculated the sum of all bond currents for the bonds cut by
the bridge, see Fig. 3.11. This sum of time-dependent bond currents was denoted
simply by I(t). The energies were evaluated in units of ε = 1 eV giving the unit of
time t = ~/ε ≈ 6.58 · 10−16 s and the unit of current I = eε/~ ≈ 2.43 · 10−4 A.

3.3.2 Transient features depend on the length, width and orienta-
tion of the ribbon

First we investigated the dependence of the time-dependent current on the length
of the GNR at fixed width and bias voltage. We show the current I(t) in Fig. 3.12a-b
and the corresponding Fourier transforms of the current, |F {I(t)}(ω)|, in Fig. 3.12c
for aGNRs of width 1.4 nm and a zGNRs of width 1.6 nm. More specifically, the
armchair structure was a 13-aGNR where 13 refers to the number of armchair dimer
rows [160], and the zigzag structure was an 8-zGNR where 8 is the number of zigzag
rows [160]. The Fourier transforms were calculated from the long-time simulations
shown in the inset of Fig. 3.12c where the steady-state value was subtracted from the
sample points. Also, Blackman-window filtering [163] was used and the absolute
value of the result was plotted. In both cases the bias voltage was Vsd = 5.6 eV and
the potential profile was set to zero, Vg = 0 eV. We saw that elongating the ribbon
made the initial transient start with a delay, since the current was evaluated in the
center (see Fig. 3.11), but the steady-state value remained roughly invariant. By
increasing the length the overall number of states also increased, and hence, more
states close to the Fermi level were available as transport channels. Consequently,
smaller transition energies became possible and the peaks in the Fourier spectra
shifted towards lower energies as they were more favourable. In zGNRs we also
saw an amplified high-energy peak independent of the length of the ribbon; this
frequency corresponded to the fast superimposed oscillations in the time domain
that lasted throughout the transient. As the oscillation lasted for a long time, the
strength of the Fourier peak was also amplified. This oscillation frequency was ω =
Vsd/2 = 2.8 eV and therefore corresponded to transitions between the biased Fermi
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Fig. 3.12: Time-dependent bond cur-
rents through ribbons of varying
length: a) aGNR: (fixed width W = 1.5
nm (13)), b) zGNR: (fixed width W =
1.6 nm (8)), and c) the corresponding
Fourier transforms (zGNR is offset for
clarity); the inset shows the long-time
behaviour of the currents for L = 10.5
nm in a) and b). [The line colours and
styles correspond to those in a) and
b).]
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Fig. 3.13: Time-dependent bond cur-
rents through ribbons of varying
width: a) aGNR: (fixed length L =
4.1 nm), b) zGNR: (fixed length L =
4.1 nm), and c) the corresponding
Fourier transforms (zGNR is offset for
clarity); the inset shows the long-time
behaviour of the currents for W = 3.6
nm in a) and W = 3.7 nm in b), respec-
tively. [The line colours and styles
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level of the leads and the zero-energy states of the ribbon, i.e., the edge states. The
edge states were weakly coupled to the leads and therefore these transitions were
slowly damped. Also, similar high-frequency oscillations were visible in aGNRs
as well, see panel a. Nevertheless, the Fourier transform did not show any high
frequency peak in this case as the oscillation was damped in much faster time scale.
In aGNRs we had zigzag edges at the lead interface, and hence, the edge states
were strongly coupled to the leads, also dissipating faster.

Then, we varied the width of the ribbons while keeping the length and the bias
voltage fixed. We also did not have a potential profile present in the central region,
Vg = 0. In Fig. 3.13 we show the time-dependent currents and the dependency
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on the width for aGNRs and zGNRs of length 4.1 nm. Compared to the previous
study, changing the width of the ribbon might have lead to more involved transient
behaviour because, depending on the width, the ribbons might have been either
metallic or semiconducting [164]. Nevertheless, the semiconducting gap would
have been much smaller than the applied bias window Vsd = 5.6 eV, and therefore
the conducting properties should not have been affected by the gap or further by the
width. When increasing the width of the ribbon the length of the bridge, through
which the overall bond current I was evaluated, also increased and so did the steady-
state value of I. However, the transient features were mostly invariant as can be
seen in the Fourier spectrum in panel c. Therefore, widening the ribbon did not shift
the low-energy peaks towards smaller energies [cf. Fig. 3.12c]. This was also the
case for the high-energy peak in zGNRs, which agreed with the edge-state energy
being independent of the size of the ribbon. Recently, also the width of the graphene
ribbons was considered in detail both computationally and experimentally [165]
verifying “the 3n−1 width-rule” (where n is an integer) that the electronic structure
of the ribbon varies between semiconducting and metallic. This has considerable
further implications in the transport studies such as the ones presented here.

As a third study, we investigated the dependence on the bias window but still had
Vg = 0. In Figs. 3.14a and 3.14c we show the results for a 13-aGNR of length 4.1
nm and width 1.4 nm, and in Figs. 3.14b and 3.14c the results for an 8-zGNR of
length 4.1 nm and width 1.6 nm. The ribbons were chosen as comparable in size
for better visualization of the dependence on the voltage. For zGNR the frequency
of the oscillations associated to the edge-state transitions increased linearly with
the bias, as it should have done. The transition energy between the biased Fermi
level of the leads and the edge state of the ribbon increased with the voltage. It was
also evident that for both ribbon geometries the transient regime lasted longer the
larger was the bias, and that the steady-state was attained after several hundreds of
femtoseconds. Increasing the bias window obviously enabled more states to take
part in the transport dynamics.

We could conclude that the absolute values of the steady-state currents were higher
through zGNRs than through aGNRs (of comparable sizes). An intuitive explana-
tion for this observation was not straightforward to provide since we were consid-
ering rather large bias regime. The large bias regime enabled very many states to
contribute to the absolute value of the steady-state current. We could still vaguely
say that, as the zGNRs contain more states close to the zero energy, then this put
more weight on the possible transport channels, at least for these bias windows. If
we had chosen a bias window covering all the states for ribbons of comparable sizes,
we could have naïvely expected the steady-state values to be equivalent. However,
there might still have been room for possible selection rules depending on the rib-
bon orientation; whether some of the states would not have been participating to
the dynamics at all due to wave function localization as was seen in Sec. 3.2. We
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c) the corresponding Fourier trans-
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also observed that the micro–milliampere range for the current with bias in the eV
range agreed with the experimental results of Refs. [166–173].

3.4 Doped graphene flakes and controlling the tran-
sient current

In Pub. [II] we also considered extensions to perturbed central regions. This lead
to illustrations of the formula in Eq. (2.127) where two different Hamiltonians
were set for the central region: the equilibrium one only consisted of the plain
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tight-binding lattice whereas the out-of-equilibrium one included a sudden switch-
on of electric and/or magnetic fields. As the eigenbases of the unperturbed and
perturbed Hamiltonians did not, in general, need to be equivalent, we were left
with evaluating the overlaps between these bases in Eq. (2.127). This also increased
the computational cost which was also discussed in Sec. 3.1.

We looked into the transient behaviour of a 4 hexagons-by-4 hexagons graphene
flake exposed to both external bias voltage from the leads and an on-site potential
profile within the flake. The potential profile could be understood as a self-consistent
field inside the flake due to the modified charge profile, or due to charge injection
or chemical doping. The system was composed of 32 carbon atoms with an on-site
potential um being switched on at site m concurrently with the applied bias. We
were interested in how the form of the potential profile within the flake affected the
transient dynamics. We defined the distance of the m-th carbon atom from the left
lead interface to be xm, and then correspondingly defined the on-site potential as
um = u(xm). For the linear and sinusoidal potential profiles (the function u of x) we
used

ulin.(xm) = −
2Vg

L
xm + Vg , usin.(xm) =


Vg , xm < L/10
Vg cos

(
5π
4L xm −

π
8

)
, L/10 ≤ xm ≤ 9L/10

−Vg , xm > 9L/10 ,
(3.1)

where L was the length of the flake.

The time-dependent currents through the flake with fixed bias voltage Vsd/2 =
3.5 eV are shown in In Fig. 3.15a for linear potential and in Fig. 3.15b for sinusoidal
potential. A numerical check between Eqs. (2.92) and (2.127) was provided by look-
ing at the data for non-perturbed (denoted in the figure by ‘No gate’ and ‘Vg = 0.0
eV’) central regions. The equivalence was indeed found as the corresponding curves
were on top of each other. For small voltages (< 1 eV) the transient was roughly
similar to the non-perturbed one but, for stronger voltages, a rather non-trivial
transient behaviour was observed. The Fourier spectrum (in panel c) shows a rich
structure in several high-energy spectral windows. This was due to transitions in-
volving levels of the perturbed central region, and these transitions could be mapped
more thoroughly by looking at the nonequilibrium spectral function

A(ω) = −
1
π

Im Tr
[
GR(ω)

]
(3.2)

with the trace over the states of the central region. We show the spectral function in
Fig. 3.16, and, as expected, the spectrum was widened when increasing the on-site
potential strength Vg. The high energy peaks at ω ≈ ±8 eV (in the non-perturbed
case: Vg = 0 eV) shifted to ω ≈ ±10 eV (when the perturbation was at its maximum:
Vg = 3.5 eV). This was consistent with the Fourier peaks occurring at around
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Fig. 3.16: Nonequilibrium spectral functions of the studied flake with varying poten-
tial: a) linear potential profile, and b) sinusoidal potential profile.

ω ≈ 10 eV in Fig. 3.15c. Similarly, all other main peaks in the Fourier spectrum
could have been interpreted by inspecting the spectral function.

3.5 Curved graphene nanoribbons and focused tran-
sient currents

In Pub. [III] we further used the formalism developed in Pubs. [I, II] in a more ap-
plied study of transient response in curved graphene nanoribbons. As atomic preci-
sion fabrication and patterning is becoming routinely accessible in graphene based
nanostructures [174, 175], it is interesting, and also important, to study the imme-
diate applications of such tailored structures [174, 176–180]. In many experiments
curved graphene structures have been realized [178, 181] but the more detailed
transport properties have mainly been unexplored, apart from a few stationary
transport studies [182–185]. For instance, in Ref. [186] a transmission electron mi-
croscopy (TEM) was used to probe the edge structure and widths of graphene
structures in Ångström resolution, see Fig. 3.17. Electron irradiation was further
used to manipulate the edge structures as shown in the snapshots.
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Fig. 3.17: Edge configurations of a GNR in a TEM study by Cheng et al. [186].
Snapshots at different times show the edge structures under electron irradiation.
The scale bar is 2 nm.

3.5.1 Classification of the curved samples

Since TEM, as a procedure, is based on quantum transport, we investigated how
the edge structures affected the transport properties of a GNR, and also how the
mechanisms leading to these properties happened in the transient regime. Our
study was based on four representative curved graphene nanoribbons (CGNR) in
Fig. 3.18. The samples included two 60◦ arcs of different curvature (samples Vshort

Fig. 3.18: Curved graphene nanoribbons in transport calculations. From left to right:
schematics of curved ribbons attached to straight ribbons of the same width, form-
ing a typical two-terminal transport device: source (S) and drain (D) electrodes
connected via a central conducting device (C). Atomic structures of the samples
used as a conducting device Vshort, Vlong, U, and L, i.e., these structures take the
place of C in the schematic on the left. Hydrogen atoms are omitted from the figure
for clarity.

and Vlong. They both had 8-AGNR legs but in Vshort the curved parts were shorter
and only the outer edge contained a zigzag section; in Vlong both the inner and
the outer edge contained zigzag sections. The sample U contained a 180◦ arc and
the sample L a 90◦ arc. For the transport setup, the arcs were coupled to straight,
semi-infinite graphene nanoribbons. The leads were of armchair type (AGNR) or
zigzag type (ZGNR), depending on the bisection angle [164]. The 60◦ and 180◦ arcs
were coupled to two AGNRs and the 90◦ arcs to AGNR on one side and to ZGNR
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on the other side. The atomic structures in Fig. 3.18 correspond to the central region
in the transport setup, i.e., the curved part is extended by the straight ribbons
(acting as leads) and the terminal of the straight part is then contacted to the biased
electrode. In addition, the three-part systems were saturated by hydrogen to remove
the dangling bonds. The systems had no in-plane stresses, i.e., the samples were
simply cut out from pristine graphene planes without introducing any bending to
the structure. In Pub. [III] we performed a rather systematic and extensive study
on how the transport properties are affected by the curvature, but here we will only
review a couple of the most important findings.

3.5.2 Transient currents through the curved sections

Similarly to the results presented in the previous sections, also here, in the transport
setup, the bias voltage from the source to the drain electrode (over the central region)
VSD was switched on at t = 0 and the transient dynamics was calculated at zero
temperature [using the formulae in terms of the logarithms and the exponential
integrals in Eqs. (2.93), (2.94) and (2.95)] until the current saturated towards a
steady state. The bias windows in this study were from VSD = 0.2 eV to 2.0 eV.
The coupling strengths between the CGNR and the electrodes were chosen so that
the resonance widths became γ = 0.1 eV, for both source and drain electrodes. For
the studied samples these conditions lead to saturation times from few hundred
femtoseconds up to 1 ns. The transient dynamics was analyzed similarly as in the
previous section, as a sum over individual bond currents through virtual interfaces,
bridges, B1 and B2 in the sample, see Fig. 3.19.

At the beginning of the transient, the current at B1 grew fast and then oscillated
over hundreds of femtoseconds and then damped towards a steady state. For the
wavecrest to reach the other bridge B2, it needed to travel roughly 30 Å, and,
similarly to the findings in the previous section, this was seen as a short delay in
the bridge current. The observed delay corresponded to a speed or mobility of the
charge carriers of ∼ 10 Å/fs, which roughly equals the Fermi velocity in graphene,
vF = 3|tC|a/(2~) with |tC| = 2.7 eV and a = 2.46 Å, as was expected [83]. Both of the
transients (at B1 and at B2) were characterized by slow oscillations superimposed
by fast oscillations which could be associated with transitions happening inside
the CGNR (intra-ribbon transition) or between the CGNR and the leads (ribbon-
lead transition). The low-frequency oscillations came from the slow lead-to-lead
reflections given by the overall charge-density wave after the bias voltage was
switched on. In high-voltage regime we also saw another type of low-frequency
oscillation which originated from multiple scatterings of the charge-density waves
sloshing back-and-forth in the curved section of the CGNR.
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Fig. 3.19: Time-dependent currents in CGNRs. (a) Top figure shows the atomic struc-
ture of sample Vshort with bridges B1 and B2. The four panels show time-dependent
currents through B1 (left) and B2 (right) at VSD = 1.0 eV (middle) and at VSD = 2.0 eV
(bottom). (b) Same as panels a for sample Vlong. Dashed lines mark the steady-state
currents.

In straight GNRs (without curvature) the currents were rather regular and flowed in
the same direction, as was studied in Pub. [II], but in the CGNRs the current profiles
were more complex. The curved section of the central region acted as a deflection
center for the electronic current, and it could cause direction reversal, especially
when the bias voltage was low. This lead to backscattering or backward currents
which, in time domain, could be visualized nicely by animations, see the electronic
supplemental information of Pub. [III]. The essential dynamics of the backscattering
in the studied CGNRs boiled down to two variables: the lead-to-lead and the lead-
to-curved part distance. The rich interference patterns upon multiple scatterings
at the interfaces were governed by these length scales. The observed interference
of the charge-density waves resulted in a rather complex Fourier spectrum of the
currents, see Fig. 3.20.

We looked at one of the transitions in more detail. The time-dependent currents of
the sample Vlong at bias voltage VSD = 1.0 eV showed well-defined oscillations of
period P = 30 fs, and this oscillation was seen in the Fourier spectrum as an intense
peak at the corresponding energy ω = 2π/P ≈ 0.15 eV. As all of the transitions, also
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Fig. 3.20: Fourier transforms of time-
dependent B2 currents of Fig. 3.19. Sam-
ples are Vshort (left panels) and Vlong (right
panels) at the shown bias voltages.

Fig. 3.21: Density of states (DOS)
of sample Vlong. Shaded region
shows the 1.0 eV bias window.
Right insets show the local den-
sity of states (colourmaps) for the
selected DOS peaks at 0 eV and
−0.15 eV.

this one could be further analyzed and identified by looking at the local density of
states (LDOS) at energies given by the frequency of the oscillation. The LDOS at
energies 0 eV and −0.15 eV (i.e., the difference in energy between these states was
exactly the observed oscillation frequency) showed elongated edge states at inner
and outer edges of the curved section, see Fig. 3.21. Therefore, we concluded that the
electronic excitations at ω ≈ 0.15 eV corresponded to edge-state transitions taking
place inside the CGNR between these two states. This oscillation, however, became
masked when the bias voltage VSD was increased because additional electronic
transitions started taking place within the wider bias window.

In Pub. [III] we also compared the singleπ-orbital model used in the time-dependent
Landauer–Büttiker formalism to a multi-orbital density-functional tight-binding
model; both models yielded frontier orbitals of a similar edge-localized nature and a
similar level structure. Even though we did not perform time-dependent transport
calculations in the full multi-orbital framework, we argued that the qualitative
features of the transients would not have been affected by the choice of the model.

3.5.3 Temporal and spatial focusing of the current

The Fourier transform, as seen by the above analysis, can provide some insight into
identifying transitions occurring during the transients. However, it misses all the
temporal information as it is unable to provide either the times or the durations
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Fig. 3.22: Wavelet amplitudes (colourmaps) as a function of scale (s) and time (τ) for
currents through the curved sections in (a) sample U, (b) sample L, and (c) sample
Vshort with an impurity site, all at VSD = 1.0 eV.

when certain transitions are active. This is due to the averaging nature of the integral
transformation; if certain oscillation in the time-dependent signal is present for a
long time, it integrates to a large Fourier peak amplitude, although this oscillation
does not need to be present all the time [187]. The peak intensities in the Fourier
spectrum only give an averaged-out information about how long durations certain
frequencies are present. For a more accurate temporal analysis, in Pub. [III], we
consulted an alternative analysis tool – the wavelet decomposition. In this method,
the signal is convolved with a set of basis functions called wavelets [187, 188]. The
continuous wavelet transformation (CWT) for a signal I(t) is defined as

I(s, τ) =
1
√

s

∫
∞

−∞

I(t)ψ∗
( t − τ

s

)
dt, (3.3)

where ψ∗ is the complex conjugate of the wavelet shifted (in time) by τ and scaled
by the dimensionless parameter s. This transformation maps the data into an (s, τ)-
plane, where τ is related to time and s can be related to frequencies via fs = fc/(s∆),
where ∆ is the sampling period and fc is the center frequency of the wavelet. With
1 femtosecond as our unit of time, we used the Ricker wavelets (or the Mexican hat
wavelet)

ψ(t) =
2

√
3π1/4

[1 − t2]e−t2/2 (3.4)

with a center frequency of fc = 0.25 fs−1 and sampling of ∆ = 0.16 fs. The advantage
of wavelet analysis is that it allows for distinguishing between rapid and slow
current fluctuations by choosing the scale s. This means that the transients can be
analyzed simultaneously at different frequencies and at different times, although
this increases the computational cost.

By looking carefully at the wavelet amplitudes in the (s, τ)-plane we could identify
instants and frequencies for possibly interesting events. We calculated CWT on the
currents by using the Wavelet Toolbox in Matlab [189] and scales large enough to
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scan all the frequencies relevant to our transport setup. We present here the wavelet
analysis for the transient signal in samples U and L (see Pub. [III] for more details).
The transport setup was otherwise the same as in samples Vshort and Vlong above and
we set the bias voltage to VSD = 1.0 eV. In Fig. 3.22 we have the wavelet amplitudes
as a colourmap in terms of time and scale for the sample U in panel (a) and for the
sample L in panel (b). According to the colourmap we picked two instants for each
structure: one when the wavelet amplitude showed rich fluctuation and another
when it remained small. At these instants we plotted, from the full density matrix
for the structure, the charge and current distributions along the whole sample,
and we expected to see many transitions active in the first instant whereas for the
second instant we expected to see a more uniform distribution. In Fig. 3.23 we
show these selected snapshots of the two instants, and indeed, the behaviour was
as expected: At the first instant the current distribution showed more fluctuations
and backscattering compared to the second instant when the distribution was fairly
uniform. The wavelet amplitudes and snapshots also showed spatial and temporal
focusing of the current: At certain instants the current was spatially focused in certain
bonds within the structure. (This was also particularly evident in the animations,
see the supplementary information of Pub. [III].) Sample U captured strong currents
along the armchair leads and along the inner edges of curved section. In sample L
one of the leads was zigzag while the other lead was armchair, and this asymmetry
became clearly visible in the charge and current distributions. The charge variations
occurred along the sample irregularly, which happened because the zigzag lead
supported more current paths than the armchair lead, at least for this type of CGNR.
The difference in the wave propagation speeds in the different leads quickly created
a non-uniform and irregular charge distributions across the sample.

We also used the wavelet analysis to investigate how impurities might have affected
the transient behaviour and especially the time-dependent current distributions
along the curved section. For this study, we took the sample Vshort and placed
an impurity atom adsorbed on top of a carbon atom located at the bridge B2
(through which the transient current was calculated, see Fig. 3.19). The impurity was
modelled by an on-site energy of 0.2 eV and a modified hopping parameter to the
nearest carbon atom−2.16 eV. This model for an impurity caused weaker bonding to
its neighboring atoms [90]. We have the wavelet analysis for this system in Fig. 3.22c.
(This can also be compared with the one of the pristine sample Vshort, see Pub. [III].)
By inspecting the timescales in the wavelet analysis we could again pinpoint certain
instants when most oscillating modes were simultaneously present, and then view
the corresponding charge and current distributions along the sample. We observed
how the impurity atom within the curved section could affect the current paths. In
Fig. 3.24 (and also in animations, see the supplementary information in Pub. [III])
we could direct (or control) the paths of the charge carriers to the outer edge of
the curved section. It was evident that in CGNRs the electric currents were highly
sensitive to even single impurities since entire current patterns could be rearranged
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Fig. 3.23: Snapshots of the bond cur-
rents (black arrows) and the charge
variations (colourmap; units of electron
charge) for samples U (a and b) and
samples L (c and d) at VSD = 1.0 eV
and at times shown in the panels.

Fig. 3.24: Snapshots of bond currents
(black arrows) and charge variations
(colourmap; units of electron charge)
for sample Vshort with an impurity ad-
sorbed on the top of the carbon atom
enclosed by a bold line (magenta) lo-
cated at the center of the curvature.
VSD = 1.0 eV and the respective in-
stants are shown in the panels.

by them.

We also analyzed how strong the focusing effect of the bond currents can be, i.e.,
how much of the total current is dictated by individual bonds. When we looked
at the time-dependent currents through samples Vshort, U, and L at instants of the
first peaks in the wavelet amplitudes, we could create a simple list of bond currents
along the whole sample at those instants. For instance, in Vshort the number of
atoms is 216 and the number of individual bonds is 568. At a specific instant the
currents through each of these bonds have certain values. By plotting these values
with respect to the bond index we could compare how the bond current profile was
distributed along the sample, see Fig. 3.25. We observed rather extreme focusing,
depending on the structure, because already only few of the bonds could carry
instantaneous currents exceeding even the overall steady-state current through the
whole sample. This was our central result as such focusing is absent in straight
GNRs, which showed temporally and spatially far more homogeneous currents,
see Pub. [II]. This focusing effect could be used in graphene-based edge-detecting
devices [190], but the extreme focusing might also lead to detrimental Joule heating
and eventually burning the sample. However, this could be avoided by using low
biases and ultra-fast time scales for the heat to dissipate. The operation of the device
when heated could then be probed by resistive heating maps [191].
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Fig. 3.25: Instantaneous bond currents for samples (a) Vshort at t = 12.6 fs, (b) U at
t = 19.7 fs and (c) L at t = 16.5 fs with bias voltage VSD = 1.0 eV as a function of
bond index (red circles). Panels also include the corresponding bond currents at
the steady-state (blue diamonds) and the overall steady-state current through the
sample (dashed line). Bonds are indexed wrt. increasing current.

3.6 Superconducting junctions

In Pub. [IV] we investigated transport in NSN junctions where a superconducting
central region is coupled to two (normal) metallic leads. Here, an outline of the key
results is presented.

The transport setup is exactly the same as in Fig. 3.1; the central region is a super-
conducting benzene-like molecule. In these type of samples the superconductivity
could be induced, e.g., by charge injection, chemical doping or using the proximity
effect leading to critical temperatures ranging from 1 to 10 K [192–195]. The benzene
molecule is modelled in a single π-orbital tight-binding framework with the hop-
ping parameter tC = −2.7 eV [89], and then other energies are related to this scale.
Also, the molecule’s edges (longitudinally, in the transport direction) are saturated
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by hydrogen with modified tight-binding parameters for hydrogen on-site energies
and hydrogen–carbon hopping [90], respectively, so that there is no band gap in
equilibrium. We set this condition because we want to isolate the effects from the
superconducting gap ∆ without complicating the spectrum with the semiconduct-
ing gap. We further choose the coupling strength between the molecule and the
leads and the lead hopping so that we are in weak coupling regime Γ = 0.2 eV.

In this setup, it is possible to observe different transition mechanisms depending
on the chosen parameters. When the bias voltage Vα is larger than the supercon-
ducting gap ∆, all the levels inside the bias window are available for transport, and
transitions through the superconducting states are disrupted since the energy for
the incoming electrons is high enough to break possible Cooper pairs (CP) in the
central region; this is referred to as normal tunneling (NT). On the other hand, if
the bias voltage is smaller than the superconducting gap, it is possible to form a
CP in the central region. Then, it is further possible to observe Andreev reflection
(AR) between an electron and a hole in the source (or drain) lead forming the CP
in the center, or to observe a crossed Andreev reflection (CAR) where an electron
from the source (drain) lead is coupled to a hole in the drain (source) lead through
the CP in the center. In addition, direct tunneling of an electron via the CP, referred
to as co-tunneling (CT), is a possible transmission channel.

We first simulate the NT. The temperature is fixed well below the critical temper-
ature, β = 100/|tC|, so that the gap can be approximated as the (constant) value at
zero temperature ∆(T = 0) according to the self-consistent gap equation [196]. The
bias window is symmetric around the chemical potential, VL = −VR = 3|tC|/2, and
the gap ∆ is varied but kept smaller than the bias. The transient currents through
the sample are calculated by Eq. (2.162); we sum the individual bond currents
transversally in the middle of the molecule. The pair densities are calculated by
summing the pair densities within the molecule: P(t) =

∑
m Pm(t) from Eq. (2.163).

These results are plotted in Fig. 3.26 with a Fourier transform of the current. When
the gap ∆ is increased, the overall current is decreased since the conducting states
are moved away from the bias window. This can also be seen as shifts in the tran-
sient frequencies in the Fourier spectrum. The spectral function, plotted in Fig. 3.29,
may be used to further identify the transitions. When ∆ = 0, we observe two in-
tramolecular transitions (frequencies ω = |tC| and ω = 2|tC|) which shift when the
gap is varied corresponding to the shifted energy levels. We also notice two lead–
molecule transitions (frequenciesω = |tC|/2 andω = 5|tC|/2) when∆ = 0. Also these
transitions shift with the peaks in the spectral function corresponding to the fixed
bias V = 3|tC|/2. In addition, we observe the pair density going to zero from its
equilibrium value when ∆ < V. Therefore, we do not see AR or CAR processes due
to no out-of-equilibrium CPs forming in the central region. When the gap is set
equal to the bias window, we notice that the steady-state current goes to zero since
there are no transport channels within the bias window. However, some transient
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Fig. 3.26: Transient currents (top panel)
and pair densities (bottom panel) in
the molecule when varying∆. The in-
set shows the absolute value of the
Fourier-transformed current.

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

J
(t

)/
Γ

Fixed gap ∆ = |tC |/2
V = |tC |/4
V = |tC |/2
V = |tC |

0 2 4 6 8 10

tΓ

1.02

1.04

1.06

1.08

1.10

1.12

1.14

|P
(t

)|

1 2 3 4

ω/|tC |

|F{J(t)}(ω)|

Fig. 3.27: Same as Fig. 3.26 but with
varying V.

oscillations are still present due to the states in the vicinity of the resonant window,
which is seen as an intramolecular transition at ω ∼ 7|tC|/2.

Then we simulate the AR and CAR processes. We choose the gap in Fig. 3.27
as ∆ = |tC|/2, and in Fig. 3.28 as ∆ = 3|tC|/2. In both cases, when V ≤ ∆, the
transient current oscillates towards a zero steady-state current with frequencies
mainly corresponding to intramolecular transitions (around ω = |tC| and ω = 2|tC|).
When the gap is larger in Fig. 3.28 and for V ≤ ∆, we observe CP formation within
the molecule. When the voltages are small, we mainly find the first intramolecular
transition at around ω = 7|tC|/2. For larger voltages we also see the lead–molecule
transitions at lower frequencies recovering again the NT regime.

3.7 Heat transport in atomic chains

Here the key results of Pub. [V] are reviewed. We studied the transient behaviour
of the heat current in simple lattice models when coupled to reservoirs of different
temperatures. We benchmarked the validity of the approximations made in the
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derivation of Eq. (2.209) by comparing to full numerical solution to the equation
of motion (2.183) with the embedding self-energy in Eq. (2.194). The full numerical
solution was obtained self-consistently in the full two-time plane [141, 142], and
then the time-diagonal components were extracted for comparison with Eq. (2.209).
In both full and approximate solutions we employ the partitioned approach with
the subsystems being initially uncontacted at separate temperatures.

3.7.1 Validity of the analytical formula (2.209)

The derived result provided information about the one-particle density matrix in
the central region, so we were interested in local quantities in this region. The local
heat current between sites j and k in the central region could be calculated by
Eq. (2.216). In our transport setup we had uniform one-dimensional (semi-infinite)
systems of coupled springs as reservoirs, and we fixed the spring constant in the
reservoirs as kλ = 1 and then related the remaining parameters to this energy scale.
Also, the central region, through which we studied the heat current transients,
was similarly a uniform one-dimensional (but finite) system of coupled springs.
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We could tune the embedding by choosing the coupling strength kλC. Also, for the
levels of the central region to be inside the bandwidth (given by ±2

√
kλ) we chose

the spring constant in the central region kC small enough. We also set the Boltzmann
constant kB = 1 so that the temperature differences between the reservoirs and the
central region could be related to the order of the eigenmode energies in the central
region for the heat transport to occur in the quantum regime. We considered this
temperature scale as a difference ∆T = TL − TR and set the temperature for the
central region as TC = (TL + TR)/2. We fixed the temperature in the right reservoir
TR = 1 and related the remaining ones to this.

Compared to the full numerical solution of Eq. (2.183), we made many approxi-
mations when deriving the analytic solution in Eq. (2.209). We studied how much
error each approximation caused when compared to the full numerical solution.
First, we made the wide-band approximation for the self-energy in Eq. (2.194) but
otherwise we still solved the equation of motion numerically, i.e., without approx-
imating the time-convolutions. We denoted this level of approximation as ‘WB’.
Second, in addition to the wide-band approximation for the self-energy, we em-
ployed the approximation for the time-convolution [DR

·Π<] in Eq. (2.200) (and its
conjugate) with the cut-off frequency being set to the phonon bandwidth, but we
still evaluated numerically the other time-convolution [D<

·ΠA] (and its conjugate).
This level of approximation was denoted as ‘WB-1’. Third approximation was the
same as WB-1 but the other way around, i.e., approximating the time-convolution
[D<
·ΠA] as in Eq. (2.204) (and its conjugate) but evaluating numerically the other

time-convolution [DR
· Π<] (and its conjugate). This we denoted as ‘WB-2’. Ulti-

mately, both time-convolutions were approximated as in Eqs. (2.200) and (2.204)
with the cut-off frequency being set to the phonon bandwidth, and this procedure
resulted in the analytic solution in Eq. (2.209).

We benchmarked the validity of these approximations by studying heat current
through a dimer molecule as the central region. The parameters were chosen so
that: (a) the energy levels of the dimer molecule were comparable with the reservoir
bandwidth, i.e., the wide-band approximation was expected to fail; and (b) the
energy levels of the dimer were in a narrow range compared to the reservoir
bandwidth, i.e., the wide-band approximation should not have neglected the detail
of the spectrum. In case (a) we took kλC = 1/2 and kC = 1, and in case (b) we took
kλC = 1/4 and kC = 1/3. In both cases we had the temperature profile as TL = 5,
∆T = 4.

The heat current between the dimer atoms evaluated from Eq. (2.216) for the two
above-mentioned cases is shown in Fig. 3.30. In case (a) we saw more deviation from
the full solution (red, thick solid line) compared to case (b) as was expected from
the parameter choice. By neglecting the frequency dependency of the phonon band
we saw in both cases (green, long-dashed curve, WB) that the transient behaviour
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was overestimated due to too crude an approximation for the band edges. This also
affected the long-time behaviour as the current saturated faster than the full solu-
tion because the coupling strength (dissipation) was overestimated in WB. Also, the
steady-state value for the heat current was overestimated. When we also added the
approximation for the time-convolution [DR

·Π<] (blue, dash-dotted curve, WB-1)
we did not, at least in this case, see any considerable difference to WB. This meant
that approximating the retarded Green’s function in Eqs. (A.100) and (A.101) as
the embedded one only slightly modified the initial transient. When we considered
the approximation only for the time-convolution [D<

·ΠA] (magenta, short-dashed
curve, WB-2) we saw a relatively good match with the full solution. However,
individual density matrix elements could still differ considerably between the ap-
proximated and full solutions, see the details in Pub. [V]. When deriving [DR

·Π<]
in Eq. (A.107) and [D<

·ΠA] in Eq. (A.118) we implicitly assumed the limit ωc →∞.
When the cut-off frequency was set to the phonon bandwidth, in Fig. 3.30(a) the
approximations did not fully take into account the broader spectrum of the central
region. In Fig. 3.30(b) the spectrum of the central region was more narrow, and all
approximations gave a reasonable agreement. Even if the general trend of the tran-
sient was qualitatively captured in both cases, quantitative differences could still
be considerable, see the insets in Fig. 3.30. When combining all the approximations,
we got the derived result in Eq. (2.209) (cyan, thin solid line). This fully analytic
result, which did not need any numerical evaluation of the Green’s function, could
still give a comparatively good description. For the validity of the approximations
we concluded that the wide-band-like approximation overestimates the results ob-
tained by integrating the spectral function, see also Fig. 2.6.

3.7.2 Relaxation times from low to high temperature gradients

We also used the time-dependent formalism to estimate relaxation time scales using
a measure κ = (JQ(t = τ)− JQ

SS)/JQ
SS and define the relaxation time τ (time from t = 0 to

reach the steady state) as κ = 10% [53]. We considered similar atomic chains as in
the previous example but we varied the length of the chain and the strength of the
coupling between the chain and the reservoirs. We chose the model parameters in
physical units as kλ = 1.0 eV/(Å2u), kC = 0.625 eV/(Å2u) where u is the atomic mass
unit. (These are the mass-normalized spring constants, i.e., in SI units [k] = 1/s2.)
In Fig. 3.31 we have the relaxation times (colourmap) for chains of varying length
(horizontal axis) and with varying coupling strength (vertical axis) with a 10%
temperature difference between the reservoirs. In panel a the baseline temperature
is 10 K (leading to TL = 11 K and TR = 9 K), and in panel b the baseline temperature
is 300 K (leading to TL = 330 K and TR = 270 K).

We observed that, for both low and high temperature regimes, the relaxation was
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Fig. 3.31: Relaxation times (colourmap)
for atomic chains of varying length
(horizontal axis) and coupling
strength to the reservoirs (verti-
cal axis) at (a) low and (b) high
temperature.

fastest in the shortest chain (NC = 2) when the coupling strength between the central
region and the reservoirs was the highest (kCλ = 0.9kC). It simply took longer time for
the phonons to populate longer systems, and when the coupling strength between
the central region and the reservoirs was increased the relaxation times decreased
due to the stronger dissipation. Expectedly, the slowest relaxation, which could take
up to picosecond scale, occurred in the longest chain (NC = 16) when the coupling
was the weakest (kCλ = 0.2kC). The overall dependency on the studied parameters
was roughly similar in both low and high temperature regimes. However, we saw
in high temperature and small coupling that even the mid-range chains could have
a comparatively long relaxation time. On the other hand, increasing the coupling
strength in the high-temperature regime resulted in comparatively faster relaxation.
This was also partly due to the larger absolute difference in temperature in the high-
temperature case.



4 Conclusion and outlook

In this thesis quantum transport in the transient regime was studied. In both elec-
tronic and phononic transport setups, a time-dependent extension to the traditional
Landauer–Büttiker approach was derived from the point of view of nonequilib-
rium Green’s functions. The derived results follow directly as analytical solutions
to the equations of motion for the Green’s function. The studied transport setups
considered only noninteracting particles within wide-band approximation for the
surrounding reservoirs. Lifting these assumptions would have required solving
the equations of motion for the Green’s function numerically using self-consistent
and time-stepping algorithms as there is no closed solution for the general case.
The Green’s function method offered a natural framework for the description of
quantum transport, and previously derived known results, e.g., Meir–Wingreen
and Landauer–Büttiker formulae, were obtained as limiting cases of the present
study.

More explicitly, the Kadanoff–Baym equations for the Green’s function of an open
noninteracting system were solved by properly taking into account the initial con-
tacts between the system and the reservoirs. The results of the present study are
closed integral expressions for the time-dependence of the electronic density matrix
of a molecular junction after switch-on of a bias voltage in the leads or an electro-
magnetic perturbation in the junction. The molecular junction could further be
described as superconducting. Also, similar closed integral expression for the cur-
rent flowing into the leads was obtained. As these results were closed expressions
they could be evaluated without the necessity of propagating individual single-
particle orbitals or Green’s functions. In addition, the integral expressions were
written in terms of known functions (logarithms, exponential integrals, digamma
and hypergeometric functions) to further speed up the computation of the transport
properties of interest. Similar to the electronic case, also for the phonon transport
equivalent closed integral expressions were derived for the time-dependent phonon
density matrix.

Using the derived formulae for time-dependent density matrix and current tran-
sient dynamics in charge and thermal transport through molecular junctions was
analyzed. Benchmark tests in various structures were performed for the valid-
ity of the obtained formulae where also the computational cost between existing
methods was discussed. As applications tight-binding lattices such as ring-shaped
junctions, zigzag and armchair graphene nanoribbons of different geometries and
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atomic chains were considered by calculating the time-dependent charge and heat
currents flowing through the structures. In all the simulations rich transient dy-
namics was found: After the switch-on long time oscillatory motion, related to
multiple reflections of the charge and heat currents within the studied structures,
was observed. This indicated the need for a fully time-dependent description of
the quantum transport processes as the saturation times were not negligible or
insignificant, to say the least.

When studying graphene nanoribbons pronounced quasi-steady states, which were
explained by reflections of the density wave passing through the ribbon with the
edge states located at the ribbon–lead interfaces, were found. Further, in the case
of zigzag nanoribbons, there was a predominant oscillation frequency associated
with virtual transitions between the edge states and the Fermi levels of the elec-
trode. The observed transient dynamics provided detailed spectral information on
the structure of the studied nanoribbons. Also stationary and time-dependent elec-
tronic transport properties of graphene nanoribbons with intrinsic curvature were
studied. The curved parts greatly influenced the transport features of graphene
nanoribbons. Conductance gaps were governed both by the electronic character
of the leads and by the presence and the amount of curvature. The curvature also
induced temporally and spatially focused electric currents that mostly flowed at
the ribbons edges. This focusing enhanced the sensitivity to perturbations since the
presence of a localized impurity could cause a complete rearrangement of the cur-
rent profile. These findings could benefit the development of sensing devices that
employ materials’ edges for probing ultrafast modifications in the environment.

When analyzing transient heat currents in atomic chains it was possible to bench-
mark the derived result for the time-dependent phonon density matrix against a
full numerical solution to the equations of motion for the Green’s function, and
furthermore test the validity of the approximations put forward when deriving the
result. The approximations were found to be reasonable and the benchmark results
congruent when the cut-off frequency was chosen large enough compared to the
relevant energy scales of the studied systems, and when the coupling strength be-
tween the central region and the reservoirs was small enough for the wide-band-like
approximation to hold.

When simulating transport in a superconducting benzene-like molecule attached
to two-dimensional normal metal leads the formation of Cooper pairs within the
central molecule was observed leading to Andreev reflection processes. As the
transport setup for the derivation was very general, the same methodology may
be used for more involved systems. For instance, adding a third normal metal
lead or a gate potential would allow for controlling the transients [131, 197, 198].
Understanding the transient properties of such systems, possibly used as transistors
or switches, is of great importance when designing prospective effective nanoscale
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electronics.

The advantages of the derived results for transient dynamics are that the numerical
effort in computing the transport properties of interest is drastically reduced and
that the transient behavior can easily be interpreted in terms of virtual transitions
and decay rates. Recently, measuring the ultrafast dynamics has been made possible
due to the technical advances in laser sources [199, 200]. Experiments in individual
atomic and molecular scale systems [201–204] and carbon nanotubes [205, 206]
have been carried out reaching temporal resolutions corresponding to nuclear and
even electronic motion. There are therefore important experimental developments
that can, in the future, give access to the direct study of transient dynamics. Such
transient spectroscopy can give important detailed information on the structure of
molecular junctions out of equilibrium.

It remains to be investigated how the formalism for time-dependent perturbations,
developed by Ridley et al. [101, 139] could be incorporated in further computa-
tional studies similar to the ones presented in this thesis for, e.g., carbon nanotube
or graphene based junctions. Also, since the formulation is valid in the whole two-
time plane for both lesser and greater Green’s functions, Eq. (2.168), many phys-
ical quantities such as noise spectra could readily be computed. For the phonon
transport methodology it could be studied if and how a partition-free approach,
conventionally used in electronic transport [96], could be incorporated also in this
context. A related issue, in the case of heat transport due to electrons, has recently
been discussed in Refs. [207, 208]. Further computational advances could also be
obtained by performing the frequency integrals in Eq. (2.209) analytically using a
Padé expansion for the Bose function, making it possible to study transient phonon
dynamics in systems of even larger spatial scale.
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Appendix A:
Technical details of the derivations

A.1 Details of the derivations in electronic transport

Here the details of the derivations presented in Sec. 2.3 are provided for com-
pleteness. We first discuss the form of the self-energy approximation and the cor-
responding Keldysh components for it. Then we use these expressions to obtain,
accordingly, the Green’s functions, and then we evaluate the time-convolutions be-
tween the self-energies and the Green’s functions in Eq. (2.67). Finally, we insert the
time-convolutions in the equation of motion and derive an analytic solution for the
remaining differential equation.

A.1.1 Deriving the Keldysh components of the self-energies and
Green’s functions

Since the retarded/advanced component of the self-energy in WBA can be written in
frequency domain as ΣR/A

α,mn(ω) = ∓ i
2Γα,mn, we may perform an analytic continuation

to complex frequencies to obtain the Matsubara component as ΣM
α,mn(ωq) = ∓ i

2Γα,mn

where the minus sign is taken when the Matsubara frequency is located on the
upper-half plane (UHP): Imωq > 0 and the plus sign when the Matsubara frequency
is located on the lower-half plane (LHP): Imωq < 0. Then, in time-domain (on the
vertical track of the Keldysh contour) we have the self-energy as a Fourier-type
transformation [73]

ΣM
α,mn(τ, τ′) =

1
−iβ

∑
q

eωq(τ−τ′)ΣM
α,mn(ωq). (A.1)

The advanced Green’s function for isolatedα-th lead satisfies the equation of motion
in Eq. (2.6) with the lead Hamiltonian given simply as εkα + Vα. The solution for the
Green’s function is then readily written as

gA
kα(t0, t) = iθ(t − t0)ei(εkα+Vα)(t−t0). (A.2)
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Then, we can express the ‘left’ component of the isolatedα-th lead’s Green’s function
by separating the corresponding Green’s functions on the horizontal and vertical
branch of the Keldysh contour as

gdkα(τ, t) = −igM
kα(τ, 0)gA

kα(0, t) = ei(εkα+Vα)tgM
kα(τ, 0), (A.3)

where, without loss of generality, we could choose t0 = 0 for simplicity (as the time
when the bias voltage is switched on). The Matsubara Green’s functions in time-
domain can also be expressed from the corresponding Green’s function in terms of
the Matsubara frequency as a Fourier-type series

gM
kα(τ, τ′) =

1
−iβ

∑
q

e−ωq(τ−τ′)gM(ωq) =
1
−iβ

∑
q

e−ωq(τ−τ′)

ωq − εkα + µ
, (A.4)

where we inserted a general form for the Green’s function in frequency domain from
Eq. (2.11) and using an analytic continuation. By using Eq. (A.3) we can calculate
the corresponding component for the self-energy in Eq. (2.63)

Σdα,mn(τ, t) =
1
−iβ

∑
q

e−ωqτ
∑

k

Tm,kα
ei(εkα+Vα)t

ωq − εkα + µ
Tkα,n

=
1
−iβ

∑
q

e−ωqτ
∑

k

Tm,kα

[∫
dωδ(ω − εkα)

ei(ω+Vα)t

ωq − ω + µ

]
Tkα,n

=
1
−iβ

∑
q

e−ωqτ

∫
dω
2π

2π
∑

k

Tm,kαδ(ω − εkα)Tkα,n
ei(ω+Vα)t

ωq − ω + µ
, (A.5)

where we notice the definition of the level-width functions in Eq. (2.62) as Γα,mn =
2π

∑
k Tm,kαδ(ω − εkα)Tkα,n. Inserting this gives

Σdα,mn(τ, t) = Γα
1
−iβ

∑
q

e−ωqτ

∫
dω
2π

ei(ω+Vα)t

ωq − ω + µ
. (A.6)

Similarly, the ‘right’ component becomes

Σeα,mn(t, τ) = Γα
1
−iβ

∑
q

eωqτ

∫
dω
2π

e−i(ω+Vα)t

ωq − ω + µ
. (A.7)

The remaining calculation for the self-energy is for the ‘lesser’ component which
we can get by using the lesser Green’s function g<kα(t, t′) = i f (εkα − µ)e−i(εkα+Vα)(t−t′) in
Eq. (2.63) as

Σ<α,mn(t, t′) =
∑

k

Tm,kαi f (εkα − µ)e−i(εkα+Vα)(t−t′)Tkα,n. (A.8)
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We may convert the sum over k to an integral overω by introducing a delta function

Σ<α,mn(t, t′) =
∑

kα

Tm,kα

∫
dω
2π

2πδ(ω − εkα)i f (ω − µ)e−i(ω+Vα)(t−t′)Tkα,n

=

∫
dω
2π

2π
∑

k

Tm,kαδ(ω − εkα)Tkα,ni f (ω − µ)e−i(w+Vα)(t−t′)

= iΓα,mn

∫
dω
2π

f (ω − µ)e−i(ω+Vα)(t−t′), (A.9)

where we also used Eq. (2.62) on the last line.

With the self-energies calculated above, we can now derive expressions for the
Green’s functions (on the central molecule). Using the general form for the Green’s
function in frequency domain in Eq. (2.17) the Matsubara component is readily
written as

GM(ωq) =
1

ωq − h − ΣM(ωq) + µ
=

 1
ωq−h+ i

2Γ+µ
1

ωq−h− i
2Γ+µ

=

 1
ωq−heff+µ , Im[ωq] > 0

1
ωq−h†eff

+µ
, Im[ωq] < 0,

(A.10)

where we inserted the definition for the effective Hamiltonian from Eq. (2.68). The
‘right’ component of the Green’s function can be obtained directly from its equation
of motion[

i
d
dt
− h

]
Ge(t, τ) =

∫
∞

0
dt̄ΣR(t, t̄)Ge(t̄, τ) − i

∫ β

0
dτ̄Σe(t, τ̄)GM(τ̄, τ), (A.11)

where the integration on the Keldysh contour was split in two contributions. Then
we may insert the self-energy in WBA, ΣR(t, t̄) = − i

2Γδ(t̄ − t), into Eq. (A.11) to find

[
i

d
dt
− h

]
Ge(t, τ) = −

∫
∞

0
dt̄

i
2
Γδ(t̄ − t)Ge(t̄, τ) − i

∫ β

0
dτ̄Σe(t, τ̄)GM(τ̄, τ), (A.12)

where the first integral on the right-hand side gives simply i
2ΓGe(t, τ), and we can

combine the terms with Γ and h to form a non-homogeneous differential equation

[
i

d
dt
− (h −

i
2
Γ)

]
Ge(t, τ) = −i

∫ β

0
dτ̄Σe(t, τ̄)GM(τ̄, τ), (A.13)

where on the left-hand side we find the definition for heff. For this differential
equation we can write the solution, by noticing the boundary condition Ge(0, τ) =
GM(0, τ), as

Ge(t, τ) = e−ihefft
[
GM(0, τ) −

∫ t

0
dt′eihefft′

∫ β

0
dτ̄Σe(t′, τ̄)GM(τ̄, τ)

]
. (A.14)
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For the retarded Green’s function, for which we have GR(t, t′) = GR(t − t′), we may
write a Fourier transformation

GR(t − t′) =

∫
dω
2π

eiω(t−t′)GR(ω), (A.15)

and then use the expression on frequency domain from Eq. (2.17) as

GR(ω) =
1

ω − heff
. (A.16)

This way we get by integrating

GR(t − t′) =

∫
dω
2π

e−iω(t−t′)

ω − heff
= −iθ(t − t′)e−iheff(t−t′). (A.17)

Here, in Eq. (A.17), for the Fourier integral to be defined correctly, the analytic
structure of (ω − heff)−1 is such that the complex eigenvalues of heff lie on the LHP.
Correspondingly, for the advanced Green’s function, GA, the complex eigenvalues
of h†eff

are located on the UHP. This leads to GA(t − t′) = iθ(t′ − t)e−ih†eff
(t′−t). It is,

however, also possible to have such a transport setup that heff has zero eigenvalues;
in this case it becomes important to take into account the infinitesimal ±iη in the
retarded/advanced Green’s functions, i.e., the Green’s function operator acting on
the corresponding states has the effective form GR/A(ω) = (ω−h± iη)−1, see Pub. [II].

A.1.2 Calculating the time-convolutions of different Keldysh com-
ponents of the self-energies and Green’s functions

In this subsection, we only insert the derived forms for the different Keldysh com-
ponents of the Green’s functions and self-energies (from the previous subsection)
into the definitions of time-convolutions along the Keldysh contour, and derive
accordingly expressions for the time-convolutions to be inserted into the equation
of motion (2.67).

Inserting from Eqs. (A.17) and (A.9) we may calculate straightforwardly (it is still
important to keep in mind that [heff, Γ] , 0, in general)[

GR
· Σ<

]
(t, t) =

∫
∞

0
dt̄GR(t, t̄)Σ<(t̄, t)

=

∫
∞

0
dt̄

[
−iθ(t − t̄)e−iheff(t−t̄)

]∑
α

iΓα

∫
dω
2π

f (ω − µ)e−i(ω+Vα)(t̄−t).

(A.18)
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We may couple the t̄-independent terms outside the time integral as[
GR
· Σ<

]
(t, t) = i

∑
α

∫
dω
2π

f (ω − µ)(−i)e−ihefftei(ω+Vα)t
∫ t

0
dt̄eiheff t̄e−i(ω+Vα)t̄Γα

= i
∑
α

∫
dω
2π

(−i)ei(ω+Vα−heff)t
∫ t

0
dt̄e−i(ω+Vα−heff)t̄ f (ω − µ)Γα ,(A.19)

where on the right-hand side we may perform the integration over t̄ to give∫ t

0
dt̄e−i(ω+Vα−heff)t̄ = 1

−i(ω+Vα−heff)

[
e−i(ω+Vα−heff)t

− 1
]
. This can be written in terms of the

retarded Green’s function in Eq. (A.16) and combining with the exponential factor
in front of the whole expression to give[

GR
· Σ<

]
(t, t) = i

∑
α

∫
dω
2π

f (ω − µ)ei(ω+Vα−heff)tGR(ω + Vα)
[
e−i(ω+Vα−heff)t

− 1
]
Γα

= i
∑
α

∫
dω
2π

f (ω − µ)
[
1 − ei(ω+Vα−heff)t

]
GR(ω + Vα)Γα. (A.20)

The second time-convolution includes G<, i.e., the function we are solving from the
equation of motion. Thus, inserting from Eq. (2.64) this is readily calculated[

G<
· ΣA

]
(t, t) =

∫
∞

0
dt̄G<(t, t̄)ΣA(t̄, t) =

∫
∞

0
G<(t, t̄)

i
2
Γδ(t̄ − t) =

i
2

G<(t, t)Γ. (A.21)

The third time-convolution involves somewhat more trickery as it cannot be in-
tegrated right away into known expressions due to a more complicated form for
the ‘right’ Green’s function. However, inserting the expressions from Eqs. (A.12)
and (A.5) gives as an intermediate result[

Ge ? Σd
]

(t, t)

= −i
∫ β

0
dτGe(t, τ)Σd(τ, t)

= −i
∫ β

0
dτe−ihefft

[
GM(0, τ) −

∫ t

0
dt′eihefft′

∫ β

0
dτ̄Σe(t′, τ̄)GM(τ̄, τ)

]
Σd(τ, t)

= e−ihefft

{
−i

∫ β

0
dτGM(0, τ)Σd(τ, t)

+i
∫ β

0
dτ

∫ t

0
dt′eihefft′

∫ β

0
dτ̄Σe(t′, τ̄)GM(τ̄, τ)Σd(τ, t)

}
= e−ihefft

{[
GM ? Σd

]
(0, t) − i

∫ t

0
dt′eihefft′

[
Σe ? GM ? Σd

]
(t′, t)

}
. (A.22)



110 Appendix A

Before going further, let us obtain a useful result regarding Matsubara frequencies
ωq = 2π

−iβ (2q + 1):∫ β

0
dτe(ωq−ωq′ )τ =

∫ β

0
dτe

2π
−iβ (q+1−q′−1)τ =

∫ β

0
dτe

2πi
β (q−q′)τ =

β

2πi(q − q′)

[
e2πi(q−q′)

− 1
]

=

β when q = q′

0 when q , q′
= βδqq′ . (A.23)

Then, let us calculate Eq. (A.22) further. Inserting from Eqs. (A.5), (A.7) and (A.10)
we obtain for the double convolution[

Σe ? GM ? Σd
]

(t′, t)

= −i
∫ β

0
dτ(−i)

∫ β

0
dτ̄Σe(t′, τ̄)GM(τ̄, τ)Σd(τ, t)

= −

∑
α,α′

∫ β

0
dτ

∫ β

0
dτ̄Γα

1
−iβ

∑
q

eωqτ̄

∫
dω
2π

e−i(ω+Vα)t′

ωq − ω + µ
GM(τ̄, τ)

× Γα′
1
−iβ

∑
q′

e−ωq′τ

∫
dω′

2π
ei(ω′+Vα′ )t

ωq′ − ω′ + µ

= −

∫
dω
2π

∫
dω′

2π

∑
α,α′

∑
q,q′

∫ β

0
dτ

∫ β

0
dτ̄Γα

(
1
−iβ

)2

eωqτ̄
e−i(ω+Vα)t′

ωq − ω + µ

× e−ωq′ τ̄eωq′ τ̄GM(τ̄, τ)Γα′e−ωq′τ
ei(ω′+Vα′ )t

ωq′ − ω′ + µ
, (A.24)

where we wrote a simple product of exponentials e−ωq′ τ̄eωq′ τ̄ = 1, and we may
manipulate the expression further[

Σe ? GM ? Σd
]

(t′, t)

=
1
β2

∫
dω
2π

∫
dω′

2π

∑
α,α′

∑
q,q′

∫ β

0
dτ

∫ β

0
dτ̄Γα

e−i(ω+Vα)t′

ωq − ω + µ
e(ωq−ωq′ )τ̄eωq′ (τ̄−τ)

× GM(τ̄, τ)Γα′
ei(ω′+Vα′ )t

ωq′ − ω′ + µ
. (A.25)
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Now, Eq. (A.23) can be used[
Σe ? GM ? Σd

]
(t′, t)

=
1
−iβ2

∫
dω
2π

∫
dω′

2π

∑
α,α′

∑
q,q′
βδqq′Γα

e−i(ω+Vα)t′

ωq − ω + µ

× (−i)
∫ β

0
dτeωq′ (τ̄−τ)GM(τ̄, τ)Γα′

ei(ω′+Vα′ )t

ωq′ − ω′ + µ

=

∫
dω
2π

∫
dω′

2π

∑
α,α′

Γα
1
−iβ

∑
q

e−i(ω+Vα)t′

ωq − ω + µ
GM(ωq)

ei(ω′+Vα′ )t

ωq − ω′ + µ
Γα′ , (A.26)

where on the last line we noticed the Fourier transformation of the Matsubara
Green’s function as GM(ωq′) = −i

∫ β

0
dτeωq′ (τ̄−τ)GM(τ̄, τ). Looking at Eq. (A.26) more

closely reveals that the integration with respect toωmust be done via LHP whereas
the integration with respect toω′must be done via UHP, because of the exponentials
e−i(ω+Vα)t′ and ei(ω′+Vα)t. However, the corresponding poles are on the opposite half
planes, and this makes the double integral to vanish for every ωq. Hence,[

Σe ? GM ? Σd
]

(t′, t) = 0. (A.27)

Then in Eq. (A.22) we are left with

[
GM ? Σd

]
(0, t) = −i

∫ β

0
dτGM(0, τ)Σd(τ, t)

= −i
∫ β

0
dτGM(0, τ)

∑
α

Γα
1
−iβ

∑
q

e−ωqτ

∫
dω
2π

ei(ω+Vα)t

ωq − ω + µ

=
∑
q,α

∫
dω
2π

(−i)
∫ β

0
dτeωq(0−τ)GM(0, τ)Γα

1
−iβ

ei(ω+Vα)t

ωq − ω + µ

=

∫
dω
2π

1
−iβ

∑
q

GM(ωq)eηωq

ωq − ω + µ

∑
α

Γαei(ω+Vα)t, (A.28)

where on the last line we added a convergence factor eηωq to account for correct
limiting behaviour when t → 0; it must be

[
GM ? Σd

]
(0, 0+) =

[
GM ? ΣM

]
(0, 0+).

This also defines the correct analytic structure for the Fourier transformation for
complex time variable τ on the last but one line GM(ωq) = −i

∫ β

0
dτeωq(0−τ)GM(0, τ).

In Eq. (A.28) we have a sum of Matsubara frequencies. This can be calculated
with some complex-analytic methods [209]. First, we notice that for a piecewise
smooth and closed contour γ, encircling counter-clockwise all the poles in the UHP,
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iπ

3iπ

5iπ

−iπ

−3iπ

−5iπ

Re[ω]

Im[ω]

(a) Original contour encircling all the
Matsubara frequencies.

iπ

3iπ

5iπ

−iπ

−3iπ

−5iπ

−R R

iδ

−iδ Re[ω]

Im[ω]

(b) Deformed contour spanning the
whole complex plane when R → ∞
and δ→ 0.

Fig. A.1: Contour deformation for evaluating the sum over Matsubara frequencies
in Eq. (A.28).

corresponding to the Matsubara frequencies,∫
γ

dω′
1

eβω′ + 1︸   ︷︷   ︸
= f (ω′)

eηω
′ GM(ω′)
ω′ − ω + µ

βω′→ω′′

=
1
β

∫
γ

dω′′
eηω′′/βGM(ω′′/β)/(ω′′/β − ω + µ)

eω
′′

+ 1︸ ︷︷ ︸
=0 when ω′′=i(2q+1)π

=
2πi
β

∑
q

eη
( 2(q+1)π
−iβ

) GM
(

2(q+1)π
−iβ

)
2(q+1)π
−iβ − ω + µ

=
2πi
β

∑
q

eηωq
GM(ωq)

ωq − ω + µ
, (A.29)

due to Cauchy’s integral formula. Second, we may also deform the contour γ as in
Fig. A.1, and then calculate

1
−iβ

∑
q

GM(ωq)eηωq

ωq − ω + µ
=

∫
γ

dω′

2π
f (ω′)eηω

′ GM(ω′)
ω′ − ω + µ

=

∫
γLHP

dω′

2π
f (ω′)eηω

′ GM(ω′ − iδ)
ω′ − iδ − ω + µ

+

∫
γUHP

dω′

2π
f (ω′)eηω

′ GM(ω′ + iδ)
ω′ + iδ − ω + µ

=

∫
−∞

∞

dω′

2π
f (ω′)eηω

′ GM(ω′ − iδ)
ω′ − iδ − ω + µ

+

∫
∞

−∞

dω′

2π
f (ω′)eηω

′ GM(ω′ + iδ)
ω′ + iδ − ω + µ

= −

∫
∞

−∞

dω′

2π
f (ω′)eηω

′

[
GM(ω′ − iδ)

ω′ − ω + µ − iδ
−

GM(ω′ + iδ)
ω′ − ω + µ + iδ

]
. (A.30)
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By inserting Eq. (A.30) into Eq. (A.28) we get[
GM ? Σd

]
(0, t)

= −

∫
dω
2π

∫
dω′

2π
f (ω′)eηω

′

[
GM(ω′ − iδ)

ω′ − ω + µ − iδ
−

GM(ω′ + iδ)
ω′ − ω + µ + iδ

]∑
α

Γαei(ω+Vα)t.

(A.31)

Now, the integral over ω can be closed in the UHP because of the exponential
ei(ω+Vα)t since t > 0. Then, the first term in the square brackets integrates to zero
because of the pole in the LHP. The pole of the second term occurs atω = ω′+µ+ iδ,
and then we have[

GM ? Σd
]

(0, t) = i
∫

dω′

2π
f (ω′)eηω

′

GM(ω′ + iδ)
∑
α

Γαei(ω′+µ+iδ+Vα)t

= i
∫

dω
2π

f (ω − µ)GM(ω − µ)
∑
α

Γαei(ω−µ+µ+Vα)t

= i
∫

dω
2π

f (ω − µ)GR(ω)
∑
α

Γαei(ω+Vα)t, (A.32)

where we also noticed a boundary condition GR(ω) = GM(ω−µ) on the last but one
line. Also, the limits η→ 0+ and δ→ 0+, and a change of variablesω′ = ω−µ should
be understood. The expression in Eq. (A.32) we may finally insert into Eq. (A.22) to
obtain [

Ge ? Σd
]

(t, t) = ie−ihefft
∫

dω
2π

f (ω − µ)GR(ω)
∑
α

Γαei(ω+Vα)t

= i
∫

dω
2π

f (ω − µ)
∑
α

ei(ω+Vα−heff)tGR(ω)Γα. (A.33)

Now, we have derived all the needed expressions for the equation of motion (2.67),
and we may start solving the remaining differential equation.

A.1.3 Details on solving the equation of motion for the Green’s
function

Before inserting Eqs. (A.19), (A.21) and (A.33) into Eq. (2.67) we notice a useful
‘Dyson’-like identity for the retarded Green’s function which can be manipulated
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as follows

GR(ω) =
1

ω − heff
= (ω + Vα − heff − Vα)−1

=

[( 1
ω + Vα − heff

)−1

− Vα

]−1

=
{[

GR(ω + Vα)
]−1
− Vα

}−1

. (A.34)

Here, we may multiply (from right) by the inverse of the expression on the right-
hand side to obtain

1 = GR(ω)
{[

GR(ω + Vα)
]−1
− Vα

}
= GR(ω)

[
GR(ω + Vα)

]−1
− VαGR(ω) (A.35)

which we may again multiply (from right) by the inverted term on the right-
hand side. This way we obtain a ‘Dyson’-type relation between equilibrium and
nonequilibrium retarded Green’s functions

GR(ω + Vα) = GR(ω) − VαGR(ω)GR(ω + Vα). (A.36)

Similar consideration may also be extended to second order in the external pertur-
bation (bias voltage) by including also the advanced Green’s functions

V2
αGR(ω)GA(ω)GR(ω + Vα)GA(ω + Vα) = [GR(ω) − GR(ω + Vα)][GA(ω) − GA(ω + Vα)].

(A.37)

Then, let us look at Eq. (2.67); by inserting the expressions derived in the previous
section we have

i
d
dt

G<(t, t) − [h,G<(t, t)]

= −

i
∑
α

∫
dω
2π

f (ω − µ)
[
1 − ei(ω+Vα−heff)t

]
GR(ω + Vα)Γα +

i
2
ΓG<(t, t)

+ i
∫

dω
2π

f (ω − µ)
∑
α

ei(ω+Vα−heff)tGR(ω)Γα

 + h.c., (A.38)

where we also assume the explicit time-independence in the Hamiltonian for the
central molecule on the left-hand side. In Eq. (A.38) we have a nonhomogeneous,
first order, linear differential equation for G<(t, t), and this may be solved explicitly.
By simply organizing terms we get

i
d
dt

G<(t, t) − hG<(t, t) + G<(t, t)h +
i
2
ΓG<(t, t) +

[ i
2
ΓG<(t, t)

]†
= −

i
∑
α

∫
dω
2π

f (ω − µ)
[
1 − ei(ω+Vα−heff)t

]
GR(ω + Vα)Γα

+ i
∫

dω
2π

f (ω − µ)
∑
α

ei(ω+Vα−heff)tGR(ω)Γα

 + h.c., (A.39)
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where we may use the property in Eq (2.42) to get
[

i
2ΓG<(t, t)

]†
= −i

2

[
−G<(t, t)

]
Γ. By

coupling the terms with Hamiltonians h and level-width functions Γ we find the
definitions of the effective Hamiltonian heff, and we may write

i
d
dt

G<(t, t) − heffG<(t, t) + G<(t, t)h†eff

= −i
∫

dω
2π

f (ω − µ)
∑
α

{
ei(ω+Vα−heff)t

[
GR(ω) − GR(ω + Vα)

]
+ GR(ω + Vα)

}
Γα + h.c..

(A.40)

Here we can employ the identity from Eq. (A.36) for the difference inside the square
brackets to write the final expanded form

i
d
dt

G<(t, t) − heffG<(t, t) + G<(t, t)h†eff

= −i
∫

dω
2π

f (ω − µ)
∑
α

{
ei(ω+Vα−heff)tVαGR(ω)GR(ω + Vα) + GR(ω + Vα)

}
Γα

+ i
∫

dω
2π

f (ω − µ)
∑
α

Γα
{
GA(ω + Vα)GA(ω)Vαe−i(ω+Vα−h†eff

)t + GA(ω + Vα)
}
.

(A.41)

Now, the equation is split such that the function G<(t, t) is on the left-hand side
and the nonhomogeneous part is on the right-hand side. Because there appears
terms like e−ihefft and eih†eff

t, it is convenient to transform the Green’s function as
G<(t, t) = e−ihefftG̃<(t, t)eih†eff

t. This way the left-hand side of Eq. (A.38) becomes

i
d
dt

[
e−ihefftG̃<(t, t)eih†eff

t
]
− heffe−ihefftG̃<(t, t)eih†eff

t + e−ihefftG̃<(t, t)eih†eff
th†eff

= i
[
−iheffe−ihefftG̃<(t, t)eih†eff

t + e−ihefft d
dt

G̃<(t, t)eih†eff
t + e−ihefftG̃<(t, t)ih†effeih†eff

t
]

−heffe−ihefftG̃<(t, t)eih†eff
t + e−ihefftG̃<(t, t)eih†eff

th†eff

= e−iheffti
d
dt

G̃<(t, t)eih†eff
t. (A.42)

Then, we can multiply the right-hand side of Eq. (A.38) from left by eihefft and from
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right by e−ih†eff
t to obtain

i
d
dt

G̃<(t, t)

= −i
∫

dω
2π

f (ω − µ)
∑
α

eihefft
{
ei(ω+Vα−heff)tVαGR(ω)GR(ω + Vα)

+ GR(ω + Vα)
}
Γαe−ih†eff

t

+i
∫

dω
2π

f (ω − µ)
∑
α

eihefftΓα
{
GA(ω + Vα)GA(ω)Vαe−i(ω+Vα−h†eff

)t

+ GA(ω + Vα)
}

e−ih†eff
t, (A.43)

where also the dependency on the bias voltage Vα may be separated to a ‘zeroth’
and ‘first’ order terms

i
d
dt

G̃<(t, t)

= −i
∫

dω
2π

f (ω − µ)
∑
α

eihefft
[
GR(ω + Vα)Γα − ΓαGA(ω + Vα)

]
eih†eff

t

−i
∫

dω
2π

f (ω − µ)
∑
α

Vα

[
GR(ω)GR(ω + Vα)Γαei(ω+Vα−h†eff

)t

−e−i(ω+Vα−heff)tΓαGA(ω + Vα)GA(ω)
]
. (A.44)

Now we are ready to integrate both sides over t to obtain (note that ‘i’ cancels from
both sides)

G̃<(t, t) − G̃<(0, 0+)

= −

∫
dω
2π

f (ω − µ)
∑
α

∫ t

0
dt′eihefft′

[
GR(ω + Vα)Γα − ΓαGA(ω + Vα)

]
e−ih†eff

t′

−

∫
dω
2π

f (ω − µ)
∑
α

Vα

∫ t

0
dt′

[
GR(ω)GR(ω + Vα)Γαei(ω+Vα−h†eff

)t′

−e−i(ω+Vα−heff)t′ΓαGA(ω + Vα)GA(ω)
]
, (A.45)

where the initial condition on the left-hand side can also be written as G̃<(0, 0+) =
G<(0, 0+) = GM(0, 0+). The integration over t′ for the second term in Eq (A.45) can be
done easily since the only dependence on t′ is inside the single exponentials. For the
first term we need to do something different because of the product of exponentials.
The following calculation explains the idea for the first line in Eq. (A.45): For
arbitrary matrices A and B, and for a matrix x proportional to a unit matrix, we
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have

∂
∂t′

[
eiAt′ 1

x − A
B

1
x − A†

e−iA†t′
]

=
∂
∂t′

[
e−i(x−A)t′ 1

x − A
B

1
x − A†

ei(x−A†)t′
]

= −i(x − A)e−i(x−A)t′ 1
x − A

B
1

x − A†
ei(x−A†)t′ + e−i(x−A)t′ 1

x − A
B

1
x − A†

i(x − A†)ei(x−A†)t′

= ie−i(x−A)t′
[ 1
x − A

B − B
1

x − A†

]
ei(x−A†)t′ = ieiAt′

[ 1
x − A

B − B
1

x − A†

]
e−iA†t′ . (A.46)

Therefore, in the other way around, we may write∫ t

0
dt′eiAt′

[ 1
x − A

B − B
1

x − A†

]
e−iA†t′ = −ieiAt′ 1

x − A
B

1
x − A†

e−iA†t′
∣∣∣∣∣t
0
. (A.47)

Applying the result in Eq. (A.47) to Eq. (A.45) we find

G̃<(t, t) − GM(0, 0+)

= −

∫
dω
2π

f (ω − µ)
∑
α

[
−ieihefft′ 1

ω + Vα − heff
Γα

1
ω + Vα − h†eff

e−ih†eff
t′
]t

0

−

∫
dω
2π

f (ω − µ)
∑
α

Vα

GR(ω)GR(ω + Vα)Γα

[
−i

ω + Vα − h†eff

ei(ω+Vα−h†eff
)t′
]t

0

+
[

−i
ω + Vα − heff

e−i(ω+Vα−heff)t′
]t

0
ΓαGA(ω + Vα)GA(ω)

}
. (A.48)

For the zero-time Matsubara Green’s function we may use its Fourier decomposition
similar to Eq. (A.30)

GM(0, 0+) =
1
−iβ

∑
q

eηωqGM(ωq) = −

∫
dω
2π

f (ω)
[
GM(ω − iδ) − GM(ω + iδ)

]
= −

∫
dω
2π

f (ω − µ)
[
GA(ω) − GR(ω)

]
= i

∫
dω
2π

f (ω − µ)GR(ω)ΓGA(ω).

(A.49)
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By expanding the other terms on the right-hand side as well we find

G̃<(t, t) = i
∫

dω
2π

f (ω − µ)GR(ω)ΓGA(ω)

+ i
∫

dω
2π

f (ω − µ)
∑
α

[
eihefftGR(ω + Vα)ΓαGA(ω + Vα)e−ih†eff

t

−GR(ω + Vα)ΓαGA(ω + Vα)
]

+ i
∫

dω
2π

f (ω − µ)
∑
α

Vα

{
GR(ω)GR(ω + Vα)ΓαGA(ω + Vα)ei(ω+Vα−h†eff

)t

−GR(ω)GR(ω + Vα)ΓαGA(ω + Vα)
+GR(ω + Vα)e−i(ω+Vα−heff)tΓαGA(ω + Vα)GA(ω)

−GR(ω + Vα)ΓαGA(ω + Vα)GA(ω)
}
. (A.50)

The integrals and sums can also be coupled together to give

G̃<(t, t) = i
∫

dω
2π

f (ω − µ)
∑
α

{
GR(ω)ΓαGA(ω)

+eihefftGR(ω + Vα)ΓαGA(ω + Vα)e−ih†eff
t

−GR(ω + Vα)ΓαGA(ω + Vα)

+VαGR(ω)GR(ω + Vα)ΓαGA(ω + Vα)ei(ω+Vα−h†eff
)t

−VαGR(ω)GR(ω + Vα)ΓαGA(ω + Vα)
+VαGR(ω + Vα)e−i(ω+Vα−heff)tΓαGA(ω + Vα)GA(ω)

−VαGR(ω + Vα)ΓαGA(ω + Vα)GA(ω)
}
. (A.51)

Then, let us insert the definition for G̃ into the left-hand side, and multiply accord-
ingly by e−ihefft from left and by eih†eff

t from right. This way we obtain

−iG<(t, t) =

∫
dω
2π

f (ω − µ)
∑
α

{
e−ihefftGR(ω)ΓαGA(ω)eih†eff

t

+GR(ω + Vα)ΓαGA(ω + Vα)

−e−ihefftGR(ω + Vα)ΓαGA(ω + Vα)eih†eff
t

+Vαe−ihefftGR(ω)GR(ω + Vα)ΓαGA(ω + Vα)ei(ω+Vα)t

−Vαe−ihefftGR(ω)GR(ω + Vα)ΓαGA(ω + Vα)eih†eff
t

+VαGR(ω + Vα)e−i(ω+Vα)tΓαGA(ω + Vα)GA(ω)eih†eff
t

−Vαe−ihefftGR(ω + Vα)ΓαGA(ω + Vα)GA(ω)eih†eff
t
}
, (A.52)

where the underlined parts refer to coupling the corresponding exponentials, and
we also define the partial spectral functions

Aα(ω) = GR(ω)ΓαGA(ω). (A.53)
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The full spectral function is obtained by summing over all the leads A(ω) =∑
α Aα(ω). By combining terms and simplifying further we find

−iG<(t, t)

=

∫
dω
2π

f (ω − µ)
∑
α

{
Aα(ω + Vα) + Vα

[
ei(ω+Vα−heff)tGR(ω)Aα(ω + Vα) + h.c.

]
+e−ihefft

[
GR(ω)ΓαGA(ω) − GR(ω + Vα)ΓαGA(ω + Vα)

−VαGR(ω)GR(ω + Vα)ΓαGA(ω + Vα) − VαGR(ω + Vα)ΓαGA(ω + Vα)GA(ω)
]
eih†eff

t
}
.

(A.54)

Here the underlined parts may be combined by using Eq. (A.36) which leads to

−iG<(t, t) =

∫
dω
2π

f (ω − µ)
∑
α

{
Aα(ω + Vα)

+Vα

[
ei(ω+Vα−heff)tGR(ω)Aα(ω + Vα) + h.c.

]
+e−ihefft

[
GR(ω)ΓαGA(ω) − GR(ω + Vα)ΓαGA(ω + Vα)

−GR(ω)ΓαGA(ω + Vα) + GR(ω + Vα)ΓαGA(ω + Vα)

−GR(ω + Vα)ΓαGA(ω) + GR(ω + Vα)ΓαGA(ω + Vα)
]
eih†eff

t
}
, (A.55)

where we may further combine terms so that Eq. (A.37) may be used (marked again
with underlining)

−iG<(t, t) =

∫
dω
2π

f (ω − µ)
∑
α

{
Aα(ω + Vα)

+Vα

[
ei(ω+Vα−heff)tGR(ω)Aα(ω + Vα) + h.c.

]
+e−ihefft

[(
GR(ω) − GR(ω + Vα)

)
Γα

(
GA(ω) − GA(ω + Vα)

)]
eih†eff

t
}

=

∫
dω
2π

f (ω − µ)
∑
α

{
Aα(ω + Vα)

+Vα

[
ei(ω+Vα−heff)tGR(ω)Aα(ω + Vα) + h.c.

]
+V2

αe−ihefftGR(ω)GR(ω + Vα)ΓαGA(ω + Vα)GA(ω)eih†eff
t
}
. (A.56)

The result in Eq. (A.56) is now the solved Green’s function at equal time limit,
giving the time-dependent density matrix.

A.1.4 Time-dependent Landauer–Büttiker formula

Here we go through the main steps in obtaining the time-dependent extension to
the Landauer–Büttiker formula in Eq. (2.85). Now, we can put the expressions for
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the time-convolutions into Eq. (2.81) and calculate further (also expand the trace as
Re{Tr[A]} = Tr{A + A†}/2 and put the electron charge to −1)

Iα(t) = −2Tr
{

i
∫

dω
2π

f (ω − µ)ΓαGA(ω + Vα)
[
1 − e−i(ω+Vα−h†eff

)t
]

−i
∫

dω
2π

f (ω − µ)
[
1 − ei(ω+Vα−heff)t

]
GR(ω + Vα)Γα

−
i
2
ΓαG<(t, t) −

i
2

G<(t, t)Γα

+i
∫

dω
2π

f (ω − µ)ΓαGA(ω)e−i(ω+Vα−h†eff
)t

−i
∫

dω
2π

f (ω − µ)ei(ω+Vα−heff)tGR(ω)Γα

}
, (A.57)

where we may use the cyclic property of the trace Tr(AB) = Tr(BA) and write

Iα(t) = −2
∫

dω
2π

f (ω − µ)Tr
{
iΓαGA(ω + Vα) − iGR(ω + Vα)Γα

+i
[
GA(ω) − GA(ω + Vα)

]
e−i(ω+Vα−h†eff

)tΓα

−iΓαe−i(ω+Vα−heff)t
[
GR(ω) − GR(ω + Vα)

]
− iΓαG<(t, t)

}
. (A.58)

Here, again, the underlined parts refer to the identity in Eq. (A.36), and we may
also insert the final result for the lesser Green’s function from Eq. (2.79) to find

Iα(t) = −2
∫

dω
2π

f (ω − µ)
∑
β

Tr
{

ΓαGR(ω + Vα)ΓβGA(ω + Vα) − Γαi
[
GR(ω + Vα) − GA(ω + Vα)

]
+Vβ

{
Γαei(ω+Vβ−heff)tGR(ω)

[
−iδαβGR(ω + Vβ) + Aβ(ω + Vβ)

]
+ h.c.

}
+V2

βΓαe−ihefftGR(ω)Aβ(ω + Vβ)GA(ω)eih†eff
t
}
, (A.59)

where we use the relation for the difference of the retarded and advanced Green’s
functions (the underlined part) in Eq. (2.21) to find our final result for the current
through the interface between the central region and the α-th lead

Iα(t) = −2
∫

dω
2π

f (ω − µ)
∑
β

Tr
{

ΓαGR(ω + Vβ)ΓβGA(ω + Vβ) − ΓαGR(ω + Vα)ΓβGA(ω + Vα)

+Vβ

{
Γαei(ω+Vβ−heff)tGR(ω)

[
−iδαβGR(ω + Vβ) + Aβ(ω + Vβ)

]
+ h.c.

}
+V2

βΓαe−ihefftGR(ω)Aβ(ω + Vβ)GA(ω)eih†eff
t
}
. (A.60)
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A.1.5 Solving the equation of motion with perturbed central re-
gion

When trying to solve Eq. (2.125) we notice that also a relation between the un-
perturbed and perturbed Green’s functions is needed; this can be obtained as a
Dyson-like equation [similar to Eq. (A.36)]

GR(ω) = (ω − heff)−1 = (ω − heff − u + Vα + u − Vα)−1

=

[( 1
ω − heff − u + Vα

)−1

+ u − Vα

]−1

=


 1

ω − h̃eff + Vα

−1

− Ṽα


−1

=
{[

G̃R(ω + Vα)
]−1
− Ṽα

}−1

, (A.61)

where we defined Ṽα = Vα1 − u which is now to be understood as an arbitrary
matrix (before it was proportional to a unit matrix). Inverting the above equation
gives

1 = GR(ω)
{[

G̃R(ω + Vα)
]−1
− Ṽα

}
= GR(ω)

[
G̃R(ω + Vα)

]−1
− GR(ω)Ṽα (A.62)

which can further be written in the following form

GR(ω) − G̃R(ω + Vα) = GR(ω)ṼαG̃R(ω + Vα). (A.63)

Similarly, a second order relation reads

[GR(ω)− G̃R(ω+Vα)][GA(ω)− G̃A(ω+Vα)] = GR(ω)ṼαG̃R(ω+Vα)G̃A(ω+Vα)Ṽ†αGA(ω).
(A.64)

Compared to the earlier derivation, special care must now be taken for the order of
multiplication of the matrices. Now, we may go on with Eq. (2.125)

i
d
dt

G<(t, t) − h̃effG<(t, t) + G<(t, t)̃h†eff

= −i
∫

dω
2π

f (ω − µ)
∑

a

{
ei(ω+Vα−̃heff)tGR(ω)ṼαG̃R(ω + Vα) + G̃R(ω + Vα)

}
Γα

+ i
∫

dω
2π

f (ω − µ)
∑
α

Γα
{
G̃A(ω + Vα)Ṽ†αGA(ω)e−i(ω+Vα−̃h†eff

)t + G̃Aω + Vα)
}
.

(A.65)

Then, we introduce a similar transformation for the Green’s function as in Eq. (A.42)

G<(t, t) = e−ĩhefft
G
<(t, t)eĩh†eff

t (A.66)
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but now we denote the transformed Green’s function by a calligraphic symbol since
the tildes already denote the functions evaluated with the perturbed Hamiltonian.
Evaluating the derivative on the left-hand side and then multiplying both sides
with the corresponding exponentials leads to

d
dt
G
<(t, t) = −

∫
dω
2π

f (ω − µ)
∑
α

eĩhefft
[
G̃R(ω + Vα)Γα − ΓαG̃A(ω + Vα)

]
e−ĩh†eff

t

−

∫
dω
2π

f (ω − µ)
∑
α

[
GR(ω)ṼαG̃R(ω + Vα)Γαei(ω+Vα−̃h†eff

)t

−e−i(ω+Vα−̃heff)tΓαG̃A(ω + Vα)Ṽ†αGA(ω)
]
. (A.67)

Here, we may integrate both sides over t using the result in Eq. (A.47)

G
<(t, t) − G<(0, 0+)

= i
∫

dω
2π

f (ω − µ)
∑
α

{
eĩhefftG̃R(ω + Vα)ΓαG̃A(ω + Vα)e−ĩh†eff

t

−G̃R(ω + Vα)ΓαG̃A(ω + Vα)
}

+ i
∫

dω
2π

f (ω − µ)
∑
α

{
GR(ω)ṼαG̃R(ω + Vα)ΓαG̃A(ω + Vα)

[
ei(ω+Vα−̃h†eff

)t
− 1

]
+G̃R(ω + Vα)

[
e−i(ω+Vα−̃heff)t

− 1
]
ΓαG̃A(ω + Vα)Ṽ†αGA(ω)

}
. (A.68)

The initial condition on the left-hand side G<(0, 0+) = G<(0, 0+) is then (naturally)
evaluated from the unperturbed Hamiltonian, and for this we may use the same
Matsubara Green’s function as in Eq. (A.49). Inserting this and combining the terms
on the right-hand side gives

G
<(t, t)

= i
∫

dω
2π

f (ω − µ)
∑
α

{
GR(ω)ΓαGA(ω) + eĩhefftG̃R(ω + Vα)ΓαG̃A(ω + Vα)e−ĩh†eff

t

− G̃R(ω + Vα)ΓαG̃A(ω + Vα) + GR(ω)ṼαG̃R(ω + Vα)ΓαG̃A(ω + Vα)ei(ω+Vα−̃h†eff
)t

− GR(ω)ṼαG̃R(ω + Vα)ΓαG̃A(ω + Vα) − G̃R(ω + Vα)ΓαG̃A(ω + Vα)Ṽ†αGA(ω)

+ G̃R(ω + Vα)e−i(ω+Vα−̃heff)tΓαG̃A(ω + Vα)Ṽ†αGA(ω)
}
. (A.69)

Then, we are left with transforming back from G< to G< by multiplying with the
corresponding exponentials. We may combine the terms on the right-hand side
according to Eqs. (A.63) and (A.64) and have as the final result

−iG<(t, t) =

∫
dω
2π

f (ω − µ)
∑
α

{
G̃R(ω + Vα)ΓαG̃A(ω + Vα)

+
[
ei(ω+Vα−̃heff)tGR(ω)ṼαG̃R(ω + Vα)ΓαG̃A(ω + Vα) + h.c.

]
+e−ĩhefftGR(ω)ṼαG̃R(ω + Vα)ΓαG̃A(ω + Vα)Ṽ†αGA(ω)eĩh†eff

t
}

(A.70)
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which applies in the case of perturbed central regions.

By careful bookkeeping of labels and indices we end up with the following expan-
sion of Eq. (2.126) (the density matrix is now expanded in the perturbed ‘left–left’
eigenbasis of the effective Hamiltonian h̃eff)

ρ jk(t) = 〈Ψ̃L
j |ρ(t)|Ψ̃L

k 〉

=

∫
dω
2π

f (ω − µ)
∑
α

{
〈Ψ̃L

j |G̃
R(ω + Vα)ΓαG̃A(ω + Vα)|Ψ̃L

j 〉

+
∑
mn

[
〈Ψ̃L

j |e
i(ω+Vα−̃heff)t |Ψ

R
m〉〈Ψ

L
m|

〈ΨL
m|Ψ

R
m〉

GR(ω)

× Ṽα
|Ψ̃R

n 〉〈Ψ̃
L
n |

〈Ψ̃L
n |Ψ̃

R
n 〉

G̃R(ω + Vα)ΓαG̃A(ω + Vα)|Ψ̃L
j 〉 + h.c.

]
+

∑
mnpq

〈Ψ̃L
j |e
−ĩhefft |Ψ

R
m〉〈Ψ

L
m|

〈ΨL
m|Ψ

R
m〉

GR(ω)Ṽα
|Ψ̃R

n 〉〈Ψ̃
L
n |

〈Ψ̃L
n |Ψ̃

R
n 〉

G̃R(ω + Vα)

× ΓαG̃A(ω + Vα)
|Ψ̃L

p 〉〈Ψ̃
R
p |

〈Ψ̃R
p |Ψ̃

L
p 〉

Ṽ†αGA(ω)
|ΨL

q 〉〈Ψ
R
q |

〈ΨR
q |Ψ

L
q 〉

eĩh†eff
t
|Ψ̃L

j 〉

 . (A.71)

Looking at how the non-hermitian matrices operate on the corresponding eigen-
states (see Eq. (2.69)) we may write

ρ jk(t) =
∑
α

〈Ψ̃L
j |Γα|Ψ̃

L
k 〉

∫
dω
2π

f (ω − µ)
(ω + Vα − ε̃ j)(ω + Vα − ε̃∗k)

+
∑
α

∑
mn

〈Ψ̃L
j |Ψ

R
m〉〈Ψ

L
m|Ṽα|Ψ̃R

n 〉〈Ψ̃
L
n |Γα|Ψ̃

L
k 〉

〈ΨL
m|Ψ

R
m〉〈Ψ̃

L
n |Ψ̃

R
n 〉

×

∫
dω
2π

f (ω − µ)ei(ω+Vα−ε̃ j)t

(ω − εm)(ω + Vα − ε̃n)(ω + Vα − ε̃∗k)
+ h.c.

]

+
∑
α

∑
mnpq

〈Ψ̃L
j |Ψ

R
m〉〈Ψ

L
m|Ṽα|Ψ̃R

n 〉〈Ψ̃
L
n |Γα|Ψ̃

L
p 〉〈Ψ̃

R
p |Ṽ†α|ΨL

q 〉〈Ψ
R
q |Ψ̃

L
k 〉

〈ΨL
m|Ψ

R
m〉〈Ψ̃

L
n |Ψ̃

R
n 〉〈Ψ̃

R
p |Ψ̃

L
p 〉〈Ψ

R
q |Ψ

L
q 〉

× e−i(̃ε j−ε̃∗k)t
∫

dω
2π

f (ω − µ)
(ω − εm)(ω + Vα − ε̃n)(ω + Vα − ε̃∗p)(ω − ε∗q)

, (A.72)

where ε and ε̃ are the complex eigenvalues of heff and h̃eff, respectively.
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A.2 Details of the derivations in phononic transport

Here the details of the derivations presented in Sec. 2.5 are provided for complete-
ness. We start with deriving the equations of motion for the Green’s function in the
combined ‘u, p’-operator representation in terms of the spinor operators φ̂. After we
know what the equations of motions consist of, we discuss an approximation for
the self-energy, similar to the wide-band approximation in the electronic case. With
the stated approximation, we may derive expressions for the time-convolutions in
the equation of motion; this also involves introducing to the concept of a cut-off
frequency. Finally, we insert all the expressions into the equation of motion, sim-
plify the equation by noticing some reductions in the matrix forms, and solve the
remaining differential equation analytically. The solution is almost equivalent to
the case of electronic transport.

A.2.1 Deriving the equations of motion for the phonon Green’s
functions

Since the phonon Green’s function is defined on the contour γ as in Eq. (2.177), we
may simply evaluate the derivative with respect to the first contour-time coordinate
z as

i∂zD
µν

jk (z, z′) = ∂z

[
θ(z, z′)〈φ̂µj (z)φ̂νk(z′) + θ(z′, z)〈φ̂νk(z′)φ̂µj (z)〉

]
= δ(z, z′)〈φ̂µj (z)φ̂νk(z′) − φ̂νk(z′)φ̂µj (z)〉 − i〈Tγ[i∂zφ̂

µ
j (z)φ̂νk(z′)]〉

= δ(z, z′)[φ̂µj (z), φ̂νk(z′)] − i〈Tγ[i∂zφ̂
µ
j (z)φ̂νk(z′)]〉, (A.73)

where the commutator gives αµνδ jk, see Eq. (2.176), and the time-evolution of the
field operator in the second term on the right-hand side may be derived from its
equation of motion. By inserting the Hamiltonian from Eq. (2.173) we get

i∂zφ̂
µ
j = [φ̂µj , Ĥ] =

1
2

∑
kl,σρ

(φ̂µj φ̂
σ
kΩ

σρ

kl φ̂
ρ

l − φ̂
σ
kΩ

σρ

kl φ̂
ρ

l φ̂
µ
j ) =

1
2

∑
kl,σρ

Ωσρ

kl [φ̂µj , φ̂
σ
k φ̂

ρ

l ]

=
1
2

∑
kl,σρ

Ωσρ

kl

(
[φ̂µj , φ̂

σ
k ]φ̂ρl + φ̂σk [φ̂µj , φ̂

ρ

l ]
)
, (A.74)

where we used a relation for the commutator [A,BC] = [A,B]C + B[A,C]. Now, the
commutators between the field operators φ̂ give, according to Eq. (2.176), matrix
elements of α and Kronecker deltas. These can be simplified to the following form

i∂zφ̂
µ
j =

1
2

∑
l,σρ

[
αµσΩσρ

jl φ̂
ρ

l + αµρ(ΩT)ρσjl φ̂
σ
l

]
, (A.75)
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and inserting this, further, back into Eq. (A.73) gives

i∂zD
µν

jk (z, z′) = δ jkα
µνδ(z, z′) − i

〈
Tγ

[1
2

∑
l,σρ

(
αµσΩσρ

jl φ̂
ρ

l (z) + αµρ(ΩT)ρσjl φ̂
σ
l (z)

)
φ̂νk(z′)

]〉
,

(A.76)
where the superscript ‘T’ refers to a matrix transpose. This can be simplified by
relabeling dummy indices and using the definition for the Green’s function in
Eq. (2.177), and the final equation is

i∂zD
µν

jk (z, z′) = δ jkα
µνδ(z, z′) +

∑
q,γδ

αµγ
1
2

(Ω +ΩT)γδjq Dδν
qk (z, z′). (A.77)

The Hamiltonian matrixΩ is symmetric, so the term inside the sum (Ω+ΩT)/2 = Ω,
and this equation can be written in the α-matrix representation as in Eq. (2.178).
The adjoint equation is derived similarly and it reads

− i∂z′D
µν

jk (z, z′) = αµνδ jkδ(z, z′) +
∑
q,γδ

Dµγ
jq (z, z′)

1
2

(Ω +ΩT)γδqkα
δν. (A.78)

Then we may perform a similar projection procedure as in Sec. 2.2. We extract the
‘CC’ and ‘λC’ components from the equation of motion (2.178), and they read

i∂zDCC(z, z′) = αδ(z, z′) + αΩCCDCC(z, z′) +
∑
λ

αΩCλDλC(z, z′), (A.79)

i∂zDλC(z, z′) = αΩλCΩCC +
∑
λ

αΩλλDλC(z, z′) (A.80)

with α being a matrix 1 ⊗ α of appropriate dimension. For the isolated reservoir λ
we have a Green’s function dλλ satisfying the equation of motion

(i∂z − αΩλλ)dλλ(z, z′) = αδλλ(z, z′) (A.81)

which we may use to derive an expression for DλC from Eq. (A.80) by multiplying
both sides of the equation from left by dλλ and then integrating over the contour γ.
This gives

DλC(z, z′) =

∫
γ

dz̄dλλ(z, z̄)ΩλCDCC(z̄, z′) (A.82)

which we may insert into the right-hand side of Eq. (A.79). By introducing the
phononic embedding self-energy as

ΠCC(z, z′) =
∑
λ

ΩCλdλλ(z, z′)ΩλC (A.83)
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we may write the equation of motion for the ‘CC’ component as

(i∂z − αΩCC)DCC(z, z′) = αδ(z, z′) + α

∫
γ

dz̄ΠCC(z, z̄)DCC(z̄, z′). (A.84)

Exactly in the same way, we could derive the adjoint equation

DCC(z, z′)(−i
←

∂z′ −ΩCCα) = αδ(z, z′) +
[ ∫

γ

dz̄DCC(z, z̄)ΠCC(z̄, z′)
]
α. (A.85)

A.2.2 Deriving the self-energy approximation

From Eq. (2.190) we may deduce the greater and lesser components for the uncou-
pled Green’s function to be

d>λλ(t, t′) = −iα f̄λ(Ωλλα)e−iΩλλα(t−t′), (A.86)

d<λλ(t, t′) = −iα fλ(Ωλλα)e−iΩλλα(t−t′), (A.87)

and further, the retarded component to read as

dR
λλ(t, t′) = θ(t − t′)

[
d>λλ(t, t′) − d<λλ(t, t′)

]
= −iαθ(t − t′)e−iΩλλα(t−t′). (A.88)

Since the retarded Green’s function is a function of t − t′, we find by Fourier trans-
forming

dR
λλ(ω) = α

1
ω −Ωλλα + iη

=
1

α(ω + iη) −Ωλλ
, (A.89)

where, for the second equality, we used the idempotency of α. The parameter η is
a positive infinitesimal accounting for correct causal structure. We can then insert
Eq. (A.89) into Eq. (2.187) and derive an expression for the retarded self-energy for
the central region embedded in the environment. We may evaluate the retarded
Green’s function by performing a matrix inversion for a block matrix

dR
λλ(ω) =


(
(ω + iη)2

− K′λλ
)−1

i(ω + iη)
(
(ω + iη)2

− K′λλ
)−1

−i(ω + iη)
(
(ω + iη)2

− K′λλ
)−1

K′λλ
(
(ω + iη)2

− K′λλ
)−1

 . (A.90)

If we know the eigen decomposition of K′λλ as K′λλX = Xω2
λ, we can then also

diagonalize the full reservoir Hamiltonian with X B diag(X,X) as

Ω̃λλ = X†ΩλλX =

(
ω2
λ 0

0 1

)
C ω2

λ. (A.91)
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Further, we may write the retarded embedding self-energy in terms of the eigen-
modes when inserting Eq. (A.90) into Eq. (2.187)

ΠR
λ(ω) =

∑
qλ

Ω̃Cqλ
1

(ω + iη)2 − ω2
qλ

(
1 i(ω + iη)

−i(ω + iη) ω2
qλ

)
Ω̃qλC (A.92)

where we wrote explicitly a sum over qλ labeling the q-th basis element of reser-
voir λ. Also, Ω̃Cqλ B ΩCqλX. Since the coupling Hamiltonians only have nonzero
elements in the uu block, this gives

(ΠR
λ)11(ω) C ΠR

λ(ω) =
∑

qλ

K̃CqλK̃qλC

(ω + iη)2 − ω2
qλ

=
∑

qλ

K̃CqλK̃qλC

2ωqλ

(
1

ω − ωqλ + iη
−

1
ω + ωqλ + iη

)
, (A.93)

where K̃Cqλ B KCqλX. The advanced embedding self-energy ΠA
λ is simply given by

complex conjugating Eq. (A.93). Then, we may evaluate the level-width function
Γλ defined as

Γλ(ω) B i
[
ΠR
λ −Π

A
λ

]
(ω)

= i
∑

qλ

K̃CqλK̃qλC

2ωqλ

(
1

ω − ωqλ + iη
−

1
ω + ωqλ + iη

−
1

ω − ωqλ − iη
+

1
ω + ωqλ − iη

)
=

∑
qλ

K̃CqλK̃qλC

ωqλ

(
η

(ω − ωqλ)2 + η2 −
η

(ω + ωqλ)2 + η2

)
=

∑
qλ

πK̃Cqλ
1
ωqλ

[
δ(ω − ωqλ) − δ(ω + ωqλ)

]
K̃qλC , (A.94)

where we used the lorentzian representation for the delta function πδ(x − a) =
limη→0 η/[(x − a)2 + η2]. Since ΠA = (ΠR)†, we have that

ΠR
λ(ω) = Λλ(ω) −

i
2
Γλ(ω), (A.95)

where Λ and Γ are real functions related by the Hilbert transform

Λλ(ω) =
1
π
P

∫
∞

−∞

dω′
Γλ(ω′)
ω − ω′

=
∑

qλ

K̃CqλK̃qλC

ωqλ

(
1

ω − ωqλ
−

1
ω + ωqλ

)
. (A.96)

From Eqs. (A.94) and (A.96) we notice that Λλ is an even function and Γλ is an odd
function, see Fig. A.2.
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Fig. A.2: Schematic of the frequency dependency of the embedding self-energy in
Eqs. (A.94) and (A.96).

A.2.3 Calculating the time-convolutions of different Keldysh com-
ponents of the self-energies and Green’s functions

Here we calculate the convolutions [Π<
· DA], [DR

· Π<], [ΠR
· D<] and [D<

· ΠA] in
Eq. (2.189).

We keep DR so far unspecified and we calculate the time convolution[
DR
·Π<

]
(t, t) =

∫
∞

0
dt̄DR(t, t̄)Π<(t̄, t) =

∫
∞

0
dt̄DR(t − t̄)

∫
∞

−∞

dω
2π
Π<(ω)e−iω(t̄−t)

=

∫
∞

−∞

dω
2π

∫
∞

−∞

dt′DR(t′)eiωt′Π<(ω)θ(t − t′), (A.97)

where we inserted the Fourier transform of Π<, changed the integration variable
as t − t̄ = t′ and inserted a step function for extending the time interval to minus
infinity. For the step function we may use the expression

θ(t − t′) = lim
η→0+

∫
∞

−∞

dω′

2πi
eiω′(t−t′)

ω′ − iη
(A.98)

and evaluate further[
DR
·Π<

]
(t, t) =

∫
∞

−∞

dω
2π

∫
∞

−∞

dt′
∫
∞

−∞

dω′

2πi
DR(t′)eiωt′Π<(ω)

eiω′(t−t′)

ω′ − iη

=

∫
∞

−∞

dω
2π

∫
∞

−∞

dω′

2πi
eiω′t

ω′ − iη

∫
∞

−∞

dt′DR(t′)ei(ω−ω′)t′Π<(ω)

=

∫
∞

−∞

dω
2π

∫
∞

−∞

dω̄
2πi

ei(ω−ω̄)tDR(ω̄)
ω − ω̄ − iη

Π<(ω), (A.99)
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where we used the Fourier transform of DR(t) and changed the integration variable
to ω − ω′ = ω̄. The exponential involving both frequencies can be split up, and we
may also insert the approximation for the embedding self-energy[

DR
·Π<

]
(t, t) =

∑
λ=L,R

∫
∞

−∞

dω
2π

eiωt

[∫
∞

−∞

dω′

2πi
e−iω′tDR(ω′)
ω − ω′ − iη

]
θ(ωc − |ω|)

[
−i fλ(ω)ωΓ′0,λ

]
.

(A.100)
The cut-off frequency ωc is now explicitly in this expression without specifying
DR. As we argued earlier, the expression for the retarded Green’s function should
then only be valid in the cut-off regime and we simply use the embedded retarded
Green’s function for all frequencies ω′ (in the inner integral)

DR(ω) =
1

αω −Ω −ΠR(ω)
≈

1
ω −Ωeff

1
α + i

2Γ
′

0

, (A.101)

where we inserted the approximation for the embedding self-energy and defined
an effective (non-hermitian) Hamiltonian

Ωeff =
1

α + i
2Γ
′

0

(Ω + Λ0). (A.102)

Now the retarded Green’s function is specified, and DR and ΠR satisfy the Dyson
equation in the limits of |ω| < ωc. In Eq. (A.100), also the analytical structure is
correct: DR(ω′) has poles in the lower-half plane, and also the denominator goes
to zero when ω′ = ω − iη (in LHP). The key for evaluating the time-convolution
was the approximation for DR in Eq. (A.100). As we approximate the retarded
Green’s function for all frequencies ω as in Eq. (A.101), this implicitly means the
limit ωc →∞. On the other hand, when we specify the cut-off frequency directly to
the self-energy approximation in Eq. (2.198), this would amount to

DR
θ(ω) B

1
αω −Ω −ΠR(ω)

=
1

αω −Ω − θ(ωc − |ω|)(Λ0 + iω
2 Γ
′

0)
. (A.103)

As we discuss only the region |ω| < ωc when evaluating the time-convolution
in Eq. (A.100), we may compare how much the approximated Green’s function
deviates from that in Eq. (A.103) (outside the cut-off window)

DR(ω)
DR
θ(ω)

=
αω −Ω − θ(ωc − |ω|)(Λ0 + iω

2 Γ
′

0)

αω −Ω − Λ0 + iω
2 Γ
′

0

ω>ωc
=

αω −Ω

αω −Ω − Λ0 + iω
2 Γ
′

0

ω�Re[ωeff]
−−−−−−−→

α

α + i
2Γ
′

0

, (A.104)

where ωeff are the eigenvalues of the effective Hamiltonian Ωeff. This limit means:
(1) we choose the cut-off frequency high enough so that the physical frequencies of
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the central region fall well inside this window; (2) if the frequency in the retarded
Green’s function still was higher thanωc, we would have, in the limit Γ′0 → 0 (weak
coupling), that the difference in the retarded Green’s functions approaches unity.

By using the eigenbasis of the effective HamiltonianΩeff we can evaluate the integral
in Eq. (A.100) over ω′ by closing the contour in the lower-half plane (t is a positive
number):∫

∞

−∞

dω′

2πi
e−iω′t

ω − ω′ − iη
1

ω′ −Ωeff

1
α + i

2Γ
′

0

= −

 e−iΩefft

ω −Ωeff − iη
−

e−i(ω−iη)t

ω − iη −Ωeff

 1
α + i

2Γ
′

0

,

(A.105)
where the overall minus sign, when applying the Cauchy formula, comes from the
clock-wise orientation of the contour. Then we can take the limit η→ 0 and write∫

∞

−∞

dω′

2πi
e−iω′tDR(ω′)
ω − ω′ − iη

=
e−iωt

− e−iΩefft

ω −Ωeff

1
α + i

2Γ
′

0

=
(
e−iωt

− e−iΩefft
)

DR(ω). (A.106)

Inserting this into Eq. (A.100) we get[
DR
·Π<

]
(t, t) =

∑
λ=L,R

∫
∞

−∞

dω
2π

eiωt
(
e−iωt

− e−iΩefft
)

DR(ω)θ(ωc − |ω|)
[
−i fλ(ω)ωΓ′0,λ

]
=

∑
λ=L,R

∫
∞

−∞

dω
2π

[
1 − ei(ω−Ωeff)t

]
DR(ω)θ(ωc − |ω|)

[
−i fλ(ω)ωΓ′0,λ

]
.

(A.107)

It is worth noticing that this result could also be derived by Fourier transform-
ing DR(ω) from Eq. (A.101) and then inserting the resulting DR(t, t′) directly into
Eq. (A.97). [Π<

·DA] is found by conjugating Eq. (A.107).

Let us briefly investigate what would happen if we did not take the cut-off frequency
into account. As said above, we could simply calculate the retarded Green’s function
by Fourier transforming

DR(t, t′) = DR(t − t′) =

∫
dω
2π

DR(ω)e−iω(t−t′)

=

∫
dω
2π

1
α(ω + iη) −Ω −ΠR(ω)

e−iω(t−t′)

=

∫
dω
2π

1
α(ω + iη) −Ω − Λ0 + iω

2 Γ
′

0

e−iω(t−t′), (A.108)

where we inserted the approximatiaon for the retarded self-energy. Now, the ω-
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dependent terms may be coupled to give (the infinitesimal η is not needed anymore)

DR(t, t′) =

∫
dω
2π

1
ω(α + i

2Γ
′

0) −Ω − Λ0
e−iω(t−t′)

=

∫
dω
2π

1

(α + i
2Γ
′

0)
[
ω − 1

α+ i
2Γ
′

0
(Ω + Λ0)

]e−iω(t−t′)

=

[∫
dω
2π

1
ω −Ωeff

e−iω(t−t′)

]
1

α + i
2Γ
′

0

=
[
−iθ(t − t′)e−iΩeff(t−t′)

] 1
α + i

2Γ
′

0

. (A.109)

Evaluating a simple matrix inverse gives

1
α + i

2Γ
′

0

=
1
i

(
0 −1
1

Γ′0
2

)
(A.110)

and further

Ωeff =
1

α + i
2Γ
′

0

(Ω + Λ0) =
1
i

(
0 −1
1

Γ′0
2

) [(
K 0
0 1

)
+

(
Λ0 0
0 0

)]
=

1
i

(
0 −1

K + Λ0
Γ′0
2

)
. (A.111)

Inserting Eqs. (A.110) and (A.111) into Eq. (A.109) finally gives for the phonon
propagator

DR(t, t′) = −iθ(t − t′) exp
[
−i

1
i

(
0 −1

K + Λ0
Γ′0
2

)
(t − t′)

]
1
i

(
0 −1
1

Γ′0
2

)
= −θ(t − t′) exp

[
−

(
0 −1

K + Λ0
Γ′0
2

)
(t − t′)

] (
0 −1
1

Γ′0
2

)
. (A.112)

On the other hand, we know the limiting behaviour for the propagator

lim
t→t′+

DR(t, t′) = −i[φ̂, φ̂] = −iα = −

(
0 −1
1 0

)
, (A.113)

but now, based on our derivation, we get

lim
t→t′+

DR(t, t′) = −

(
0 −1
1

Γ′0
2

)
(A.114)

which would agree only with Γ′0 = 0. This problem originates from the approx-
imation stated for the self-energy: the linear imaginary part does not satisfy the
Kramers–Kronig relation as integrating this gives divergent behaviour. And, on the
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other hand, constant real part should lead to zero imaginary part if the Kramers–
Kronig relation was obeyed. For this reason, it is important to regulate the diverging
behaviour in the self-energy approximation by a cut-off frequency. In the electronic
case we did not have this problem because there our wide-band approximation
(that the imaginary part is simply a constant) lead to zero real part according to
the Kramers–Kronig relations. This issue is discussed more in detail with further
visualizations in Pub. [V].

Then we will calculate the other time convolution in Eq. (2.189), [D<
· ΠA]. From

Eq. (2.198) we get ΠA(ω) =
[
ΠR(ω)

]†
and further in time domain

ΠA(t, t′) =

∫
dω
2π
ΠA(ω)e−iω(t−t′) =

∫
dω
2π
θ(ωc − |ω|)

[
Λ0 +

iω
2
Γ′0

]
e−iω(t−t′)

= Λ0

∫ ωc

−ωc

dω
2π

e−iω(t−t′) +
iΓ′0
2

∫ ωc

−ωc

dω
2π
ωe−iω(t−t′)

= Λ0
1

2π(−i(t − t′))

[
e−iωc(t−t′)

− eiωc(t−t′)
]

−
Γ′0
2
∂
∂t

{
1

2π(−i(t − t′))

[
e−iωc(t−t′)

− eiωc(t−t′)
]}

= Λ0
1

π(t − t′)
sin

( t − t′

1/ωc

)
−
Γ′0
2
∂
∂t

[
1

π(t − t′)
sin

( t − t′

1/ωc

)]
. (A.115)

In the limitωc →∞ the sinc functions become delta functions, i.e., limε→0
1
πx sin

(
x
ε

)
=

δ(x) and we obtain

ΠA(t, t′)→ Λ0δ(t − t′) −
Γ′0
2
∂
∂t
δ(t − t′). (A.116)

This is naturally the same result as if we put the limits of the integration in the
derivation of Eq. (A.115) to ±∞. Based on the above expression for the advanced
embedding self-energy we aim to calculate the time convolution in the equation of
motion [

D<
·ΠA

]
(t, t) =

∫
∞

0
dt̄D<(t, t̄)ΠA(t̄, t) (A.117)

and the corresponding hermitian-conjugated one. The higher cut-off frequency ωc

we choose for the advanced embedding self-energy, the faster will the oscillations
(in time) be in ΠA(t̄, t). On the other hand, the fastest oscillations for D<(t, t̄) corre-
spond to transitions of highest energy differences in our central region of interest.
If we choose the cut-off frequency ωc to be considerably higher than the typical
energy scales in the central region, then in time-domain, ΠA(t̄, t) appears almost as
Eq. (A.116) compared to D<(t, t̄). Following this line of thought would allow us to
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calculate[
D<
·ΠA

]
(t, t) =

∫
∞

0
dt̄D<(t, t̄)

∑
λ

[
Λ0,λδ(t̄ − t) −

Γ′0,λ
2
∂

∂t̄
δ(t̄ − t)

]
=

∑
λ=L,R

[
D<(t, t)Λ0,λ −

∫
∞

0
dt̄D<(t, t̄)

∂

∂t̄
δ(t̄ − t)

Γ′0,λ
2

]
=

∑
λ=L,R

[
D<(t, t)Λ0,λ +

∂D<(t, t′)
∂t′

∣∣∣∣∣
t′=t

Γ′0,λ
2

]
= D<(t, t)Λ0 +

∂D<(t, t′)
∂t′

∣∣∣∣∣
t′=t

Γ′0
2
, (A.118)

where we integrated by parts and noticed that the boundary term vanishes. By
conjugating Eq. (A.118) we also find[

ΠR
·D<

]
(t, t) = −

[
D<
·ΠA

]†
(t, t) = Λ0D<(t, t) +

Γ′0
2
∂D<(t, t′)

∂t

∣∣∣∣∣
t=t′
. (A.119)

The result in Eq. (A.118), however, implicitly assumes the limit ωc → ∞ as we
motivated its derivation by comparison of energy scales in ΠA and D< exactly this
way: ωc � ω for frequencies ω in the central region. Let us try to validate this by
evaluating the time convolution ofΠA and D< also by using the explicit expression
in Eq. (A.115) and performing an asymptotic expansion in ωc in[

D<
·ΠA

]
(t, t) =

∫
∞

0
dt̄D<(t, t̄)ΠA(t̄, t)

=

∫
∞

0
dt̄D<(t, t̄)

{
Λ0

1
π(t̄ − t)

sin
(

t̄ − t
1/ωc

)
−
Γ′

2
∂

∂t̄

[
1

π(t̄ − t)
sin

(
t̄ − t
1/ωc

)]}
θ(t − t̄)

=

∫ t

0
dt̄D<(t, t̄)Λ0

1
π(t̄ − t)

sin
(

t̄ − t
1/ωc

)
+

∫ t

0
dt̄D<(t, t̄)

Γ′

2
∂

∂t̄

[
1

π(t̄ − t)
sin

(
t̄ − t
1/ωc

)]
,

(A.120)

where the upper limit of the integration follows from the advanced nature of
ΠA(t̄, t) ∼ θ(t − t̄). Using Leibniz’ rule we may write the second term as∫ t

0
dt̄D<(t, t̄)

Γ′

2
∂

∂t̄

[
1

π(t̄ − t)
sin

(
t̄ − t
1/ωc

)]
=

∫ t

0
dt̄
∂D<(t, t̄)
∂t

Γ′

2
1

π(t̄ − t)
sin

(
t̄ − t
1/ωc

)
−

d
dt

[∫ t

0
dt̄D<(t, t̄)

Γ′

2
1

π(t̄ − t)
sin

(
t̄ − t
1/ωc

)]
(A.121)

which tells us we only need to consider “the first line”-like terms in Eq. (A.120)

F(t) =

∫ t

0
dt̄ f (t, t̄)

1
π(t̄ − t)

sin
(

t̄ − t
1/ωc

)
, (A.122)
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and then we get the second line by inserting ∂tD<(t, t̄)Γ′/2 and D<(t, t̄)Γ′/2 as f (t, t̄)
and using Eq. (A.121). Assuming we are allowed to differentiate under the integral
sign (the functions are well-behaving in our case) we get

dF(t)
dωc

= π−1
∫ t

0
dt̄ f (t, t̄) cos[ωc(t̄ − t)] (A.123)

for which we may perform a sequential integration by parts (we know all the
anti-derivatives of a cosine function)

dF(t)
dωc

= π−1

{
f (t, t̄)

1
ωc

sin[ωc(t̄ − t)] +
∂ f (t, t̄)
∂t̄

1
ω2

c
cos[ωc(t̄ − t)]

−
∂2 f (t, t̄)
∂t̄2

1
ω3

c
sin[ωc(t̄ − t)] −

∂3 f (t, t̄)
∂t̄3

1
ω4

c
cos[ωc(t̄ − t)] + . . .

}t

0

, (A.124)

where the remainder will only be higher order in 1/ωc, and since we are interested
in the large ωc limit, we may simply drop them. Integrating once over ωc we obtain

F(t) = π−1

{
f (t, t̄)Si[ωc(t̄ − t)] + O

(
1
ω2

c

)}t

0

, (A.125)

where Si(x) is the sine integral function. By using an asymptotic expansion for the
sine integral [210] and using Eq. (A.121) we may conclude that the terms neglected
by approximating Eq. (A.120) by Eq. (A.118) are of the order O[(ωct)−1]. Therefore,
for long times the approximation is reasonable but even if we choose a large cut-
off frequency ωc, for short times t . 1/ωc the approximation fails. However, as
argumented earlier, the cut-off frequency, is still explicitly included in the other
term involving Π< and DR.

Let us also investigate a concrete example, and assume that the central region
of interest would have a characteristic frequency ω0, and let us for simplification
assume an oscillatory behaviour for D<

0 (t, t̄) = e−iω0(t+t̄). (We are not after anything
rigorous but simply want to see how the sinc functions turn out for large ωc.) The
integral we wish to evaluate

I =

∫ t

0
dt̄D<

0 (t, t̄)Λ0
1

π(t̄ − t)
sin

(
t̄ − t
1/ωc

)
=

∫ t

0
dt̄e−iω0(t+t̄)Λ0

1
π(t̄ − t)

sin
(

t̄ − t
1/ωc

)
(A.126)

can be written in terms of the exponential integral function as

I =
i
π

e−2iω0tΛ0

{
E1[−i(ω0 + ωc)t] − E1[−i(ω0 − ωc)t] − Log

(
ω0 − ωc

ω0 + ωc

)}
. (A.127)
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We know the asymptotic expansion of the exponential integral as E1(z) ∼ e−z/z [119],
so we get as an asymptotic behaviour (the Logarithm can also be expanded)

I ∼
i
π

e−2iω0tΛ0

[
ei(ω0+ωc)t

−i(ω0 + ωc)t
−

ei(ω0−ωc)t

−i(ω0 − ωc)t
− iπ +

2ω0

ωc

]
→ e−2iω0tΛ0 when ωc →∞. (A.128)

This means that the result, in the limit ωc →∞, is the same as if D< was integrated
with a delta function.

We could also have done the asymptotic expansion directly to the integral using
Mathematica by

Dlss[t_, tb_] := Exp[-I*w0*(t + tb)];
Series[Integrate[
Dlss[t, tb]*L0*(1/(Pi*(tb - t)))*Sin[(tb - t)/(1/ww)], {tb, 0, t},
Assumptions -> {Im[w0] == 0 & Re[w0] > 0 && Im[t] == 0 &&
Re[t] > 0 && Im[L0] == 0 && Re[L0] > 0}], {ww, Infinity, 2}]

which will expand to second order in ωc at ωc → ∞. This will give (after some
simplification) ∫ t

0
dt̄D<

0 (t, t̄)Λ0
1

π(t̄ − t)
sin

( 1
1/ωc

)
∼

Λ0

π

{
e−2iω0t

(
ω0

ωc
+ π

)
− e−iω0t

[
cos(ωct)
ωct

+
sin(ωct)
(ωct)2

]}
. (A.129)

However, we can also evaluate∫
∞

0
dt̄D<

0 (t, t̄)Λ0δ(t̄ − t) = D<
0 (t, t)Λ0 = e−2iω0tΛ0 (A.130)

and then plot the difference between the asymptotic expansion and the above
expression with different values of ωc. This is shown in Fig. A.3. Looking at the
expressions, also the limitωc →∞ goes correctly. We see that ifωc is the same as the
oscillation frequencies in the central region, the approximation with delta function
is poor. However, already when ωc = 10ω0 the difference is only few percent. In all
cases the limit t→ 0 is problematic because the expressions blow up but finally this
will not be a problem because in the limit t→ 0 the final expressions give zero.



136 Appendix A

Fig. A.3: Asymptotic expansions of the integral in Eq. (A.126) with different values
of ωc; the rainbow colours go from ωc = ω0 = purple to ωc = 10ω0 = red. Left
panel is the difference between Eqs. (A.127) and (A.130), and the right panel is the
difference between Eqs. (A.129) and (A.130).

A.2.4 Details on solving the equation of motion for the Green’s
function

Looking at Eq. (2.206) we need to insert the expressions for∂D(t, t′)/∂t and∂D(t, t′)/∂t′

from Eqs. (2.183) and (2.184). Also, since we now have the step functions involv-

ing the cut-off frequency, let us denote the integrals as
∫̃

dω
2π where the range is

suppressed to [−ωc , ωc]

i
d
dt

D<(t, t) −
[
αΩD<(t, t) −D<(t, t)Ωα

]
= α

−i
∑
λ

˜∫
dω
2π
ω fλ(ω)Γ′λDA(ω)

[
1 − e−i(ω−Ω†

eff)t
]

+ Λ0D<(t, t)

+
Γ′0
2

{
−iαΩD<(t, t) − iα

[∫
∞

0
dt̄Π<(t, t̄)DA(t̄, t′) +

∫
∞

0
dt̄ΠR(t, t̄)D<(t̄, t′)

]
t′=t

}]
−

[
D<(t, t)Λ0

+

{
iD<(t, t)Ωα + i

[∫
∞

0
dt̄D<(t, t̄)ΠA(t̄, t′) +

∫
∞

0
dt̄DR(t, t̄)Π<(t̄, t′)

]
t′=t
α

}
Γ′0
2

−i
∑
λ

˜∫
dω
2π
ω fλ(ω)

[
1 − ei(ω−Ωeff)t

]
DR(ω)Γ′λ

]
α. (A.131)
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And then, insert the remaining convolutions

i
d
dt

D<(t, t) −
[
αΩD<(t, t) −D<(t, t)Ωα

]
= α

−i
∑
λ

˜∫
dω
2π
ω fλ(ω)Γ′λDA(ω)

[
1 − e−i(ω−Ω†

eff)t
]

+ Λ0D<(t, t)

+
Γ′0
2

−iαΩD<(t, t) − iα

−i
∑
λ

˜∫
dω
2π
ω fλ(ω)Γ′λDA(ω)

[
1 − e−i(ω−Ω†

eff)t
]

+Λ0D<(t, t) +
Γ′0
2
∂D<(t, t′)

∂t

∣∣∣∣∣
t=t′

]}]
−

[
D<(t, t)Λ0

+

{
iD<(t, t)Ωα + i

[
D<(t, t)Λ0 +

∂D<(t, t′)
∂t′

∣∣∣∣∣
t′=t

Γ′0
2

−i
∑
λ

˜∫
dω
2π
ω fλ(ω)

[
1 − ei(ω−Ωeff)t

]
DR(ω)Γ′λ

α
 Γ′02

−i
∑
λ

˜∫
dω
2π
ω fλ(ω)

[
1 − ei(ω−Ωeff)t

]
DR(ω)Γ′λ

]
α. (A.132)

As there are a lot of terms, the equations start to get longer and longer, but let us
still expand the parentheses so that we can more easily see the terms that can be
coupled together

i
dD<(t, t)

dt
− αΩD<(t, t) + D<(t, t)Ωα

= −iα
∑
λ

˜∫
dω
2π
ω fλ(ω)Γ′λDA(ω)

[
1 − e−i(ω−Ω†

eff)t
]

+ αΛ0D<(t, t) − iα
Γ′0
2
αΩD<(t, t)

− α
Γ′0
2
α

∑
λ

˜∫
dω
2π
ω fλ(ω)Γ′λDA(ω)

[
1 − e−i(ω−Ω†

eff)t
]
− iα

Γ′0
2
αΛ0D<(t, t)

− iα
Γ′0
2
α
Γ′0
2
∂D<(t, t′)

∂t

∣∣∣∣∣
t=t′
−D<(t, t)Λ0α − iD<(t, t)Ωα

Γ′0
2
α − iD<(t, t)Λ0α

Γ′0
2
α

− i
∂D<(t, t′)
∂t′

∣∣∣∣∣
t′=t

Γ′0
2
α
Γ′0
2
α −

∑
λ

˜∫
dω
2π
ω fλ(ω)

[
1 − ei(ω−Ωeff)t

]
DR(ω)Γ′λα

Γ′0
2
α

+ i
∑
λ

˜∫
dω
2π
ω fλ(ω)

[
1 − ei(ω−Ωeff)t

]
DR(ω)Γ′λα. (A.133)

Then, let us think about the matrix forms more carefully, and see if we can get rid
of some of the terms. Recall, that the important matrix structures appearing in the
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expressions are

α =

(
0 i
−i 0

)
; Λ0 =

(
Λ0 0
0 0

)
; Γ′(λ) =

(
Γ′(λ) 0
0 0

)
. (A.134)

By evaluating simple matrix products we can conclude that

α
Γ′(λ)

2
αΛ0 = 0 ; α

Γ′(λ)

2
α
Γ′(λ)

2
= 0 ; Λ0α

Γ′(λ)

2
α = 0 ;

Γ′(λ)

2
α
Γ′(λ)

2
α = 0. (A.135)

Then, using these reductions in Eq. (A.133) gives

i
dD<(t, t)

dt
− αΩD<(t, t) + D<(t, t)Ωα − αΛ0D<(t, t)

+iα
Γ′0
2
αΩD<(t, t) + D<(t, t)Λ0α + iD<(t, t)Ωα

Γ′0
2
α

= −i
∑
λ

˜∫
dω
2π
ω fλ(ω)

{
αΓ′λDA(ω)

[
1 − e−i(ω−Ω†

eff)t
]
−

[
1 − ei(ω−Ωeff)t

]
DR(ω)Γ′λα

}
.

(A.136)

We may couple the terms on the left-hand side involving a lesser Green’s function
in a little far-fetched form as

i
dD<(t, t)

dt
−

[(
1 − iα

Γ′0
2

)
αΩ + αΛ0

]
D<(t, t)

+D<(t, t)
[
Ωα

(
1 + i

Γ′0
2
α

)
+ Λ0α

]
= −i

∑
λ

˜∫
dω
2π
ω fλ(ω)

{
αΓ′λDA(ω)

[
1 − e−i(ω−Ω†

eff)t
]
−

[
1 − ei(ω−Ωeff)t

]
DR(ω)Γ′λα

}
.

(A.137)

The reason for this is that(
1 − iα

Γ′0
2

)
αΩ + αΛ0 =

1
α + i

2Γ
′

0

(Ω + Λ0) = Ωeff,

Ωα

(
1 + i

Γ′0
2
α

)
+ Λ0α = (Ω + Λ0)

1
α − i

2Γ
′

0

= Ω†eff (A.138)

which can be checked by calculating the matrix products and inverses. Then, the
remaining differential equation takes the final form

i
dD<(t, t)

dt
−ΩeffD<(t, t) + D<(t, t)Ω†eff

= −i
∑
λ

˜∫
dω
2π
ω fλ(ω)

{
αΓ′λDA(ω)

[
1 − e−i(ω−Ω†

eff)t
]
−

[
1 − ei(ω−Ωeff)t

]
DR(ω)Γ′λα

}
.

(A.139)
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This takes exactly the same form as in the derivation of the electronic case, see
Eq. (A.41).

Now, for solving the remaining differential equation, it is convenient to start by
making a transformation

D<(t, t) = e−iΩefftD̃
<
(t, t)eiΩ†

efft. (A.140)

When evaluating the derivative of this product and canceling terms, the left-hand

side of Eq. (2.207) simply becomes e−iΩefftidD̃
<

(t,t)
dt eiΩ†

efft. We can then, accordingly,
multiply both sides of the equation from left and right with the exponentials to get

dD̃
<
(t, t)

dt

=
∑
λ=L,R

∫
dω
2π
θ(ωc − |ω|)ω fλ(ω)eiΩefft

[
DR(ω)Γ′0,λα − αΓ

′

0,λDA(ω)
]

e−iΩ†

efft

−

∑
λ=L,R

∫
dω
2π
θ(ωc − |ω|)ω fλ(ω)

[
DR(ω)Γ′0,λαei(ω−Ω†

eff)t
− e−i(ω−Ωeff)tαΓ′0,λDA(ω)

]
.

(A.141)

Before we start integrating over t, recall the matrix structures

DR(ω) =
1

ω −Ωeff

1
α + i

2Γ
′

0

; DA(ω) =
1

α − i
2Γ
′

0

1
ω −Ω†eff

. (A.142)

In Eq. (A.141) we have terms such as

DR(ω)Γ′0,λα =
1

ω −Ωeff

1
α + i

2Γ
′

0

Γ′0,λα ; αΓ′0,λDA(ω) = αΓ′0,λ
1

α − i
2Γ
′

0

1
ω −Ω†eff

,

(A.143)
where, conveniently,

αΓ′0,λ
1

α − i
2Γ
′

0

=
1

α + i
2Γ
′

0

Γ′0,λα (A.144)

which can be checked by simply evaluating the matrix products and inverses.
Then, looking at the first row of Eq. (A.141), we can perform the integration over
t by using the formula in Eq. (A.47). The second row of Eq. (A.141) is simple to
integrate over t since there is only one exponential depending on time in each term.
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After integration we arrive at

D̃
<
(t, t) − D̃

<
(0, 0+) = −i

∑
λ=L,R

∫
dω
2π
θ(ωc − |ω|)ω fλ(ω)

{
eiΩefft 1

ω −Ωeff

1
α + i

2Γ
′

0

Γ′0,λ
1

α − i
2Γ
′

0

1
ω −Ω†eff

e−iΩ†

efft

+
1

ω −Ωeff

1
α + i

2Γ
′

0

Γ′0,λ
1

α − i
2Γ
′

0

1
ω −Ω†eff

−
1

ω −Ωeff

1
α + i

2Γ
′

0

Γ′0,λ
1

α − i
2Γ
′

0

1
ω −Ω†eff

ei(ω−Ω†

eff)t

−e−i(ω−Ωeff)t 1
ω −Ωeff

1
α + i

2Γ
′

0

Γ′0,λ
1

α − i
2Γ
′

0

1
ω −Ω†eff

}
.

(A.145)

On the left-hand side we have the initial-state Green’s function (at t = 0). We are
working in the partitioned scheme, i.e., the systems of different temperatures are
coupled at t = 0, so the initial condition should be equal to the uncoupled Green’s
function as in Eq. (A.87) but for the indices in the central region:

D̃
<
(0, 0+) = D<(0, 0+) = −iα fC(Ωα). (A.146)

Here fC gives the thermal distribution according to which the central system is
prepared before it is connected to the reservoirs, and Ωα is correspondingly the
uncoupled Hamiltonian. Now, in Eq. (A.145) we may transform back from D̃

<
(t, t)

to D<(t, t) by multiplying with the exponentials from left and right and obtain our
final result

iD<(t, t) = e−iΩefftα fC(Ωα)eiΩ†

efft

+
∑
λ=L,R

∫
dω
2π
θ(ωc − |ω|)ω fλ(ω)

[
1 − ei(ω−Ωeff)t

]
×

1
ω −Ωeff

1
α + i

2Γ
′

0

Γ′0,λ
1

α − i
2Γ
′

0

1
ω −Ω†eff

[
1 − e−i(ω−Ω†

eff)t
]

(A.147)

which can be written as Eq. (2.209) in main text by introducing the spectral function
Bλ(ω) in Eq. (2.211).
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