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Abstract

The life history calendar is a data-collection tool for obtaining reliable retrospective data about
life events. To illustrate the analysis of such data, we compare the model-based probabilistic
event history analysis and the model-free data mining method, sequence analysis. In event his-
tory analysis, we estimate instead of transition hazards the cumulative prediction probabilities
of life events in the entire trajectory. In sequence analysis, we compare several dissimilarity
metrics and contrast data-driven and user-defined substitution costs. As an example, we study
young adults’ transition to adulthood as a sequence of events in three life domains. The events
define the multistate event history model and the parallel life domains in multidimensional se-
quence analysis. The relationship between life trajectories and excess depressive symptoms in
middle-age is further studied by their joint prediction in the multistate model and by regress-
ing the symptom scores on individual-specific cluster indices. The two approaches complement
each other in life course analysis; sequence analysis can effectively find typical and atypical life
patterns while event history analysis is needed for causal inquiries.

Keywords: Distance-based data; Life course analysis, Life history calendar; Multidimensional
sequence analysis; Multistate model; Prediction probability

1 Introduction

Follow-up studies, which register prospective events in time, are the golden standard of reliable data
collection in developmental studies and life course analysis. Yet these can be expensive and sometimes
difficult to perform. Retrospective data collection is used mainly when a very large sample is required,
the classical example being rare outcomes and case-control designs. Recently, however, retrospective
data collection has been used in survey studies to obtain detailed information about multiple life
domains and individuals’ multiple activities.1 The life history calendar (LHC), also called an event-
history calendar, is a data-collection tool for obtaining reliable retrospective data about life events.2
The advantage of a life history calendar is that the order and proximity of important transitions in
multiple life domains can be studied at the same time. The time window of a life history calendar
can be years or even an entire life-span. As a data collection tool, it encourages respondents to
incorporate temporal changes as cues in the reporting of events. It has shown the ability to provide
data of remarkably high quality.1

While life course epidemiology studies the relationship between exposure and disease, problems
of special interest to psychologists and social scientists point to an understanding of individuals’
behaviour and choices in their lives. These choices are often reflected in the amount of time devoted
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to different activities. Individuals also have several social roles in their lives, and in these roles they
share values and resources which may form their decisions and experiences in a similar way. These
links have been of interest especially in life course studies carried out by social scientists. Linking
different life domains (e.g. education, family formation, health, working life) of a single individual
is an effort to study the life course as an interdependent system of life processes, and makes the
analysis multidimensional and dynamic at the same time. This is the focus of our article when
evaluating methods for the statistical analysis of life history calendar data. We believe that the
approach taken by sociologists and psychologists can be valuable also to health scientists. Variable
life patterns can have effects, for example, on chronic diseases or on patients’ differential response to
clinical treatments.

Traditionally, life course data have been analysed by event history methods. There is a vast
literature on the basic principles and on more advanced methods based on the theory of counting
processes (e.g. Andersen et al.3). These methods are valuable when studying the time course of a few
well-specified life events but when the number of states, and accordingly the number of transitions
between the states, increases, joint analysis of the model especially for prediction purposes becomes
rather elaborate. In this article, we compare two approaches to life course analysis: model-based
probabilistic event-history analysis (EHA) and a more recent type of approach of model-free data-
mining, sequence analysis (SA). The latter is well known in bioinformatics but has provided novel
insight to the diversity of life trajectories and their relationship to life satisfaction and depressiveness.
We emphasize the differences, but also the complementary tasks of the methods. As an example, we
study young adults’ pathways to adulthood and consequent depressive symptoms in middle age in a
cohort established in Central Finland in 1968. The cohort members have been followed for 42 years,
from age 8 until age 50.

The article is structured as follows. In Section 2, some concepts and principles of prospective
and retrospective approaches to life course analysis are contrasted, the first in terms of predictive
probabilities and the latter in terms of typologies of life sequences. Section 3 provides comparative
analysis of the cohort data and some sensitivity analysis. Finally, Section 4 presents a methodological
discussion about the different informational content of the two approaches.

2 Prospective and retrospective analysis of the life course
From a methodological point of view, the timing and order of events is of fundamental relevance
in life course analysis. Events represent transitions, marking developmental stages in life, while
the role and statuses accompanying such transitions feature the essential characteristics of the life
course.4 Trajectories are sequences of previously occupied life states, which provide a long-term view
of usually one dimension of an individual’s life course. Transitions between the states, which are
of course embedded in the life trajectories, provide a short-term view of the dynamics of the life
course. Historically, transitions have been more important concepts because they relate directly to
important changes in life history.

Recently, more attention has been given to micro-settings and diversity of the dynamics involved
in the individual’s different activities, roles, and relationships. This change in scope has emphasized
the analysis of whole trajectories instead of events. The role of transitions and trajectories as the
basic unit of analysis is described in the next sections.

2.1 Event history analysis

Prospective analysis is based on short-term predictions of transitions in the life course. These pre-
dictions can be modified by some informative covariates Z which themselves may vary in time. A
concise review of event history methods can be found, for example, in Andersen and Keiding.5 Here
we prefer, however, an approach based on a marked point process (T,X) = {(Tn, Xn), n ≥ 1}. Rather
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than a system of states accompanied with a transition matrix, we model the life course as a sequence
of events by specifying a pair of random variables, the occurrence time T and a mark X identifying
the event. An extensive overview of such models and theory is given by Arjas.6

Let Nx(t) =
∑

n≥1 1{Tn ≤ t,Xn = x} be a process counting x-specific events in an individual’s
life course such that

∑
xNx(t) = N(t) is the total number of life events by time t. Since life history

calendar data is often recorded on a yearly basis, we define the discrete event-specific hazard in the
age interval t = 1, 2, ... as the conditional probability of a change in the value of Nx

px(t) = P (∆Nx(t) = 1|FN
t−1) (1)

given the internal history FN
t−1 of the counting process. We will denote the history of the occurrence

times and marks by time t asHt. The crude hazard that some event occurs in the interval t, regardless
of which one, is the sum over the event-specific hazards, p(t) =

∑
x px(t).

The likelihood contribution of an individual’s life history can be interpreted as a product of a
sequence of multinomial trials over the intervals. Since ∆Nx(t) can only have the value of 1 or 0 in a
short interval t, the outcome of the multinomial trial within each interval can be read from its value.
This determines which one of the x-components of N contributes to the likelihood. For a generic
individual, the likelihood contribution by time t is

L(t) =
∏
s≤t

∏
x

px(s)∆Nx(s)(1− p(s))1−∆N(s). (2)

While the hazard gives a very short-term prediction of the life course, the prediction process
associated with a marked point process gives a long-term prediction of some random event related
to (T,X) for the whole observed trajectory.7–10 We can then view the prediction process as the
conditional distribution of that random event given the history Ht. The prediction probabilities
are again functions of event-specific hazards, so modelling the hazards brings external explanatory
information to the prospective analysis of the whole life trajectory.

In Section 3.2, we shall consider in detail the specification and estimation of prediction probabil-
ities in a multistate model. For a tutorial on event history analysis and prediction probabilities, we
refer to Putter et al.10 In the next section, we contrast the model-based predictions of life events, ex-
tended to the whole observed trajectory, with the model-free approach of sequence analysis. Since it
is still less familiar than event history analysis to health scientists, we give a more extensive overview
of its basic principles.

2.2 Life sequence analysis

A completely different approach is taken in sequence analysis (SA), originally used in bioinformat-
ics to organize, classify, and parse protein and DNA sequence data.11 In the 1980s, data mining
methods were developed to analyse molecular sequences as texts (e.g. TGACT = Thymine-Guanine-
Adenine-Cytosine-Thymine). Comparing sequences corresponds to comparing amino acids in protein
sequences or nucleotides in DNA sequences at each position. The goal is to identify regions of sim-
ilarity that may be a consequence of functional, structural, or evolutionary relationships between
the sequences. This is accomplished by aligning the sequences pairwise. Gaps are inserted between
the elements so that identical or similar characters are aligned in successive columns. Mismatches
between the sequences can have biological interpretations as point mutations and gaps as insertion or
deletion mutations introduced in one or both lineages since their divergence from a common ancestor.

In the life course setting, sequence analysis was first introduced by the social scientist A. Abbott.12
He criticized the event-oriented method as being unable to reveal life patterns when focusing only
on isolated events. Aligning life sequences provided correspondences with similar life patterns, while
mismatches and gaps corresponded to differential timing and/or a lack of certain life events or
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Table 1: Basic differences of sequence analysis and event history analysis.
Method Sequence analysis Event-history analysis

Unit of analysis sequence event
Basic tool distance matrix transition rate
Direction of inference retrospective prospective
Mode of inference static, unconditional dynamic, conditional
Type of inference alignment of sequences comparison of rates
Aim of inference population-level individual-level

episodes. Studying trajectories as the basic units allowed them to be interpreted as connected series
of experiences or summaries of lives, not isolated events.13

While event-history analysis models the risk of life events with explanatory covariates, sequence
analysis aims at forming typologies of life trajectories based on their similarity and characterizing
them by means of covariates. To assess similarity, pairwise distances of the sequences are first
calculated. The distance matrix is then used as data for clustering to find similar life patterns. Table
1 summarizes the basic differences of the two methods. We notice that, from a statistical point of
view, they have in many respects completely different approaches. One can expect that they also
provide different types of information about the life course.

2.2.1 Probabilistic sequence analysis

We start with reviewing a probabilistic approach to SA to more clearly contrast the prospective
and retrospective probabilistic life course analyses, and then focus on the non-probabilistic sequence
analysis that has been used exclusively in life sequence analysis to date. We follow closely Durbin et
al.11 in the probabilistic SA presentation.

Sequence alignment depends on a scoring model, on the algorithm for optimizing the scoring, and
on statistical methods to evaluate the goodness of the results. In a probabilistic scoring model, the
substitution score measures the relatedness of sequences in the observed data with the expected case,
where matching occurs only randomly at each position. The log odds ratio of the scoring models for
the whole sequences compares the log of observed and “expected by chance” models.

Consider two sequences, x and y with lengths mx and my. Let xi be the symbol of ith site of x
and yj be the symbol of the jth site of y. In the case of DNA sequences, the symbols are elements of
{A, T, C,G} so there are K = 4 symbols. We want to assign a score to the alignment that measures
the relative likelihood that the sequences are related as opposed to being unrelated. The unrelated
scoring model assumes that a symbol, say a, occurs independently with frequency qa. For sequences
of equal length, the unrelated or random model is then of the form

P (x, y|R) =
∏
i

qxi

∏
j

qyj (3)

whereas the related or match model M is the product of joint probabilities for the whole alignment

P (x, y|M ) =
∏
i

pxiyi . (4)

Here pab is the joint probability of elements a and b occurring as an aligned pair. The ratio of the
models is the odds ratio

P (x, y|M )

P (x, y|R)
=

∏
i pxiyi∏
i qxi

qyi
. (5)
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To have an additive score model, we take a logarithm of the odds ratio which can further be
written as

log

∏
i pxiyi∏
i qxi

qyi
=
∑
i

log
pxiyi

qxi
qyi

=
∑
i

s(xi, yi). (6)

The substitution costs s(a, b) for each aligned pair of elements can be arranged in a K×K matrix
which gives a statement about the probability of ab occurring jointly. The probabilities p and q are
based on biological theory.

An optimal alignment algorithm to minimize the total cost of dissimilarity (or maximize the score
of similarity) is based on dynamic programming. Optimal matching (OM) computes generalized
Levenshtein distances14 by minimizing the cost of elementary operations: substitution, insertion,
or deletion of an element. Insertions or deletions are jointly called indels. The cost of a gap (one
or more conjoined indels) is often set as the length of the gap, but opening and extending gaps
can also be given different weights. OM quantifies the effort needed to transform one sequence to
another. Example 1 illustrates a possible alignment of two sequences and the OM operations needed
to compute the cost.

Example 1 sequence 1: AAAABBBB
sequence 2: AAA–BBCC

The alignment above contains five matching elements, two mismatches, and a gap
of length 1. For defining the cost of this alignment, sequence 2 is transformed to
sequence 1 using an insertion of an element A and two substitutions of an element C
with B (shown bold).

AAAABBBB → AAAABBBB → AAAABBBB
AAABBCC → AAAABBCC → AAAABBBB

The cost of the alignment is the sum of the costs of the operations. Transforming
sequence 1 would lead to exactly the same result. The best possible alignment with
the lowest cost is found using dynamic programming.

A global alignment algorithm is, for example, the Needleman–Wunsch algorithm.15 The idea
is to build up an optimal alignment, using previous solutions for optimal alignments of smaller
subsequences. To find the alignment with the lowest score, a matrix D is allocated. The value
D(i, j) is the score of the best alignment between the initial segments x1...i and y1...j and can be built
recursively. First D(0, 0) = 0 is initialized. The matrix is then filled from top left to bottom right
with

D(i, j) = min


D(i− 1, j − 1) + s(xi, yj)
D(i− 1, j)− o
D(i, j − 1)− o,

(7)

where s(xi, yj) is the cost of a substitution and o of an indel. In the first row xi is aligned with yj;
in the second row xi is aligned with a gap in y; and in the third row yj is aligned with a gap in x.
The best score up to (i, j) will be the smallest of these. The equation is applied repeatedly until the
matrix is filled. The value in the final cell D(mx,my) is the best score for an alignment of x with y.

The significance of a particular alignment M can be assessed, for example, by Bayesian model
comparison. The posterior of alignment M is

P (M |x, y) =
P (x, y|M)P (M)

P (x, y)
, (8)
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where P (M) is the prior probability of M and P (x, y|M) the likelihood of data given alignment M .
The Bayes factor of the odds ratio is then

log

(
P (x, y|M)

P (x, y|R)

)
+ log

(
P (M)

P (R)

)
(9)

where R is the random model.

2.2.2 Non-probabilistic sequence analysis

In life sequence applications, only non-probabilistic sequence analysis has been used to date. These
methods are either based on sequence editing and pairwise alignment of sequences as in the proba-
bilistic case, or on counting common sequence attributes (non-alignment methods).

Substitution costs. The most important difference is that in pairwise alignment the substitution
cost s(xi, yj) is not a log odds ratio as in probabilistic SA but rather a given constant, defined by the
analyst. At least three alternatives have been used. The first derives costs from substantive theory
that often suggests some order between the states. Different substantive questions have of course
different interpretations for the similarity of states. In social science applications, a theory-based
cost matrix is often preferred because the timing of events and the similarity of states are considered
conceptually separate issues (e.g. Halpin16).

Subjectivity in cost definition can be reduced by data-driven costs which are inversely proportional
to transition frequencies from state A to B and B to A.17,18 The time-independent cost of substituting
A to B is then

2− p(A,B)− p(B,A)

where p(A,B) is the estimated proportion of transitions from A to B. The substitution cost is
therefore symmetric.

A third alternative is to calculate pairwise distances from some theory-driven prototypes.19

Sequence alignment. When the cost matrix is defined, pairwise distances between the sequences
are calculated as in probabilistic SA. Optimal matching (OM) algorithm, described in the previous
section, has been used most often in life sequence analysis. However, changing the order of states with
insertions and deletions (indels) have been criticized for warping the time in an unnatural way.20,21
A generalization of the Hamming distance22 is a special case of optimal matching where indels are
not used, and thus only states at the same position (time) are aligned.

The assumption of independent positions within a sequence may be a reasonable approximation
to reality in bioinformatics but unrealistic in life course analysis. Most of the criticism of life sequence
analysis has been directed at the ignorance of time order, which is so fundamental in prospective
analysis (e.g. Wu23). In the probabilistic setting, it would be natural to model a life sequence as a
Markov chain and generalize the independent elements (iid) assumption by assuming homogeneity
or non-homogeneity of the chain.

In non-probabilistic SA, several ad-hoc alternatives for duration-dependence have been proposed
to account for the length of time spells in sequence comparison. Stovel et al.24 used a decay-function,
which depends on a specific index period. Halpin16 suggested a variant of OM that makes substitu-
tions and indels cheaper for long spells than short spells. Marteau25 used time-warping, which locally
compresses or expands the time-scale to minimize the distance to the other sequence. Lesnard21

proposed a time-dependent cost matrix for each time unit, depending on the neighbouring states
(dynamic Hamming distance).

Non-alignment metrics. Elzinga26–28 has taken a completely different approach, based on com-
binatorial methods, which does not require any cost matrix. The distance between two sequences is
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generally defined as

d(x, y) = A(x, x) + A(y, y)− 2A(x, y), (10)

where A is some sequence attribute. Some natural attributes are shown in table 2. As an illustration,
the distance between the two sequences in example 1, now based on the LCS metric (the length of
the longest common subsequence), is shown in example 2.

Example 2 sequence 1: AAAABBBB
sequence 2: AAABBCC

The longest common subsequence of sequences 1 and 2 is AAABB of length 5, so the
distance based on the LCS metric is 8 + 7− 2× 5 = 5.

While being intuitively meaningful and more objective than user-defined cost matrices, these dis-
tance criteria usually produce quite different results compared to alignment methods and have not
been used often in real applications. Table 2 summarizes differences of some distance metrics used
in life sequence analysis.

Censoring. A common problem in life history data are censored observations which in sequence
analysis amounts to sequences of uneven length. The assumption of uninformative censoring in EHA
is closely related to prediction; the predictions of observable participants are assumed to also be
valid for the censored cases. In SA, the problem is how an incomplete observation window for some
individuals affects the distance values. The solution is either to simply use shorter sequences or to
extend the state space with a new “missing” state. Table 2 summarizes how censoring is handled
with different metrics.

Multiple life domains. In the case of one life domain only, the alignment procedure is straight-
forward and most problems are related to the choice of the distance metric and the definition of the
substitution costs. Multiple interdependent life domains complicate analysis in that not only does
the state space grow rapidly, but the meaningfulness of the substitution costs also becomes more of
an issue. For non-alignment metrics no methods for multi-domain sequences have been proposed to
date. For alignment methods at least two approaches have been suggested.

In the extended alphabet approach, the letter corresponding to a particular state is replaced by a
combination of letters (e.g. being simultaneously in states A, C, G, and J is denoted by ACGJ).13,17,29
This can extend the state space rapidly. A conceptual problem is that the same cost matrix is applied
to all states although it is not straightforward what a substitution of one state with another means in
this approach. Gauthier et al.30 define instead a separate cost matrix for each life domain c = 1, . . . , C
and take an average of the costs at each position. If sc(xi, yj) is the cost for aligning xi with yj for
the life-domain c, the average substitution (or indel) cost is calculated as

s(xi, yj) =

∑C
c=1 sc(xi, yj)

C
. (11)

Typology of sequences. Once the distance matrix has been obtained with some of the alternative
metrics in table 2, the goal is to find a typology of sequences by means of clustering methods. In life
course studies, the differences between sequences should somehow be related to the timing of events,
lengths of episodes determined by onset events, and the complete lack of some events or episodes.

Several alternatives are again available. In life sequence applications, Ward’s agglomerative al-
gorithm31 is most commonly used because it tends to produce more equal-sized clusters than other
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clustering algorithms, and this has been preferable for interpretation purposes. At each step, the
algorithm combines the two clusters that minimize the within-cluster variability. No unique typology
may exist if several pairs of sequences have the same distance value (i.e. there are ties) because a
random start of the clustering algorithm can lead to different clustering results.

To determine the optimal number of clusters, generalizations of the usual goodness-of-fit statistics,
coefficient of determination R2 and F -test for non-Euclidian metrics have been used .32 The sums of
squares

SS =
1

n

n∑
x=1

n∑
y=x+1

d(x, y) (12)

are now based on the chosen dissimilarity criterion d(x, y) between sequences x and y. The pseudo R2

and pseudo F -test, although defined as usual as the ratio of the between and within sum of squares,
and that multiplied with the ratio of the degrees of freedom, can now have a different interpretation
than in the Euclidean metric.

3 Application to life history calendar data

3.1 The JYLS Study

We illustrate the differences of the prospective and retrospective approaches with the Jyväskylä Lon-
gitudinal Study of Personality and Social Development (JYLS), ongoing in Finland. The participants,
born in 1959, have been followed from age 8 to 50.33 In 1968, twelve randomly selected second-grade
classes in Jyväskylä, Central Finland, were chosen for the study. All of the pupils participated, so
the initial attrition was zero. The original sample consisted of 173 girls and 196 boys. During the
follow-up, no systematic attrition has been found.34,35

A life history calendar was used to retrospectively collect information about partnership status,
children, studies, and work, as well as other important life events. The occurrence, timing, and
duration of the transitions were recorded annually from age 15 to age 42 (in 200136) and from age 42
to age 50 (in 2009) during interviews in which 275 participants gave reports based on memory and
visual aids provided by the LHC-sheet. The information collected with the LHC was complemented
using other sources of information, such as life situation questionnaires and interviews at ages 27,
36, and 42.

Figure 1: A section of the first life history calendar of the JYLS study.
Year
Marriage/cohab. Age 15 16 17 18 19 20 21 22 23 24 25 . . . 42
Partner(s)
Children 15 16 17 18 19 20 21 22 23 24 25 . . . 42
First child
Second child
...
Other parenthood
Education 15 16 17 18 19 20 21 22 23 24 25 . . . 42
Type of education
Work 15 16 17 18 19 20 21 22 23 24 25 . . . 42
Fulltime work
...
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We compared event history methods and sequence analysis in a setting where the dynamics
of three inter-dependent life domains – partnership formation, parenthood, and employment – are
studied in parallel. In EHA, we specified a multistate model for the event-specific transitions and
in SA we specified domain-specific cost matrices. As a more substantive question, we studied the
relationship between different life paths and excess depressive symptoms in middle age. These were
assessed at age 42 using a shortened version of General Behavior Inventory (GBI).37,38

3.2 A multistate model

We note first that all events (partnership formation, child births, and career events) can be repeated
several times in an individual’s life course, making some simplification necessary. We limited the state
space to the first transitions in each domain. In particular, we defined “employment” as the year when
the person definitively had entered working life. The timings of initial partnership (either marriage or
cohabitation) and parenthood are usually easily defined, but the onset of steady employment requires
some thought. We defined it as the year which was followed by two subsequent years of employment.
Studying and working in the same year was coded either in accordance with the subject’s individual
situation. The hazards for these events are shown in figure 2, while a histogram of GBI depression
scores at age 42 is presented in figure 3.
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Figure 2: JYLS data: smoothed hazards of initial partnership, parenthood, and employment by age.

We were interested in how the timing of initial partnership and steady employment affect the
joint prediction of remaining childless and having excess depressive symptoms at age 42. Excess
depressive symptoms was defined as a higher than median GBI score value (GBImed = 1.44).

For the sake of simplicity, we excluded cases who had become a parent before the prediction time
(age 20) and also one case who had incomplete information on the transitions. This led to a sample
size of 260 cases. Figure 4 shows the possible transitions between the states.

The events of interest were denoted by W=entering working life, P=forming an initial part-
nership, and C=becoming a parent, and their occurrence times by TW , TP , and TC , respectively.
The time interval of the LHC recordings was one year and we denote this interval by t, where
t = 20, ... . . . , 42. Because of the coarse data, it was possible for two or all three events of interest
to occur within the same year. Since in that case we do not know the order of events, we simply
multiply the discrete hazards in that year in the prediction formulae.
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Figure 3: JYLS data: histogram of GBI depression scores at age 42.
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Figure 4: JYLS data: the multistate event history model.

Event-specific hazards. The discrete hazard of entering working life (W ) at age t when neither
an initial partnership (P ) nor parenthood (C) has yet occurred, can be written in the general form
as

pW (t) = P (TW = t|TW ≥ t, TP ≥ t, TC ≥ t). (13)

Since any of the events P , W , or C can occur first, a similar hazard model can be defined for initial
partnership and parenthood. If both P and W have already occurred at times w Q v < t, the
conditional hazard of having a first child at age t is then

pC|WP (t|v, w) = P (TC = t|TW = v, TP = w, TC ≥ t). (14)

Other conditional hazards are defined in an obvious way.
We used piecewise constant logistic hazard models where

px(t) = (1 + exp(−β′Zt))
−1 (15)

is the discrete hazard of event x. The effect of the preceding events was modelled with time-dependent
covariates which were simple indicators because the sample size did not allow for more complicated
modelling. For example, in the hazard pP |W (t|v), the covariate Zt(W ) ≡ 1, t ≥ v, when W occurred
at v, whereas in pP (t) the covariate Zt(W ) was not defined. Although possible, no other covariates
were used in the models. Men and women were both included in the final model because no apparent
differences in the effects of timing of partnership and work on the response event were found in
separate analyses.

Prediction probabilities. In the multistate model the possible paths of not having children within
the prediction interval depend on the occurrence times of initial partnership and steady employment.
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Figure 5: Survival probabilities of not having children for individuals who have or have not entered
working life or initial partnership by the prediction time, age 20. “Neither” corresponds to no initial
partnership nor employment by age 20.

The most complicated situation is when nothing has yet happened by the prediction time t. In
this case, we must account for all possible timings of partnership and employment. We then have
the prediction

P (TC > u|TW > t, TP > t, TC > t) =
u∏

s=t+1

(1− pW (s)− pP (s)− pC(s))

+
u∑

s=t+1

s−1∏
r=t+1

(1− pW (r)− pP (r)− pC(r))pW (s)

×P (TC > u|TW = s, TP > s, TC > s)

+
u∑

s=t+1

s−1∏
r=t+1

(1− pW (r)− pP (r)− pC(r))pP (s)

×P (TC > u|TW > s, TP = s, TC > s)

−
u∑

s=t+1

s−1∏
r=t+1

(1− pW (r)− pP (r)− pC(r))pW (s)pP (s)

×P (TC > u|TW = s, TP = s, TC > s). (16)

The last sum accounts for the paths in which P and W occur within the same year and their order
is unknown.

The other paths are special cases of (16). In particular, when initial partnership (P ) and entering
working life (W ) have occurred by the prediction time t, the prediction is simply, for 0 < v Q w <
t < u,

P (TC > u|TW = v, TP = w, TC ≥ t) =
u∏

s=t+1

(1− pC|WP (s|v, w)). (17)

The prediction probability is a function of the prediction time t and the prediction interval
I = (t, u] and its realizations depend on the history H. By letting one of them be variable and fixing
the values of the other two, we can obtain different views of the life course dynamics. In figure 5, we
obtain the usual survival probability S(u) of not having children by age u when fixing the prediction

12
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Figure 6: Innovation gains in predicting no children by age u = 42 from observing employment (W)
and initial partnership (P) at the prediction time t = 20, ..., 42, given that nothing/the other one
has occurred previously (0 = nothing has yet happened). The confidence intervals are based on 5000
bootstrap samples of the data.

time at t = 20 and history at H20 and letting the prediction interval vary with ages u = 21, ..., 42.
We notice that half of those who had formed initial partnership already by age 20, had children by
age 25, whereas the effect of employment by age 20 had a much smaller effect on early parenthood
compared to those who had neither formed initial partnership nor entered working life at that age.

Factual and counterfactual predictions. Instead of fixing the prediction time t we now identify
it with the variable occurrence time t = 20, ..., 42 of either initial partnership or employment. When
comparing these predictions at age u = 42, we obtain a visual representation of the effect of timing
of initial partnership P and employment W on the prediction of no parenthood by age 42. In figure
6, we consider the difference of the two predictions:

P (TC > u|TP = t, TW > t, TC > t)− P (TC > u|TP > t, TW > t, TC > t). (18)

This is the innovation gain from observing initial partnership at age t = 20, ..., 42 related to the
prediction of not having children by age 42, given no steady employment by age t. If a person
actually forms an initial partnership at age t, the first probability is a factual prediction of not
having children by age u, given the history, and the second probability is a counterfactual prediction
of the same event.

At all ages, both initial partnership and employment decreased the probability of remaining
childless compared to the situation where neither has occurred yet. The 95% confidence limits show,
however, that the timing of steady employment had a significant effect only if it occurred before age
30 if no partnership had been formed yet. Initial partnership around ages 28 to 31 decreased the
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Figure 7: Difference in the joint prediction probabilities of excess depressive symptoms and having
children versus not having children by age 42, given that employment or/and initial partnership have
occurred at the prediction time t = 20, ..., 42. “Neither” corresponds to no partnership or employment
(yet) at the time of prediction. The confidence intervals are based on 5000 bootstrap samples of the
data.

prediction of remaining childless the most, but had a significant effect at any age. It should be noted
that, while controlling for the history effect, the size of the innovation gain from observing initial
partnership depends on the length of the remaining prediction interval.

Joint prediction probability. Finally, to evaluate the relationship between possible histories of
family formation and employment with depressive symptoms (D) in middle age, we compared the
joint prediction of parenthood/no parenthood and excess depressive symptoms at age 42, given the
history of partnership and employment. For the case of having children, we then have

P (TC ≤ 42, D42 > d∗|Ht) = P (D42 > d∗|TC ≤ 42, Ht)(1− P (TC > 42|Ht)) (19)

with obvious changes for the case of no children.
The first probability on the right is evaluated only at age u = 42, so it only affects the last terms

at time u = 42 in the prediction formulae. It is the cross-sectional logistic probability for a higher
than median GBI score d∗ at age u = 42, depending on family formation and employment

pD(42) = logit(P (D42 > d∗|Z42)) = α + β1Z42(W ) + β2Z42(P ) + β3Z42(C) (20)

where Z42(C) = 1 for the case when TC ≤ 42 and Z42(C) = 0 for the case when TC > 42. Since all
these covariates were indicators, the occurrence times did not make a difference.
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Figure 7 shows the differences in the joint prediction probabilities of having children versus not
having children by age 42 and excess depressive symptoms at that age, given initial partnership
or employment at the time of prediction. This analysis provides “limiting” ages for increasingly
higher prediction of excess depressive symptoms in middle age and remaining childless, compared
to having children. We find that if initial partnership is formed later than at age 31, the difference
of these joint probabilities becomes positive and increasing. For steady employment but no initial
partnership, this age limit is about 27 years. For those who have no initial partnership nor steady
employment at the prediction time, this limit is reached already at age 26. By age 34, the prediction
of excess depressive symptoms and no children is already about 80% higher than the prediction of
excess predictive symptoms and children.

This analysis shows that, having estimated the event-specific hazards, we can evaluate joint pre-
dictions of events related to both dynamic and non-dynamic parts of a multistate model. Including
explanatory covariates in the hazard models (which we did not do), would allow to compare predic-
tions of hypothetical individuals with different histories and characteristics.

3.3 Multidimensional sequence analysis

In sequence analysis, instead of transitions we studied the distribution of individuals in the states
year by year. This difference corresponds to annually evaluating the prevalence of the states instead
of incidence. We define the state space of partnership, parenthood, and career histories from age 15
to 50 as shown in table 3.

Table 3: Life domains and respective states for three-domain sequence analysis.
Life domain States

Partnership single, in partnership, divorced/separated/widowed
Parenthood no children, has children (biological, adopted, foster)
Career studying, working, other (unemployed, out of labour force)

Unlike in the EHA example, we did not restrict the analysis to the first events but used all events
for the three life domains. This state space results in 18 possible state combinations for each year.
The transition matrix was sparse, but in non-probabilistic sequence analysis and with domain-specific
costs this is not a serious issue.

In our data, sequence lengths vary because of the two data collection phases and small differences
in ages: 215 participants have sequences of length 36, 14 participants of length 35, and 46 partici-
pants of length 28.

Dissimilarity criteria. We compared six dissimilarity metrics suitable for multidimensional se-
quence analysis. They were based on different definitions of the substitution costs. In optimal
matching (OM) and Hamming distance, we used either user-defined or data-driven substitution
costs. In dynamic Hamming distance, they were based on estimated transition probabilities taking
into account the neighbouring states of the previous and the following year.21 The LCS criterion (the
length of the longest common subsequence) corresponds to OM with the specific choice of substitution
cost 2 and indel cost 1.

Since Hamming distance does not allow indels, censored positions were replaced by a “missing”
state. The effect of different costs for missing states was investigated by defining costs 0, 0.5, or 1
times the largest substitution cost. With larger costs, the sequences with missing states tend to form
their own uninformative cluster. Thus, using no cost at all resulted in the best results.
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Table 4: Partnership, parenthood and career-related substitution costs based on theory (user-defined)
or transition probabilities.

User-defined Transition probabilities

→ S → P → D → * → S → P → D → *

Single (S) → 0 2 3 0 0 1.89 2.00 0
Partnership (P) → 2 0 1 0 1.89 0 1.80 0

Divorced/sep. (D) → 3 1 0 0 2.00 1.80 0 0
Missing (*) → 0 0 0 0 0 0 0 0

User-defined Transition probabilities

→ N → C → * → N → C → *

No children (N) → 0 3 0 0 1.94 0
Has children (C) → 3 0 0 1.94 0 0

Missing (*) → 0 0 0 0 0 0

User-defined Transition probabilities

→ S → W → O → * → S → W → O → *

Studying (S) → 0 3 1.5 0 0 1.77 1.87 0
Working (W) → 3 0 1.5 0 1.77 0 1.67 0

Other (O) → 1.5 1.5 0 0 1.87 1.67 0 0
Missing (*) → 0 0 0 0 0 0 0 0

Combined substitution costs. The substitution cost matrix was defined separately for each three
domain and then averaged. The domain-specific costs for OM and Hamming distance are shown in
table 4. For dynamic Hamming, time-specific costs resulted in 36 distinct substitution cost matrices
(not shown here). It should be noted that the absolute numbers in user-defined substitution costs
have no meaning since the information is only relative. In our application, the states “single” and
“divorced” were the most distant because forming a partnership was regarded as one step in the
developmental process to adulthood. In another study, these could be interpreted as similar, as both
indicate a state of “living without a partner”. Compared to the transition-based costs, this is the
main difference in the partnership domain. For career domain, transitions from states “studying” to
“other” (or vice versa) were the least common (highest cost in the cost matrix based on transition
probabilities), but in the user-defined matrix the corresponding cost was set relatively low, due to
the versatile nature of the state “other”. The indel costs were set to half of the largest substitution
cost, making them equally costly. For averaging, the costs in each matrix were scaled to have the
same range in order to give equal weight to each life domain.

Typology of sequences. Ward’s agglomerative clustering was used to find a typology of life
sequences, applying the six dissimilarity criteria for solutions starting from 2 to 15 clusters. Based
on dendrograms, the goodness-of-fit statistics, and interpretability of the clusters, an eight-cluster
solution was chosen.

The goodness-of-fit statistics in table 5 for the chosen eight cluster solutions suggested that
clustering based on the Hamming distance with theory-based substitution costs fits the data best. It
covered around 45% of sequence variation (F = 31.56) and resulted in interpretable clusters where
all three life domains were well represented. In comparison, the second best criterion, dynamic
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Table 5: Goodness-of-fit statistics for eight cluster solutions obtained with six distance measures
based on transition probabilities or user-defined costs.

Dissimilarity measure Pseudo R2 Pseudo F

Hamming distance (user-defined) 0.453 31.56
Dynamic Hamming distance (trans. prob.) 0.433 29.18
Optimal matching (user-defined) 0.406 26.09
Hamming distance (trans. prob) 0.395 24.93
Optimal matching (trans. prob) 0.369 22.33
Length of longest common subsequence 0.358 21.23

Short educ. 
& delayed
parenthood

Long educ.
& later
family

Long educ. 
& early
partnership

Short educ.
& on-time
family

Early family Fast
starters

Partners
without
children

Single/
late
family

Figure 8: The dendrogram of the clustering based on Hamming distance with user-defined substitu-
tion costs.
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Figure 9: Scatter plot of the cluster-specific MDS scores based on the first two dimensions of multi-
dimensional scaling. Dissimilarities were computed by using theory-based Hamming distance for the
three-dimensional sequences.

Hamming, resulted in clusters where the family-related life domains dominated and the career domain
was hardly represented. The dendrogram based on the Hamming distance in figure 8 supported the
eight cluster solution.

Time-preserving Hamming distance instead of OM seems more reasonable for sequences of uneven
length. In OM, using indels in our data would mean aligning, for example, a state at age 15 with
a state at age 23 in another sequence. Within the same metric, user-defined substitution costs gave
better results than costs based on transition probabilities in this three-domain setting. However,
preliminary studies with only one life domain suggested the opposite so no general guidelines can be
given.

We present the results with the Hamming distance, at the same time illustrating different ways
of investigating the clustering results by sequence plots, by comparing sequence variation in clusters,
by reducing dimensionality in the multivariate categorical analysis with multidimensional scaling
and finally, by using the cluster indicators in the regression of depressive symptom scores on cluster
membership.
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Table 6: Logistic regression of depression score on cluster membership.
β s.e. p OR

Short education & delayed parenthood −0.21 0.37 0.58 0.81
Short education & on-time family −0.51 0.37 0.16 0.60
Long education & late family −0.59 0.39 0.14 0.56
Partners without children −0.24 0.40 0.55 0.79
Early family 0.18 0.25 0.46 1.20
Single/late family 1.61 0.77 0.04 5.00
Long education & early partnership −0.05 0.33 0.87 0.95
Fast starters 0.47 0.40 0.24 1.60

Multidimensional scaling (MDS).MDS provides a concise visual representation of cluster results,
first by showing how well the clusters actually separate but also by providing a visual aid when the
original sequences are ordered according to MDS scores. The first few scaling dimensions capture the
most prominent variation in the sequences. The rotation of the solution is arbitrary, but principal
component axes can be used for achieving a meaningful rotation. The resulting dimensions often
sort the sequences according to an attribute, such as the timing of some transition.

In figure 9, the sequences were plotted as points on the plane spanned by the first two MDS
dimensions with cluster identification. The eigenvalues of the MDS solutions with different dimen-
sions supported two MDS dimensions. Correlation between the original Hamming distances and the
distances computed from two-dimensional MDS scores was 0.93. The timing of initial partnership
and parenthood seemed to separate the clusters best (1st principal component dimension); length of
education follows (2nd dimension). Clusters of individuals with no children were clearly separated
from the others, which were more or less connected but not completely overlapping.

Sequence plots. Index plots show the individual life courses, merely re-organizing the original
data according to the similarity defined by clustering (figure 10). Ordering according to some MDS
dimension assists in interpretation. State distribution plots show the prevalence of states at each
time point. We combined the different life domains to give an overview of the dynamics of the state
distribution (figure 11).

Sequence variability. Shannon’s entropy39,40 is often used as a measure of disorder of a system.
In life sequence analysis, entropy is used to characterize variation in the states within one sequence,
or more interestingly, within and between clusters of sequences. When entropy is 0, all cases (of a
cluster) are in the same state. When entropy is 1, there are equally large amount of cases in each
state. Important transition times are easily seen as peaks in the cluster-specific plots (figure 12).

Regression analysis. External explanatory variables can be taken into account either in the clus-
tering phase (covariance analysis instead of ANOVA), or as independent variables in a multinomial
analysis of cluster membership indicators. We used the membership indicators as explanatory factors
in a logistic regression predicting higher than median depression scores as in EHA. The “single/late
family” cluster was the only one that shows statistically significant differences (with higher odds of
having excess depressive symptoms). This result supports the finding of Salmela-Aro et al.41 that
postponing or lack of some stages in the transitory process to adulthood anticipate lower life satis-
faction in adulthood. Note that although we used individual-specific cluster membership indicators
in the regression models, the cluster characteristics may not be representative to all members of the
cluster. Clustering was based on the matrix of pairwise distances, not on the individual sequences
any more. It was therefore expected that only the most different clusters (here singles) would have
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Figure 10: Index plots of partnership (top), parenthood (middle), and career (bottom) in the eight
clusters based on Hamming distance. The sequences are ordered according to the first dimension of
multidimensional scaling that represents the timing of partnership and children.
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Figure 11: State distribution plots of combined partnership, parenthood, and career states in the
eight clusters based on Hamming distance. Note, that “divorced” can mean either a broken marriage
or cohabitation. Positions with missing states in any life domain are excluded from the plots.
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Figure 12: Transversal entropies of partnerships, parenthood, and career sequences in clusters based
on Hamming distance.
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a significant role in the regression analysis. We conclude that, unlike making individual-level predic-
tions of parenthood given the history of partnership and employment, the aim of sequence analysis
was to find subpopulations or clusters of individuals whose life courses were similar in terms of the
timing of initial partnership, parenthood and employment.

Computations. Sequence analyses were carried out with the TraMineR library in R.42 Logistic
hazard models and programs calculating the prediction probabilities and their bootstrap intervals in
section 3.2 were implemented with R.

4 Discussion

We compared two approaches of analysing data collected with a life history calendar: the model-
based probabilistic method of event history analysis and the model-free data mining method of
sequence analysis. Traditionally, EHA models the risk of a transition from one state to another,
but here we instead estimated the cumulative prediction probabilities of life events in a multistate
model to have a more comparable setup with sequence analysis. Instead of transitions, the analysis
was extended to the entire observed trajectory, which was the unit of analysis in SA as well. In
sequence analysis, we compared several dissimilarity metrics and contrasted data-driven and user-
defined substitution costs. To illustrate the two methods, we studied young adults’ transition to
adulthood as a sequence of landmark events in several life domains. These landmark events defined
our multistate event-history model and the parallel life domains in multidimensional SA. Finally, we
analysed the relationship between life trajectories and excess depressive symptoms at age 42 by first
estimating their joint predictions in the multistate model and then by using the individual-specific
cluster indices of multidimensional SA in a further explanatory analysis for depressive symptoms.

When the same life course problem was analysed with both methods, we found that the two
approaches complement each other. SA is a descriptive tool synthesizing large amount of information
to obtain a broad picture of multidimensional data. As other dimension-reducing methods, SA helps
developing an intuitive understanding of complex relationships but the resulting clusters should not
be given a confirmatory status. Finding descriptions for the clusters mirrors the rather subjective way
of naming factors in factor analysis. In our case, sequence analysis could reveal typical and atypical
patterns of young adults transition process to adulthood which supported the earlier findings that
no normative pathway to adulthood exists any longer. Individuals’ enhanced opportunities to make
choices in their own lives increases diversity in the life course. These individual choices are affected by
various governmental and other external decisions, the results of which are difficult to conceive at the
population level. In particular, sequence analysis has offered new means for large scale comparative
analysis of life patterns across nations and between age cohorts.

Multistate event history analysis, on the other hand, is a predictive method which requires struc-
tured hypotheses and a well-defined system of hazard models. This is opposite to the data mining
approach of SA in which no assumptions about the data generating mechanisms are made, or needed,
for that matter. We believe, however, that the analysis of increasingly complex life course data, com-
bining perhaps both biological and behavioural data, will require methods that at the initial stage
can reveal underlying structures and help generating causal hypotheses for further analysis. Causal
inquiries can only be addressed with proper “book keeping” of risk sets for transitions. Thus, correct
individual-level conditioning of the history is possible only in EHA. Multiple time scales, inherent in
many life course problems, and their separate effects can only be quantified by modelling. Further-
more, time-varying covariates indicating individual status changes or contextual changes in time are
only possible in model-based analysis.

Sequence analysis has been criticized for violating the basic principles of prospective analysis
because the “past” and the “future” are treated symmetrically in vertical alignment. In this sense,
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it is not suitable for any causal analysis. Subjectivity of substitution cost specification and non-
uniqueness of clustering results have also raised scepticism about its usefulness. In recent years,
several improvements have been suggested to the specification of substitution costs, to handle cen-
soring, and to preserve timing and the order of states in sequence analysis.43 They all modify the
substitution cost matrix in some way because this is the only way of tuning the values of the distance
matrix. According to our examinations, also Elzinga’s non-alignment methods26–28 seem promising,
but no multidimensional method exists yet. As a data mining method, SA is best suited for large
register-based data sets. With small data sets and large state space, all trajectories tend to be unique.
If the substitution cost matrix is based on estimated transition probabilities, small data sets run out
of observations. This was shown by Helske et al.,44 who used Hidden Markov models to cluster life
sequences probabilistically.

Statistical analysis of life sequences still has many unresolved questions, compared to the well
developed theory of event history analysis. Sequence analysis is less conventional, but its use is
expected to increase in the future, especially now that there is an easy-to-use software available in R.
Event history analysis will certainly remain the main tool for analytical life course studies. We be-
lieve that although the prediction probabilities are not a standard tool in EHA, they are valuable for
synthesizing information in a multistate model. Although the probabilistic statements and program-
ming require careful specification, the probabilities can be estimated in a straightforward manner
from state-specific hazards. Confidence intervals can be calculated, for example, by bootstrapping
(as we did) or, in a fully parametric case, analytically (cf. Eerola8).

As in epidemiology, prevalence indicates what is typical or atypical at a particular time, whereas
incidence is related to change, the underlying concept in all causal inquiry. Life course analysis
is obviously dynamic, but the complex pattern of interacting factors also requires “zooming” into
details. Therefore, one could summarize the complementary advantages of the methods: while se-
quence analysis provides detailed information about “how things are”, event history analysis answers
the “why”.
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