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Finnish summary

Diss.

Information and its derived knowledge are not static. Instead, information is
changing over time and our understanding of it evolves with our ability and will-
ingness to consume the information. When compared to humans, current com-
puter systems seem very limited in their ability to really understand the meaning
of things. On the other hand, they are very powerful when it comes down to
performing exact computations. One aspect which sets humans apart from ma-
chines when trying to understand the world is that we will often make mistakes,
forget information, or choose what to focus on. To put this in another perspective,
it seems like humans can behave somehow more randomly and still outperform
machines in knowledge related tasks.

In computer science there is a branch of research concerned with allowing
randomness or inaccuracy in algorithms, which are then called approximate al-
gorithms. The main benefit of using these algorithms is that they are often much
faster than their exact counterparts, at the cost of producing wrong or inexact re-
sults, once in a while. So, these algorithms could be used in contexts where erring
once in while does not harm. If the chance of making a mistake is very slim, say
lower than the chance of a memory error, then the expected precision will rival
their exact counterparts. Furthermore, the input data to the algorithms often al-
ready contains a fair amount of uncertainty, such that the small error which the
approximate algorithm introduces becomes more or less insignificant.

In this dissertation, the author investigates the use of familiar and new ap-
proximate algorithms to knowledge discovery and evolution. The main contri-
butions of the dissertation are a) an abstract formulation of what it means for an
ontology to be and stay optimal over time, b) a contribution to a vision paper re-
garding the future of evolving knowledge ecosystems, c) an investigation of the
application of locality-sensitive hashing (LSH) in the context of ontology match-
ing and semantic search, d) the twister tries algorithm which is a novel approxi-
mate hierarchical clustering approach with linear space and time constraints, and
e) an extension on the twister tries algorithm which trades a longer, but adaptable
running time for a likely improvement of the clustering result.

Keywords: Knowledge Evolution, Hierarchical Clustering, Information Retrieval
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PREFACE

At the beginning of my studies (2012), I started to investigate what it would mean
for an ontology or knowledge base to be optimal. The result was a definition of
optimality described in function of an abstract system. The paper was published
in the Workshop on Dynamics and Evolution in Intelligent Systems but remained very
abstract. Further, I realized that for the time being it would not be feasible to solve
this problem since there were too many unknowns and any attempt would hit the
hard wall of time complexity.

After this realization, I joined other researchers who were investigating the
use of biological models to mimic the evolution of knowledge. The result of
this collaboration was published as a book chapter in the book “Big Data Com-
puting”, published by Chapman and Hall/CRC in early 2014. The core idea of
this chapter is that the methods and mechanisms for the evolution of knowledge
could be spotted from the ones enabling the evolution of living beings.

Besides, I started investigating the ontology alignment research field and re-
alized that I should stop looking at ontologies as isolated entities. I became more
interested in how to connect knowledge bases. Since small ontologies can be
aligned fairly easily by hand, my main interest was the integration of large bodies
of information. I studied techniques used in information retrieval and in partic-
ular document similarity and came up with a novel method for the alignment of
large ontologies. This result was presented at the Web Intelligence Congress in
2014. The main benefit of the approach is that it is very fast. However, the price
to pay for the fast answer is that the quality of the alignments is not very high.

Next, I wanted to try hierarchical clustering as an aid to improve the quality
of the ontology alignment. However,traditional methods for hierarchical cluster-
ing do not scale well in the number of elements to be clustered. Hence, I started
looking for a more scalable approach and came up with the idea of the twister
tries algorithm. Using this algorithm, which uses locality-sensitive hashing, it
becomes possible to approximately cluster very large datasets within reasonable
time. Since the technique is wider applicable than just in my own research, I de-
cided to publish it as a separate paper which was presented at the SIGMOD 2015
conference.

Then, my supervisor got me interested in the Keystone COST project in
which research related to semantic keyword search is stimulated. We decided
to take part in the conference and published a work showing how LSH tries can
be used to dynamically align information tokens. This paper was then invited
for extension to the LNCS Transactions on Computational Collective Intelligence
journal.

In the mean time also the work related to hierarchical clustering advanced.
Initial experimentation showed that it did not significantly increase the quality of
ontology alignments, but experiments which enhance the twister tries algorithm
with evolutionary algorithms turned out successful. This was reported in the 6th
IEEE symposium on Computational Intelligence and Data Mining.
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1 INTRODUCTION

It is very difficult to know what you take for granted. And the reason is that you take
it for granted.

— Sir Ken Robinson

For a long time people have tried to create machines whose capabilities equal
or surpass human ability, creating what some would call strong! artificial intel-
ligence (Searle, 1980). However, despite recent successes (Schaeffer et al., 2007;
Tesauro et al., 2013; Lee, 2016) in creating specific algorithms to play games for
which most would agree that a combination of intelligence and creativity are re-
quired, there is no machine with capabilities resembling general human intelli-
gence to date. One of the reasons why human intelligence is hard to attain is
that we are capable of adaptation to the environment in which we reside. The
above game playing programs are tailored to a specific game, and will not adapt
themselves to totally new tasks when asked to do so?.

One of the tasks an intelligent machine needs to perform is keeping a rep-
resentation of its environment. The environment is complex and large and hence
also its representation will be. Moreover, this representation should be updated
whenever the environment changes (Ermolayev et al., 2014). The currently avail-
able computing resources are unable to deal with a problem of such complexity
in an exact fashion. Humans, however, seem to be able to perform this task, but
are also prone to making mistakes and forgetting facts. Therefore, we might be
able to build a machine with a competing level of intelligence if we also allow
it to err once in while. This dissertation provides some parts of the puzzle by
investigating approaches for connecting knowledge and managing its evolution,
while allowing an amount of error to happen.

1 Most commonly the distinction between strong and weak Al is that the former really un-

derstands what it is doing, while the later only simulates this behavior. This distinction is
sometimes used to argue that strong Al does not exist.

Obviously, parts of these engines are more general and can be used in other games or
intelligent tasks. But, these systems require engineers who create the new set up. For
general game Al, see http:/ /www.gvgai.net/.
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Research Questions

This dissertation contains several contributions related to the use of approximate
algorithms to aid knowledge discovery and evolution. In particular, the follow-
ing research questions are answered:

RQ1: What does it mean for an ontology to be optimal?

RQ2: Can min-hashing, as applied in information retrieval, help in the align-
ment of ontologies?

RQ3: Is the same min-hashing also helpful when sowing knowledge tokens in
a knowledge ecosystem?

RQ4: Can a hierarchical clustering algorithm be adapted to large scale data if
we allow an error?

Structure of the Dissertation

This dissertation is composed of several articles, which contain the contribu-
tions. These articles are preceded by this introduction, a foundations section, and
overview of the contributions. The foundations section contains short introduc-
tory descriptions of concepts necessary for a fluent understanding of the articles.
The reader is encouraged to skim trough these and read the explanation of top-
ics which are unfamiliar. After the foundation section, the reader is expected to
read the actual articles, which are the main contribution of this dissertation. Next,
there is an overview of the research contributions organized by topic and a listing
of the share of the work performed by the candidate. Finally, there is a conclusion
and outlook on future research. Throughout the dissertation the included papers
are cited using the letter P followed by the Roman numerals of the article. For
instance, the sixth paper is cited using PVL



2 FOUNDATIONS

Souvenez-vous que dans les champs de l'observation le hasard ne favorise que les
esprits préparés.

— Louis Pasteur

In this chapter the foundations for the contributions are presented. The descrip-
tions are intentionally left broad to give a wider view onto the field as strictly
required, on the other hand many details are left out. The main goal of this chap-
ter is to sketch a context for the articles, and the next contribution section. More
detailed definitions, results, and focused related work is to be found from the
included articles themselves.

2.1 Ontologies

Already in ancient times philosophers thought in abstract terms about concrete
things in their environment. These abstract terms, also called concepts, and their
relations is what some would call an ontology. A more recent, often quoted, def-
inition by Gruber (Gruber, 1995) in the context of artificial intelligence states that
“An ontology is an explicit specification of a conceptualization”. Further, Gruber
stresses that an ontology needs to be a formal specification, i.e., one which can be
described using mathematical logic or, in other words, unambiguously.

In the past there have been several efforts to harness the problem of repre-
senting knowledge, however many have fallen out of favor. For example, Frame
languages (see (Karp, 1993) for an overview) and several Description Logics (DL)
systems (see (Baader, 2003)) have not achieved high levels of adoption. The main
exception is the OWL, the Web Ontology Language, which is essentially a specific
description logic (Horrocks et al., 2003). OWL (and its later incarnation OWL2)
are standardized by the W3C (see van Harmelen and McGuinness (2004) and
OWL Working Group (2012)). There are several differences between these two
versions, but for the scope of this dissertation they are not essential. Therefore,
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@prefix ex: <http://www.example.com/#>
@prefix user: <http://users.jyu.fi/~>
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf—-schema#>

user : miselico a ex:teacher
ex:teacher rdfs:subClassOf ex:employee
user: miselico ex:name "Michael"

FIGURE1 An example RDF document encoded in Turtle. The example shows an indi-
vidual (ex:miselico) which is an instance of the class ex:teacher. Fur-
ther, this teacher class is itself a subclass of the ex:employee class. The fi-
nal triple states that individual has the string literal property ex : name with
value “Michael”

we will refer to both as OWL and in cases were distinction is needed as OWL1
and OWL2.

A second framework which is commonly used for knowledge representa-
tion is Resource Description Framework (RDF) (Wood et al., 2014). At the core of
RDF lies the RDF Graph, which is essentially a set of triples. Each triple consists
of a subject, a predicate, and an object. The subject and object can be regarded as
nodes in the graph and the predicate as a directed arc between them. The inter-
pretation of such triple is that the relation represented by the predicate holds be-
tween the entities referred to by the subject and object. Information is encoded in
RDF by declaring classes, the inheritance relation between the classes, instances
of these classes, and other properties of the instances. An illustrative example in
can be found in fig. 1. OWL ontologies are commonly encoded using RDF! and
the main idea of OWL is that it defines an ontology for data which is encoded in
RDE

A word about terminology: in current research on knowledge representa-
tion the term ontology is often used in two somewhat different meanings. First,
it is used to mean everything related to concepts, classes, and relations, but not
instances. Another term used for this meaning is the so-called TBox. Second, it
is used to also include the individuals. The term ABox is used to denote the indi-
viduals and their assertions and hence this second meaning would be the union
of the ABox and TBox. For the remainder of this work, except where explicitly
noted otherwise, we will be using the first meaning.

2.1.1 Ontology Matching

This short discussion on ontology matching is mainly based on the Ontology
Matching book by Euzenat and Shvaiko (Euzenat and Shvaiko, 2013), which is
considered a standard work in the field, one of their recent articles (Shvaiko and

! To be precise, OWL has both RDF-based Semantics and Direct Semantics based on de-
scription logics. These have differences, but for the scope of this dissertation they can be
regarded as equivalent.
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Euzenat, 2013), and the somewhat older work, on more general schema matching,
by Rahm and Bernstein (Rahm and Bernstein, 2001). An ontology, as described
above, is used to represent information about classes, their relations and proper-
ties. In practice, an ontology is created for a certain domain of interest. Ideally,
everyone would publish their ontologies and reuse would be one of the main
objectives when creating new ontologies. In that case all ontologies would be in-
terlinked and duplication of classes would be rather rare. However, in practice
ontologies are often created in isolation, i.e., not linked to any other ontology and
hence not reusing concepts. The reason for this is that it would require a large
upfront investment to research the existing ontologies and discover what can be
reused. Furthermore, the creator of the original ontology might at a later point
decide to make changes in his ontology leading to unexpected incompatibilities
later on. This duplication of efforts leads to the situation where many ontologies
exist for the same or overlapping domains of interest.

The idea of ontology matching is to solve this problem by finding out which
entities (classes, relations, etc., but in some formulations also entities) from two
different ontologies have a relation between them, like, for instance, the same
semantic meaning. For example, two classes A and B have the same semantic
meaning if all individuals from A are also in B and vice versa. In this case it is said
that there is an equivalence relation between A and B. Also other relations are of
interest, most commonly the ‘less general” and ‘more general’ relations. Meaning
that all entities belonging to A also belong to B, or that all entities belonging to B
also belong to A, but not the other way around. When a relation r between two
entities A and B has been found, it is said that a correspondence (A, B, r) exists
between the ontologies. A set of these correspondences is called an alignment
between the ontologies. Using this vocabulary, the goal of ontology matching is
to find a complete and consistent alignment between ontologies.

After the alignment has been found it can then be used in several ways.
Most commonly it is used for ontology merging (two or more ontologies are com-
bined into a single one) or data translation (instances described according to the
one ontology are transformed into instances according to the other ontology).

There are several ways to classify ontology matching algorithms. There are
three main characteristics, namely a) the input of the algorithm, b) the matching
process, and c) the output produced by the process. We will not give a detailed
overview of the input and output formats since it is not essential to the disserta-
tion. Most modern systems for ontology matching take RDF and /or OWL as their
input and produce a list of correspondences between entities from both ‘sides’,
often with an associated confidence level. Some systems will also utilize external
resources as part of the process.

The matching process can be classified according to several facets.

e First, one could decide to find correspondences by investigating entities in
an isolated fashion, essentially ignoring their relationships as well as pos-
sible information available about their instances. These element-level ap-
proaches are opposed to structure-level techniques where the relationships
between entities, or in other words the structure of the RDF graph, is used
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to detect relationships.

e Second, a distinction is made between semantic and non-semantic (also
called syntactic) methods. Semantic techniques use formal semantics to ob-
tain their results while syntactic methods do not.

The articles in this dissertation present syntactic, element-level approaches. Hence,
we limit further discussion to this class. The most common techniques for discov-
ering matches for element-level matching can be divided in string-based, language-
based, constraint-based, and resource-based techniques (Euzenat and Shvaiko,
2013). Often a combination of these techniques is used to create a complete
matcher.

The string-based techniques exploit the fact that if labels or descriptions of
entities in two ontologies are similar, then it is likely that the entities are simi-
lar. In practice all sorts of techniques have been used to determine the similar-
ity of strings. Most often a distance metric (see definition 1 for a precise defi-
nition) is used. This function maps two strings to a non-negative real number
and the smaller the number, the more similar the strings. Examples of string dis-
tance metrics include edit distances (a measure of the number of changes needed
to transform the one string into the other), the Jaccard distance between the set
formed by the words (see also PIV), angular distance between the word vectors
(see also PV), length of common prefix, etc. The label or description will often
be preprocessed before the metric is applied ( e.g., characters can be converted to
lowercase, punctuation removed, etc.)

Language-based techniques use knowledge about the language in which
the information about the entities is encoded to make a decision about the sim-
ilarity. A canonical example is when two ontologies are described with labels
in different languages, say English and German. In that case one might try to
first translate the German information to English before attempting to use one of
the string-based techniques mentioned above. This is fairly typical: often one first
uses language-based techniques as a preprocessing step for a string-based metric.
Other examples of language-based techniques include tokenization (segmenting
into a sequence of tokens), lemmatization (replacing words by their roots), stem-
ming (a simplified form of lemmatization in which words are replaced by their
stems, which are formed by following a set of rewrite rules), and stop word elim-
ination (removal of frequently used words, which are unlikely to add meaning to
the comparison).

Constraint-based techniques take into account the restrictions which are
placed on the members of the class in the ontology. The assumption is that similar
entities will have similar constraints in both ontologies, or that if the constraints
on a class A in the one ontology imply all constraints on a class B in the other
one, then it is likely that B is a subclass of A, or using the terminology introduced
above that A is more general than B. Examples of constraints include data-types,
cardinalities, and other relational properties.

Resource-based techniques are used when also other resources are available
for the matching task. The idea is that if both an entity A in ontology A and
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an entity B of ontology B have a relation to similar external resources, then A
and B are likely similar. For instance, imagine that the ontologies A and B are
used to annotate images. Then, if an image of a cat gets annotated with class
A of ontology A and another cat image gets annotated with class B of ontology
B, then it is likely that A and B are similar. The images and their annotations
are then examples of external resources. One can argue that this is an example
of structural-level matching, since strictly speaking the images have an instance-
of relation with their respective classes. Note, however, that we are not matching
the individuals (images) but the classes. Other techniques in this category include
those which use external ontologies to augment the matching quality.

2.2 The Case for Big Knowledge Evolution

When an ontology is combined with instances and looked upon as a whole, it
is often called a knowledge base?. In this section, a short introduction of why
knowledge bases are growing out of control will be presented. Further, there will
be a discussion of their unavoidable evolution. Much of this section is inspired
by the second article included in this dissertation (PII).

2.2.1 Big Knowledge

The near ubiquitous availability of the Internet and the explosive growth of the
mobile device market, combined with the lowering prices of sensors, leads to the
generation and availability of a vast amount of information. The volume of the
data produced by this so-called Internet of Things (IoT) is expected to grow ex-
ponentially in the coming decades. Clearly, the production of data is surpassing
the capabilities of current tools for processing and performing analyzes of the
data. (Manyika et al., 2011)

This growth in data also causes a growth in the ontologies needed to de-
scribe it. The main cause of this is that not only the size of the data is growing,
but also the variety of data is on the rise. It has also been observed that the more
data, the more potentially interesting patterns can be found. And, this also means
that the tools for detecting actually interesting patterns have to be more sophisti-
cated.

All in all, it can be noticed that also knowledge bases will soon enough
fulfill the properties of Big Data as put forward by the NIST Big Data working
group (Grady and Chang, 2015), namely that the current state of knowledge base
implementations cannot efficiently handle the new datasets (See also Urbani et al.
(2009); Oren et al. (2009) and Ivanova et al. (2015) for examples related to reason-
ing, alignment, and query transformation). The NIST Big Data definition stipu-
lates that the following characteristics are pressing the need for new architectures:

2 The term knowledge base has many overloaded definitions. Common to these is that a

knowledge base contains facts about entities.
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a) Volume — the size of the ontology and the amount of instances, b) Velocity — the
speed at which data is generated, c) Variety — data from multiple domains, 4) and
Variability — the change of characteristics of the data, which also causes a need to
change the ontology (see also section 2.2.2).

Hence, to keep up with the growth and changes in the extracted informa-
tion in a timely manner we will need to develop algorithms with a lower time
complexity and likely have to content ourselves with approximate solutions or
trust heuristics (see also section 2.3.4).

2.2.2 Knowledge Evolution

Knowledge evolution (sometimes called ontology evolution) observed in knowl-
edge bases is corresponding to schema evolution in relational databases. Schema
evolution has been studies for quite some time (see e.g., Bachman (1975); Ven-
trone (1991)) and is concerned with changes in the schema of relational databases
needed to adapt the system to changing requirements of applications. In knowl-
edge bases it is the ontology (the TBox) which needs to adapt to changes in the
entities it is describing. It seems like schema evolution and ontology evolution are
very similar. There are, however, some major differences (Hartung et al., 2011).
First, in database schema there is a strict separation between the schema and the
data. In fact SQL, the most common family of query languages for relational
databases, does distinguish between the data definition language (DDL, involv-
ing the schema) and the data manipulation language (DML, involving language
constructs for data). In knowledge based systems the ontology is often described
in the same terms (using the same formalism) as the data and hence it can also be
added to the data creating some form of self-descriptive data. Second, whereas
schema are often designed with only the specific application in mind, ontologies
are usually designed for reuse in other contexts in a decentralized fashion. Last,
ontology models (like OWL, see section 2.1) have a larger set of tools available to
describe the domain.

The causes of a need to adapt the ontology are either changes in the domain,
changes in the shared conceptualization, or changes in the specification (Klein
and Fensel, 2001). This is perhaps not surprising given the definition of ontologies
in section 2.1. Changes in the domain are often occurring (Klein and Fensel, 2001)
and obviously more often than changes in the other two aspects because the latter
ones are more or less in control of the designers of the system; the most common
reason to make changes in these is in order to make systems compatible. Usually
ontologies are changed manually or semi-automatically and therefore they are
often available in several revisions. One of the disadvantages of these revisions
is that instances created according to the ‘same” ontology are not by default com-
patible. Misinterpretations might be possible and also internal models used by
applications might need adaptations to be able to deal with the new revision. The
disconnection between the domain and the knowledge which it should reflect is
one of the major obstacles for wider industrial adoption of semantic technologies
(Hepp, 2007; Marshall and Shipman, 2003).
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The whole concept of ontologies changing over time is captured by the term
Knowledge Evolution. Knowledge Evolution is a dynamic and inherently active
process which encompasses the (stimulation of) knowledge creation, the ability of
knowledge sharing, and a way to remove knowledge (i.e, forget) when it becomes
obsolete. (Maracine and Scarlat, 2009)

2.3 Locality-sensitive Hashing

When classes are being aligned as part of an ontology alignment one searches for
correspondences such that the two classes (from different ontologies) are similar
to each other. One way to do this is take a class A in ontology A and compare
it with each class of ontology B. From B, one would then select B such that B is
class most similar to A. In this case we say that B is the nearest neighbor of A.
This step can be repeated for each class in A and works if the number of classes
of ontology A and B (which we will call |A| and |B|) are not too large. However,
the number of comparisons needed is O(|A| = |B|) and hence, when A and B are
large, this becomes prohibitively many. Therefore, we need a faster way to find
nearest neighbors for classes in A.

Locality-sensitive hashing (LSH) refers to an algorithm used for approxi-
mate near neighbor search. In this section we first introduce the nearest neighbor
problem and a basic solution for it. Then, we introduce locality-sensitive hash-
ing, which results in faster, but approximate near neighbors. Next, LSH forest is
introduced, which is derived from standard LSH but has some specific beneficial
properties. Finally, we look at approximate algorithms in general. LSH is one
algorithm of that class.

2.3.1 Nearest Neighbor Search — Distance Metrics

Imagine a company planning to employ a new employee. The company has a
dataset consisting of many profiles of potential employees and a job description.
Now, they want to look for the 10 candidates who are as similar as possible to the
said description to invite them for an interview. To solve this task, the employer
can take the description and compare it with each profile, and rank the profiles
by similarity to the profile. In the end the company can decide to interview the
10 candidates with the best ranking.

The previous scenario is incomplete and in order to create a formal algo-
rithm to solve the company’s problem there are two more questions to answer.
First, what do the profiles and the description look like? Second, given a profile
and a description, how do we measure their similarity?

When generalizing this problem, one could call a candidate’s profile a data
point and the job description a query. Then, we can say that given a database (i.e.,
a collection of data points) the task is to find the subset of k data points which
are most similar to the query. This problem is known in the literature as the
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k-nearest neighbor problem. This generalization has the same shortcomings as
the example above. We did not yet specify what a data point consists of and
how we decide upon the similarity. In general, any set of things and any kind of
query, combined with a mathematical function, mapping a thing and a query to a
completely ordered set, would be sufficient for this purpose. In practice, however,
we will limit ourselves to queries and data points which are elements of a metric
space. A metric space consists of a set of elements on which a distance metric is
defined. In turn, this distance metric is a function which takes as its arguments
two elements from the set and returns an element from its range, which we will
limit to be a subset of the real numbers?>.

Let us look at another example where we are interested in finding the 5 mon-
uments closest to the Eiffel Tower in France. First, we would need a database of
the monuments, with their location. Then, we use the position of the Eiffel Tower
as a query. The 5 closest monuments are then found by computing the Euclidean
distance between the Eiffel Tower and all other monuments in the database, rank-
ing them by distance, and returning the 5 monuments with the lowest distance.
This example looks somehow different from the previous one. Instead of looking
for data points with the highest similarity, we are looking for data points with the
smallest distance to the query point. However, these two problems are practically
the same and for many similarity measures (where a high number indicates sim-
ilar things) there are equivalent distance metrics (where a number close to zero
indicates similar things).

We will now define what a distance metric is and illustrate it with the Eiffel
Tower example.

Definition 1 (distance metrics) (adapted from (Leskovec et al., 2012, p92)) Given a
set S, a distance metric d on this set is a function which maps two elements of the set to a
real number. The function must satisfy the following conditions

1. Ya,b € S,d(a,b) > 0. Positive: no distance can be negative.

2. d(a,b) =0 <= a = b. The distance can only be zero for identical points. In
the monument example, this means that only the Eiffel Tower itself has a distance
of zero to the Eiffel Tower. Combined with property 1 this means that every other
monument must have a strictly positive distance to the Eiffel Tower.

3. d(x,y) = d(y, x). Symmetric. The distance from the Eiffel Tower to the Louovre is
the same as the distance from the Louvre to the Eiffel tower.

4. d(x,y) < d(x,z) + d(z,y). Triangle inequality. If the distance from The Eiffel
Tower (x) to the Louvre (y) is d, then it is impossible to find a third monument (z)
such that the sum of the distance from x to z and the distance from z to y would be
smaller than d

In principle, any totally ordered set would work, but we avoid this because in practice
most, if not all, distance metrics have a subset of the real numbers as their range. This
limitation also saves on notation.
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Definition 2 (Metric space) A metric space M is a pair (S,d), where S a set and d
a distance metric on S. When we talk about a metric space M with associated distance
metric d, the existence of S is implicitly implied. Further, if we write p € M, we mean
pES.

The Euclidean distance as used in the Eiffel Tower example above is a distance
metric. Other distance metric include the angular distance (i.e. the angle between
two vectors), the Jaccard distance (given two sets A and B, the Jaccard distance is

defined as dj(A,B) = 1 — %), and the Hamming distance (number of places

in which two vectors differ from each other).
2.3.2 Locality-sensitive Hashing

The examples in the previous section show how defining a distance metric is suf-
ficient for solving the k-nearest neighbor problem. However, there is something
somewhat unsatisfying about the approach. Namely that in order to find the near
neighbors of a query, one has to investigate the distance of the query to all data
points in the database. This becomes problematic if the database is large. Sev-
eral techniques have been developed to find faster solutions for this problem. In
this section Locality-sensitive Hashing (LSH) will be discussed, which solves the
problem of finding approximate near neighbors. This discussion is inspired by
Andoni and Indyk (2008). The attentive reader will have noticed that the prob-
lem name has changed slightly. Instead of looking for nearest neighbors, we are
looking for near neighbors. In the case of k-nearest neighbors we are looking for
the k points which are closest to the query point, while in the case of near neigh-
bors we try to find all points which are within a given radius R from the query
point. Formally, the near neighbor problem is defined as follows:

Definition 3 (R-near neighbor) Given a metric space M with associated distance met-
ric d. Then, given two points p,q € M and a constant R € R, p is a near neighbor of q

ifd(p,q) <R

The near and nearest neighbor problems are closely related, but not exactly the
same. It seems that if we find all near neighbors, we can obtain the nearest by
applying the exact nearest neighbor finding approach described in the previous
section on the near points. However, we are not guaranteed that any point will
be returned at all to our near neighbor query with parameter R. To solve this
problem, we will need to query with different, increasing values of R until we
find enough points to return (see also section 2.3.3). Obviously one can also fix
a limiting value of R above which we are not interested in the neighbors any
longer. To continue the example from the previous section, we could for instance
say that we are not interested in monuments near the Eiffel tower which are more
than 10km. away, even if we have not found 5 monuments yet.

A more relaxed formulation of the near neighbor finding problem is the
following:
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Definition 4 (randomized R-near neighbor reporting problem) (adapted from (An-
doni and Indyk, 2008, def 2.2), but generalized to any distance metric) Given a set P of
points in a metric space and parameters R > 0,0 > 0, construct a data structure that,
given any query point q, reports each R-near neighbor of q in P with probability 1 — 6.

The new part is that there is a (in practice small) probability ¢ that points which
are within the radius are not returned. It will turn out later that allowing this
small probability of error enables us to create faster algorithms. Whether these
errors are a problem depends on the use case in question. For our Eiffel Tower
example it would not be a big problem if one of the monuments within the set
radius is not included in the final results. Moreover, in this example, it would
not even matter if a monument slightly beyond the set radius is included (i.e.,
a ‘reasonable’ false positive does not harm). Now, we will introduce locality-
sensitive families, which are sets of functions which are used to later create data
structures to solve the randomized R-near neighbor reporting problem. There are
several slightly different definitions for locality-sensitive hash function (see e.g.,
Charikar (2002); Wang et al. (2014); Andoni and Indyk (2008)). We will use the
following definition, which is most general:

Definition 5 (Locality-sensitive family) (adapted from Andoni and Indyk (2008))
Let H be a family of hash functions mapping from a domain D to some universe U and
d be a distance metric defined on D. Then, given di < dp, H is called (dy,d, p1, p2)-
sensitive if for every two p,q € D and every h € H

ifd(p,q) < di then Pr[h (p) = h
ifd(p,q) > da then Prin(p) =h(g)] <p2

where pl > p2

This definition is somewhat bombastic and can best be explained with an ex-
ample. However, to explain this with an example, we first have to introduce a
specific LSH family. For this example, we selected a well known LSH function
family for the Jaccard distance which was introduced in Broder (1997). This fam-
ily of functions is called Min-hash

Definition 6 (Min-hash) Min-hash is a family of functions h (K) = min {7 (k) |k € K},
where 71 is a random permutation of the universe.

In words, min-hash is a family of functions which maps a set to a natural num-
ber. Each function does so by 1) defining a permutation 77 of the universe S from
which the elements of the set K are chosen (each function has its own fixed per-
mutation), 2) computing the index of each element of K in this permutation, and
3) selecting the lowest index as the outcome.

It can be shown that the min-hash family is (dy,d», 1 — d1,1 — dy)-sensitive
as is done by e.g., Leskovec et al. (2012). Now, using this family of functions, we
can continue explaining what it means to be locality sensitive. Imagine two sets A
and B containing letters chosen from the set {a,b, ...,z}. Their Jaccard similarity
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is dj(A,B) = 1— }gag}. In this case, the domain of the min-hash function is

2{ab-2}\ @ (i.e., the min-hash function can be applied on all possible subsets,
except the empty set). The range of the min-hash function (the universe D) can
be any ordered set of 26 elements, for example the numbers 1 till 26. The locality-
sensitive property now means that for a min-hash function h chosen at random
(i.e., for a permutation 7t chosen at random) 4

ifd(A,B) <djthen Pr[h(A) =
ifd(A,B) > dythen Pr[h(A) =

Or in words, if the Jaccard distance between A and B is small, then the probability
that a randomly chosen min-hash function will map A and B to the same value is
higher. If the distance between A and B is large, the probability of obtaining the
same value is lower.

If we know a locality sensitive hash function for a distance metric, we can
use it to find approximate near neighbors. First, prepare the data structure as
follows: 1) choose a hash function at random 2) hash all elements in the database
using this hash function 3) store all these hashes in a hashtable together with the
original elements keeping duplicate entries in the hash table (essentially creating
a multimap).

Now, whenever we want to perform a near neighbor search for a query g,
we do the following: 1) hash g with the hash function, 2) locate the points in the
hash table with the same hash outcome, and 3) depending on the strategy chosen
a) return all elements found, b) interrupt the search after finding a fixed number of
points, or ¢) find the closest element(s) using exact distance calculations (if we are
looking for nearest neighbors). Note that it might happen that the returned points
are not true R-near neighbors of the query, i.e., there could be false positives. If
these are not tolerable, one can at the final stage also compute all distances to the
retrieved points and guarantee that all found points are true R-near neighbors.
(See also the discussion on randomized algorithms in section 2.3.4).

The worst case complexity of the algorithm is ®(n), with n the number of
points in the database. This is the same worst case complexity as would be found
for the straightforward algorithm from section 2.3.1. The reason for this worst
case complexity is that the algorithm might return all points in the dataset if they
happen to be close to the query point. However, for real world datasets, with a
reasonable choice for R, the average case query time will be sub-linear (Andoni
and Indyk, 2008).

The idea behind the algorithm presented is that if points are close to g, then
they will likely be in the same bucket in the hash table. However, sometimes the
likelihood (1 — dj in the case of min-hash) is not as we would want it to be. To
solve this issue, a technique called amplification is used (this version of amplifi-
cation is due to Leskovec et al. (2012)). The idea of amplification is to create a new

4 This simplifies to: if d(A, B) = dj then Pr[h (A) = h(B)] = 1 — dy, in the case of Jaccard
distance. This is, however, not true for all LSH families. A notable exception are LSH
functions for Euclidean distance.



26

LSH function family based on an existing one. Each function of the new family is
created by combining multiple randomly chosen LSH functions from the original
family. A first amplification strategy is concatenation. To do this, concatenate r
hash functions into a single one, where the outcome of the combined hash func-
tion is the concatenation of the outcomes of the original hash function®. For the
second strategy we can hash each element (and the query) with b hash functions,
resulting in multiple hash tables. Two results of the combined hash function com-
pare equal if the results of any of the elementary hash functions compares equal.

Now, it can be shown that the locality sensitive hash function family con-
structed using b hash functions (as above) consisting of r concatenated hash func-
tions of a (dy,dy, p1, p2)-sensitive family results in a (dq,dz, 1 — (1 — p1),1 —
(1— er)b)_ sensitive locality-sensitive family of functions. Here, b and r can be
adapted to the application’s requirements. The effect of these parameters, for the
min-hash function, can be observed from figs. 2 and 3. What we observe is that a
larger r results in a steeper curve, but also pulls the curve to the left. This means
that the threshold for getting points to collide is more strict and that points have
to be closer to have a chance to collide at all. A large b parameter also makes the
curve steeper, but pulls it to the right, meaning that also points further apart have
a chance to collide.

2.3.3 LSH Forest

The LSH structure described in the previous section is intended to solve the near
neighbor finding problem. As described, it is possible to use it for the nearest
neighbor problem too, if one used multiple radii R and hence creates multiple
indexes. This, however, has a major problem: we must have an idea about the
smallest and largest R we will ever need in order to make a system with good
performance. If we don’t choose the smallest radius small enough, we will have
queries which result in too many points to investigate. From the other end, if
we don’t choose the largest radius large enough, we will end up without any
nearest neighbor. So, in order to overcome this problem we will have to create
a lot of superfluous indexes, many of which will rarely be used in practice. An-
other problem is that if the points in the indexes change over time (i.e. points
are added or removed), then we might have to recreate indexes in case the data
characteristics change. In this subsection the LSH forest, which does away with
these issues, will be introduced. The LSH Forest is due to Bawa et al. (2005) and
this description is based on their work.

LSH forest uses a prefix trees or tries. We will introduce this data struc-
ture first. A trie is similar to the well-known tree data structure. However, the
objects which are added to the trie have an ordered list of values chosen from
a predefined alphabet. And, opposed to many trees, the trie has labeled arcs (a
label being one symbol of the alphabet) instead of labels at its nodes. An object

5 Note, the concatenation of hash outcomes is not the same as the concatenation of strings.

The best way to look at the concatenation of n outcomes is as an n-tuple. Hence, the con-
catenated outcome (5, 16) does not compare equal to (51, 6).
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is added to the trie at a leaf node, such that when following the path from the
root node to the leaf, the labels on the arcs are exactly those in the list, in the
same order. Further, the tree cannot have two arcs originating from the same
node with the same label. An example of a trie can be found in fig. 4. In this
case the alphabet is {a, b} and objects with the following lists have been inserted:
(a,a,a),(a,a,b,b),(a,b,b,a),and (b,a,b,a).

FIGURE4 An example of a trie containing the following data
(a,a,a),(a,a,b,b),(a,b,b,a)and (b,a,b,a)

Note, that it can not be told from the illustration how many objects with, for
example, list (4,4, a) have been inserted, however, we know that there is at least
one. In an actual implementation the leaf node represents (and often contains a
pointer to) the actual object(s). Further, the example seems to suggest that the
alphabet would be limited to only two symbols. However, in theory this can be
an infinite set.® Finally, note that the trie described in this section is somewhat
specific to our needs. In general tries can have all sorts of other features like
merging branches, loops, wildcards, etc. resulting in a data structure which is
actually a more general directed graph.

Now, LSH forest will be introduced and we will see how it uses the trie data
structure to store its actual index. LSH Forest uses the same locality-sensitive
hash functions as standard LSH. However, the amplification of multiple hash
functions is done differently, namely such that the length of the concatenated
hash functions is dynamic and never larger than actually needed. LSH Forest
maintains multiple tries (the forest) and a locality-sensitive hash function, ran-

6 In practice, at any point in time, only a finite subset will be in use.
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domly chosen from the family, is linked to each level in each of the tries, whose
heights are limited to a certain maximum k;,. When a new element is to be in-
serted into the data structure it is inserted in each trie independently. The pos-
sible symbols on the arcs, i.e. the alphabet is chosen to be the outcome space of
the LSH function used. In a trie, at each level needed, the linked hash function
is evaluated and the arc with that label is either followed or created. Whether a
level is needed depends on the other objects already in the trie: each of the ele-
ments, which is not at the bottom most level of the trie must be in its own leaf
node. If two elements are in the same leaf node, then the linked hash function
has to be evaluated for both and both will follow or create the arc of the outcome
until both are in their own leaf or at the bottom of the trie.

The effect of this way of inserting data into the trie is that the concatenated
hash outcome of a point can be found by concatenating the labels when following
the path from the root to the leaf containing the data point. Hence, this path is
only as long as needed to distinguish it from other points. This has two effects.
First, it saves evaluation time since no unnecessary hashes are computed. Second,
it saves memory space since only the needed hash values are stored and parts of
the hash values are reused by multiple data points in case they share a common
sub-path from the top of the trie.

Besides these benefits, and perhaps more importantly, the dynamic labels
eliminate the need for multiple indexes since areas where points are dense will
cause longer paths in the trie, while areas with low density will result in shorter
paths.

In order to find near neighbors using LSH Forest, one will select these points
in the tries which have the longest common prefix with the hash code computed
for the query point, using the hash functions of the specific trie. For an efficient
algorithm to find these points from the trie, see Bawa et al. (2005).

One issue with both the conventional LSH and LSH Forest is that when
using hashing, it is not possible to distinguish between arbitrary close points.
Therefore, LSH assumes a minimum distance between any two points and LSH
Forest defines a maximum label length. This maximum label length is equal to
the maximum height of the tree and is indicated as k;,, as mentioned above.

2.3.4 Approximate Algorithms

As mentioned in section 2.2, the size of the ontologies and the complexity of the
processing will sometimes force us to accept inaccurate results from the algo-
rithms used. Algorithms which do not always produce exact results are widely
studied and the locality sensitive hashing algorithms introduced in this chapter
are examples of such algorithms.

There seems to be no complete consensus on classification of algorithms
which do not produce exact outcomes and some other terms get often mixed up
in the discussion around these algorithms. Some definitions of terms used are the
following.

* An approximate algorithm is an algorithm which does not necessarily pro-
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duce the exact or correct answer. This term is, for example, used for al-
gorithms with a likelihood of producing a correct result. For instance, an
algorithm might produce a result and the only thing we know is that it is
correct with a certain probability, say 80 percent of the time. Another exam-
ple is the approximate near neighbor search algorithm, which does produce
the results it is expected to with a given likelihood.

A Randomized algorithm is an algorithm of which the working is influenced
by a random number generator (Cormen et al., 2009, p116). Quicksort with
random pivot selection is an example of a randomized algorithm (Mot-
wani and Raghavan, 1995). In the context of optimization, these algorithms
would often be called stochastic algorithms. These algorithms are not al-
ways approximate in the sense that sometimes they are designed such that
they can only produce exact results. (See also the discussion about Las Ve-
gas algorithms below.)

An algorithm is an approximation if it does not necessarily provide an exact
answer. But, the algorithm provides bounds on the error it can make and on
its run-time (Talbi, 2009). Usually this error bound is a factor € which indi-
cates how far the reported answer can be from the real value. The algorithm
is then called an e-approximation. For example, an algorithm for measuring
the distance between two cities might produce a result and guarantee it to
be within a ten percent margin from the real value. An approximation is an
approximate algorithm.

Heuristics (based on Talbi (2009)) are designed to deliver satisfactory so-
lutions within a shorter or reasonable time. There is not necessarily any
guarantee on how good the solution will be nor any convergence proofs.
The working of these techniques is usually demonstrated experimentally.
For instance, imagine we know that the lists of numbers to be sorted are
usually just the lists in reversed order. Then, we could include a first step
in our algorithm which reverses the list and checks whether it is already
sorted. If this is not the case then we apply a general sorting algorithm. Our
algorithm will, for data with this characteristic, outperform general sort-
ing algorithms. However, when used with data which does not have this
characteristic our algorithm will waste time in this step and actually per-
form worse than just using the general sorting algorithm. A heuristic is an
approximate algorithm.

In optimization there is further classification into two families, namely spe-
cific heuristics and metaheuristics. The former ones are, as the name implies,
specific for a certain problem. They are tailored for a specific purpose,
by using known information about the problem. The latter class contains
general-purpose algorithms . These can be used for a large range of opti-
mization problems. Metaheuristics can be seen as more general guidelines
for solving specific problems.
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Note that an algorithm can have more than one of these properties at the same
time. For example, a genetic algorithm, which we will discuss further in sec-
tion 2.4, is a (meta)heuristic, approximate, and a randomized algorithm. It is,
however, not an approximation because it does not provide any convergence
guarantees. Another example: if we would use the near neighbor search algo-
rithms devised in the previous sections with radii chosen in a way which we
expect to work well for our data set at hand, we are creating an approximate
algorithm which makes use of (problem specific) heuristics. Whether the algo-
rithm is randomized depends on whether the selection of hash functions from
the family is performed using a random number or deterministically.

In the work regarding randomized algorithms there are two sub types which
often receive special attention, namely Monte Carlo and Las Vegas algorithms which
are named after cities known for their casino culture. This discussion is based
on Motwani and Raghavan (1995).

Monte Carlo algorithms sometimes produce results that are not correct, but
a bound on the probability of getting an incorrect result is known. These algo-
rithms are randomized and repeating the algorithm multiple times (with differ-
ent random numbers) will increase the likelihood of obtaining a correct result.
There are also Monte Carlo algorithms with even more interesting properties, es-
pecially these which solve decision problems (giving a binary yes — no answer).
Some of these algorithms provide a one-sided error, meaning that for one of the
outcomes, if it occurs, it is correct. For the sake of an example we could devise an
algorithm based on a locality-sensitive hash functions as defined in definition 5.
To decide whether two objects are equal we hash them with a hash function cho-
sen at random from the family. If the hash outcomes are different, we can be
hundred percent sure that the objects are not identical. Conversely, if the hash
outcomes are the same we cannot yet make a conclusion. However, the more
times we repeat the procedure, the more likely it becomes that objects which are
different will be detected. If we would have two objects with a Jaccard distance
of d, then the probability of detecting that they are different (i.e., the probability
of obtaining a different hash outcome) using min-hash (see definition 6) would
be d. If we would repeat this test k times, we have a likelihood of 1 — (1 — d)*
that we will detect that the objects are different. Concrete, with two sets having a
distance of 0.05, and repeating the procedure 50 times, we will have a likelihood
of 0.92 that we will detect that they are different. Applying the procedure 100
times results in a likelihood of 0.99.

Las Vegas algorithms, on the other hand, always produce the correct result.
However, their running time is not constant and is exactly what is being studied.
A simplified example of a Las Vegas algorithm is one which attempts to find an
optimal element from a finite set when the function value of the optimal element
is known. The algorithm could randomly select an element and check whether it
found the right one. If so, the algorithm ends. If not, the algorithm repeats itself
until it finds the solution. Obviously, the correct solution will always be found.
However, the time this may take could be unbounded. This example also brings
us to the next section, optimization.
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2.4 Optimization

In general, optimization is the process to find the best solution(s) for a problem.
Optimization problems appear often in everyday live. They could range from se-
lecting the tasks to perform in order to finish a dissertation to finding the shortest
path trough the supermarket. However, one also has to keep certain limitations
in mind: besides the dissertation one also has to fulfill teaching duties and the
path in the supermarket should be such that it passes trough all aisles where
the needed supplies are stored. When solving optimization problems, the first
thing to do is to make a model of the actual optimization problem. In most cases
the model will be a simplification of the real problem at hand because the actual
problem is too complicated to solve or there is just no need to solve the prob-
lem exactly. For example, in the supermarket problem it would be very hard to
include information about other customers moving around into the model.

So, in short optimization is the process of finding an input to a model which
results in an output with desired properties. The model captures as well as
needed the setting to be optimized, including possible constraints. The near-
est neighbor problem presented in section 2.3 is one example of an optimization
problem. In this case we want to find the data point of the database (the in-
put from an optimization perspective) which minimizes the distance to the query
point according to the collection of data points with a given distance metric de-
fined (the model).

Often, optimization problems get narrowed down to minimization (or max-
imization) problems. In mathematical terms this is formulated using an objective
function f with a domain D and range R. The domain is often specified as a well
known set, like the natural (IN) or real numbers (IR), and possibly constraints. In
effect, the domain consists of the points from the set where the constraints are
true. The range is a total ordered set, often IN or IR.

Definition 7 (Optimal) Given a function f : D — R, an element d € D is optimal for
fe VeeD:f(e) < f(d)

Often optimization problems are solved analytically and sometimes with brute
force computation. The problem with analytical methods is, however, that these
require knowledge about or put limitations on the function which is being opti-
mized (e.g., the function has to be linear, convex, differentiable, or continuous). A
brute force computation is than again limited to finite sets which do not have too
many elements in them, such that computing all function values remains feasible.

In the remainder of this section we look at genetic algorithms to solve op-
timization problems. These methods have the benefit that they do not have the
aforementioned requirements. The function does not have to be stated in analyt-
ical form nor does the domain have to be finite. On the flip side these algorithms
apply heuristics which do not guarantee that the final solution will be the real
global optimum of the function. It might be that a local optimum is found, and
even that is not guaranteed.
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For a description of multi-objective optimization, which is discussed and
used in some of the articles, the reader is referred to PI (or Miettinen (1998) for a
more thorough treatment).

Genetic Algorithms

Genetic algorithms (GA) are a specific group of algorithms within the wider re-
search area of evolutionary computing. In this section we will provide a short
introduction of evolutionary computing and then focus on Evolutionary Algo-
rithms (EA), of which GA is a specific flavor. This section is based on Eiben and
Smith (2003), a standard work in the field.

Evolutionary computing encompasses computing strategies which employ
analogies to the Darwinian principle of survival of the fittest to find a solution for
the problem at hand. Usually, the following analogies are made: the problem or
model is thought of as the environment in which individual organisms (candidate
solutions) reside. The quality of the solution is regarded as the fitness of the
individual and is, in analogy with Darwinian principles, used as a criteria for
reproduction and selection. Simulating this environment for some amount of
time likely leads to more fit individuals in the population.

In nature the fitness of an organism is determined by its phenotypical ap-
pearance (i.e., the physical characteristics). These features directly interact with
the environment and hence determine the chances of survival. The phenotype of
an individual is determined by its genotype (i.e., its DNA). The genotype does
not directly interact with the environment but, since it determines the pheno-
type, certain phenotypical traits will dominate others. These ideas are used in
EA to find solutions for optimization problems. The way the mapping from the
Darwinian theory to the actual algorithm happens depends on the particular al-
gorithm used.

The general workings of a EA are depicted in fig. 5. At the start an initial
population is generated. This collection of individuals is taken as the population.
Next, the termination criteria are checked and the algorithm terminates if they are
met. If the algorithm continues, parents are selected from the population. Then,
two or more parent are recombined and subsequently mutated to form a member of
the offspring. This selection, recombination, and mutation process continues until
the offspring is large enough. In the end of the cycle the new population is se-
lected from the offspring. In some algorithms also the individuals of the previous
population can become part of the next population (the dashed line in the figure).
With this new population the algorithm repeats.

The idea behind this algorithm is that over time the individuals would be-
come closer and closer to the actual optimal of the function which is used as a
fitness function. This is aided by the fact that better (closer to the unknown opti-
mum) individuals are preferred over others.

The way individuals are represented, the recombination and mutation op-
erators, and the parent and survivor selection are dependent on the EA flavor
used. Three groups of EA are commonly identified: Genetic Algorithms (GA),
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FIGURE 5 A flow-chart showing the workings of an Evolutionary Algorithm. This fig-
ure is loosely based on (Eiben and Smith, 2003, Fig. 2.2), but adds the option
to select survivors directly from the previous population.

Evolution Strategies (ES), and Genetic Programming (GP). We will only discuss
GA in detail since this is the one used in PVII. For the other algorithms we refer
the reader to (Eiben and Smith, 2003, chapter 4 and 6). Note that often (and also
in PVII) the algorithm is further tailored to the problem at hand. For this reason,
the GA described here is called the simple or canonical GA in Eiben and Smith
(2003).

In a simple GA, each individual’s genome is represented by a bit-string (i.e.,
a series of zeros and ones) of a fixed length [. Parents are selected using fitness
proportional selection, meaning that the higher the fitness value of the parent
(i.e., the better its phenotype performs with regard to the fitness function), the
more likely it will be selected. Two parents, say A and B, are combined using
one point crossover. This procedure is performed by selecting an index 7 in the
bit-string at random and creating two children. The first child receives the bits
zero till i — 1 from parent A and bits i till / — 1 from parent B. The second child
receives zero till i — 1 from parent B and i till / — 1 from parent A. The children
created by this process then undergo a mutation, which flips bits according to a
given mutation rate (the probability that a given bit flips). In the simple GA the
whole population is replaced by the offspring. The termination criteria is often
a fixed number of generations or a fixed number of fitness function evaluations
(also called the budget).
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2.5 Clustering

The general idea behind clustering is the identification of groups of objects where
a) objects within each group have high mutual similarity, and b) the similarity
between objects from distinct groups is low. These groups of points are called
clusters. The reader might wonder whether the LSH techniques introduced in
the previous section are in fact clustering algorithms. In the literature they are
not considered clustering algorithms as such, mainly because they work more on
the neighborhood of individual points instead of observing the dataset as whole.
However, as will become clear in the articles attached to this dissertation, LSH
can be used as a supporting tool for clustering.

Clustering is one of the so-called unsupervised learning techniques because
it can be performed without any labeled information (i.e., training data) available
to the algorithm. The field of clustering is vast and hence we will only present
a limited set of concepts and techniques which are relevant to the papers in this
dissertation. First, we will limit ourselves to distance-based algorithms, i.e., the
clusters are created using information about the distance (see also definition 1) be-
tween the objects. These distance-based algorithms are subdivided in two large
groups, based on the outcome produced. The first group of algorithms produces
flat clusters, which is the same as a partition of the set of objects. A prototypi-
cal algorithm for this group would be k-Means. The second group of algorithms
creates hierarchical clusterings. The result of this kind of clustering is a den-
drogram as illustrated in fig. 6. Within this group two types of algorithms are
distinguished depending on how the dendrogram was obtained. If a bottom-up
approach is used (i.e., each object starts in its own cluster and two clusters are
merged until only one cluster is left) then the approach is called an agglomera-
tive clustering method. Alternatively, if the clusters are created top-down (i.e.,
starting from one large cluster, new clusters are created by slicing up a cluster
into two sub-clusters until all objects are in their own cluster), then the approach
is classified as a divisive method. Hierarchical clustering is discussed in more
depth in PVI and PVIIL

A recent treatment on clustering which presents the topic in great detail can
be found from Aggarwal and Reddy (2013). This section is partially based on that
text.
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A B

FIGURE 6 An example of a dendrogram. In this example E and F are merged together
first, forming cluster EF. Then, B and C are merged, forming BC. Next, A is
merged with BC, forming ABC. Next, D is merged with EF, resulting in DEF.
Finally, ABC and DEF are merged together into one large cluster containing
all the data points. The dashed line indicates a possible cut of the dendro-
gram which would results in the flat clustering consisting of the clusters A,

BC, D, and EFE.
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3 RESEARCH CONTRIBUTIONS OF THE INCLUDED
ARTICLES AND CONTRIBUTION BY THE
DOCTORAL CANDIDATE

Denken, mama, dat moet ge aan mij overlaten — ik heb daar ne kop voor.

— Michael Cochez (3 years old, allegedly)

In this section an overview of the scientific contributions of the included articles is
given. Further, a description of the contributions by the author of the dissertation
is provided. The descriptions of the scientific contributions are intentionally left
short and will not necessarily be self-evident after reading only the Foundations
chapter. The reader is encouraged to first read trough the original articles, which
are an integral part of the dissertation, and then return to this chapter.

3.1 Research Contributions of the Included Papers

The articles in this dissertation are all related to knowledge evolution. The Venn
diagram in fig. 7 depicts the relation between the research topics introduced in
the previous chapter and the papers. Note that it does not necessarily depict the
relations between the research topics in a broader sense!. Each of the following
sections describes the contributions to a topic from that figure.

Knowledge evolution

All papers in this dissertation contribute up to some extent to the knowledge
evolution topic. The papers PI and PII, however, are completely focused on it.
The first paper (PI) discusses about knowledge evolution from the perspective of
keeping the ontology optimal. The idea is that the ideal ontology is not a static

1 It is, for instance, not hard to find clustering research which does not belong to the LSH

topic or ontology alignment research where optimization techniques are used.
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FIGURE 7 A Venn diagram visualizing how the papers relate to the topics introduced
in the foundation section. A paper relates to a topic either if it is using tech-
niques from the area , contributes new scientific knowledge to it, or both.
This diagram does not depict the relation between the research topics in a
broader sense. GA means Genetic Algorithms.

target, but rather a moving ideal which a system could attempt to reach. In the
article we present factors which affect the quality of an ontology. Example factors
include, price to build, re-usability, actual re-use, maintenance, performance in
terms of memory allocation and speed, and the integration into other frameworks
(see also Brewster et al. (2004) and Aruna et al. (2011)). Then, since we have the
notion of quality, one can decide whether the one ontology is better than another
one. However, quality is regarded as a multidimensional property with non-
comparable dimensions. Hence, when defining the optimization problem, it is
presented as a multi-objective one. Further, since the quality of a given ontology
changes depending on the context, the optimization problem is refined to take
these changes into account. We are not aware of any prior work which stated the
problem of keeping ontologies optimal by means of a dynamic multi-objective
optimization problem. This contribution answers research question RQ1.

The second article (PII), which is in the form of a book chapter provides a
provocative viewpoint on how knowledge evolution could be dealt with when
the amount of data handled by the system, and hence the amount of knowledge,
becomes large. The whole idea of the article is new and the main contribution
is that it opens a new branch of research. The crux of the paper is the following
hypothesis about knowledge evolution:

The mechanisms of knowledge evolution are very similar to the mechanisms of biolog-
ical evolution. Hence, the methods and mechanisms for the evolution of knowledge
could be spotted from the ones enabling the evolution of living beings.

— Ermolayev et al. (2014)
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Then, several properties of so-called knowledge organisms are presented and the
analogy with natural evolution is emphasized. Another concept which is intro-
duced in the work is knowledge tokens. These small ontological fragments are
akin to food for the knowledge organisms and are the entities which carry the
actual information.

The papers related to ontology matching and sowing knowledge tokens
in environmental contexts (PIII, PIV PV) contribute to the knowledge evolution
topic by providing ways to ingest information and connect it to the existing knowl-
edge in the knowledge ecosystem, specifically the later two contribute by show-
ing that LSH forest is a suitable data structure which adapts well to knowledge to-
kens streaming into the system. This contribution answers research question RQ3.

Also papers PVI and PVII can prove useful for knowledge evolution since
they enable the creation of knowledge from data. Hierarchical clustering can
further help in the problem of focusing which has been described in details in
PII. Note also that the twister tries algorithm can be adapted to handle a stream
of data. The already existing data points do not have to re-hashed to account
for newly arriving data. Hence only hashes for new data (and potentially up to
an equal number of colliding existing points) will have to be computed and the
twisting phase will have to be executed again.

Locality-sensitive hashing

Random hyperplane hash (RHH) functions form a family of locality-sensitive
hash functions. PV proposes a new schema for hashing based on the standard
RHH scheme, which was named fuzzy Random Hyperplane Hashing or f-RHH.
RHH only allows two outcomes for its hash function. Either a point is on the one
side or on the other side of the randomly chosen hyperplane. f-RHH also allows
a third outcome which is used whenever the point in question is very close to
the hyperplane. Whenever a hash function gives this result, it is ignored when
comparing the outcome with the outcome obtained for other points. In prac-
tice, using LSH Forest, the point is inserted in both sub-trees, which essentially
means that the outcome will be ignored for all future comparisons. As part of
this new hashing scheme, an efficient way of deciding whether a point is close
to a hyperplane is devised and proven. This is necessary because it would be
too expensive to compute the actual angle between the vector from the origin to
the point in question and the hyperplane. Instead, it is shown that it suffices to
compute the dot product of the normalized vector with the normal vector on the
hyperplane and compare the obtained number with a predefined constant. This
is remarkable since the computation of a dot product is needed in any case for the
computation of standard RHH, and hence the only overhead for the computation
of this new scheme is that the points have to be normalized. This normalization
has to happen only once for all further hash evaluations.

A minor contribution to the LSH topic is made in PVI. We introduce a new
hash function family based on existing locality-sensitive families and prove that
this new family is locality-sensitive for the average distance. The family does at
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least exist for average Jaccard, cosine, and Hamming distance computed between
two sets of points.

Ontology Matching

PIII provides a new way of matching very large ontologies. The matching is per-
formed using techniques borrowed from information retrieval and would clas-
sify among the syntactic, element-level approaches, and more specific among
the string-based approaches. However, it is combined with fast language-based
techniques, like tokenization, stemming, and stop word elimination. The exper-
imental evaluation showed that this approach is fast, but a reduced quality of
matching has to be taken in return. It was further noticed that it is better to keep
the labels separate and match them as such instead of merging the contents of
multiple labels together. This contribution answers research question RQ2

PIV and its extension PV apply the same technique as used in PIII, but use
the more adaptive LSH forest instead of the standard LSH scheme. The experi-
mental results shows similar results with regards to precision and recall, but the
algorithm performs the matching tasks roughly seven times faster. This gain is
mainly due to the LSH Forest which uses far fewer evaluations of the hash func-
tions in comparison to the standard LSH algorithm. Also important is that the
forest only used about 10% of the memory used by the standard LSH scheme.

Clustering

The largest contributions to the clustering research are to be found in papers PVI
and PVIIL The first article introduced the twister tries data structure and algo-
rithm. This algorithm is able to perform an agglomerative hierarchical cluster-
ing in linear time using a linear amount of memory. The clusterings created by
the algorithm are comparable to the exact AHC algorithms. This paper received
the Reproducible label awarded by the reproducibility committee of the SIG-
MOD 2015 conference. See http://db-reproducibility.seas.harvard.edu/papers/
for more information.

The second paper related to twister tries provides a somewhat different kind
of algorithm. Instead of proving a linear running time, the algorithm provides a
likely better result the longer it runs. This is achieved by a genetic algorithm
which attempts to improve the tries used in the original twister tries algorithm.

These two papers answer research question RQ4.

Another contribution of PVIl is a proof that the Joining Distance Ratio (which
was proposed by Kull and Vilo (2008)) has a time complexity of O(n?), showing
that it would become infeasible to compute for very large instances and defi-
nitely too expensive as an evaluation function for the genetic algorithm (see also
the next section on optimization and GAs).

PV (and the conference paper PIV) provide a marginal contribution to the
field of clustering. Hence, the techniques for connecting knowledge tokens de-
scribed in these papers could be applied as, very specific, clustering algorithms.
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Optimization and Genetic Algorithms

PI provides a very minor contribution to the field of dynamic optimization. The
idea of context dependent optimality is new, but should only be considered a
marginal contribution since anyone in the field could come up with this sort of
new notation.

PVII provides experiments showing that surrogates can be used instead of
performing exact calculations when doing the evaluation of the objective function
for the individuals in a genetic algorithm. This technique is not new as such, but
the specific surrogates used are novel, hence this is only a small contribution.

3.2 Contributions by the Doctoral Candidate

Publications

PI: The contribution of the author of this dissertation to this article was ma-
jor. He independently developed the concepts presented in the paper and
did most of the writing work. The co-author was in a more passive role,
providing feedback and suggestions.

PII: The first author of this book chapter (Vadim Ermolayev) clearly contributed
the lion’s share of the work. Also the contribution of Vagan Terziyan was
sizable, and mainly focused around the 3Co+3F theme presented in the
chapter. The contribution of the third author was limited to parts of section
1.4. The author of the dissertation mainly contributed to the fifth section
(1.5) of the chapter about the evolutionary model and near-independently
provided the section related to the fitness of Knowledge Organisms and Re-
lated Ontologies.

PIII: As a sole author of the paper, all contributions are made by the doctoral
candidate.

PIV and PV: The candidate provided the main idea for the paper and wrote the
first draft version of the paper. Both coauthors provided significant help in
the writing of this paper. Vadim Ermolayev and Vagan Terziyan mainly fo-
cused on aspect related to Evolving Knowledge Ecosystems, while the can-
didate worked on the LSH Forest and experiments. The f-RHH which was
added to the extended article was conceived of by the applicant based on
discussions with Vagan Terziyan on algorithms intentionally making mis-
takes during their operations, in the hope to improve results.

PVI: The candidate invented the twister tries data structure and algorithm as
well as the locality-sensitive family for average distance. Further, he came
up with the optimizations used and performed the theoretical analysis (ex-
cept for the correctness analysis which was contributed by Mou Hao). The
candidate also performed the experimental evaluation, assisted by his co-
author who did the majority of the work for dendrogram comparisons.
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PVIL: The author of this dissertation was the main author of this paper. He con-
ceived of the initial idea and planned the paper. He devised the different
surrogates and performed all experimentation related to the paper. Also the
proof of the JDR complexity is entirely his work. The main contribution by
Ferrante Neri is the text about the used evolutionary algorithm and some
ideas related to measuring surrogate quality.

Implementations

The candidate has written the majority of the source code needed in experiments
for the publications. The only exception is the dendrogram evaluation code writ-
ten by Mou Hao in the scope of PVL

A rough estimation learns that about 13,000 lines where used for the evalu-
ation code of the papers PIII, PIV and PV (large parts of the code were re-usable,
part of this code consists of experiments which did not make it to any paper).
Another 9,000 lines of code were written for the evaluations of the twister tries
related articles PVI and PVII (again, some of the code was reusable). The code
was mainly written in Java, but also bash, python, and gnuplot were used. Part
of the code is available from the software page of the author at http:/ /users jyu.
fi/~miselico/software/.



4 CONCLUSION AND OUTLOOK

People who are right a lot of the time are people who often change their minds.
— Jeff Bezos

Whenever the state of the environment changes, its description, used in context
aware applications must change accordingly. However, since the environment
and the rate of change are vast, it is impossible to represent the environment or
process the changes in an exact way. Hence, we will have to accept that only ap-
proximate representations and approximate processing are a feasible alternative.
In this dissertation we presented several new research directions and advances
related to this timely topic.

A first contribution is the formulations of an optimization problem for keep-
ing an ontology in optimal shape while the context in which it is used is changing
over time. It turned out, however, that this problem is so complex that is cannot
be solved exactly. Future work could point out whether parts of the objectives
could be dealt with and what the practical result would be. One concept which
would be enabled by this is a self-optimizing ontology, where the ontology be-
comes a proactive entity able to reconfigure itself to become more suitable for its
environment. Because of the fact that the optimization problem cannot be solved
exactly the idea of evolving knowledge ecosystems (EKE) is important and this
is the second contribution of the dissertation. This idea, including the hypothe-
sis that the evolution mechanisms of knowledge might be spotted from nature,
opens a new direction of research and suggests what kind of models might be
useful for knowledge representation in the future. The third related contribution
showed that locality-sensitive hashing can be used for ontology alignment and
specifically that LSH Forest would be a good candidate algorithm for knowledge
token sowing in an EKE. The fourth major contribution is related to scalability
of clustering algorithms. The dissertation reports on a new approach to scale
hierarchical clustering with average linkage to large datasets.

Besides these, the dissertation also provided new scientific findings related
to Locality-sensitive hashing. First, a it was shown how a family of LSH functions
can be created for average distance between sets of objects between which the
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distance can be measure using Jaccard, cosine, or Hamming distance. Second, a
new LSH schema was developed which improves random hyperplane hashing in
certain cases by assigning both possible hash outcomes to an object is it happens
to be close to the random hyperplane. The research question are answered by
the contributions in the research papers as follows:

RQ1: What does it mean for an ontology to be optimal?
An ontology is optimal if it maximizes its utility with regard to the context-
dependent multi-objective problem as stated in PI. This context is deter-
mined by the system in which the ontology is used and changes over time.

RQ2: Can min-hashing, as applied in information retrieval, help in the align-
ment of ontologies?
Yes, for large ontologies min-hashing can significantly increase the speed
of the matching. When combined with fast language-based techniques like
tokenization, stemming, and stop word removal, a matcher using min-hash
can provide results of reasonable quality.

RQ3: Is the same min-hashing also helpful when sowing knowledge tokens in
a knowledge ecosystem?
Yes, at least when combined with the LSH Forest data structure. It was
shown that the LSH Forest data structure provides the features needed for
knowledge token sowing like focusing, filtering, and forgetting. Also the
three other aspects (Contextualizing, compressing, and connecting) are cov-
ered.

RQ4: Can a hierarchical clustering algorithm be adapted to large scale data if
we allow an error?
Yes. The twister tries algorithm is a hierarchical clustering algorithm which
can cluster dataset much larger than what is possible with traditional exact
algorithms. The main indication is its linear runtime and memory usage.
The twister tries will often not create the same dendrogram as produced by
an exact algorithm, but it has been shown that the outcome is significantly
similar.

There are some obvious limitations to the findings presented. Regarding the idea
of EKE, the main limitation is that all of this research is at a very initial stage. It is
mainly a vision that this kind of system might be the next step towards something
greater. A somewhat similar critique can be formulated regarding the optimiza-
tion problem which is formulated in PI. Many would agree that if this problem
is solvable, it would help us forward. But, the current state of affairs is that the
problem is not solvable because it would require computational resources be-
yond our current capabilities. With regard to the ontology matching schemes
and clustering algorithms one can bring in the argument that they have not been
tested widely enough to declare them generally applicable. This is a fair point,
but is partially countered by the theoretical analysis. The clustering approach
presented is currently being tested in bio-informatics to see whether it results in
semantically reasonable clusters, while it is still under investigation whether it
would be possible to adapt the hashing schema to allow Euclidean distance to
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be used. Another open question is whether it is possible to find a good way to
evaluate the quality of large dendrograms, or at least perform a good comparison
in reasonable time.

One question to be answered after reading this dissertation is whether Big
Knowledge has been Tamed, as the title might suggest. The answer to this ques-
tion would be a resounding “no”. Some parts of the puzzle have been put in
place, but many others are still not where they should be or we do not even know
that they exist. Only at a later point will it become clear whether the evolving
knowledge ecosystem ideas can stand the test of time and maybe some day it
will be possible to prove or disprove its main hypothesis. ~One might well say
that the knowledge in the field is still evolving and hence, if one wants to write
a dissertation addressing all the challenges related to taming big knowledge evo-
lution, one will never finish. ..
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Quidquid latine dictum sit, altum videtur.
— Nomen Nescio

Besides the work presented in this dissertation and 60 ECTS credits!, the candi-
date also performed the following other academic work during his doctoral and
master study period:

Participation in Projects

The doctoral candidate participated in the following research projects during his
studies.

UBIWARE project 2007-2010: The project’s goal was the creation of an innova-
tive middleware supporting complex self-managed industrial systems. The
nature of the components managed by the system varies from smart sen-
sors and actuators to web services and humans. A Multi-Agent System was
used as a foundation where the beliefs, desires, intentions, and even the
communication is performed using S-APL (the Semantic Agent Program-
ming Language).

Cloud software program SHOK 2010-2013: A program directed towards the cre-
ation of new business models, lean software principles, and an open infras-
tructure for a cloud computing environment.

Need4Speed SHOK 2014-2015: An environment for experimenting with real-time
business models based on customer insight.

Scientific publications not included in the dissertation

During his studies the author also worked on the following publications which
are not included into the dissertation:

Chernov, S., Cochez, M. & Ristaniemi, T. 2015. Anomaly detection algo-
rithms for the sleeping cell detection in LTE networks. In Vehicular Tech-
nology Conference (VTC Spring), 2015 IEEE 81st. IEEE, 1-5.

Cochez, M., Helin, S. & Chen, J. 2013a. Developing cloud software : algo-
rithms, applications, and tools. In I. Porres, T. Mikkonen & A. Ashraf (Eds.)
Developing cloud software : algorithms, applications, and tools. TUCS
Turku Center for Computer Science, general publication series.

The equivalent of one year of full-time study
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Cochez, M., Isomottonen, V., Tirronen, V. & Itkonen, J. 2013b. How do com-
puter science students use distributed version control systems? In V. Er-
molayev, H. C. Mayr, M. Nikitchenko, A. Spivakovsky & G. Zholtkevych
(Eds.) 9th International Conference, ICTERI 2013, Kherson, Ukraine, June
19-22, 2013, Revised Selected Papers. Cham: Springer International Pub-
lishing, 210-228. d0i:10.1007 /978-3-319-03998-5_11. (URL:http://dx.doi.
org/10.1007 /978-3-319-03998-5_11).

Cochez, M., Isomottonen, V., Tirronen, V. & Itkonen, J. 2013c. The use of
distributed version control systems in advanced programming courses. In
ICTERI 2013 - ICT in Education, Research and Industrial Applications: In-
tegration, Harmonization and Knowledge Transfer. Aachen: CEUR Work-
shop Proceedings (1000), 221-235. (URL:http:/ / ceur-ws.org / Vol-1000 /
ICTERI-2013-p-221-235.pdf).

Cochez, M., Periaux, J., Terziyan, V., Kamlyk, K. & Tuovinen, T. 2014. Evolu-
tionary cloud for cooperative UAV coordination. Reports of the Department
of Mathematical Information Technology, Series C. Software and Computa-
tional Engineering, No. C 1.

Cochez, M. 2012. Semantic agent programming language: use and formal-
ization. University of Jyvaskyld. Master’s Thesis, 92pp.

Isomottonen, V., Tirronen, V. & Cochez, M. 2013. Issues with a course that
emphasizes self-direction. In Proceedings of the 18th ACM Conference on
Innovation and Technology in Computer Science Education. New York, NY,
USA: ACM. ITiCSE "13, 111-116. d0i:10.1145/2462476.2462495. (URL:http:
/ /doi.acm.org/10.1145/2462476.2462495).

Isomottonen, V. & Cochez, M. 2014. Challenges and confusions in learn-
ing version control with git. In V. Ermolayev, H. C. Mayr, M. Nikitchenko,
A. Spivakovsky & G. Zholtkevych (Eds.) 10th International Conference,
ICTERI 2014, Kherson, Ukraine, June 9-12, 2013, Revised Selected Papers.
Cham: Springer International Publishing, 178-193. doi:10.1007 /978-3-319
-13206-8_9. (URL:http:/ /dx.doi.org/10.1007 /978-3-319-13206-8_9).

Khriyenko, O. & Cochez, M. 2011. Open environment for collaborative
cloud ecosystems. In CLOUD COMPUTING 2011, The Second Interna-
tional Conference on Cloud Computing, GRIDs, and Virtualization, 147-
153.

Paggi, H. & Cochez, M. 2014. Use of a semantic language to reduce the
indeterminacy in agents communication. In Mathematics and Computers
in Sciences and in Industry (MCSI), 2014 International Conference on. IEEE,
281-287.

Paggi, H. & Cochez, M. 2015. Indeterminacy reduction in agent communi-
cation using a semantic language. WSEAS TRANSACTIONS on SYSTEMS
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Terziyan, V., Nikitin, S., Nagy, M., Khriyenko, O., Kesdniemi, J., Cochez, M.
& Pulkkis, A. 2010. UBIWARE Platform Prototype v 3.0. Agora Centre, Uni-
versity of Jyvaskyld. Technical Report (Deliverable D3.3), 45pp. (UBIWARE
Tekes Project).

Courses taught

The following courses were taught independently by the author:

Introduction to service oriented architectures (SOA) and cloud computing: 2013,
2014, 2015 — During this course the student got an introduction to technolo-
gies used in SOA and cloud computing settings.

Service oriented architectures and cloud computing for developers: 2013, 2014,
2015 — This course was a follow-up course of the TIES456 course. Students
worked individually on more advanced tasks related to the topics from the
basic course.

Service oriented architectures and cloud computing: 2012 — old form of the two
courses above.

Big data engineering: 2014, 2015 — Multiple topics related to Big Data were be
studied. Students will get acquainted to large data sets and streaming. Some
storage and processing algorithms were studied and hardware related is-
sues discussed. The gathered knowledge was then applied on real world
data sets.

Agent technologies for developers: 2014, 2016 — The course is about practical
use of distributed AI methods. More concretely of multi-agent technolo-
gies, for the development of complex cooperating software systems.

Design of agent-based systems, Part II: 2013 — old form of the course above.

Besides the classroom teaching activity, the author was also a main supervisor of
three master thesis workers who already finalized their work. Several others are
close to finalizing their master thesis.

Conference and Journal Review

The author was a programming committee member for the following scientific
forums:

e DEIS workshop 2012
e ICTERI 2013, 2014, 2015, 2016
* WIMS 2014, 2015, 2016

e Science of Computer Programming Journal (Elsevier), reviewer for Special
issue on Systems development by means of semantic technologies
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Other Activities

The candidate has also held the following positions of trust during his years as a
doctoral student:

* Member of the faculty council - 1.1.2014-31.12.2017

* Member of the planning group of the Web Intelligence and Service Engi-
neering (WISE) master program — 2012-2016.

e Member of WISE selection committee — 2013, 2014, 2015, 2016.

* Member of the working groups for curriculum development (2014-2017)
in the areas of computation (applied mathematics, data analysis, etc.) and
technology (software engineering, mobile systems, sensor networks, games,
and gamification) — 2013.
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YHTEENVETO (FINNISH SUMMARY)

Informaatio ja siitd johdettu tieto eivit ole staattisia. Sen sijaan informaatio muut-
tuu jatkuvasti, ja meiddn kyky ja halu sisédistdd informaatiota vaikuttaa ymmar-
rykseemme siitd. Jos verrataan tietokonetta ja ihmistd, huomataan ettd tietokone
ei pysty havainnoimaan samalla tavalla kuin ihminen. Vaikuttaa siltd, ettd kone ei
voi oikeasti ymmartdd asioiden merkitystd. Toisaalta tietokoneet ovat ylivoimai-
sia, jos ajatellaan laskentakykyd. Yksi asia, joka erottaa ihmisen koneesta, on ettd
silloin kun ihminen yrittdd ymmartad maailmaa, han tekee usein virheitd, unoh-
taa asioita tai paattad keskittyd vain tiettyihin asioihin. Toisin sanoen vaikuttaa
siltd, ettd ihminen voi suoriutua tietoon liittyvistd tehtdvistd paremmin kuin ko-
ne, vaikka han kayttaytyisi osittain satunnaisesti.

Eréds tietojenkaésittelytieteen tutkimushaara tutkii, mitd tapahtuu, jos algo-
ritmeissa sallitaan satunnaisuutta tai epatarkkuutta. Englannin kielessa tallaisis-
ta algoritmeista kdytetdan termid approximate algorithms. Ndiden algoritmien etu
on, ettd ne ovat usein nopeampia kuin tarkat algoritmit, mutta riskind on, ettd
ne tuottavat silloin tdlloin vadrid vastauksia. Tédstd syystd niiden kdytto on syyta
rajoittaa vain tilanteisiin, joissa pienet virheet silloin talloin eivat aiheuta suuria
ongelmia. Toisaalta, jos vddran vastauksen todenndkoisyys on pienempi kuin tie-
tokoneella tapahtuvien muistivirheiden todennékoisyys, silloin ndmd algoritmit
ovat yhtd kdyttokelpoisia kuin tarkatkin algoritmit. On my6s havaittu, ettd al-
goritmeille syotetyt parametrit ja muu data yleensa sisdltavat jonkin verran epa-
tarkkuuksia. Talloin lisdvirhe, joka aiheutuu epétarkan algoritmin kaytostd, voi
olla kdytannossa merkitykseton.

Viitoskirjassa tutkitaan, miten sekd tunnettuja ettd uusia epatarkkoja algo-
ritmeja kadytetddn tiedon loytamiseen ja sen evoluutioon. Viitoskirjan tarkeim-
mat kontribuutiot liittyvét ontologioiden optimaalisuuteen ja yhteensovittami-
seen, tiedon ekosysteemeihin ja hierarkkiseen klusterointiin.
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Abstract. The Semantic Web is a proposal from the World Wide Web
Consortium aimed at solving problems like data integration and appli-
cation interoperability. To reach these goals several languages for the
representation of semantic data have been proposed. One of the essential
concepts behind semantic data is that the data is according to a certain
ontology. However, the goals of the semantic web seem challenged be-
cause it seems essential for its working that ontologies are agreed upon
and shared. This work-in-progress paper describes a first step to solving
these problems. When an ontology is missing or only partially known
a system might try to make an approximation of the missing part of
the ontology. The quality of this estimated ontology will depend on the
context of the application. This paper proposes the solving of a dynamic
multi-objective and context sensitive optimisation problem as a way to
evalute the quality of the ontology.

Keywords: Semantic Web, Ontology features, Ontology quality, Con-
textual optimisation
Key Terms: KnowledgeEvolution, Intelligence, SemanticWebService

1 Introduction

The World Wide Web Consortium (W3C) regards the Semantic Web as a web
of data. Currently, data is created at extremely high rate and is not available
enough to end users. The Semantic Web aims “To do for machine processable
information (application data) what the World Wide Web has done for hyper-
text“ by supporting the creation of interoperable and linked data. [1] Linking
data mostly happens by using shared identifiers and linking concepts by using
shared ontologies.

The paper “Which Semantic Web?” [2] gives quite a critical view on many
concepts of the Semantic Web. It states for instance that “Agreeing on a cata-
loging scheme for Semantic Web documents is a prerequisite for any sharing of se-
mantic knowledge. ” and “It is easy enough for computers to exchange data about
computational abstractions such as filenames, sizes, usernames, passwords, etc.
It is much harder for computers to exchange information about human-oriented
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concepts such as happiness and beauty.”. These statements indicate that the
Semantic Web might actually fail in its basic ideas of making decentralised in-
formation management possible. This work-in-progress paper describes the idea
behind one possible approach to overcome these problems.

In order to address the first problem, it would be necessary to create a sys-
tem which can make use of semantic data without having knowledge about the
ontology used by the system which generated it. Therefore, it would be needed
to derive the meaning from the data which another application generated. The
approach proposed in this paper is that there would be an optimisation pro-
cedure which yields an ontology for an application processing semantic data.
The second problem is that computer systems might not be suitable to describe
human-oriented concepts. This problem has been tackled in the past by using
fuzzy logic. One approach is described in [3], where a computational model which
maps events and observations to an emotional state uses a fuzzy-logic represen-
tation. This paper is keeping the option of using an ontology based on fuzzy
logic as one possible way of finding an ontology.

One important application of the proposed approach can be found in self-
managed systems. The ‘executable reality’ approach as described in [4] is one
example of a system which would benefit from the approach described in this
article. ‘Executable reality’ is described in as “an extension of the (Mobile)
Mixed Reality concept”. The described extension replaces part of the ‘static’
retrieval of information by computation of data using context sensitive business
intelligence. When a device with such system is used at a location close by the
sea concepts related to shores, harbours and seashells might become part of the
active ontology. When the device is at a later time point used in a mountainous
area the sea related concepts become partly redundant. If the device has a small
storage capacity, the most optimal ontology will not contain these concepts any
longer. A device which has, on the contrary, an abundant storage capacity but
low processing power should keep the concepts stored to avoid computationally
expensive changes in the ontology.

2 Optimisation

Optimisation problems are in general statements of problems where a best so-
lution is to be found according to certain criteria and restrictions. The first
paragraphs describe a few classes of global optimisation problems in order to
introduce the Context-dependant Dynamic Multi-objective optimisation class in
the last paragraph.

Static single-objective optimisation is considered a basic type of optimisation
problems. The problem statement consists of a function which will be called f
with domain D and range R. The domain of the function can be given explicitly
as a set or described using constraints on a set. The set used for the range should
have a total order relation < defined on its elements, i.e. there is a transitive,
antisymmetric, and total relation on the elements of R.
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Definition 1. An element d € D is optimal for a function f, i.e. d € opt (f) <
VeeD: f(e)< f(d)

The class of optimisation problems described in the previous definition can be
extended to a multi-objective variant by allowing the range of the function to be a
set of vectors of dimension n. The range of the function f is thus Ry X Ra X« - - X R,
where we require a (strict) total order relation <; to be defined on each R;. The
domain of the function is a set D. Note that all single objective optimisation
problems are multi-objective problems.

Definition 2. An element d € D is multi-objective optimal for a function f,
ie.deopt(f)e YeeD\ {d}:(3iel,n]: f(e), < f(d),)

Dynamic optimisation is essentially not different from solving a series of
(multi-objective) static optimisation problems. The dynamism in the series is
to be found in the way the function which is optimised or the constraints on
the domain of the function being optimised are changing. The series can be
represented by a function F', which maps the natural numbers to a set of pairs
of a function and its domain. The functions in the tuples have a domain which
is a subset of the total domain D the optimisation problem is working on. One
way of solving the dynamic optimisation problem is by finding the optimal value
for the functions for all possible values in N and then selecting the maximum
value. We denote opt’(F(t)) to be the optimisation problem with function F'(t),
and constraints F'(t),.

Definition 3. An element d € D is considered optimal for the dynamic optimi-
sation of the function F : N — ( functions, constraints) if Vt € N : opt’ (F(t)) <
d.

Another possible definition follows:

Definition 4. A function sol is the solution of the dynamic optimisation prob-
lem if sol : N — D and sol(t) = opt’'(F(t))

In other words, a solution is such function which gives the optimal solution for
each possible t € N.

Context-dependant dynamic multi-objective optimisation problems are an
extension of the dynamic optimisation problems defined in the previous para-
graph. In this case the domain of the function F' is a series of what will be called
‘contexts’ instead of the natural numbers. The solution of the optimisation prob-
lem can be stated in a similar way as the definitions in the previous paragraphs.
A solution of this type of problem indicates (multi-objective) optimal solutions
in particular contexts, or analog optimal solutions over the range of all possible
contexts.

3 Features of an Ontology

An application needs schemas or ontologies in order to give meaning to the
semantic data it is processing. Different definitions of ontologies have been pro-
posed. Gruber [5] defined, for instance, that “An ontology is an explicit specifi-
cation of a conceptualization.”, which allows for a very broad interpretation. A
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more concrete definition for description of ontologies is OWL2 endorsed by the
World Wide Web Consortium. [6] There is a close correspondence (and some-
times even compatibility) between ontologies and description logic. OWL2 is for
instance compatible with the description logic SROIQ. [7]

For this article, the concrete syntax of the ontology used is not of mayor
importance. More important is the fact that an ontology has certain features.
Examples of features of an ontology include coverage, cohesion and coupling. [8]
In this article the properties which an ontology has independent of any context
will be called the ‘features’ of the ontology. Some literature calls these properties
‘quality’ factors. The name quality will however be used in one of the following
sections to describe the effect of features in a context. Other methods for mea-
suring features of an ontology have been proposed by Burton-Jones et al. [9] and
Yao et al. [10] and many other feature sets can be found in the literature.

4 Fuzzy Ontologies

For the representation of not exactly defined sets, fuzzy sets as described in
“Fuzzy Sets” [11] can be used. The elements of a fuzzy set are members of the
set according to a given membership function. This function defines for each
element of the considered universe a grade of membership in the set. The grade
of membership is a real value in the interval [0, 1], where a value of 0 means that
the element is not in the set and a value of 1 indicates that the element is in the
set. Any value in between indicates up to which extend the element is a member
of the set.

Calegari and Giucci used the concept of fuzzy sets to describe what they
call ‘Fuzzy Ontologies’, ‘Fuzzy Description Logics’ and ‘Fuzzy-OWL’. [12] This
research showed it to be possible to describe ontologies which are not exactly
known by using membership functions. Bobillo and Straccia [13] did a similar
work, but used OWL 2, and proposed a concrete XML syntax for the extension.

5 Ontology Evolution

In research on databases it has been noticed that the schemas which are used
change over time. Ontologies have similar properties. Changes in the domain, the
conceptualisation and the specification are unavoidable and the ontology has to
be changed accordingly. The domain changes because the real world changes, the
conceptualisation because the perspective changes and the specification changes
when an ontology is to be represented in a language with different semantics
and expressiveness. The whole of these changes is called ontology evolution.
Ontologies and database schemas are different concepts. Firstly, the ontology
itself can also be part of the data and this way the data becomes self-descriptive.
Secondly, ontologies are explicitly designed for reuse in other context as the initial
context of creation and are, moreover, decentralised by nature. Lastly, ontology
models have, in general, a richer set of properties available for describing the
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domain and quite often the border between the schema and instance data is
blurry.[14]

The same article also describes concrete effects of ontology evolution on the
data set. For instance removal of a class causes instances to have a less specific
type, declaring classes disjoint makes instances that are in both classes invalid
and defining a class as a subclass of another one adds new possible properties
on the subclass.

Despite their differences, a more recent article by Hartung et al. [15] claims
that ontology evolution has similar requirements as changes in database schemas
evolution. Ontology evolution requires, for instance, “support for a rich set of
changes, expressive mappings, update propagation to instances and dependant
schemas/ontologies, versioning and user-friendly tools”. The same article com-
pares several approaches for managing and tracking ontology evolution in terms
of the above mentioned criteria.

6 Context and Quality of an Ontology

In order to talk about the quality of an ontology, one needs to take the context
within which it is used into account. This statement can be supported by an ex-
ample. Imagine for instance that one would say that an ontology which contains
more concepts, is better than one with less concepts. This could be true in cer-
tain situations. However, if one imagines a system which only uses the concepts
which are mentioned in the ontology with less concepts, the smaller ontology
might be even better because it uses less memory space.

One way of defining ontological quality is described in “Data Driven Ontology
Evaluation” [16]. This method uses a combination of a corpus and the ontology
to evaluate the quality of the ontology. The corpus is a textual description of the
ontology, which form the basis of different approaches of measuring ontologies
described. The paper further elaborates on the fact that there is more as one
quality aspect with regard to ontologies. Factors like price to build, maintenance
and re-use are highlighted as very influential. Furthermore, the article mentions
that the quality might be subjective to time, location and other contextual fac-
tors.

A recent survey on ontology evaluation tools was performed by Aruna et
al. [17] This survey puts a stress on more technical demands of an ontology in a
working system. Technical properties surveyed are interoperability, turn around
ability, performance, memory allocation, scalability, integration into frameworks
and interfaces. The ontological properties are limited to language conformity
and consistency.

Research on improving the quality of an ontology by transformation opera-
tions on an existing ontology is described in [18]. The idea is that certain quality
criteria can be fulfilled better by a transformation of the existing ontology into a
new, but equally valid ontology. Concrete, several transformations are described
to improve the ontology in terms of homogeneity, totality of properties, stability
over time, and explicitness (as opposed to inferred) and uniformity in proper-
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ties. The size of the ontology and simplicity of queries is, according to the same
article, only assessable in a context.

One way of measuring the quality of an ontology might be to compare the
ontology with one or more sets of data which should be described by the ontology.
This comparison can be done using either the open-world assumption which is
typically made in the semantic web or a closed-world assumption.

Quality does not have to be a one dimensional property. The quality of
an ontology in a context can thus be a multidimensional property. The more
complete the context for optimisation is, the fewer dimensions the quality will
have. A ‘complete’ context will lead to a one dimensional quality.

7 Quality of Ontology in a Context as a Dynamic
Multi-objective Optimisation Problem

As argued in the previous section, it is only reasonable to make statements about
the quality of an ontology in a given context. If for a certain context the quality
for two ontologies is given, then it is possible to make a comparison between the
two ontologies in that particular context. However, quality will not always be
one-dimensional and hence analog to the multi-objective class of optimisation
problems, it is not always possible to say that either the first or the second
ontology is better.

When it is possible to compare the quality of ontologies in a context, then it
is also possible to define what it means for an ontology to be optimal in a given
context. Because of the fact that there is no total order on the quality of an
ontology in a context, it will be necessary to consider the search for an optimal
ontology for a given context as a multi-objective optimisation problem.

Let C be the set of contexts, O be the set of ontologies and @) be the set of
qualities. Now we can define the optimisation as:

Definition 5. The function sol is the solution of the context-dependant dynamic
multi-objective problem of finding an optimal ontology for a given contert <
sol : C'— O and sol(c) = opt'(F(c))

Where F (C) — (O — @) a function which maps the context ¢ to a function
which incorporates the context when evaluating the quality of an ontology and
its associated domain.

It makes most sense to use the definition of context-dependant optimisation
with a function since the system will be used in a real life setting and it is
impossible to predict the optimal ontology over the whole life-time of the system
at any point. It should also be noted that in any real system, the function sol
can only be known partially and most likely by approximation. It is only known
partially because the context is changing all the time and the future contexts
are still unknown. Only an approximation can be found because no real system
can react quick enough to all changes in a complex context in order to compute
a new optimal ontology.
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8 Future Research Directions

As said in the previous section, it is important to note that the context of the
system in which the ontology is optimised will change dynamically over time.
One important aspect of the context is the history of the system. The reason is
that taking a new ontology into use causes a certain replacement overhead. A
new ontology causing a big overhead has a lower quality in the context of the
system. Cuenca Grau et al. [19] tried to reduce the cost of consistency checking
of a new ontology by using the previously used ontology, i.e. the history of the
system.

In this article we did not specify any concrete ontology notation to be used
for this type of system. There is a need to evaluate the different possible classes
of ontologies and see which properties of ontologies are affected in this type of
optimisation. Depending on the type of ontology chosen, the system has different
options for the development of its ontology. If the ontology would be for instance
a fuzzy ontology, it might even be feasible to change only membership functions
to adapt to changes in the context.

It is an open question how the system should search for an optimal ontology
for a given context. Furthermore, this article refrained from defining a concrete
definition of context and how it should be incorporated in the functions for
optimisation. One popular choice for the incorporation of context is the use of
weighted sum based methods. More research is needed to link particular features
of an ontology to quality aspects, as well as how the context influences this.

Next, it seems reasonable to look whether it is possible to notice trends in
the evolution of the ontology. A system could then take the trends into account
when assessing a new ontology or predict resource consumption in the future.

Lastly, it is interesting to consider what would happen when two separate
systems have their isolated evolutions of the ontology. Questions in that kind of
situation include what should be done to align these ontologies, what to do with
discrepancy between the ontologies, whether these systems can interact if they
are using different ontologies, etc. ..

9 Conclusion

The aim of this article was to show initial findings to solve the problems of
interoperability in the Semantic web in case ontologies are not shared among
applications and how to allow these applications to work with more ‘human-
ised’ concepts. The first problem was reduced to a formulation of the finding
of an optimal ontology in a given context in section 7. This context includes
for instance the data processed by the application, the past used ontologies and
constraints related to the system. The challenge of allowing humanised concepts
is attempted by allowing fuzzy logic to be used in this kind of system.

This article was financially supported by the ‘Cloud Software Program’ of
TiViT Oy. We would like to thank ‘Intelligent Precision Solutions and Services
Oy’ and in particular Sami Helin for proposing the initial ‘Cloud Communication
Channel’ business case in which this research idea was elaborated.
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Introduction

Big Data is a phenomenon that leaves a rare information professional negli-
gent these days. Remarkably, application demands and developments in the
context of related disciplines resulted in technologies that boosted data gen-
eration and storage at unprecedented scales in terms of volumes and rates. To
mention just a few facts reported by Manyika et al. (2011): a disk drive capable
of storing all the world’s music could be purchased for about US $600; 30 bil-
lion of content pieces are shared monthly only at Facebook (facebook.com).
Exponential growth of data volumes is accelerated by a dramatic increase in
social networking applications that allow nonspecialist users create a huge
amount of content easily and freely. Equipped with rapidly evolving mobile
devices, a user is becoming a nomadic gateway boosting the generation of
additional real-time sensor data. The emerging Internet of Things makes
every thing a data or content, adding billions of additional artificial and
autonomic sources of data to the overall picture. Smart spaces, where people,
devices, and their infrastructure are all loosely connected, also generate data
of unprecedented volumes and with velocities rarely observed before. An
expectation is that valuable information will be extracted out of all these data
to help improve the quality of life and make our world a better place.

Society is, however, left bewildered about how to use all these data effi-
ciently and effectively. For example, a topical estimate for the number of a
need for data-savvy managers to take full advantage of Big Data in the United
States is 1.5 million (Manyika et al. 2011). A major challenge would be finding
a balance between the two evident facets of the whole Big Data adventure: (a)
the more data we have, the more potentially useful patterns it may include
and (b) the more data we have, the less the hope is that any machine-learn-
ing algorithm is capable of discovering these patterns in an acceptable time
frame. Perhaps because of this intrinsic conflict, many experts consider that
this Big Data not only brings one of the biggest challenges, but also a most
exciting opportunity in the recent 10 years (cf. Fan et al. 2012b)

The avalanche of Big Data causes a conceptual divide in minds and opin-
ions. Enthusiasts claim that, faced with massive data, a scientific approach “...
hypothesize, model, test—is becoming obsolete. ... Petabytes allow us to say:
‘Correlation is enough.” We can stop looking for models. We can analyze the
data without hypotheses about what it might show. We can throw the numbers
into the biggest computing clusters the world has ever seen and let statistical
algorithms find patterns ...” (Anderson 2008). Pessimists, however, point out

© 2014 by Taylor & Francis Group, LLC
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that Big Data provides “... destabilising amounts of knowledge and informa-
tion that lack the regulating force of philosophy” (Berry 2011). Indeed, being
abnormally big does not yet mean being healthy and wealthy and should be
treated appropriately (Figure 1.1): a diet, exercise, medication, or even surgery
(philosophy). Those data sets, for which systematic health treatment is ignored
in favor of correlations, will die sooner—as useless. There is a hope, however,
that holistic integration of evolving algorithms, machines, and people rein-
forced by research effort across many domains will guarantee required fitness
of Big Data, assuring proper quality at right time (Joseph 2012).

Mined correlations, though very useful, may hint about an answer to a
“what,” but not “why” kind of questions. For example, if Big Data about
Royal guards and their habits had been collected in the 1700s” France, one
could mine today that all musketeers who used to have red Burgundy regu-
larly for dinners have not survived till now. Pity, red Burgundy was only one
of many and a very minor problem. A scientific approach is needed to infer
real reasons—the work currently done predominantly by human analysts.

Effectiveness and efficiency are the evident keys in Big Data analysis.
Cradling the gems of knowledge extracted out of Big Data would only be
effective if: (i) not a single important fact is left in the burden—which means
completeness and (ii) these facts are faceted adequately for further infer-
ence—which means expressiveness and granularity. Efficiency may be inter-
preted as the ratio of spent effort to the utility of result. In Big Data analytics,
it could be straightforwardly mapped to timeliness. If a result is not timely,
its utility (Ermolayev et al. 2004) may go down to zero or even far below in
seconds to milliseconds for some important industrial applications such as
technological process or air traffic control.

Notably, increasing effectiveness means increasing the effort or making the
analysis computationally more complex, which negatively affects efficiency.

FIGURE 1.1
Evolution of data collections—dimensions (see also Figure 1.3) have to be treated with care.
(Courtesy of Vladimir Ermolayev.)
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Finding a balanced solution with a sufficient degree of automation is the
challenge that is not yet fully addressed by the research community.

One derivative problem concerns knowledge extracted out of Big Data as
the result of some analytical processing. In many cases, it may be expected
that the knowledge mechanistically extracted out of Big Data will also be
big. Therefore, taking care of Big Knowledge (which has more value than
the source data) would be at least of the same importance as resolving chal-
lenges associated with Big Data processing. Uplifting the problem to the
level of knowledge is inevitable and brings additional complications such as
resolving contradictory and changing opinions of everyone on everything.
Here, an adequate approach in managing the authority and reputation of
“experts” will play an important role (Weinberger 2012).

This chapter offers a possible approach in addressing the problem of
“understanding” Big Data in an effective and efficient way. The idea is mak-
ing adequately grained and expressive knowledge representations and fact
collections evolve naturally, triggered by new tokens of relevant data coming
along. Pursuing this way would also imply conceptual changes in the Big Data
Processing stack. A refined semantic layer has to be added to it for provid-
ing adequate interfaces to interlink horizontal layers and enable knowledge-
related functionality coordinated in top-down and bottom-up directions.

The remainder of the chapter is structured as follows. The “Motivation
and Unsolved Issues” section offers an illustrative example and the anal-
ysis of the demand for understanding Big Data. The “State of Technology,
Research, and Development in Big Data Computing” section reviews the
relevant research on using semantic and related technologies for Big Data
processing and outlines our approach to refine the processing stack. The
“Scaling with a Traditional Database” section focuses on how the basic
data storage and management layer could be refined in terms of scalability,
which is necessary for improving efficiency/effectiveness. The “Knowledge
Self-Management and Refinement through Evolution” section presents our
approach, inspired by the mechanisms of natural evolution studied in evo-
lutionary biology. We focus on a means of arranging the evolution of knowl-
edge, using knowledge organisms, their species, and populations with the
aim of balancing efficiency and effectiveness of processing Big Data and its
semantics. We also provide our preliminary considerations on assessing fit-
ness in an evolving knowledge ecosystem. Our conclusions are drawn in the
“Some Conclusions” section.

Motivation and Unsolved Issues

Practitioners, including systems engineers, Information Technology archi-
tects, Chief Information and Technology Officers, and data scientists, use
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the phenomenon of Big Data in their dialog over means of improving sense-
making. The phenomenon remains a constructive way of introducing others,
including nontechnologists, to new approaches such as the Apache Hadoop
(hadoop.apache.org) framework. Apparently, Big Data is collected to be ana-
lyzed. “Fundamentally, big data analytics is a workflow that distills terabytes
of low-value data down to, in some cases, a single bit of high-value data. ...
The goal is to see the big picture from the minutia of our digital lives” (cf.
Fisher et al. 2012). Evidently, “seeing the big picture” in its entirety is the key
and requires making Big Data healthy and understandable in terms of effec-
tiveness and efficiency for analytics.

In this section, the motivation for understanding the Big Data that improves
the performance of analytics is presented and analyzed. It begins with pre-
senting a simple example which is further used throughout the chapter. It
continues with the analysis of industrial demand for Big Data analytics. In
this context, the major problems as perceived by industries are analyzed and
informally mapped to unsolved technological issues.

llustrative Example

Imagine a stock market analytics workflow inferring trends in share price
changes. One possible way of doing this is to extrapolate on stock price data.
However, a more robust approach could be extracting these trends from
market news. Hence, the incoming data for analysis would very likely be
several streams of news feeds resulting in a vast amount of tokens per day.
An illustrative example of such a news token is:

Posted: Tue, 03 Jul 2012 05:01:10-04:00
LONDON (Reuters)

U.S. planemaker Boeing hiked its 20-year market forecast, predicting
demand for 34,000 new aircraft worth $4.5 trillion, on growth in
emerging regions and as airlines seek efficient new planes to coun-
ter high fuel costs.

Provided that an adequate technology is available,! one may extract
the knowledge pictured as thick-bounded and gray-shaded elements in
Figure 1.2.

This portion of extracted knowledge is quite shallow, as it simply inter-
prets the source text in a structured and logical way. Unfortunately, it does

" topix.com/aircraft/airbus-a380/2012/07/boeing-hikes-20-year-market-forecast (accessed July 5,
2012).

* The technologies for this are under intensive development currently, for example, wit.istc.
cnr.it/stlab-tools/fred/ (accessed October 8, 2012).
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Semantics associated with a news data token.

not answer several important questions for revealing the motives for Boeing

to hike their market forecast:

Q1. What is an efficient new plane? How is efficiency related to high

fuel costs to be countered?

Q2. Which airlines seek for efficient new planes? What are the emerg-

ing regions? How could the

ir growth be assessed?

Q3. How are plane makers, airlines, and efficient new planes related to

each other?

In an attempt to answering these questions, a human analyst will exploit
his commonsense knowledge and look around the context for additional
relevant evidence. He will likely find out that Q1 and Q3 could be answered
using commonsense statements acquired from a foundational ontology,
for example, CYC (Lenat 1995), as shown by dotted line bounded items in

Figure 1.2.

Answering Q2, however, requires looking for additional information like:
the fleet list of All Nippon Airways” who was the first to buy B787 airplanes

" For example, at airfleets.net/flottecie/All%20Nippon%20Airways-active-b787.htm (accessed

July 5,2012).
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from Boeing (the rest of Figure 1.2); and a relevant list of emerging regions
and growth factors (not shown in Figure 1.2). The challenge for a human
analyst in performing the task is low speed of data analysis. The available
time slot for providing his recommendation is too small, given the effort to
be spent per one news token for deep knowledge extraction. This is one good
reason for growing demand for industrial strength technologies to assist in
analytical work on Big Data, increase quality, and reduce related efforts.

Demand in Industry

Turning available Big Data assets into action and performance is considered
a deciding factor by today’s business analytics. For example, the report by
Capgemini (2012) concludes, based on a survey of the interviews with more
than 600 business executives, that Big Data use is highly demanded in indus-
tries. Interviewees firmly believe that their companies’ competitiveness and
performance strongly depend on the effective and efficient use of Big Data.
In particular, on average,

e Big Data is already used for decision support 58% of the time, and
29% of the time for decision automation

* It is believed that the use of Big Data will improve organizational
performance by 41% over the next three years

The report by Capgemini (2012) also summarizes that the following are the
perceived benefits of harnessing Big Data for decision-making:

* More complete understanding of market conditions and evolving
business trends

e Better business investment decisions
® More accurate and precise responses to customer needs

* Consistency of decision-making and greater group participation in
shared decisions

* Focusing resources more efficiently for optimal returns
* Faster business growth

e Competitive advantage (new data-driven services)

e Common basis for evaluation (one true starting point)

e Better risk management

Problems in Industry

Though the majority of business executives firmly believe in the utility
of Big Data and analytics, doubts still persist about its proper use and the
availability of appropriate technologies. As a consequence, “We no longer
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speak of the Knowledge Economy or the Information Society. It’s all data
now: Data Economy and Data Society. This is a confession that we are no
longer in control of the knowledge contained in the data our systems col-
lect” (Greller 2012).

Capgemini (2012) outlines the following problems reported by their
interviewees:

* Unstructured data are hard to process at scale. Forty-two percent of
respondents state that unstructured content is too difficult to inter-
pret. Forty percent of respondents believe that they have too much
unstructured data to support decision-making.

* Fragmentation is a substantial obstacle. Fifty-six percent of respondents
across all sectors consider organizational silos the biggest impedi-
ment to effective decision-making using Big Data.

e Effectiveness needs to be balanced with efficiency in “cooking” Big Data.
Eighty-five percent of respondents say the major problem is the lack
of effective ability to analyze and act on data in real time.

The last conclusion by Capgemini is also supported by Bowker (2005, pp.
183-184) who suggests that “raw data is both an oxymoron and a bad idea;
to the contrary, data should be cooked with care.” This argument is further
detailed by Bollier (2010, p. 13) who stresses that Big Data is a huge “mass of
raw information.” It needs to be added that this “huge mass” may change in
time with varying velocity, is also noisy, and cannot be considered as self-
explanatory. Hence, an answer to the question whether Big Data indeed rep-
resent a “ground truth” becomes very important—opening pathways to all
sorts of philosophical and pragmatic discussions. One aspect of particular
importance is interpretation that defines the ways of cleaning Big Data. Those
ways are straightforwardly biased because any interpretation is subjective.

As observed, old problems of data processing that are well known for
decades in industry are made even sharper when data becomes Big. Boyd
and Crawford (2012) point out several aspects to pay attention to while
“cooking” Big Data, hinting that industrial strength technologies for that are
not yet in place:

® Big Data changes the way knowledge is acquired and even defined. As
already mentioned above (cf. Anderson 2008), correlations mined
from Big Data may hint about model changes and knowledge repre-
sentation updates and refinements. This may require conceptually
novel solutions for evolving knowledge representation, reasoning,
and management.

* Having Big Data does not yet imply objectivity, or accuracy, on time. Here,
the clinch between efficiency and effectiveness of Big Data inter-
pretation and processing is one of the important factors. Selecting
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a sample of an appropriate size for being effective may bring bias,
harm correctness, and accuracy. Otherwise, analyzing Big Data in
source volumes will definitely distort timeliness.

* Therefore, Big Data is not always the best option. A question that requires
research effort in this context is about the appropriate sample, size,
and granularity to best answer the question of a data analyst.

e Consequently, taken off-context Big Data is meaningless in interpreta-
tion. Indeed, choosing an appropriate sample and granularity may
be seen as contextualization—circumscribing (Ermolayev et al.
2010) the part of data which is potentially the best-fitted sample for
the analytical query. Managing context and contextualization for
Big Data at scale is a typical problem and is perceived as one of the
research and development challenges.

One more aspect having indirect relevance to technology, but important
in terms of socio-psychological perceptions and impact on industries, is eth-
ics and Big Data divide. Ethics is concerned with legal regulations and con-
straints of allowing a Big Data collector interpreting personal or company
information without informing the subjects about it. Ethical issues become
sharper when used for competition and lead to the emergence of and sepa-
ration to Big Data rich and poor implied by accessibility to data sources at
required scale.

Major Issues

Applying Big Data analytics faces different issues related with the charac-
teristics of data, analysis process, and also social concerns. Privacy is a very
sensitive issue and has conceptual, legal, and technological implications.
This concern increases its importance in the context of big data. Privacy
is defined by the International Telecommunications Union as the “right of
individuals to control or influence what information related to them may
be disclosed” (Gordon 2005). Personal records of individuals are increas-
ingly being collected by several government and corporate organizations.
These records usually used for the purpose of data analytics. To facilitate
data analytics, such organizations publish “appropriately private” views
over the collected data. However, privacy is a double-edged sword—there
should be enough privacy to ensure that sensitive information about the
individuals is not disclosed and at the same time there should be enough
data to perform the data analysis. Thus, privacy is a primary concern that
has widespread implications for someone desiring to explore the use of Big
Data for development in terms of data acquisition, storage, preservation,
presentation, and use.

Another concern is the access and sharing of information. Usually private
organizations and other institutions are reluctant to share data about their
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clients and users, as well as about their own operations. Barriers may include
legal considerations, a need to protect their competitiveness, a culture of con-
fidentiality, and, largely, the lack of the right incentive and information struc-
tures. There are also institutional and technical issues, when data are stored
in places and ways that make them difficult to be accessed and transferred.

One significant issue is to rethink security for information sharing in Big
Data use cases. Several online services allow us to share private informa-
tion (i.e., facebook.com, geni.com, linkedin.com, etc.), but outside record-level
access control we do not comprehend what it means to share data and how
the shared data can be linked.

Managing large and rapidly increasing volumes of data has been a chal-
lenging issue. Earlier, this issue was mitigated by processors getting faster,
which provide us with the resources needed to cope with increasing vol-
umes of data. However, there is a fundamental shift underway considering
that data volume is scaling faster than computer resources. Consequently,
extracting sense of data at required scale is far beyond human capability.
So, we, the humans, increasingly “... require the help of automated systems
to make sense of the data produced by other (automated) systems” (Greller
2012). These instruments produce new data at comparable scale—kick-start-
ing a new iteration in this endless cycle.

In general, given a large data set, it is often necessary to find elements
in it that meet a certain criterion which likely occurs repeatedly. Scanning
the entire data set to find suitable elements is obviously impractical. Instead,
index structures are created in advance to permit finding the qualifying ele-
ments quickly.

Moreover, dealing with new data sources brings a significant number of
analytical issues. The relevance of these issues will vary depending on the
type of analysis being conducted and on the type of decisions that the data
might ultimately inform. The big core issue is to analyze what the data are
really telling us in an entirely transparent manner.

State of Technology, Research, and Development in Big Data
Computing

After giving an overview of the influence of Big Data on industries and
society as a phenomenon and outlining the problems in Big Data computing
context as perceived by technology consumers, we now proceed with the
analysis of the state of development of those technologies. We begin with
presenting the overall Big Data Processing technology stack and point out
how different dimensions of Big Data affect the requirements to technolo-
gies, having understanding—in particular, semantics-based processing—
as a primary focus. We continue with presenting a selection of Big Data
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research and development projects and focus on what they do in advanc-
ing the state-of-the-art in semantic technologies for Big Data processing.
Further, we summarize the analysis by pointing out the observed complica-
tions and overheads in processing Big Data semantics. Finally, we outline a
high-level proposal for the refinement of the Big Data semantics layer in the
technology stack.

Big Data Processing—Technology Stack and Dimensions

At a high level of detail, Driscoll (2011) describes the Big Data processing
technology stack comprising three major layers: foundational, analytics, and
applications (upper part of Figure 1.3).

The foundational layer provides the infrastructure for storage, access, and
management of Big Data. Depending on the nature of data, stream process-
ing solutions (Abadi et al. 2003; Golab and Tamer Ozsu 2003; Salehi 2010),
distributed persistent storage (Chang et al. 2008; Roy et al. 2009; Shvachko
et al. 2010), cloud infrastructures (Rimal et al. 2009; Tsangaris et al. 2009;
Cusumano 2010), or a reasonable combination of these (Gu and Grossman
2009; He et al. 2010; Sakr et al. 2011) may be used for storing and accessing
data in response to the upper-layer requests and requirements.

L
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FIGURE 1.3
Processing stack, based on Driscoll (2011), and the four dimensions of Big Data, based on Beyer

et al. (2011), influencing efficiency and effectiveness of analytics.
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The middle layer of the stack is responsible for analytics. Here data ware-
housing technologies (e.g., Nemani and Konda 2009; Ponniah 2010; Thusoo
et al. 2010) are currently exploited for extracting correlations and features
(e.g., Ishai et al. 2009) from data and feeding classification and prediction
algorithms (e.g., Mills 2011).

Focused applications or services are at the top of the stack. Their func-
tionality is based on the use of more generic lower-layer technologies and
exposed to end users as Big Data products.

Example of a startup offering focused services is BillGuard (billguard.
com). It monitors customers’ credit card statements for dubious charges and
even leverages the collective behavior of users to improve its fraud predic-
tions. Another company called Klout (klout.com/home) provides a genuine
data service that uses social media activity to measure online influence.
LinkedIn’s People you may know feature is also a kind of focused service. This
service is presumably based on graph theory, starting exploration of the
graph of your relations from your node and filtering those relations accord-
ing to what is called “homophily.” The greater the homophily between two
nodes, the more likely two nodes will be connected.

According to its purpose, the foundational layer is concerned about being
capable of processing as much as possible data (volume) and as soon as pos-
sible. In particular, if streaming data are used, the faster the stream is (veloc-
ity), the more difficult it is to process the data in a stream window. Currently
available technologies and tools for the foundational level are not equally
well coping with volume and velocity dimensions which are, so to say, anti-
correlated due to their nature. Therefore, hybrid infrastructures are in use
for balancing processing efficiency aspects (Figure 1.3)—comprising solu-
tions focused on taking care of volumes, and, separately, of velocity. Some
examples are given in “Big Data in European Research” section.

For the analytics layer (Figure 1.3), volume and velocity dimensions (Beyer
et al. 2011) are also important and constitute the facet of efficiency—big vol-
umes of data which may change swiftly have to be processed in a timely
fashion. However, two more dimensions of Big Data become important—
complexity and variety—which form the facet of effectiveness. Complexity
is clearly about the adequacy of data representations and descriptions for
analysis. Variety describes a degree of syntactic and semantic heterogeneity
in distributed modules of data that need to be integrated or harmonized for
analysis. A major conceptual complication for analytics is that efficiency is
anticorrelated to effectiveness.

Big Data in European Research

Due to its huge demand, Big Data Computing is currently on the hype as a
field of research and development, producing a vast domain of work. To keep
the size of this review observable for a reader, we focus on the batch of the
running 7th Framework Programme (FP7) Information and Communication
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Technology (ICT; cordis.europa.eu/fp7/ict/) projects within this vibrant
field. Big Data processing, including semantics, is addressed by the strate-
gic objective of Intelligent Information Management (IIM; cordis.europa.eu/
tp7/ict/content-knowledge/projects_en.html). IIM projects funded in frame
of FP7 ICT Call 5 are listed in Table 1.1 and further analyzed below.

SmartVortex [Integrating Project (IP); smartvortex.eu] develops a techno-
logical infrastructure—a comprehensive suite of interoperable tools, ser-
vices, and methods—for intelligent management and analysis of massive
data streams. The goal is to achieving better collaboration and decision-
making in large-scale collaborative projects concerning industrial innova-
tion engineering.

Legend: AEP, action extraction and prediction; DLi, data linking; DM, data
mining; DS, diversity in semantics; DV, domain vocabulary; FCA, formal
concept analysis; IE, information extraction; Int, integration; KD, knowledge
discovery; M-LS, multi-lingual search; MT, machine translation; O, ontology;
OM, opinion mining; QL, query language; R, reasoning; SBI, business intelli-
gence over semantic data; SDW, semantic data warehouse (triple store); SUM,
summarization.

LOD?2 (IP; lod2.eu) claims delivering: industrial strength tools and meth-
odologies for exposing and managing very large amounts of structured
information; a bootstrap network of multidomain and multilingual ontolo-
gies from sources such as Wikipedia (wikipedia.org) and OpenStreetMap
(openstreetmap.org); machine learning algorithms for enriching, repairing,
interlinking, and fusing data from Web resources; standards and methods for
tracking provenance, ensuring privacy and data security, assessing informa-
tion quality; adaptive tools for searching, browsing, and authoring Linked
Data.

Tridec (IP; tridec-online.eu) develops a service platform accompanied with
the next-generation work environments supporting human experts in deci-
sion processes for managing and mitigating emergency situations triggered
by the earth (observation) system in complex and time-critical settings. The
platform enables “smart” management of collected sensor data and facts
inferred from these data with respect to crisis situations.

First [Small Targeted Research Project (STREP); project-first.eu] develops
an information extraction, integration, and decision-making infrastructure
for financial domain with extremely large, dynamic, and heterogeneous
sources of information.

iProd (STREP; iprod-project.eu) investigates approaches of reducing prod-
uct development costs by efficient use of large amounts of data comprising
the development of a software framework to support complex information
management. Key aspects addressed by the project are handling hetero-
geneous information and semantic diversity using semantic technologies
including knowledge bases and reasoning,.

Teleios (STREP; earthobservatory.eu) focuses on elaborating a data
model and query language for Earth Observation (EO) images. Based on
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TABLE 1.1
FP7 ICT Call 5 Projects and their Contributions to Big Data Processing and Understanding
Contribution
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Data Processing Stack
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SmartVortex X X X Industrial innovation engineering X X X X
LOD2 X X Media and publishing, corporate data X X X X X O, ML
intranets, eGovernment
Tridec X X Crisis/emergency response, government, X X X X X R
oil and gas
First X X Market surveillance, investment X X X X X 1IE
management, online retail banking and
brokerage
iProd X X Manufacturing: aerospace, automotive, X X X X R, Int
and home appliances
Teleios X X Civil defense, environmental agencies. X X X X DM, QL, KD
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TerraSAR-X data; real-time fire
monitoring
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Khresmoi X X Medical imaging in healthcare, X X X X X IE, DLi, M-LS,
biomedicine MT
Robust X X Online communities (internet, extranet X X X AEP

and intranet) addressing: customer
support; knowledge sharing; hosting

services
Digital.me X X Personal sphere X X
Fish4Knowledge X X Marine sciences, environment X X X DV (fish), SUM
Render X X Information management (wiki), news X X X DS
aggregation (search engine), customer
relationship management
(telecommunications)
PlanetData X Cross-domain X
LATC X Government X X X
Advance X Logistics X X X X
Cubist X Market intelligence, computational X X X SDW, SBI, FCA
biology, control centre operations
Promise X Cross-domain X X X X
Dicode X Clinico-genomic research, healthcare, X X X X DM, OM
marketing

2 IIM clustering information has been taken from the Commission’s source cordis.europa.eu/fp7/ict/content-knowledge /projects_en.html.
b As per the Gartner report on extreme information management (Gartner 2011).
¢ The contributions of the projects to the developments in the Big Data Stack layers have been assessed based on their public deliverables.
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these, a scalable and adaptive environment for knowledge discovery from
EO images and geospatial data sets, and a query processing and optimi-
zation technique for queries over multidimensional arrays and EO image
annotations are developed and implemented on top of the MonetDB (mon-
etdb.org) system.

Khresmoi (IP; khresmoi.eu) develops an advanced multilingual and multi-
modal search and access system for biomedical information and documents.
The advancements of the Khresmoi comprise: an automated information
extraction from biomedical documents reinforced by using crowd sourcing,
active learning, automated estimation of trust level, and target user exper-
tise; automated analysis and indexing for 2-, 3-, 4D medical images; link-
ing information extracted from unstructured or semistructured biomedical
texts and images to structured information in knowledge bases; multilin-
gual search including multiple languages in queries and machine-translated
pertinent excerpts; visual user interfaces to assist in formulating queries and
displaying search results.

Robust (IP; robust-project.eu) investigates models and methods for describ-
ing, understanding, and managing the users, groups, behaviors, and needs
of online communities. The project develops a scalable cloud and stream-
based data management infrastructure for handling the real-time analysis of
large volumes of community data. Understanding and prediction of actions
is envisioned using simulation and visualization services. All the developed
tools are combined under the umbrella of the risk management framework,
resulting in the methodology for the detection, tracking, and management of
opportunities and threats to online community prosperity.

Digital.me (STREP; dime-project.eu) integrates all personal data in a per-
sonal sphere at a single user-controlled point of access—a user-controlled
personal service for intelligent personal information management. The soft-
ware is targeted on integrating social web systems and communities and
implements decentralized communication to avoid external data storage and
undesired data disclosure.

Fish4Knowledge (STREP; homepages.inf.ed.ac.uk/rbf/Fish4Knowledge/)
develops methods for information abstraction and storage that reduce the
amount of video data at a rate of 10 x 10" pixels to 10 x 10'? units of informa-
tion. The project also develops machine- and human-accessible vocabularies
for describing fish. The framework also comprises flexible data-processing
architecture and a specialized query system tailored to the domain. To
achieve these, the project exploits a combination of computer vision, video
summarization, database storage, scientific workflow, and human—computer
interaction methods.

Render (STREP; render-project.eu) is focused on investigating the aspect
of diversity of Big Data semantics. It investigates methods and techniques,
develops software, and collects data sets that will leverage diversity as
a source of innovation and creativity. The project also claims providing
enhanced support for feasibly managing data on a very large scale and for
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designing novel algorithms that reflect diversity in the ways information is
selected, ranked, aggregated, presented, and used.

PlanetData [Network of Excellence (NoE); planet-data.eu] works toward
establishing a sustainable European community of researchers that supports
organizations in exposing their data in new and useful ways and develops
technologies that are able to handle data purposefully at scale. The network
also facilitates researchers’ exchange, training, and mentoring, and event
organization based substantially on an open partnership scheme.

LATC (Support Action; latc-project.eu) creates an in-depth test-bed for data-
intensive applications by publishing data sets produced by the European
Commission, the European Parliament, and other European institutions as
Linked Data on the Web and by interlinking them with other governmental
data.

Advance (STREP; advance-logistics.eu) develops a decision support plat-
form for improving strategies in logistics operations. The platform is based
on the refinement of predictive analysis techniques to process massive data
sets for long-term planning and cope with huge amounts of new data in real
time.

Cubist (STREP; cubist-project.eu) elaborates methodologies and imple-
ments a platform that brings together several essential features of Semantic
Technologies and Business Intelligence (BI): support for the federation of
data coming from unstructured and structured sources; a Bl-enabled triple
store as a data persistency layer; data volume reduction and preprocessing
using data semantics; enabling BI operations over semantic data; a semantic
data warehouse implementing FCA; applying visual analytics for rendering,
navigating, and querying data.

Promise (NoE; promise-noe.eu) establishes a virtual laboratory for conduct-
ing participative research and experimentation to carry out, advance, and
bring automation into the evaluation and benchmarking of multilingual and
multimedia information systems. The project offers the infrastructure for
access, curation, preservation, re-use, analysis, visualization, and mining of
the collected experimental data.

Dicode (STREP; dicode-project.eu) develops a workbench of interoperable
services, in particular, for: (i) scalable text and opinion mining; (ii) collabora-
tion support; and (iii) decision-making support. The workbench is designed
to reduce data intensiveness and complexity overload at critical decision
points to a manageable level. It is envisioned that the use of the workbench
will help stakeholders to be more productive and concentrate on creative
activities.

In summary, the contributions to Big Data understanding of all the proj-
ects mentioned above result in the provision of different functionality for a
semantic layer—an interface between the Data and Analytics layers of the
Big Data processing stack—as pictured in Figure 1.4.

However, these advancements remain somewhat insufficient in terms of
reaching a desired balance between efficiency and effectiveness, as outlined
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Contribution of the selection of FP7 ICT projects to technologies for Big Data understanding.
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in the introduction of this chapter. Analysis of Table 1.1 reveals that no one
of the reviewed projects addresses all four dimensions of Big Data in a bal-
anced manner. In particular, only two projects—Trydec and First—claim
contributions addressing Big Data velocity and variety-complexity. This fact
points out that the clinch between efficiency and effectiveness in Big Data
processing still remains a challenge.

Complications and Overheads in Understanding Big Data

As observed, the mankind collects and stores data through generations,
without a clear account of the utility of these data. Out of data at hand,
each generation extracts a relatively small proportion of knowledge for
their everyday needs. The knowledge is produced by a generation for their
needs—to an extent they have to satisfy their “nutrition” requirement for
supporting decision-making. Hence, knowledge is “food” for data analyt-
ics. An optimistic assumption usually made here is that the next generation
will succeed in advancing tools for data mining, knowledge discovery, and
extraction. So the data which the current generation cannot process effec-
tively and efficiently is left as a legacy for the next generation in a hope that
the ancestors cope better. The truth, however, is that the developments of
data and knowledge-processing tools fail to keep pace with the explosive
growth of data in all four dimensions mentioned above. Suspending under-
standing Big Data until an advanced next-generation capability is at hand is
therefore an illusion of a solution.
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Do today’s state-of-the-art technologies allow us to understand Big Data
with an attempt to balance effectiveness and efficiency?—probably not.
Our brief analysis reveals that Big Data computing is currently developed
toward more effective versus efficient use of semantics. It is done by add-
ing the semantics layer to the processing stack (cf. Figures 1.3 and 1.4) with
an objective of processing all the available data and using all the generated
knowledge. Perhaps, the major issue is the attempt to eat all we have on the
table. Following the metaphor of “nutrition,” it has to be noted that the “food”
needs to be “healthy” in terms of all the discussed dimensions of Big Data.

Our perceptions of the consequences of being not selective with respect to
consuming data for understanding are as follows.

The major problem is the introduction of a new interface per se and in an
improper way. The advent of semantic technologies aimed at breaking down
data silos and simultaneously enabling efficient knowledge management at
scale. Assuming that databases describe data using multiple heterogeneous
labels, one might expect that annotating these labels using ontology ele-
ments as semantic tags enables virtual integration and provides immedi-
ate benefits for search, retrieval, reasoning, etc. without a need to modify
existing code, or data. Unfortunately, as noticed by Smith (2012), it is now
too easy to create “ontologies.” As a consequence, myriads of them are being
created in ad hoc ways and with no respect to compatibility, which implies
the creation of new semantic silos and, further bringing something like a
“Big Ontology” challenge to the agenda. According to Smith (2012), the big
reason is the lack of a rational (monetary) incentive for investing in reuse.
Therefore, it is often accepted that a new “ontology” is developed for a new
project. Harmonization is left for someone else’s work—in the next genera-
tion. Therefore, the more semantic technology simplifying ontology creation
is successful, the more we fail to achieve our goals for interoperability and
integration (Smith 2012).

It is worth noting here that there is still a way to start doing things cor-
rectly which, according to Smith (2012), would be “to create an incremental,
evolutionary process, where what is good survives, and what is bad fails;
create a scenario in which people will find it profitable to reuse ontologies,
terminologies and coding systems which have been tried and tested; silo
effects will be avoided and results of investment in Semantic Technology
will cumulate effectively.”

A good example of a collaborative effort going in this correct direction
is the approach used by the Gene Ontology initiative (geneontology.org)
which follows the principles of the OBO Foundry (obofoundry.org). The
Gene Ontology project is a major bioinformatics initiative with the aim of
standardizing the representation of gene and gene product attributes across
species and databases. The project provides a controlled vocabulary of terms
for describing gene product characteristics and gene product annotation
data, as well as tools to access and process this data. The mission of OBO
Foundry is to support community members in developing and publishing
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fully interoperable ontologies in the biomedical domain following common
evolving design philosophy and implementation and ensuring a gradual
improvement of the quality of ontologies.

Furthermore, adding a data semantics layer facilitates increasing effec-
tiveness in understanding Big Data, but also substantially increases the
computational overhead for processing the representations of knowl-
edge—decreasing efficiency. A solution is needed that harmonically and
rationally balances between the increase in the adequacy and the com-
pleteness of Big Data semantics, on the one hand, and the increase in com-
putational complexity, on the other hand. A straightforward approach is
using scalable infrastructures for processing knowledge representations.
A vast body of related work focuses on elaborating this approach (e.g.,
Broekstra et al. 2002; Wielemaker et al. 2003; Cai and Frank 2004; DeCandia
et al. 2007).

The reasons to qualifying this approach only as a mechanistic solution are

e Using distributed scalable infrastructures, such as clouds or
grids, implies new implementation problems and computational
overheads.

¢ Typical tasks for processing knowledge representations, such as
reasoning, alignment, query formulation and transformation, etc.,
scale hardly (e.g., Oren et al. 2009; Urbani et al. 2009; Hogan et al.
2011)—more expressiveness implies harder problems in decoupling
the fragments for distribution. Nontrivial optimization, approxima-
tion, or load-balancing techniques are required.

Another effective approach to balance complexity and timeliness is main-
taining history or learning from the past. A simple but topical example in
data processing is the use of previously acquired information for saving
approximately 50% of comparison operations in sorting by selection (Knuth
1998, p. 141). In Distributed Artificial Intelligence software, agent architec-
tures maintaining their states or history for more efficient and effective
deliberation have also been developed (cf. Dickinson and Wooldridge 2003).
In Knowledge Representation and Reasoning, maintaining history is often
implemented as inference or query result materialization (cf. Kontchakov
et al. 2010; McGlothlin and Khan 2010), which also do not scale well up to the
volumes characterizing real Big Data.

Yet another way to find a proper balance is exploiting incomplete or
approximate methods. These methods yield results of acceptable quality
much faster than approaches aiming at building fully complete or exact, that
is, ideal results. Good examples of technologies for incomplete or partial rea-
soning and approximate query answering (Fensel et al. 2008) are elaborated
in the FP7 LarKC project (larkc.eu). Remarkably, some of the approximate
querying techniques, for example, Guéret et al. (2008), are based on evolu-
tionary computing.
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Refining Big Data Semantics Layer for Balancing Efficiency Effectiveness

As one may notice, the developments in the Big Data semantics layer are
mainly focused on posing and appropriately transforming the semantics of
queries all the way down to the available data, using networked ontologies.

At least two shortcomings of this, in fact, unidirectional” approach need to
be identified:

1. Scalability overhead implies insufficient efficiency. Indeed, executing
queries at the data layer implies processing volumes at the scale of
stored data. Additional overhead is caused by the query transforma-
tion, distribution, and planning interfaces. Lifting up the stack and
fusing the results of these queries also imply similar computational
overheads. A possible solution for this problem may be sought fol-
lowing a supposition that the volume of knowledge describing data
adequately for further analyses is substantially smaller than the vol-
ume of this data. Hence, down-lifting queries for execution need to
be stopped at the layer of knowledge storage for better efficiency.
However, the knowledge should be consistent enough with the data
so that it can fulfill completeness and correctness requirements
specified in the contract of the query engine.

2. Having ontologies inconsistent with data implies effectiveness problems.
Indeed, in the vast majority of cases, the ontologies containing
knowledge about data are not updated consistently with the changes
in data. At best, these knowledge representations are revised in a
sequence of discrete versions. So, they are not consistent with the
data at an arbitrary point in time. This shortcoming may be over-
come only if ontologies in a knowledge repository evolve continu-
ously in response to data change. Ontology evolution will have a
substantially lower overhead because the volume of changes is
always significantly lower than the volume of data, though depends
on data velocity (Figure 1.3).

To sum up, relaxing the consequences of the two outlined shortcomings
and, hence, balancing efficiency and effectiveness may be achievable if a
bidirectional processing approach is followed. Top-down query answering
has to be complemented by a bottom-up ontology evolution process, which
meet at the knowledge representation layer. In addition to a balance between
efficiency and effectiveness, such an approach of processing huge data sets
may help us “... find and see dynamically changing ontologies without hav-

* Technologies for information and knowledge extraction are also developed and need to be
regarded as bottom-up. However, these technologies are designed to work off-line for updat-
ing the existing ontologies in a discrete manner. Their execution is not coordinated with the
top-down query processing and data changes. So, the shortcomings outlined below persist.
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ing to try to prescribe them in advance.” Taxonomies and ontologies are
things that you might discover by observation, and watch evolve over time”
(cf. Bollier 2010).

Further, we focus on outlining a complementary bottom-up path in the
overall processing stack which facilitates existing top-down query answering
frameworks by providing knowledge evolution in line with data change—as
pictured in Figure 1.5. In a nutshell, the proposed bottom-up path is charac-
terized by:

e Efficiently performing simple scalable queries on vast volumes of
data or in a stream window for extracting facts and decreasing vol-
umes (more details could be found in the “Scaling with a Traditional
Database” section)

* Adding extracted facts to a highly expressive persistent knowledge
base allowing evolution of knowledge (more details on that could
be seen in Knowledge Self-Management and Refinement through
Evolution)

* Assessing fitness of knowledge organisms and knowledge represen-
tations in the evolving knowledge ecosystem (our approach to that is
also outlined in the “Knowledge Self-Management and Refinement
through Evolution” section)

This will enable reducing the overheads of the top-down path by perform-
ing refined inference using highly expressive and complex queries over
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evolving (i.e., consistent with data) and linked (i.e.,, harmonized), but reason-
ably small fragments of knowledge. Query results may also be materialized
for further decreasing computational effort.

After outlining the abstract architecture and the bottom-up approach, we
will now explain at a high level how Big Data needs to be treated along the
way. A condensed formula for this high-level approach is “3F + 3Co” which
is unfolded as

3F: Focusing-Filtering-Forgetting
3Co: Contextualizing-Compressing-Connecting

Notably, both 3F and 3Co are not novel and used in parts extensively in
many domains and in different interpretations. For example, an interesting
interpretation of 3F is offered by Dean and Webb (2011) who suggest this for-
mula as a “treatment” for senior executives (CEOs) to deal with information
overload and multitasking. Executives are offered to cope with the problem
by focusing (doing one thing at a time), filtering (delegating so that they do
not take on too many tasks or too much information), and forgetting (taking
breaks and clearing their minds).

Focusing

Following our Boeing example, let us imagine a data analyst extracting
knowledge tokens from a business news stream and putting these tokens
as missing bits in the mosaic of his mental picture of the world. A tricky
part of his work, guided by intuition or experience in practice, is choosing
the order in which the facts are picked up from the token. Order of focusing
is very important as it influences the formation and saturation of different
fragments in the overall canvas. Even if the same input tokens are given, dif-
ferent curves of focusing may result in different knowledge representations
and analysis outcomes.

A similar aspect of proper focusing is of importance also for automated
processing of Big Data or its semantics. One could speculate whether a pro-
cessing engine should select data tokens or assertions in the order of their
appearance, in a reversed order, or anyhow else. If data or assertions are pro-
cessed in a stream window and in real time, the order of focusing is of lesser
relevance. However, if all the data or knowledge tokens are in a persistent
storage, having some intelligence for optimal focusing may improve process-
ing efficiency substantially. With smart focusing at hand, a useful token can
be found or a hidden pattern extracted much faster and without making a
complete scan of the source data. A complication for smart focusing is that
the nodes on the focusing curve have to be decided upon on-the-fly because
generally the locations of important tokens cannot be known in advance.
Therefore, the processing of a current focal point should not only yield what
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is intended directly of this portion of data, but also hint about the next point
on the curve.

A weak pointin such a “problem-solving” approach is that some potentially
valid alternatives are inevitably lost after each choice made on the decision
path. So, only a suboptimal solution is practically achievable. The evolution-
ary approach detailed further in section “Knowledge Self-Management and
Refinement through Evolution” follows, in fact, a similar approach of smart
focusing, but uses a population of autonomous problem-solvers operating
concurrently. Hence, it leaves a much smaller part of a solution space without
attention, reduces the bias of each choice, and likely provides better results.

Filtering

A data analyst who receives dozens of news posts at once has to focus on the
most valuable of them and filter out the rest which, according to his informed
guess, do not bring anything important additionally to those in his focus.
Moreover, it might also be very helpful to filter out noise, that is, irrelevant
tokens, irrelevant dimensions of data, or those bits of data that are unread-
able or corrupted in any other sense. In fact, an answer to the question about
what to trash and what to process needs to be sought based on the under-
standing of the objective (e.g., was the reason for Boeing to hike their market
forecast valid?) and the choice of the proper context (e.g., should we look into
the airline fleets or the economic situation in developing countries?).

A reasonable selection of features for processing or otherwise a rational
choice of the features that may be filtered out may essentially reduce the
volume as well as the variety/complexity of data which result in higher effi-
ciency balanced with effectiveness.

Quite similar to focusing, a complication here is that for big heterogeneous
data it is not feasible to expect a one-size-fits-all filter in advance. Even more,
for deciding about an appropriate filtering technique and the structure of a
filter to be applied, a focused prescan of data may be required, which implies
a decrease in efficiency. The major concern is again how to filter in a smart
way and so as to balance the intentions to reduce processing effort (efficiency)
and keep the quality of results within acceptable bounds (effectiveness).

Our evolutionary approach presented in the section “Knowledge Self-
Management and Refinement through Evolution” uses a system of environ-
mental contexts for smart filtering. These contexts are not fixed but may be
adjusted by several independent evolutionary mechanisms. For example, a
context may become more or less “popular” among the knowledge organ-
isms that harvest knowledge tokens in them because these organisms
may migrate freely between contexts in search for better, more appropri-
ate, healthier knowledge to collect. Another useful property we propose
for knowledge organisms is their resistance to sporadic mutagenic factors,
which may be helpful for filtering out noise.
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Forgetting

A professional data analyst always keeps a record of data he used in his work
and the knowledge he created in his previous analyses. The storage for all
these gems of expertise is, however, limited, so it has to be cleaned periodi-
cally. Such a cleaning implies trashing potentially valuable things, though
never or very rarely used, but causing doubts and further regrets about the
lost. Similar thing happens when Big Data storage is overflown—some parts
of it have to be trashed and so “forgotten.” A question in this respect is about
which part of a potentially useful collection may be sacrificed. Is forgetting
the oldest records reasonable?—perhaps not. Shall we forget the features that
have been previously filtered out?—negative again. There is always a chance
that an unusual task for analysis pops up and requires the features never
exploited before. Are the records with minimal potential utility the best can-
didates for trashing?—could be a rational way to go, but how would their
potential value be assessed?

Practices in Big Data management confirm that forgetting following
straightforward policies like fixed lifetime for keeping records causes regret
almost inevitably. For example, the Climate Research Unit (one of the leading
institutions that study natural and anthropogenic climate change and collect
climate data) admits that they threw away the key data to be used in global
warming calculations (Joseph 2012).

A better policy for forgetting might be to extract as much as possible knowl-
edge out of data before deleting these data. It cannot be guaranteed, however,
that future knowledge mining and extraction algorithms will not be capable of
discovering more knowledge to preserve. Another potentially viable approach
could be “forgetting before storing,” that is, there should be a pragmatic reason
to store anything. The approach we suggest in the section “Knowledge Self-
Management and Refinement through Evolution” follows exactly this way.
Though knowledge tokens are extracted from all the incoming data tokens, not
all of them are consumed by knowledge organisms, but only those assertions
that match to their knowledge genome to a sufficient extent. This similarity is
considered a good reason for remembering a fact. The rest remains in the envi-
ronment and dies out naturally after the lifetime comes to end as explained in
“Knowledge Self-Management and Refinement through Evolution”.

Contextualizing

Our reflection of the world is often polysemic, so a pragmatic choice of a
context is often needed for proper understanding. For example, “taking a
mountain hike” or “hiking a market forecast” are different actions though
the same lexical root is used in the words. An indication of a context: recre-
ation or business in this example would be necessary for making the state-
ment explicit. To put it even broader, not only the sense of statements, but
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also judgments, assessments, attitudes, and sentiments about the same data
or knowledge token may well differ in different contexts. When it goes about
data, it might be useful to know:

1. The “context of origin”—the information about the source; who orga-
nized and performed the action; what were the objects; what features
have been measured; what were the reasons or motives for collecting
these data (transparent or hidden); when and where the data were
collected; who were the owners; what were the license, price, etc.

2. The “context of processing”—formats, encryption keys, used prepro-
cessing tools, predicted performance of various data mining algo-
rithms, etc.; and

3. The “context of use”—potential domains, potential or known appli-
cations, which may use the data or the knowledge extracted from it,
potential customers, markets, etc.

Having circumscribed these three different facets of context, we may say
now that data contextualization is a transformation process which decontex-
tualizes the data from the context of origin and recontextualizes it into the
context of use (Thomason 1998), if the latter is known. This transformation is
performed via smart management of the context of processing.

Known data mining methods are capable of automatically separating
the so-called “predictive” and “contextual” features of data instances (e.g.,
Terziyan 2007). A predictive feature stands for a feature that directly influ-
ences the result of applying to data a knowledge extraction instrument—
knowledge discovery, prediction, classification, diagnostics, recognition, etc.

RESULT = INSTRUMENT (Predictive Features).

Contextual features could be regarded as arguments to a meta-function
that influences the choice of appropriate (based on predicted quality/perfor-
mance) instrument to be applied to a particular fragment of data:

INSTRUMENT = CONTEXTUALIZATION(Contextual Features).

Hence, a correct way to process each data token and benefit of contextu-
alization would be: (i) decide, based on contextual features, which would
be an appropriate instrument to process the token; and then (ii) process it
using the chosen instrument that takes the predictive features as an input.
This approach to contextualization is not novel and is known in data mining
and knowledge discovery as a “dynamic” integration, classification, selec-
tion, etc. Puuronen et al. (1999) and Terziyan (2001) proved that the use of
dynamic contextualization in knowledge discovery yields essential quality
improvement compared to “static” approaches.
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Compressing

In the context of Big Data, having data in a compact form is very important for
saving storage space or reducing communication overheads. Compressing is
a process of data transformation toward making data more compact in terms
of required storage space, but still preserving either fully (lossless compres-
sion) or partly (lossy compression) the essential features of these data—those
potentially required for further processing or use.

Compression, in general, and Big Data compression, in particular, are
effectively possible due to a high probability of the presence of repetitive,
periodical, or quasi-periodical data fractions or visible trends within data.
Similar to contextualization, it is reasonable to select an appropriate data
compression technique individually for different data fragments (clusters),
also in a dynamic manner and using contextualization. Lossy compression
may be applied if it is known how data will be used, at least potentially.
So that some data fractions may be sacrificed without losing the facets of
semantics and the overall quality of data required for known ways of its use.
A relevant example of a lossy compression technique for data having quasi-
periodical features and based on a kind of “meta-statistics” was reported by
Terziyan et al. (1998).

Connecting

It is known that nutrition is healthy and balanced if it provides all the neces-
sary components that are further used as building blocks in a human body.
These components become parts of a body and are tightly connected to the
rest of it. Big Data could evidently be regarded as nutrition for knowledge
economy as discussed in “Motivation and Unsolved Issues”. A challenge is
to make this nutrition healthy and balanced for building an adequate mental
representation of the world, which is Big Data understanding. Following the
allusion of human body morphogenesis, understanding could be simplisti-
cally interpreted as connecting or linking new portions of data to the data
that is already stored and understood. This immediately brings us about the
concept of linked data (Bizer et al. 2009), where “linked” is interpreted as a
sublimate of “understood.” We have written “a sublimate” because having
data linked is not yet sufficient, though necessary for further, more intel-
ligent phase of building knowledge out of data. After data have been linked,
data and knowledge mining, knowledge discovery, pattern recognition,
diagnostics, prediction, etc. could be done more effectively and efficiently.
For example, Terziyan and Kaykova (2012) demonstrated that executing busi-
ness intelligence services on top of linked data is noticeably more efficient
than without using linked data. Consequently, knowledge generated out of
linked data could also be linked using the same approach, resulting in the
linked knowledge. It is clear from the Linking Open Data Cloud Diagram
by Richard Cyganiak and Anja Jentzsch (lod-cloud.net) that knowledge
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(e.g, RDF or OWL modules) represented as a linked data can be relatively
easily linked to different public data sets, which creates a cloud of linked
open semantic data.

Mitchell and Wilson (2012) argue that the key to extract value from Big
Data lies in exploiting the concept of linked. They believe that linked data
potentially creates ample opportunities from numerous data sources. For
example, using links between data as a “broker” brings more possibilities
of extracting new data from the old, creating insights that were previously
unachievable, and facilitating exciting new scenarios for data processing.

For developing an appropriate connection technology, the results are rele-
vant from numerous research and development efforts, for example, Linking
Open Data (LOD; w3.org/wiki/SweolG/TaskForces/CommunityProjects/
LinkingOpenData) project, DBpedia (dbpedia.org), OpenCyc (opencyc.org),
FOAF (foaf-project.org), CKAN (ckan.org), Freebase (freebase.com), Factual
(factual.com), and INSEMTIVES (insemtives.eu/index.php). These projects
create structured and interlinked semantic content, in fact, mashing up the
features from Social and Semantic Web (Ankolekar et al. 2007). One strength
of their approach is that collaborative content development effort is propa-
gated up the level of the data-processing stack which allows creating seman-
tic representations collaboratively and in an evolutionary manner.

Autonomic Big Data Computing

The treatment offered in the “Refining Big Data Semantics Layer for
Balancing Efficiency-Effectiveness” section requires a paradigm shift in Big
Data computing. In seeking for a suitable approach to building processing
infrastructures, a look into Autonomic Computing might be helpful. Started
by International Business Machines (IBM) in 2001, Autonomic Computing
refers to the characteristics of complex computing systems allowing them
to manage themselves without direct human intervention. A human, in
fact, defines only general policies that constrain self-management process.
According to IBM," the four major functional areas of autonomic computing
are: (i) self-configuration—automatic configuration of system components; (ii)
self-optimization—automatic monitoring and ensuring the optimal function-
ing of the system within defined requirements; (iii) self-protection—automatic
identification and protection from security threats; and (iv) self-healing—
automatic fault discovery and correction. Other important capabilities of
autonomic systems are: self-identity in a sense of being capable of knowing
itself, its parts, and resources; situatedness and self-adaptation—sensing the
influences from its environment and acting accordingly to what happens
in the observed environment and a particular context; being non-proprietary
in a sense of not constraining itself to a closed world but being capable of
functioning in a heterogeneous word of open standards; and anticipatory in

" research.ibm.com/autonomic/overview/elements.html (accessed October 10, 2012).

© 2014 by Taylor & Francis Group, LLC



Toward Evolving Knowledge Ecosystems for Big Data Understanding 31

a sense of being able to automatically anticipate needed resources and seam-
lessly bridging user tasks to their technological implementations hiding
complexity.

However, having an autonomic system for processing Big Data seman-
tics might not be sufficient. Indeed, even such a sophisticated entity system
may once face circumstances which it would not be capable of reacting to
by reconfiguration. So, the design objectives will not be met by such a sys-
tem and it should qualify itself as not useful for further exploitation and die.
A next-generation software system will then be designed and implemented
(by humans) which may inherit some valid features from the ancestor system
but shall also have some principally new features. Therefore, it needs to be
admitted that it is not always possible for even an autonomic system to adapt
itself to a change within its lifetime. Consequently, self-management capabil-
ity may not be sufficient for the system to survive autonomously—humans
are required for giving birth to ancestors. Hence, we are coming to the neces-
sity of a self-improvement feature which is very close to evolution. In that we
may seek for inspiration in bio-social systems. Nature offers an automatic
tool for adapting biological species across generations named genetic evolu-
tion. An evolutionary process could be denoted as the process of proactive
change of the features in the populations of (natural or artificial) life forms
over successive generations providing diversity at every level of life organiza-
tion. Darwin (1859) put the following principles in the core of his theory:

* Principle of variation (variations of configuration and behavioral
features);

* Principle of heredity (a child inherits some features from its parents);

* Principle of natural selection (some features make some individu-
als more competitive than others in getting needed for survival
resources).

These principles may remain valid for evolving software systems, in par-
ticular, for Big Data computing. Processing knowledge originating from Big
Data may, however, imply more complexity due to its intrinsic social features.

Knowledge is a product that needs to be shared within a group so that
survivability and quality of life of the group members will be higher than
those of any individual alone. Sharing knowledge facilitates collaboration
and improves individual and group performance. Knowledge is actively
consumed and also left as a major inheritance for future generations, for
example, in the form of ontologies. As a collaborative and social substance,
knowledge and cognition evolve in a more complex way for which additional
facets have to be taken into account such as social or group focus of attention,
bias, interpretation, explicitation, expressiveness, inconsistency, etc.

In summary, it may be admitted that Big Data is collected and super-
vised by different communities following different cultures, standards,
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objectives, etc. Big Data semantics is processed using naturally different
ontologies. All these loosely coupled data and knowledge fractions in fact
“live their own lives” based on very complex processes, that is, evolve follow-
ing the evolution of these cultures, their cognition mechanisms, standards,
objectives, ontologies, etc. An infrastructure for managing and understand-
ing such data straightforwardly needs to be regarded as an ecosystem of
evolving processing entities. Below we propose treating ontologies (a key
for understanding Big Data) as genomes and bodies of those knowledge
processing entities. For this, basic principles by Darwin are applied to their
evolution aiming to get optimal or quasi-optimal (according to evolving defi-
nition of the quality) populations of knowledge species. These populations
represent the evolving understanding of the respective islands of Big Data
in their dynamics. This approach to knowledge evolution will require inter-
pretation and implementation of concepts like “birth,” “death,” “morpho-
genesis,” “mutation,” “reproduction,” etc., applied to knowledge organisms,
their groups, and environments.

i

Scaling with a Traditional Database

In some sense, “Big data” is a term that is increasingly being used to describe
very large volumes of unstructured and structured content—usually in
amounts measured in terabytes or petabytes—that enterprises want to har-
ness and analyze.

Traditional relational database management technologies, which use index-
ing for speedy data retrieval and complex query support, have been hard
pressed to keep up with the data insertion speeds required for big data ana-
lytics. Once a database gets bigger than about half a terabyte, some database
products” ability to rapidly accept new data start [start is to database prod-
ucts] to decrease.

There are two kinds of scalability, namely vertical and horizontal. Vertical
scaling is just adding more capacity to a single machine. Fundamentally,
every database product is vertically scalable to the extent that they can make
good use of more central processing unit cores, random access memory, and
disk space. With a horizontally scalable system, it is possible to add capacity
by adding more machines. Beyond doubt, most database products are not
horizontally scalable.

When an application needs more write capacity than they can get out of a
single machine, they are required to shard (partition) their data across mul-
tiple database servers. This is how companies like Facebook (facebook.com)
or Twitter (twitter.com) have scaled their MySQL installations to massive
proportions. This is the closest to what one can get into horizontal scalability
with database products.
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Sharding is a client-side affair, that is, the database server does not do it
for user. In this kind of environment, when someone accesses data, the data
access layer uses consistent hashing to determine which machine in the clus-
ter a precise data should be written to (or read from). Enhancing capacity to
a sharded system is a process of manually rebalancing the data across the
cluster. The database system itself takes care of rebalancing the data and
guaranteeing that it is adequately replicated across the cluster. This is what
it means for a database to be horizontally scalable.

In many cases, constructing Big Data systems on premise provides better
data flow performance, but requires a greater capital investment. Moreover,
one has to consider the growth of the data. While many model linear growth
curves, interestingly the patterns of data growth within Big Data systems
are more exponential. Therefore, model both technology and costs to match
up with sensible growth of the database so that the growth of the data flows.

Structured data transformation is the traditional approach of changing the
structure of the data found within the source system to the structure of the
target system, for instance, a Big Data system. The advantage of most Big Data
systems is that deep structure is not a requirement; without doubt, structure
can typically be layered in after the data arrive at the goal. However, it is a
best practice to form the data within the goal. It should be a good abstrac-
tion of the source operational databases in a structure that allows those who
analyze the data within the Big Data system to effectively and efficiently find
the data required. The issue to consider with scaling is the amount of latency
that transformations cause as data moves from the source(s) to the goal, and
the data are changed in both structure and content. However, one should
avoid complex transformations as data migrations for operational sources
to the analytical goals. Once the data are contained within a Big Data sys-
tem, the distributed nature of the architecture allows for the gathering of the
proper result set. So, transformations that cause less latency are more suit-
able within Big Data domain.

Large Scale Data Processing Workflows

Overall infrastructure for many Internet companies can be represented as
a pipeline with three layers: Ingestion, Storage & Processing, and Serving.
The most vital among the three is the Storage & Processing layer. This layer
can be represented as a multisub-layer stack with a scalable file system such
as Google File System (Ghemawat et al. 2003) at the bottom, a framework
for distributed sorting and hashing, for example, Map-Reduce (Dean and
Ghemawat 2008) over the file system layer, a dataflow programming frame-
work over the map-reduce layer, and a workflow manager at the top.
Debugging large-scale data, in the Internet firms, is crucial because
data passes through many subsystems, each having different query inter-
face, different metadata representation, different underlying models (some
have files, some have records, some have workflows), etc. Thus, it is hard
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to maintain consistency and it is essential to factor out the debugging from
the subsystems. There should be a self-governing system that takes care of
all the metadata management. All data-processing subsystems can dispatch
their metadata to such system which absorbs all the metadata, integrates
them, and exposes a query interface for all metadata queries. This can pro-
vide a uniform view to users, factors out the metadata management code,
and decouples metadata lifetime from data/subsystem lifetime.

Another stimulating problem is to deal with different data and process
granularity. Data granularity can vary from a web page, to a table, to a row,
to a cell. Process granularity can vary from a workflow, to a map-reduce pro-
gram, to a map-reduce task. It is very hard to make an inference when the
given relationship is in one granularity and the query is in other granular-
ity and therefore it is vital to capture provenance data across the workflow.
While there is no one-size-fits-all solution, a good methodology could be
to use the best granularity at all levels. However, this may cause a lot of
overhead and thus some smart domain-specific techniques need to be imple-
mented (Lin and Dyer 2010; Olston 2012).

Knowledge Self-Management and Refinement through
Evolution

World changes—so do the beliefs and reflections about it. Those beliefs
and reflections are the knowledge humans have about their environments.
However, the nature of those changes is different. The world just changes in
events. Observation or sensing (Ermolayev et al. 2008) of events invokes gen-
eration of data—often in huge volumes and with high velocities. Humans
evolve—adapt themselves to become better fitted to the habitat.

Knowledge is definitely a product of some processes carried out by con-
scious living beings (for example, humans). Following Darwin’s (1859)
approach and terminology to some extent, it may be stated that knowledge,
both in terms of scope and quality, makes some individuals more competi-
tive than others in getting vital resources or at least for improving their qual-
ity of life. The major role of knowledge as a required feature for survival is
decision-making support. Humans differ in fortune and fate because they
make different choices in similar situations, which is largely due to their pos-
session of different knowledge. So, the evolution of conscious beings notice-
ably depends on the knowledge they possess. On the other hand, making a
choice in turn triggers the production of knowledge by a human. Therefore,
it is natural to assume that knowledge evolves triggered by the evolution of
conscious beings, their decision-making needs and taken decisions, quality
standards, etc. To put both halves in one whole, knowledge evolves in sup-
port of and to support the proactive needs of the owners more effectively, for
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example, to better interpret or explain the data generated when observing
events, corresponding to the diversity and complexity of these data. This
observation leads us to a hypothesis about the way knowledge evolves:

The mechanisms of knowledge evolution are very similar to the mecha-
nisms of biological evolution. Hence, the methods and mechanisms for
the evolution of knowledge could be spotted from the ones enabling the
evolution of living beings.

In particular, investigating the analogies and developing the mechanisms
for the evolution of formal knowledge representations—specified as ontolo-
gies—is of interest for the Big Data semantics layer (Figure 1.5). The triggers
for ontology evolution in the networked and interlinked environments could
be external influences coming bottom-up from external and heterogeneous
information streams.

Recently, the role of ontologies as formal and consensual knowledge rep-
resentations has become established in different domains where the use
of knowledge representations and reasoning is an essential requirement.
Examples of these domains range from heterogeneous sensor network data
processing through the Web of Things to Linked Open Data management
and use. In all these domains, distributed information artifacts change spo-
radically and intensively in reflection of the changes in the world. However,
the descriptions of the knowledge about these artifacts do not evolve in line
with these changes.

Typically, ontologies are changed semiautomatically or even manually and
are available in a sequence of discrete revisions. This fact points out a seri-
ous disadvantage of ontologies built using state-of-the-art knowledge engi-
neering and management frameworks and methodologies: expanding and
amplified distortion between the world and its reflection in knowledge. It is
also one of the major obstacles for a wider acceptance of semantic technolo-
gies in industries (see also Hepp 2007; Tatarintseva et al. 2011).

The diversity of domain ontologies is an additional complication for proper
and efficient use of dynamically changing knowledge and information arti-
facts for processing Big Data semantics. Currently, the selection of the best
suiting one for a given set of requirements is carried out by a knowledge
engineer using his/her subjective preferences. A more natural evolutionary
approach for selecting the best-fitting knowledge representations promises
enhancing robustness and transparency, and seems to be more technologi-
cally attractive.

Further, we elaborate a vision of a knowledge evolution ecosystem where
agent-based software entities carry their knowledge genomes in the form of
ontology schemas and evolve in response to the influences percieved from
their environments. These influences are thought of as the tokens of Big Data
(like news tokens in the “Illustrative Example” section) coming into the spe-
cies” environments. Evolution implies natural changes in the ontologies which
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reflect the change in the world snap-shotted by Big Data tokens. Inspiration
and analogies are taken from evolutionary biology.

Knowledge Organisms, their Environments, and Features

Evolving software entities are further referred to as individual Knowledge
Organisms (KO). It is envisioned (Figure 1.6) that a KO:

1. Is situated in its environment as described in “Environment, Perception
(Nutrition), and Mutagens”

2. Carries its individual knowledge genome represented as a schema or
Terminological Box (TBox; Nardi and Brachman 2007) of the respec-
tive ontology (see “Knowledge Genome and Knowledge Body”)

3. Has its individual knowledge body represented as an assertional com-
ponent (ABox; Nardi and Brachman 2007) of the respective ontology
(see “Knowledge Genome and Knowledge Body”)

4. Is capable of perceiving the influences from the environment in the
form of knowledge tokens (see “Environment, Perception (Nutrition),
and Mutagens”) that may cause the changes in the genome (see
“Mutation”) and body (see “Morphogenesis”)—the mutagens

5. Is capable of deliberating about the affected parts of its genome and
body (see “Morphogenesis” and “Mutation”)

Mutagen

KO

| |Perception| I
[ oo |

[rsion]
[Trecombmton]

Sensor input

I Reproduction
esceion]

FIGURE 1.6

A Knowledge Organism: functionality and environment. Small triangles of different trans-
parency represent knowledge tokens in the environment—consumed and produced by KOs.
These knowledge tokens may also referred to as mutagens as they may trigger mutations.
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6. Is capable of consuming some parts of a mutagen for: (a) morpho-
genesis changing only the body (see “Morphogenesis”); (b) mutation
changing both the genome and body (see “Mutation”); or (c) recom-
bination—a mutual enrichment of several genomes in a group of KO
which may trigger reproduction—recombination of body replicas
giving “birth” to a new KO (see “Recombination and Reproduction”)

7. Is capable of excreting the unused parts of mutagens or the “dead”
parts of the body to the environment

The results of mainstream research in distributed artificial intelligence and
semantic technologies suggest the following basic building blocks for devel-
oping a KO. The features of situatedness (Jennings 2000) and deliberation
(Wooldridge and Jennings 1995) are characteristic to intelligent software agents,
while the rest of the required functionality could be developed using the achiev-
ments in Ontology Alignment (Euzenat and Shvaiko 2007). Recombination
involving a group of KOs could be thought of based on the known mechanisms
for multiissue negotiations on semantic contexts (e.g.,, Ermolayev et al. 2005)
among software agents—the members of a reproduction group.

Environment, Perception (Nutrition), and Mutagens

An environmental context for a KO could be thought of as an arial of its habi-
tat. Such a context needs to be able to provide nutrition that is “healthy” for
particular KO species, that is, matching their genome noticeably. The food
for nutrition is provided by Knowledge Extraction and Contextualization
functionality (Figure 1.7) in a form of knowledge tokens. Hence, several

A
A A Airline Business A

Plane Maker Business A

A Another Domain

A AN

Knowledge token

T
Another News Stream
Posted: Tue, 03 Jul 2012 05:01:10 -0400 5 5
LONDON (Reuters)
US. planemaker Boeing hiked its 20-year | <7 < " /S
market forecast, predicting demand for | :
Business News Strea>

34,000 new aircraft worth $4.5 trillion, on
growth in emerging regions an J
seek efficient new planes to cou ) 5
/
Knowledge Extraction

fuel costs.
and Contextualization

Information token

FIGURE 1.7
Environmental contexts, knowledge tokens, knowledge extraction, and contextualization.
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and possibly overlapping environmental contexts need to be regarded in
a hierarchy which corresponds to several subject domains of intetrest and
a foundational knowledge layer. By saying this, we subsume that there is a
single domain or foundational ontology module schema per environmental
context. Different environmental contexts corresponding to different subject
domais of interest are pictured as ellipses in Figure 1.7.

Environmental contexts are sowed with knowledge tokens that corre-
spond to their subject domains. It might be useful to limit the lifetime of a
knowledge token in an environment—those which are not consumed dis-
solve finally when their lifetime ends. Fresh and older knowledge tokens are
pictured with different transparency in Figure 1.7.

KOs inhabit one or several overlapping environmental contexts based
on the nutritional healthiness of knowledge tokens sowed there, that is,
the degree to which these knowledge tokens match to the genome of a
particular KO. KOs use their perceptive ability to find and consume
knowledge tokens for nutrition. A KO may decide to migrate from one
environment to another based on the availability of healthy food there.
Knowledge tokens that only partially match KOs’ genome may cause both
KO body and genome changes and are thought of as mutagens. Mutagens,
in fact, deliver the information about the changes in the world to the envi-
ronments of KOs.

Knowledge tokens are extracted from the information tokens either in
a stream window or from the updates of the persistent data storage and
further sawn in the appropriate environmental context. The context for
placing a newly coming KO is chosen by the contextualization functional-
ity (Figure 1.7) based on the match ratio to the ontology schema character-
izing the context in the environment. Those knowledge tokens that are not
mapped well to any of the ontology schemas are sown in the environment
without attributing them to any particular context.

For this, existing shallow knowledge extraction techniques could be
exploited, for example, Fan et al. (2012a). The choice of appropriate tech-
niques depends on the nature and modality of data. Such a technique
would extract several interrelated assertions from an information token
and provide these as a knowledge token coded in a knowledge representa-
tion language of an appropriate expressiveness, for example, in a tractable
subset of the Web Ontology Language (OWL) 2.0 (W3C 2009). Information
and knowledge" tokens for the news item of our Boeing example are pic-
tured in Figure 1.7.

" Unified Modeling Language (UML) notation is used for picturing the knowledge token in
Figure 1.7 because it is more illustrative. Though not shown in Figure 1.7, it can be straight-
forwardly coded in OWL, following, for example, Kendall et al. (2009).
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Knowledge Genome and Knowledge Body

Two important aspects in contextualized knowledge representation for an
outlined knowledge evolution ecosystem have to be considered with care
(Figure 1.8):

* A knowledge genome etalon for a population of KOs belonging to
one species

* An individual knowledge genome and body for a particular KO

A knowledge genome etalon may be regarded as the schema (TBox) of
a distinct ontology module which represents an outstanding context in a
subject domain. In our proposal, the etalon genome is carried by a dedicated
Etalon KO (EKO; Figure 1.8) to enable alignments with individual genomes
and other etalons in a uniform way. The individual assertions (ABox) of this
ontology module are spread over the individual KOs belonging to the cor-
responding species—forming their individual bodies.

The individual genomes of those KOs are the recombined genomes of the
KOs who gave birth to this particular KO. At the beginning of times, the
individual genomes may be replicas of the etalon genome. Anyhow, they
evolve independently in mutations or because of morphogenesis of an indi-
vidual KO, or because of recombinations in reproductive groups.

EKO

Environmental Contexts

FIGURE 1.8

Knowledge genomes and bodies. Different groups of assertions in a KO body are attributed to
different elements of its genome, as shown by dashed arrows. The more assertions relate to a
genome element, the more dominant this element is as shown by shades of gray.
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Different elements (concepts, properties, axioms) in a knowledge genome
may possess different strengths, that is, be dominant or recessive. For exam-
ple (Figure 1.8) concept C, in the genome of KO, is quite strong because it
is reinforced by a significant number of individual assertions attributed to
this concept, that is, dominant. On the contrary, C; in the genome of KO, is
very weak—that is, recessive—as it is not supported by individual asser-
tions in the body of KO,. Recessivness or dominance values may be set
and altered using techniques like spreading activation (Quillian 1967, 1969;
Collins and Loftus 1975) which also appropriately affect the structural con-
texts (Ermolayev et al. 2005, 2010) of the elements in focus.

Recessive elements may be kept in the genome as parts of the genetic mem-
ory, but until they do not contradict any dominant elements. For example, if
a dominant property of the PlaneMaker concept in a particular period of time
is PlaneMaker—hikes—MarketForecast, then a recessive property PlaneMaker—
lessens—MarketForecast may die out soon with high probability, as contradic-
tory to the corresponding dominant property.

The etalone genome of a species evolves in line with the evolution of the indi-
vidual genomes. The difference, however, is that EKO has no direct relation-
ship (situatedness) to any environmental context. So, all evolution influences
are provided to EKO by the individual KOs belonging to the corresponding
species via communication. If an EKO and KOs are implemented as agent-
based software entities, the techniques like agent-based ontology alignment
are of relevance for evolving etalon genomes. In particular, the alignment
settings are similar to a Structural Dynamic Uni-directional Distributed
(SDUD) ontology alignment problem (Ermolayev and Davidovsky 2012).
The problem could be solved using multiissue negotiations on semantic
contexts, for example, following the approach of Ermolayev et al. (2005) and
Davidovsky et al. (2012). For assuring the consistency in the updated ontol-
ogy modules after alignment, several approaches are applicable: incremental
updates for atomic decompositions of ontology modules (Klinov et al. 2012);
checking correctness of ontology contexts using ontology design patterns
approach (Gangemi and Presutti 2009); evaluating formal correctness using
formal (meta-) properties (Guarino and Welty 2001).

An interesting case would be if an individual genome of a particular KO
evolves very differently to the rest of KOs in the species. This may happen
if such a KO is situated in an environmental context substantially different
from the context where the majority of the KOs of this species are collecting
knowledge tokens. For example, the dominancy and recessiveness values in
the genome of KO, (Figure 1.8) differ noticeably from those of the genomes
of the KOs similar to KO,. A good reason for this may be: KO, is situated in
an environmental context different to the context of KO,—so the knowledge
tokens KO, may consume are different to the food collected by KO,. Hence,
the changes to the individual genome of KO, will be noticeably different to
those of KO, after some period of time. Such a genetic drift may cause that the
structural difference in individual genomes goes beyond a threshold within
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which recombination gives ontologically viable posterity. A new knowledge
genome etalon may, therefore, emerge if the group of the KOs with genomes
drifted in a similar direction reaches a critical mass—giving birth to a new
species.

The following are the features required to extend an ontology representa-
tion language for to cope with the mentioned evolutionary mechanisms:

* A temporal extension that allows representing and reasoning about
the lifetime and temporal intervals of validity of the elements in
knowledge genomes and bodies. One relevant extension and rea-
soning technique is OWL-MET (Keberle 2009).

* An extension that allows assigning meta-properties to ontological
elements for verifying formal correctness or adherence to relevant
design patterns. Relevant formalisms may be sought following
Guarino and Welty (2001) or Gangemi and Presutti (2009).

Morphogenesis

Morphogenesis in a KO could be seen as a process of developing the shape
of a KO body. In fact, such a development is done by adding new assertions
to the body and attributing them to the correct parts of the genome. This
process could be implemented using ontology instance migration technique
(Davidovsky et al. 2011); however, the objective of morphogenesis differs from
that of ontology instance migration. The task of the latter is to ensure correct-
ness and completeness, that is, that, ideally, all the assertions are properly
aligned with and added to the target ontology ABox. Morphogenesis requires
that only the assertions that fit well to the TBox of the target ontology are
consumed for shaping it out. Those below the fitness threshold are excreted.
If, for example, a mutagen perceived by a KO is the one of our Boeing example
presented in Figures 1.2 or 1.7, then the set of individual assertions will be”

{AllNipponAirways:Airline, B787-JA812A:EfficientNewPlane,
Japan:Country, Boeing:PlaneMaker, New20YMarketForecastbyBoeing:Mark
etForecast, United States:Country, Old20YMarketForecastbyBoeing:MarketF
orecast}. (1.1

Let us now assume that the genome (TBox) of the KO contains only the con-
cepts represented in Figure 1.2 as grey-shaded classes—{Airline, PlaneMaker,
MarketForecast] and thick-line relationships—{seeksFor-soughtBy}. Then
only the bolded assertions from (1.1) could be consumed for morphogen-
esis by this KO and the rest have to be excreted back to the environment.
Interestingly, the ratio of mutagen ABox consumption may be used as a good

" The syntax for representing individual assertions is similar to the syntax in UML for compat-
ibility with Figure 1.2: (assertion-name):(concept-name).
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metric for a KO in deliberations about: its resistance to mutations; desire to
migrate to a different environmental context, or to start seeking for reproduc-
tion partners.

Another important case in a morphogenesis process is detecting a con-
tradiction between a newly coming mutagenic assertion and the asser-
tion that is in the body of the KO. For example, let us assume that the
body already comprises the property SalesVolume of the assertion named
New20YMarketForecastbyBoeing with the value of 2.1 million. The value of the
same property coming with the mutagen equals to 4.5 million. So, the KO
has to resolve this contradiction by: either (i) deciding to reshape its body
by accepting the new assertion and excreting the old one; or (ii) resisting
and declining the change. Another possible behavior would be collecting
and keeping at hand the incoming assertions until their dominance is not
proved by the quantity. Dominance may be assessed using different metrics.
For example, a relevant technique is offered by the Strength Value-Based
Argumentation Framework (Isaac et al. 2008).

Mutation

Mutation of a KO could be understood as the change of its genome caused
by the environmental influences (mutagenic factors) coming with the con-
sumed knowledge tokens. Similar to the biological evolution, a KO and its
genome are resistent to mutagenic factors and do not change at once because
of any incoming influence, but only because of those which could not be
ignored because of their strength. Different genome elements may be dif-
ferently resistant. Let us illustrate different aspects of mutation and resis-
tance using our Boeing example. As depicted in Figure 1.9, the change of the
AirPlaneMaker concept name (to PlaneMaker) in the genome did not happen
though a new assertion had been added to the body as a result of morpho-
genesis (Boeing: (PlaneMaker) AirPlaneMaker”). The reason AirPlaneMaker con-
cept resisted this mutation was that the assertions attributed to the concept
of PlaneMaker were in the minority—so, the mutagenic factor has not yet
been strong enough. This mutation will have a better chance to occur if simi-
lar mutagenic factors continue to come in and the old assertions in the body
of the KO die out because their lifetime periods come to end. More generally,
the more individual assertions are attributed to a genome element at a given
point in time—the more strong this genome element is to mutations.

In contrast to the AirPlaneMaker case, the mutations brought by hikes—
hikedBy and successorOf—predecessorOf object properties did happen
(Figure 1.9) because the KO did not possess any (strong) argument to resist

" UML syntax is used as basic. The name of the class from the knowledge token is added in
brackets before the name of the class to which the assertion is attributed in the KO body. This
is done for keeping the information about the occurrences of a different name in the incom-
ing knowledge tokens. This historical data may further be used for evaluating the strength
of the mutagenic factor.
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them. Indeed, there were no contradictory properties both in the genome
and the body of the KO before it accepted the grey-shaded assertions as a
result of morphogenesis.

Not all the elements of an incoming knowledge token could be consumed
by a KO. In our example (Figure 1.9), some of the structural elements (AirLine,
EfficientNewPlane, seeks—soughtBy) were

* Too different to the genome of this particular KO, so the similarity
factor was too low and the KO did not find any match to its TBox.
Hence, the KO was not able to generate any replacement hypotheses
also called propositional substitutions (Ermolayev et al. 2005).

* Too isolated from the elements of the genome—having no properties
relating them to the genome elements. Hence, the KO was not able to
generate any merge hypotheses.

These unused elements are excreted (Figure 1.9) back to the environment
as a knowledge token. This token may further be consumed by another

U NN NN NN NN AN EEENE NN EAEENNEEEENNEEEEEEEEEEEEEEEEEEEEEEE,
° )

.

Country Mutating KO
-baseOf
hikes successorOf
. . . .
""" - mutations _basedIn hikedBy ' H P Of
-has by eerme Genome
# !

# #

X : |
L J

‘MarketForecastbyBoeing : MarketForecast es-»~

- morphogeneses

=

AN NN NN NN NN SN NS NN NN NSNS EEEEEEEEEEEEES

- irrelevant {20V MarketForecastbyBoeing : MarketForecast &
----- and excreted i

elements

Body

oS EEEEEE NN NN EEEEEEEEEEEEEEEEEEEEEEEEEEEEY

*

Consumed Excreted

knowledge knowledge
token

S
777 -seeksFor
# | -soughtBy

FRAComsamplan: crpae s = Tow)
Genome 1-built : <unspecifieds - 52009 |
I-delivered : Date !
pieiverediDate . . o o

Body  \ S 1
{ :
ISalesVolume = 4.5 trillion |

bas¢ hikes successorOf

predecesSorOf

[UnitedStates : Country hikedBy  [old20Y

_|Sa]esVn]nme I

FIGURE 1.9
Mutation in an individual KO illustrated by our Boeing example.
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KO with different genome comprising matching elements. Such a KO may
migrate from a different environmental context (e.g., Airlines Business).

Similar to morphogenesis, mutation may be regarded as a subproblem of
ontology alignment. The focus is, however, a little bit different. In contrast
to morphogenesis which was interpreted as a specific ontology instance
migration problem, mutation affects the TBox and is therefore structural
ontology alignment (Ermolayev and Davidovsky 2012). There is a solid body
of related work in structural ontology alignment. Agent-based approaches
relevant to our context are surveyed, for example, in Ermolayev and
Davidovsky (2012).

In addition to the requirements already mentioned above, the following
features extending an ontology representation language are essential for
coping with the mechanisms of mutation:

* The information of the attribution of a consumed assertion to a par-
ticular structural element in the knowledge token needs to be pre-
served for future use in possible mutations. An example is given
in Figure 1.8—Boeing: (PlaneMaker) AirPlaneMaker. The name of the
concept in the knowledge token (PlaneMaker) is preserved and the
assertion is attributed to the AirPlaneMaker concept in the genome.

Recombination and Reproduction

As mutation, recombination is a mechanism of adapting KOs to environ-
mental changes. Recombination involves a group of KOs belonging to one
or several similar species with partially matching genomes. In contrast to
mutation, recombination is triggered and performed differently. Mutation
is invoked by external influences coming from the environment in the form
of mutagens. Recombination is triggered by a conscious intention of a KO
to make its genome more resistant and therefore better adapted to the envi-
ronment in its current state. Conscious in this context means that a KO first
analyzes the strength and adaptation of its genome, detects weak elements,
and then reasons about the necessity of acquiring external reinforcements
for these weak elements. Weaknesses may be detected by:

* Looking at the proportion of consumed and excreted parts in the
perceived knowledge tokens—reasoning about how healthy is the
food in its current environmental context. If not, then new elements
extending the genome for increasing consumption and decreasing
excretion may be desired to be acquired.

* Looking at the resistance of the elements in the genome to muta-
tions. If weaknesses are detected, then it may be concluded that the
assertions required for making these structural elements stronger
are either nonexistent in the environmental context or are not con-
sumed. In the latter case, a structural reinforcement by acquiring
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new genome elements through recombination may be useful. In the
former case (nonexistence), the KO may decide to move to a different
environmental context.

Recombination of KOs as a mechanism may be implemented using sev-
eral available technologies. Firstly, a KO needs to reason about the strengths
and weaknesses of the elements in its genome. For this, in addition to the
extra knowledge representation language features mentioned above, it needs
a simple reasoning functionality (pictured in Figure 1.6 as Deliberation).
Secondly, a KO requires a means for getting in contact with the other KOs
and checking if they have similar intentions to recombine their genomes. For
this, the available mechanisms for communication (e.g., Labrou et al. 1999;
Labrou 2006), meaning negotiation (e.g., Davidovsky et al. 2012), and coali-
tion formation (e.g., Rahwan 2007) could be relevant.

Reproduction is based on recombination mechanism and results and goes
further by combining the replicas of the bodies of those KOs who take part
in the recombination group resulting in the production of a new KO. A KO
may intend to reproduce itself because his lifetime period comes to an end or
because of the other individual or group stimuli that have to be researched.

Populations of Knowledge Organisms

KOs may belong to different species—the groups of KOs that have similar
genomes based on the same etalon carried by the EKO. KOs that share the
same areal of habitat (environmental context) form the population which may
comprise the representatives of several species. Environmental contexts may
also overlap. So, the KOs of different species have possibilities to interact.
With respect to species and populations, the mechanisms of (i) migration, (ii)
genetic drift, (iii) speciation, and (iv) breeding for evolving knowledge represen-
tations are of interest.

Migration is the movement of KOs from one environmental context to
another context because of different reasons mentioned in the “Knowledge
Organisms, their Environments, and Features” section. Genetic drift is the
change of genomes to a degree beyond the species tolerance (similarity)
threshold caused by cumulative efffect of a series of mutations as explained
in the “Knowledge Genome and Knowledge Body” section. Speciation effect
occurs if genetic drift results in a distinct group of KOs capable of reproduc-
ing themselves with their recombined genomes.

If knowledge evolves in a way similar to biological evolution, the out-
come of this process would best-fit KOs desires of environmental mimicry,
but perhaps not the requirements of ontology users. Therefore, for ensuring
human stakeholders’ commitment to the ontology, it might be useful to keep
the evolution process under control. For this, constraints, or restrictions in
another form, may be introduced for relevant environmental contexts and
fitness measurement functions so as to guide the evolution toward a desired
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goal. This artificial way of control over the natural evolutionary order of
things may be regarded as breeding—a controlled process of sequencing
desired mutations that causes the emergence of a species with the required
genome features.

Fitness of Knowledge Organisms and Related Ontologies

It has been repeatedly stated in the discussion of the features of KOs in
“Knowledge Organisms, their Environments, and Features” that they exhibit
proactive behavior. One topical case is that a KO would rather migrate away
from the current environmental context instead of continuing consuming
knowledge tokens which are not healthy for it in terms of structural simi-
larity to its genome. It has also been mentioned that a KO may cooperate
with other KOs to fulfill its evolutionary intentions. For instance, KOs may
form cooperative groups for recombination or reproduction. They also
interact with their EKOs for improving the etalon genome of the species.
Another valid case, though not mentioned in “Knowledge Organisms, their
Environments, and Features”, would be if a certain knowledge token is avail-
able in the environment and two or more KOs approach it concurrently with
an intention to consume. If those KOs are cooperative, the token will be con-
sumed by the one which needs it most—so that the overall “strength” of the
species is increased. Otherwise, if the KOs are competitive, as it often hap-
pens in nature, the strongest KO will get the token. All these cases require
a quantification of the strength, or fitness, of KOs and knowledge tokens.
Fitness is, in fact, a complex metric having several important facets.

Firstly, we summarize what fitness of a KO means. We outline that their fit-
ness is inseparable from (in fact, symmetric to) the fitness of the knowledge
tokens that KOs consume from and excrete back to their environmental con-
texts. Then, we describe several factors which contribute to fitness. Finally,
we discuss how several dimensions of fitness could be used to compare dif-
ferent KOs.

To start our deliberations about fitness, we have to map the high-level
understanding of this metric to the requirements of Big Data processing as
presented in the “Motivation and Unsolved Issues” and “State of Technology,
Research, and Development in Big Data Computing” sections in the form
of the processing stack (Figures 1.3 through 1.5). The grand objective of a
Big Data computing system or infrastructure is providing a capability for
data analysis with balanced effectiveness and efficiency. In particular, this
capability subsumes facilitating decision-making and classification, provid-
ing adequate inputs to software applications, etc. An evolving knowledge
ecosystem, comprising environmental contexts populated with Kos, is intro-
duced in the semantics processing layer of the overall processing stack. The
aim of introducing the ecosystem is to ensure seamless and balanced con-
nection between a user who operates the system at the upper layers and the
lower layers that provide data.
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Ontologies are the “blood and flesh” of the KOs and the whole ecosys-
tem as they are both the code registering a desired evolutionary change and
the result of this evolution. From the data-processing viewpoint, the ontolo-
gies are consensual knowledge representations that facilitate improving
data integration, transformation, and interoperability between the process-
ing nodes in the infrastructure. A seamless connection through the layers
of the processing stack is facilitated by the way ontologies are created and
changed. As already mentioned above in the introduction of the “Knowledge
Self-Management and Refinement through Evolution” section, ontologies
are traditionally designed beforehand and further populated by assertions
taken from the source data. In our evolving ecosystem, ontologies evolve in
parallel to data processing. Moreover, the changes in ontologies are caused
by the mutagens brought by the incoming data. Knowledge extraction sub-
system (Figure 1.7) transforms units of data to knowledge tokens. These in
turn are sown in a corresponding environmental context by a contextualiza-
tion subsystem and further consumed by KOs. KOs may change their body
or even mutate due to the changes brought by consumed mutagenic knowl-
edge tokens. The changes in the KOs are in fact the changes in the ontologies
they carry. So, ontologies change seamlessly and naturally in a way to best
suite the substance brought in by data. For assessing this change, the judg-
ments about the value and appropriateness of ontologies in time are impor-
tant. Those should, however, be formulated accounting for the fact that an
ontology is able to self-evolve.

A degree to which an ontology is reused is one more important character-
istic to be taken into account. Reuse means that data in multiple places refers
to this ontology and when combined with interoperability it implies that
data about similar things is described using the same ontological fragments.
When looking at an evolving KO, having a perfect ontology would mean that
if new knowledge tokens appear in the environmental contexts of an organ-
ism, the organism can integrate all assertions in the tokens, that is, without
a need to excrete some parts of the consumed knowledge tokens back to
the environment. That is to say, the ontology which was internal to the KO
before the token was consumed was already prepared for the integration of
the new token. Now, one could turn the viewpoint by saying that the infor-
mation described in the token was already described in the ontology which
the KO had and thus that the ontology was reused in one more place. This
increases the value, that is, the fitness of the ontology maintained by the KO.

Using similar argumentation, we can conclude that if a KO needs to excrete
a consumed knowledge token, the ontology fits worse to describing the frag-
ment of data to which the excreted token is attributed. Thus, in conclusion,
we could say that the fitness of a KO is directly dependent on the propor-
tion between the parts of knowledge tokens which it: (a) is able to consume
for morphogenesis and possibly mutation; versus (b) needs to excrete back
to the environment. Additionally, the age of the assertions which build up
the current knowledge body of a KO influences its quality. If the proportion
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of very young assertions in the body is high, the KO might be not resistant
to stochastic changes, which is not healthy. Otherwise, if only long-living
assertions form the body, it means that the KO is either in a wrong context
or too resistant to mutagens. Both are bad as no new information is added,
the KO ignores changes, and hence the ontology it carries may become irrel-
evant. Therefore, a good mix of young and old assertions in the body of
a KO indicates high fitness—KO’s knowledge is overall valid and evolves
appropriately.

Of course stating that fitness depends only on the numbers of used and
excreted assertions is an oversimplification. Indeed, incoming knowledge
tokens that carry assertions may be very different. For instance, the knowl-
edge token in our Boeing example contains several concepts and properties
in its TBox: a Plane, a PlaneMaker, a MarketForecast, an Airline, a Country,
SalesVolume, seeksFor—soughtBy, etc. Also, some individuals attrib-
uted to these TBox elements are given in the ABox: UnitedStates, Boeing,
New20YMarketForecastByBoeing, 4.5 trillion, etc. One can imagine a less
complex knowledge token which contains less information. In addition to
size and complexity, a token has also other properties which are important to
consider. One is the source where the token originates from. A token can be
produced by knowledge extraction from a given channel or can be excreted
by a KO. When the token is extracted from a channel, its value depends on
the quality of the channel, relative to the quality of other channels in the
system (see also the context of origin in the “Contextualizing” section). The
quality of knowledge extraction is important as well, though random errors
could be mitigated by statistical means. Further, a token could be attributed
to a number of environmental contexts. A context is important, that is, adds
more value to a token in the context if there are a lot of knowledge tokens in
that context or more precisely there have appeared many tokens in the con-
text recently. Consequently, a token becomes less valuable along its lifetime
in the environment.

Till now, we have been looking at different fitness, value, and quality fac-
tors in insulation. The problem is, however, that there is no straightforward
way to integrate these different factors. For this, an approach to address the
problem of assessing the quality of an ontology as a dynamic optimization
problem (Cochez and Terziyan 2012) may be relevant.

Some Conclusions

For all those who use or process Big Data a good mental picture of the world,
dissolved in data tokens, may be worth of petabytes of raw information
and save weeks of analytic work. Data emerge reflecting a change in the
world. Hence, Big Data is a fine-grained reflection of the changes around
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us. Knowledge extracted from these data in an appropriate and timely way
is an essence of adequate understanding of the change in the world. In this
chapter, we provided the evidence that numerous challenges stand on the
way of understanding the sense, the trends dissolved in the petabytes of
Big Data—extracting its semantics for further use in analytics. Among those
challenges, we have chosen the problem of balancing between effectiveness
and efficiency in understanding Big Data as our focus. For better explaining
our motivation and giving a reader the key that helps follow how our prem-
ises are transformed into conclusions, we offered a simple walkthrough
example of a news token.

We began the analysis of Big Data Computing by looking at how the
phenomenon influences and changes industrial landscapes. This overview
helped us figure out that the demand in industries for effective and efficient
use of Big Data, if properly understood, is enormous. However, this demand
is not yet fully satisfied by the state-of-the-art technologies and methodolo-
gies. We then looked at current trends in research and development in order
to narrow the gaps between the actual demand and the state of the art. The
analysis of the current state of research activities resulted in pointing out the
shortcomings and offering an approach that may help understand Big Data
in a way that balances effectiveness and efficiency.

The major recommendations we elaborated for achieving the balance are: (i)
devise approaches that intelligently combine top-down and bottom-up pro-
cessing of data semantics by exploiting “3F + 3Co” in dynamics, at run time;
(ii) use a natural incremental and evolutionary way of processing Big Data
and its semantics instead of following a mechanistic approach to scalability.

Inspired by the harmony and beauty of biological evolution, we further
presented our vision of how these high-level recommendations may be
approached. The “Scaling with a Traditional Database” section offered a
review of possible ways to solve scalability problem at data processing level.
The “Knowledge Self-Management and Refinement through Evolution” sec-
tion presented a conceptual level framework for building an evolving ecosys-
tem of environmental contexts with knowledge tokens and different species
of KOs that populate environmental contexts and collect knowledge tokens
for nutrition. The genomes and bodies of these KOs are ontologies describing
corresponding environmental contexts. These ontologies evolve in line with
the evolution of KOs. Hence they reflect the evolution of our understanding
of Big Data by collecting the refinements of our mental picture of the change
in the world. Finally, we found out that such an evolutionary approach to
building knowledge representations will naturally allow assuring fitness of
knowledge representations—as the fitness of the corresponding KOs to the
environmental contexts they inhabit.

We also found out that the major technological components for building
such evolving knowledge ecosystems are already in place and could be effec-
tively used, if refined and combined as outlined in the “Knowledge Self-
Management and Refinement through Evolution” section.
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Abstract. Evolving Knowledge Ecosystems were proposed recently to
approach the Big Data challenge, following the hypothesis that knowl-
edge evolves in a way similar to biological systems. Therefore, the inner
working of the knowledge ecosystem can be spotted from natural evolu-
tion. An evolving knowledge ecosystem consists of Knowledge Organisms,
which form a representation of the knowledge, and the environment in
which they reside. The environment consists of contexts, which are com-
posed of so-called knowledge tokens. These tokens are ontological frag-
ments extracted from information tokens, in turn, which originate from
the streams of information flowing into the ecosystem. In this article we
investigate the use of LSH Forest (a self-tuning indexing schema based on
locality-sensitive hashing) for solving the problem of placing new knowl-
edge tokens in the right contexts of the environment. We argue and show
experimentally that LSH Forest possesses required properties and could
be used for large distributed set-ups. Further, we show experimentally
that for our type of data minhashing works better than random hyper-
plane hashing. This paper is an extension of the paper “Balanced Large
Scale Knowledge Matching Using LSH Forest” presented at the Interna-
tional Keystone Conference 2015.

Keywords: Evolving Knowledge Ecosystems, Locality-sensitive Hash-
ing, LSH Forest, Minhash, Random Hyperplane Hashing, Big Data

1 Introduction

Semantic keyword search attempts to find results close to the intent of the user,
i.e., it attempts to find out the meaning behind the keywords provided. Perhaps,
one of the biggest problems when attempting this is that the search system needs
knowledge that is evolving in line with the world it serves. In other words, only



if the search system has an up-to-date representation of the domain of interest
of the user will it be possible to interpret the real world meaning of the keywords
provided. However, this problem becomes very challenging given the wide range
of possible search queries combined with the explosion in the volume of data
available, its complexity, variety and rate of change.

Recently a conceptual approach to attack this challenging problem has been
proposed [1]. The core of that proposal is the understanding that the mechanisms
of knowledge evolution could be spotted from evolutionary biology. These mech-
anisms are enabled in an Evolving Knowledge Ecosystem (EKE) populated with
Knowledge Organisms (KO). Individual KOs carry their fragments of knowledge
— similarly to different people having their individual and potentially dissimilar
perceptions and understanding of their environment. The population of KOs,
like a human society, possesses the entire knowledge representation of the world,
or more realistically — a subject domain. Information tokens flow into such an
ecosystem, are further transformed into the knowledge tokens, and finally sown
there. The KOs collect the available knowledge tokens and consume these as
nutrition. Remarkably, the constitution of an EKE, allows natural scaling in a
straightforward way. Indeed, the fragment of knowledge owned by an individual
KO and the knowledge tokens consumed by KOs are small. Therefore, a well
scalable method of sowing the knowledge tokens is under demand to complete
a scalable knowledge feeding pipeline into the ecosystem. This paper reports
on the implementation and evaluation of our knowledge token sowing solution
based on the use of LSH Forest [2]. We demonstrate that: (i) the method scales
very well for the volumes characteristic to big data processing scenarios, (ii) us-
ing random hyperplane hashing (RHH) for angular distance between knowledge
tokens results in poor precision and recall, while (iii) Jaccard distance yields re-
sults with sufficiently good precision and recall. As a minor result we would like
to highlight the f-RHH method which does not require more computations than
standard RHH, but still improves the results. The rest of the paper is structured
as follows. Section 2 sketches out the concept of EKE and also explains how
knowledge tokens are sown in the environments. Section 3 presents the basic
formalism of Locality Sensitive hashing (LSH) and LSH Forest and introduces
the distance metrics. Finally, it outlines our arguments for using LSH Forest as
an appropriate method. Section 4 describes the settings for our computational
experiments whose results are presented in section 5. The paper is concluded
and plans for future work are outlined in section 6.

2 Big Knowledge — Evolving Knowledge Ecosystems

Humans make different decisions in similar situations, thus taking different
courses in their lives. This is largely due to the differences in their knowledge.
So, the evolution of conscious beings noticeably depends on the knowledge they
possess. On the other hand, making a choice triggers the emergence of new
knowledge. Therefore, it is natural to assume that knowledge evolves because of
the evolution of humans, their decision-making needs, their value systems, and



the decisions made. Hence, knowledge evolves to support the intellectual activity
of its owners, e.g., to interpret the information generated in event observations
— handling the diversity and complexity of such information. Consequently, Er-
molayev et al. [1] hypothesize that the mechanisms of knowledge evolution are
very similar to (and could be spotted from) the mechanisms of the evolution
of humans. Apart from the societal aspects, these are appropriately described
using the metaphor of biological evolution.

A biological habitat is in fact an ecosystem that frames out and enables
the evolution of individual organisms, including humans. Similarly, a knowledge
ecosystem has to be introduced for enabling and managing the evolution of
knowledge. As proposed in [1], such EKE should scale adequately to cope with
realistic and increasing characteristics of data/information to be processed and
balance the efficiency and effectiveness while extracting knowledge from infor-
mation and triggering the changes in the available knowledge.

2.1 Efficiency Versus Effectiveness

Effectiveness and efficiency are the important keys for big data processing and
for the big knowledge extraction. Extracting knowledge out of big data would be
effective only if: (i) not a single important fact is left unattended (completeness);
and (ii) these facts are faceted adequately for further inference (expressiveness
and granularity). Efficiency in this context may be interpreted as the ratio of
the utility of the result to the effort spent.

In big knowledge extraction, efficiency could be naturally mapped to time-
liness. If a result is not timely the utility of the resulting knowledge will drop.
Further, it is apparent that increasing effectiveness means incrementing the ef-
fort spent on extracting knowledge, which negatively affects efficiency. In other
words, if we would like to make a deeper analysis of the data we will have a less
efficient system.

Finding a solution, which is balanced regarding these clashes, is challenging.
In this paper we use a highly scalable method to collect the increments of incom-
ing knowledge using a 3F+3Co approach, which stand for Focusing, Filtering,
and Forgetting + Contextualizing, Compressing, and Connecting (c.f. [1] and
section 3.2).

2.2 Evolving Knowledge Ecosystems

An environmental context for a KO could be thought of as its habitat. Such a
context needs to provide nutrition that is “healthy” for particular KO species —
i.e. matching their genome noticeably. The nutrition is provided by Knowledge
Extraction and Contextualization functionality of the ecosystem [1] in a form of
knowledge tokens. Hence, several and possibly overlapping environmental con-
texts need to be regarded in a hierarchy which corresponds to several subject
domains of interest and a foundational knowledge layer. Environmental contexts
are sowed with knowledge tokens that correspond to their subject domains. It
is useful to limit the lifetime of a knowledge token in an environment — those



which are not consumed dissolve finally when their lifetime ends. KOs use their
perceptive ability to find and consume knowledge tokens for nutrition. Knowl-
edge tokens that only partially match KOs’ genome may cause both KO body
and genome changes and are thought of as mutagens. Mutagens in fact deliver
the information about the changes in the world to the environment. Knowledge
tokens are extracted from the information tokens either in a stream window, or
from the updates of the persistent data storage and further sown in the appro-
priate environmental context. The context for placing a newly coming knowledge
token is chosen by the contextualization functionality. In this paper we present
a scalable solution for sowing these knowledge tokens in the appropriate envi-
ronmental contexts.

3 Locality-Sensitive Hashing

The algorithms for finding nearest neighbors in a dataset were advanced in
the work by Indyk and Motwani, who presented the seminal work on Locality-
sensitive hashing (LSH) [3]. They relaxed the notion of a nearest neighbor to
that of an approximate one, allowing for a manageable error in the found neigh-
bors. Thanks to this relaxation, they were able to design a method which can
handle queries in sub-linear time. To use LSH, one has to create a database
containing outcomes of specific hash functions. These hash functions have to
be independent and likely to give the same outcome when hashed objects are
similar and likely to give different outcomes when they are dissimilar. Once this
database is built one can query for nearest neighbors of a given query point by
hashing it with the same hash functions. The points returned as approximate
near neighbors are the objects in the database which got hashed to the same
buckets as the query point. [4] If false positives are not acceptable, one can still
filter these points.

Formally, to apply LSH we construct a family H of hash functions which map
from a space D to a universe U.

Let d; < ds be distances according to a distance measure d on a space D.
The family H is (d1, d2, p1, p2)-sensitive if for any two points p,q € D and h € H:

— if d(p,q) < dy then Pr[h(p) =h(q)] > p
— it d(prg) > dy then Pr[h(p) = h ()] < ps

where pl > p2.

The probabilities p; and ps might be close to each other and hence only one
function from H giving an equal result for two pints might not be sufficient to
trust that these points are similar. Amplification is used to remedy this problem.
This is achieved by creating b functions g;, each consisting of r hash functions
chosen uniformly at random from . The function g; is the concatenation of
independent basic hash functions. The symbols b and r stand for bands and rows.
These terms come from the representation of data. One could collect all outcomes
of the hash functions in a two-dimensional table. This table can be divided in b
bands containing r rows each. (See also [5].) The concatenated hash function g;



maps points p and ¢ to the same bucket if all hash functions it is constructed from
hashes the points to the same buckets. If for any j, the function g; maps p and
q to the same bucket, p and ¢ are considered close. The amplification creates

a new locality sensitive family which is (dl, da,1—(1— plr)b, 1-(1- pgr)b)

sensitive.

3.1 LSH Forest

The standard LSH algorithm is somewhat wasteful with regards to the amount
of memory is uses. Objects always get hashed to a fixed length band, even if that
is not strictly needed to decide whether points are approximate near neighbors.
LSH Forest (introduced by Bawa et al. [2]) introduces variable length bands and
stores the outcomes of the hashing in a prefix tree data structure.

The length of the band is reduced by only computing the hash functions if
there is more than one point which is hashed to the same values. Put another
way, in LSH the function g; maps two points to the same bucket if all functions
it is constructed from do so as well. LSH Forest potentially reduces the number
of evaluations by only computing that much of g; as needed to distinct between
the different objects. Alternatively, one can view this as assigning a unique label
with a dynamic length to each point. In the prefix tree the labels on the edges
are the values of the sub-hash functions of g;.

Hashing and quantization techniques have a limitation when considering very
close points. If points are arbitrarily close to each other, then there is no number
of hash functions which can tell them apart. This limitation applies to both
traditional LSH and the Forest variant. Therefore, LSH assumes a minimum
distance between any two points and LSH Forest defines a maximum label length
equal to the maximum height of the tree (indicated as k).

3.2 Sowing Knowledge Tokens Using LSH Forest

The first requirement for knowledge token sowing is that similar tokens get
sown close to each other. This is achieved by adding knowledge tokens to the
forest. Similar ones will get placed such that they are more likely to show up
when the trees are queried for such tokens. Further requirements come from the
3F+3Co [1] aspects. When using LSH Forest:

Focusing is achieved by avoiding deep analysis when there are no similar ele-
ments added to the trees.

Filtering is done by just not adding certain data to the tree.

Forgetting is achieved by removing data from the tree. Removal is supported
by the Forest and is an efficient operation.

Contextualizing happens when different parts of the token are spread over the
trees. A token may therefore belong to several contexts simultaneously.
Compressing the tree compresses data in two different ways. Firstly, it only
stores the hashes computed from the original data and, secondly, common
prefixes are not duplicated but re-used. Note that it is possible to store the

actual data on a secondary storage and keep only the index in memory.



Connecting the Forest is a body which grows incrementally. Since representa-
tions of different tokens can reside together in disparate parts of the trees,
they can be considered connected. However, the real connection of these
parts will be the task of the KOs which will consume the knowledge tokens
which are sown in a tree.

In the next section we will introduce our experiments. In the first experiment
series we show that the Forest is able to fulfill the focusing requirement. The
second one shows that the forest is able to aid the KO to connect concepts
together. Finally, the last series shows that the data structure has desirable
spacial and temporal properties, demonstrating that the tree is able to compress
data meanwhile offering an appropriate efficiency — effectiveness trade-off.

3.3 Distance Metrics and Locality-Sensitive Hash functions

In our previous work [6] we only used Jaccard distance to evaluate the use of
LSH Forests. Typical metrics used in the literature for distance between textual
documents are Jaccard and angular distance. In this work we will also use the
later one and compare their performance.

The Jaccard distance is defined on sets A and B as d (A, B) = 1—sim (A, B).
Here, sim (also referred to as the Jaccard similarity) is defined as the number
of elements the sets have in common divided by the total number of elements in
the sets (i.e, sim (4, B) = I’:Bg}
the set are the words of the text (or are derived from the words in the text). The
angular distance between texts is defined as the angle between vectors where
each dimension encodes the frequency of a specific word (or derivation).

For example, if we have two texts A = “the cat sits on the table” and B =
“the black cat sits with the other cats”. Then, a preprocessing step could reduce
these texts to “cat sit table” and “black cat sit cat” (removing common words
and stemming, see also the next section). For the Jaccard distance, these texts
will then be converted into sets A = {cat, sit, table} and B = {black, sit, cat}
resulting in a Jaccard distance of 1 — % = 0.5. For the angular distance we
obtain vectors A = [1,1,1,0] and B = [2,1,0, 1] where the dimensions encode
the frequencies of the words cat, sit, table, and black, respectively. The resulting
angular distance (the angle between A and B) is 0.785.

For both distance metrics Locality-Sensitive Hash functions are known. The
LSH function family used for Jaccard distance is minhash from Broder [7]. The
outcome of this hash function on a set is the lowest index (counting from 0)
any of the elements in the set has in a permutation of the whole universe of
elements. In our example from above with two documents the universe consists
of only 4 words. One possible permutation is [black, cat, sit, table] leading to an
outcome of 1 for set A (the word in A with lowest index in the permutation is
cat) and 0 for set B. The range of the outcome space is as large as the size of
the universe. One could in principle first determine the size of the universe and
then decide upon the permutations. However, measuring the size of the universe
beforehand and performing actual permutations would be unpractical. Instead,

). In the case of text documents the elements in



we use a normal hash function to perform the permutation by mapping each
original index to a target index. Hence, the outcome space is limited to the
range of that hash function.

For the angular distance we use random hyperplane hashing (RHH) [8]. The
core idea is to project the frequency vector onto a random vector. The result
of the hash function is 1 if the projection is a positive multiple of the random
vector and -1, otherwise. In practice this comes down to finding the sign of
the dot product between the frequency vector and the random vector. Another
way of looking at this is that we are deciding whether the vector in question is
above or below® the hyperplane on which the random vector is a normal vector.
An intuitive proof for the correctness of both minhash and RHH can be found
from [5].

When using RHH the LSH forest will place the element in the one subtree if
the hash outcome is 1. On the contrary, an outcome of -1 will cause it to direct
the element to the other subtree. However, sometimes this decision seems too
harsh. If the projected vector is only a very small multiple of the random vector
the element is very close to the hyperplane and the binary decision which is
made could cause nearest neighbors to be hashed to different subtrees.

To alleviate this problem, we investigate a slightly different approach which
we will call fuzzy random hyperplane hashing or f-RHH. Instead of only allowing
a binary decision, the hash function can also report that it is unable to decide
well enough on which side of the hyperplane the given vector is (i.e., the out-
come of the projection is small). The result of the hashing can thus be 1, -1, or
both. When the result is both, then we will place the element in both subtrees
essentially ignoring the outcome of the hash function completely.

What we need to perform f-RHH is a way to decide whether a frequency
vector is close to the hyperplane. Moreover, this method has to be efficiently
implementable. A first attempt could be to compute the angle between the vec-
tor and the hyperplane. This is a feasible but relatively expensive computation
(especially because it has to happen for all vector-hyperplane pairs). However,
observe that the angle between the vector and the hyperplane is 7 — ‘the angle
between the vector and the normal’. If we call the vector a and the normal n,
then given an angle k 4, a will get assigned both hash outcomes if

—

™ T < a-n ) <k
— —an = — — arccos | ———
2 2 lalllln]|

Which can be rewritten as:

. a-n
arcsin () <k
[[all[|n]]

3Above can be defined as on the same side as the normal vector; below is then the
other side of the hyperplane.

“the maximumum angle between a vector and the hyperplane for a to be assigned
both hash outcomes



In this expression ||n|| is essentially a positive constant® which we will call R. If
we normalize the vector a before we compute the angle, the angle will remain
the same. We will cal this normalized vector @ where ||a|| = 1. Using these facts,
the previous expression can be rewritten as:

a-n
sin (—— ) <k
arcsin ( 7 )
Which can be rearranged to:

|a-n| <sin(k)*R=C

What this expression tells us is that if the angle between a vector a and the
hyperplane is smaller than &, then the absolute value of the dot product of the
normalized vector @ and the normal vector is smaller than a given constant
number C'.

This last expression can be implemented very efficiently. In fact, besides the
normalization of each frequency vector (which has to happen only once), the
dot product computation is exactly the same as what we would be computing
anyway for the random hyperplane hashing.

To illustrate the effect of f-RHH, we present a two dimensional example in
fig. 1. The figure shows a random vector 7 and the hyperplane H on which
7 is a normal vector. The red shaded area contains all vectors for which the
hash outcome will be negative. Conversely, vectors in the blue area will get the
value 41 assigned. All vectors which are in the overlap between the red and blue
are will get both values assigned; causing the hyperplane to not cut the space
sharply in two. In other words, the hyperplane does not strictly subdivide the
space into two subspaces. Instead it creates an overlapping boundary between
the two subspaces in which points are in both of the subspaces at the same time.

One question which remains to be answered is the value of the constant C.
In order to find a reasonable value, we ran several preliminary experiments and
found that a reasonably well working value was 10'*. Note that our normal vector
n has its components sampled from the range [—263,263 — 1]. We cautiously
assume that this constant value is data and case dependent. Hence, this constant
should not be taken as a general recommendation.

5The norm of a specific random vector, will be the same for all angle computations.
Moreover, since this very high dimensional vector and the each dimension of the vector
is sampled from a uniform distribution, the expected norm of the random vectors is
constant. In any case, the values are most likely different but will be in the same
ballpark.
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Fig. 1: An illustration of fuzzy random hyperplane hashing. Vectors which are in
the area where -1 and 1 overlap have both hash outcomes at the same time.

4 Evaluation

The experiments are designed so that we start from a fairly simple set-up and
more complexity is added in each following experiment. In the first series of
experiments, we feed knowledge tokens created from three different data sources
into an LSH tree and present measure how they are spread over the tree. In the
following series, we use two and later three data sources and measure how the
LSH Forest classifies the tokens and how it is capable of connecting the knowledge
tokens. In that same series we compare the performance of the different hash
functions. Finally, in the third series we add dynamism to the experiment by
sampling the knowledge tokens in different ways and measure how the memory
usage and processing time evolve.

Finding a suitable dataset for the experiment is not obvious. What we need
are small pieces of information (i.e., the knowledge tokens) about which we
know how they should be connected (i.e., a gold standard). Further, the dataset
should be sufficiently large to conduct the experiments. We solved this issue
by selecting three large ontologies for which a so-called alignment [9] has been
created. These particular ontologies are large and have a fairly simple structure.
Further,by using only the labels of the ontology a reasonable alignment can be



found [10]. Therefore, we extract the labels from these ontologies and use them
as knowledge tokens. This is a relaxation of the knowledge token concept. In the
earlier work [1] a knowledge token has an internal structure.

Datasets The Large Biomed Track of the Ontology Alignment Evaluation ini-
tiative® is the source of the datasets used in our evaluation. The FMA ontology”,
which contains 78,989 classes is the first dataset. The FMA ontology only con-
tains classes and non-hierarchical datatype properties, i.e., no object or datatype
properties nor instances. Secondly, there is the NCI ontology® containing 66,724
classes, and finally a fragment of 122,464 classes of the SNOMED ontology®.
The NCI ontology contains classes, non-hierarchical datatype and hierarchical
object properties. The classes of all ontologies are structured in a tree using
owl:SubClassOf relations. The UMLS-based reference alignments as prepared
for OAEI '° are used as a gold standard. From these reference alignments we
only retain the equal correspondences, with the confidence levels set to one.
Preprocessing We preprocess the ontologies by computing as many represen-
tations for each class as it has labels in the ontology. The preprocessing is very
similar to the second strategy proposed in [10]. According to this strategy, for
each label of each class, a set of strings is created as follows: the label is converted
to lowercase and then split in strings using all the whitespace and punctuation
marks as a delimiter. If this splitting created strings of 1 character, they are
concatenated with the string that came before it. In addition to these steps, we
also removed possessive suffixes from the substrings and removed the 20 most
common English language words according to the Oxford English Dictionary!!.
This preprocessing results in 133628, 175698, and 122505 knowledge tokens, i.e.,
sets of strings for the FMA, NCI, and SNOMED ontology, respectively.

Implementation The implementation of our evaluation code heavily uses par-
allelism to speed up the computation. From the description of the LSH algorithm,
it can be noticed that the hashing of the objects happens independent of each
other. Therefore they can be computed in parallel using a multi-core system.

For the implementation of the minhash algorithm, we use Rabin fingerprints
as described by Broder [11] instead of computing a real permutation of the
universe. An improvement over earlier work [10] where Rabin hashing was also
used is due to the fact that we invert the bits of the input to the hashing function.
We noticed that small inputs gave a fairly high number of collisions using the
functions normally, while the inverted versions do hardly cause any.

For the random hyperplane hashing we use a hash function to imitate an
infinite random vector. The way this works is that we interpret each word as
a number, which we then take to be the index (in the vector) representing the

Shttp://www.cs.ox.ac.uk/isg/projects/SEALS/o0aei/2013/
"http://sig.biostr.washington.edu/projects/fm/
Shttp://www.obofoundry.org/cgi-bin/detail.cgi?id=ncithesaurus
“http://www.ihtsdo.org/index.php?id=545
Ohttp://www.cs.ox.ac.uk/isg/projects/SEALS/0aei/2013/0aei2013 _umls_
reference.html
"http://www.oxforddictionaries.com/words/the-oec-facts-about-the-language



frequency of the word. Then, to find the value of the random vector for that
index, we hash the index with the hash function. This has the practical impli-
cation that there is no need to store a random vector in its entirety, nor is there
a need to know all words of the corpus beforehand. As a hash function we use
murmur3 '2. This choice is made because the hash function is fast, it provides
reasonable mixing of the input bits, and has a close to uniform output range.

The outcome of RHH is binary and the trie used will be a binary tree as
well (as opposed to the n-ary trie used for minhash). Because of this difference
we can easily afford checking newly added data for exact duplicates. So, when
we insert a knowledge token using RHH (or -RHH) we check in the leaf nodes
whether the already existing token has the same source concept and the same
representation we ignore it immediately. This is as opposed to double insertions
which happen in the case of minhash (see also the results in section 5.1).

The experiments are performed on hardware with two Intel Xeon E5-2670
processors (totaling 16 hyper-threaded cores) and limited to use a maximum of
16 GB RAM.

4.1 Single data source — Single Tree

In this series of experiments, we use only one LSH tree and knowledge tokens
from a single dataset. First, the ontology is parsed and all its concepts are
tokenized as described above. The resulting knowledge tokens are hashed (with
the different hash functions — minhash, RHH, and {-RHH) and then fed into an
LSH tree. We then analyze the distribution of the knowledge tokens in the tree
obtained for each hashing option. Concrete, we observe how deep the knowledge
tokens are located in the tree and how many siblings the leaves in the tree have.
Further, for the case of minhash, we investigate chains of nodes which are only
there because of a low number of tokens at the bottom of the tree.

4.2 Connecting Knowledge Tokens using LSH Forest, i.e. Matching

The objective of our the first experiment in this second series is to show how
the ontology matching using LSH Forest compares to standard LSH. Besides
the change in data structure we use the experimental set-up similar to what
was used for testing standard LSH in our earlier research work [10]. In that
work only Jaccard distance and minhashing were used and the best result for
matching the SNOMED and NCI ontologies was obtained using 1 band of 480
rows which corresponds to 1 tree of maximum height &, = 480. To keep the
results comparable, we also do not use the reduced collision effect from inverting
before hashing (see Implementation above). It needs to be noted, however,
that we use a slightly different approach for selecting near neighbors compared
to the standard LSH Forest approximate nearest neighbor querying. Since we
are not interested in neighbors if they are to far away, we only take the siblings
of each leaf into account when searching for related concepts. Further, we ignore

2https://code.google.com/p/smhasher/wiki/MurmurHash3



concepts if they their similarity is less than 0.8. Next to the traditional ontology
matching measures of precision, recall, and F-measure, the potential memory
and processing power savings are evaluated.

In the second part of this series we use the properties of the tree and also
experiment with RHH and f-RRH. For minhashing we use our improved version,
applying the inversion before hashing. We also incorporate the knowledge from
the previous experiments to test how LSH Forest can perform when connecting
knowledge tokens using a shorter tree. We measure both runtime performance
and quality metrics for different number of trees.

In the last part we use the fact that there is no reason to limit ourselves to
only using two data sources. Hence, we demonstrate scalability of the system by
feeding all knowledge tokens created for all three datasets. We also analyze the
time saving compared to performing three separate alignment tasks when pairs
of datasets are used.

4.3 Adding Dynamics

In the final series of experiments we observe how the tree reacts to dynamic
insertion of concepts. In the basic case, we select 10 knowledge tokens (from
the three sets) using a uniform distribution. These are then one by one inserted
into the tree. After every 10 insertions we measure number of hash operations
used to measure the time complexity. The cumulative memory consumption is
measured as the number of edges used in the trees. We also measure the real
elapsed time after the insertion of every 10° knowledge tokens.

On an average system some knowledge tokens will be added much more fre-
quently than others. This is due to the fact that the information or queries
which the system processes are somehow focused on a certain domain. This also
means that the tokens would not arrive according to a uniform distribution. A
more plausible scenario is that certain concepts are very likely to occur, while
others do hardly occur at all. We model this phenomena by using a so-called
Zipf distribution with exponent 1 which causes few concepts to be inserted fre-
quently while most are inserted seldom. Using this set-up we perform the same
measurements as made for the uniform distribution.

It has to be noted that we need to make a minor change to the way our
trees process the tokens. When a token already exists at a node, the standard
implementation would build a chain which can only end at k,,. This is related
to our above remark about the minimal distance between any two points. To
solve this problem, the lowest internal nodes check whether the newly added
representation is already existing and if so, it will ignore the representation. We
shortly analyzed the effect of this change using the same set-up as in the second
experiment series and noticed that this check does hardly affect runtime perfor-
mance. The main effect is visible in the number of edges and hash operations
which both drop by about 30 %. Further, a marginal decrease of the precision
and a marginal increase of the recall is observable.



5 Results

5.1 Single Data Source — Single Tree

For the first series of experiments, we look at the characteristics of the LSH
tree for the distance metrics and hash functions. We start with the cosine dis-
tance, RHH and {-RHH (the variant described above) because the outcome of
the hashing is binary. This binary tree makes it somewhat easier to analyze.

Cosine Distance — RHH, f-RHH When measuring the frequencies of the
depths of the leafs in the tree we obtain the results shown in fig. 2. To obtain this
figure we placed all knowledge tokens from a given dataset into a tree with k,,, =
80 after hashing them using RHH and f~-RHH, respectively. Then we measure
the number of leaves at a given height. From the figure it can be seen that there
are only slight differences between the way the different datasets are spread over
the tree. From the exect numbers we observed that the fRHH histograms are
slightly skewed to the right when compared to their RHH counterparts. This
is as expected since fRHH will insert extra elements into the tree whenever
the outcome of the hashing has both values at the same time. The tail of the
histogram decays pretty fast for all data sets indicating that the tree is able to
differentiate between the majority of the tokens after about 40 hashings.
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Fig.2: The frequency of a leaf occurring at a given height for the knowledge
tokens derived from the different data sets.

Jaccard Distance — Minhash After feeding the minhashed knowledge tokens
of each data set into their own single LSH Tree with k,,, = 80, we find clusters of
leaves as shown in fig. 3. The figure shows how often a group of n siblings occurs
as a function of the depth in the tree. Note that this figure is more complex than
the figure we obtained for the (f-)RHH case. The reason for this complexity is
that we are not dealing with a binary, but an n-ary tree.
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Fig. 3: Frequency of sibling groups of a given size at a given level in one LSH
Tree. Note the logarithmic scale.

What we notice in the figures is that most of the concepts are fairly high
up in the tree. After roughly 30 levels all the concepts, except these residing at
the bottom of the tree, are placed. It is also visible that most knowledge tokens
are located in the leaves which either have very few siblings or are located high
up in the tree. This indicates that the tree is able to distinguish between the
representations fairly fast. In both the FMA and NCI ontologies, we notice a high
amount of knowledge tokens at the bottom of the tree, i.e., at level k,,, = 80. We
noticed that the same amount of concepts end up at the bottom of the tree even
if k,, is chosen to be 1000, which indicates that hashing might be incapable to
distinguish between the representations, i.e., they are so close that their hashes
virtually always look the same. After further investigation, we found that the
Jaccard similarities between the sibling concepts at the bottom of the tree are all
equal to 1. This means that there are concepts in the ontology which have very
similar labels, i.e., labels which (often because of our preprocessing steps) get
reduced to exactly the same set of tokens. One problem with this phenomenon
is that the tree contains long chains of nodes, which are created exclusively for
these few siblings. We define an exclusive chain as the chain of nodes between
an internal node at one level above the bottom of the tree, and another (higher)
node which has more than one child. The lengths of these exclusive chains are
illustrated in fig. 4a.

We notice that mainly the NCI ontology causes long exclusive chains. The
most plausible cause for this is that NCI has a higher average number of repre-
sentations per concept (2.6) than the other two ontologies (1.7 — FMA and 1.0
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— SNOMED). To investigate this further, we plot the number of classes which
the siblings at the lowest level represent. The result of analyzing the number of
classes represented by the leaves in each sibling cluster can be found in fig. 4b

From the figure we notice that, indeed, very often there is a low number of
classes represented by the siblings of the final nodes. We also notice that the
NCT ontology has the most severe representation clashes.

5.2 Connecting Knowledge Tokens using LSH Forest, i.e. Matching

Part 1 When matching the SNOMED and NCI ontologies using a single tree of
height 480, we obtain the precision of 0.838, recall of 0.547, and hence F-measure
of 0.662. These results are similar to the results of the standard LSH algorithm
which attained the precission of 0.842, recall of 0.535, and F-measure of 0.654.

The LSH Forest algorithm, however, uses only 30 % of the amount of hash
function evaluations compared to the standard LSH algorithm. Furthermore, the
Forest saves around 90 % of the memory used for storing the result of the hash
evaluations. This is because the tree saves a lot of resources by only computing
and storing the part of the label which is needed. Further, a result is stored only
once if the same outcome is obtained from the evaluation of a given hash function
for different representations. It should, however, be noted that using LSH Forest
also implies a memory overhead for representing the tree structure, while the
standard algorithm can place all hash function evaluations in an efficient two
dimensional table.

The speed of the two algorithms with the same set-up is very similar. Using
the Forest, the alignment is done in 20.6 seconds, while the standard algorithm
completes in 21.5 seconds.

Part 2 As can be seen in the distribution of the ontologies over the tree in our
previous experiment series (fig. 3) non-similar concepts remain fairly high up
in the tree. Hence, when using the improved Rabin hashing technique described
above, we can reduce the maximum height of the tree. Based on this information,
we now choose the maximum height of the tree to be 30. We also use 10 as the



highest level of interest and ignore all representations which are unable to get
a lower positions in the tree. We vary the number of trees used between 1 and
10 and show the impact on the precision, recall and F-measure in fig. 5a and
timing in fig. 5b.
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Fig. 5: Quality measurements and runtime behavior for an ontology matching
task using different number of trees for minhash.

From the quality measurements, we see that the number of trees has little
effect. It is hard to see from the figure, but the precision lowers ever so slightly
when more trees are used. Concretely, it goes from 0.836947 when using one tree
to 0.831957 with 10 trees. The recall has the opposite behavior growing from
0.546824 to 0.550616. The net effect of these two on the F-measure is a slight
increase when more trees are used, namely from 0.661472 to 0.662662. It needs
to be noted that also these results are in the same range as the measures in the
previous experiment. Hence, we can conclude that constraining the height of a
tree does not affect the quality much, if at all. However, as can be seen in the
timing chart, the tree works much faster when its height is reduced. When only
one tree is used, roughly 3 seconds are needed to obtain results. Increasing the
number of trees to 10 only doubles the time, most likely because the system is
better able to use multiple threads or the virtual machine might do a better
just-in-time compilation. In any case, we note that using the forest and better
hashing, we can create a system which is roughly 7 times faster and produces
results of similar quality.

Next, we experimented using the RHH and f-RHH hash functions. The qual-
ity measurements for these for trees with depth 80 are shown in figs. 6a and 6b.
Surprisingly and seemingly contradicting to the findings of [12] the performance
of RHH and f-RHH are pretty low when compared to minhash. The reason for
this low performance seems to be that in the case of the earlier work [12] the
comparison was performed between a large set of complete web pages. The docu-
ments which we are working with in these experiments are much smaller, namely
tens of words, instead of hundreds or thousands in the case of web pages. Further,
we are looking for a high similarity in order to classify something similar, while
the earlier work is focused on finding near-duplicate web pages. Finally, when
comparing web pages there will often be a large impact from the frequencies



of words. In the current work, however, the frequencies are usually very small
numbers. Since these results are not satisfying for the setting we are developing,
we will not continue using RHH and f-RHH for further experiments. However,
we would still like to highlight the performance difference between RHH and
f-RHH. As can be seen from the graphs, f-RHH achieves a much better precision
compared to RHH Also the recall and hence F-measure are always higher than
what we obtained using RHH. Hence, it would be worth investigating further
whether -RHH works better compared to normal RHH in other use cases.
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Fig. 6: Quality measurements of an ontology matching task using different num-
ber of trees using RHH and f-RHH.

Part 3 To try whether we can also use the tree for bigger datasets, we now
feed all knowledge tokens created from all three ontologies into the system and
present similar measurements in fig. 7.
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Fig. 7: Quality measurements and runtime behavior for a three way ontology
matching task using different number of trees.

Now, we notice the effect on the precision and recall more profoundly. Also
the runtime increases faster when the input is larger. We do however see only
a three-fold increase when the number of trees is ten-folded. When comparing
these results to our earlier work [10] we can see the speed-up of using LSH Forest



and performing multiple alignments at once. In our previous work we used 45.5
seconds for doing three 2-way alignment tasks. Using the LSH Forest we can
perform the 3-way alignment in less than 10 seconds. When using a single tree,
we measured a time of 3.2 seconds yielding roughly a ten-fold speed-up.

5.3 Adding Dynamics

The results of adding knowledge tokens according to a uniform distribution are
in fig. 8. From the figures we note that the number of edges needed grows sub-
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Fig. 8: Cumulative number of edges and hashes; and time needed for uniform
adding of knowledge tokens

linear. This is as expected since both the fact that certain knowledge tokens
will be selected more than once and the reuse of edges decreases the number
of new edges needed. The number of hashes shows an initial ramp-up and then
starts growing linear. We also note that the time used for adding is growing,
but the growth slows down when more concepts are added. Moreover, if we try
to fit a linear curve trough the cumulative runtime measurements, we notice
that we can obtain a Pearson product-moment correlation coefficient of 0.9976,
indicating that the increase is actually very close to linear.

When choosing the representations using a Zipf distribution instead, we ob-
tain the results as depicted in fig. 9. When comparing the charts for insertion
using the normal and Zipf distribution, we notice that the later puts much less
of a burden upon the system. This is a desirable effect since it means that the
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system is likely to work well with more organic loads. Also here, we can fit a lin-
ear curve trough the cumulative runtime measurements with a high correlation
coefficient of 0.9968.



6 Conclusions and Outlook

When trying to understand and follow what is happening around us, we have to
be able to connect different pieces of information together. Moreover, the amount
of information which we perceive does not allow us to look at each detail, instead
we need to focus on specific parts and ignore the rest. When we want to built
a system capable of embodying evolution in knowledge, similar challenges have
to be tackled. In this paper we investigated one of the first steps needed for this
type of system, namely bringing related pieces of knowledge together.

The system we envision is an Evolving Knowledge Ecosystem in which Knowl-
edge Organisms are able to consume Knowledge Tokens, i.e., pieces of knowledge,
which have been sown in the environment. In this paper we looked at the appli-
cation of LSH Forest to dynamically sow knowledge tokens in the environmental
contexts.

We found out that LSH Forest is a suitable approach because it is able to
balance well between efficiency and effectiveness. This can be observed from the
fact that the method scales well, both from a space and runtime perspective;
and from the fact that the quality measures are sufficiently high when using
minhash. Further, the Forest makes it possible to focus on these parts which
need further investigation and it allows for connecting between the knowledge
tokens. We also investigated the use of cosine distance using random hyperplane
hashing. From our observations we noticed that this approach performs poorly
in comparison to minhash. This seems contradictory to earlier findings [12], but
is likely because of the fact that the documents which are being compared are
very different in nature (short labels vs. complete web pages).

There are still several aspects of using LSH Forest which could be further
investigated. First, the problem caused by exclusive chains could be mitigated
by measuring the distance between knowledge tokens when they reach a certain
depth in the tree. Only when the concepts are different enough, there is a need
to continue; this however requires to parametrize the inequality. Another option
to reduce at least the amount of used memory and pointer traversals is using
PATRICIA trees as proposed by Bawa et al. [2].

Secondly, we noted that the LSH tree allows for removal of concepts and that
this operation is efficient. Future research is needed to see how this would work
in an evolving knowledge ecosystem. Besides, as described in [1], the knowledge
tokens do not disappear at once from an environmental context. Instead, they
might dissolve slowly, which could be thought of as a decreasing fuzzy member-
ship in the context. One straightforward method for achieving this would be to
use a sliding window which has an exponential decay. Also more complex ideas
could be investigated, perhaps even providing a bonus for concepts which are
queried often or using hierarchical clustering techniques to remove tokens from
areas which are densely populated [13]. This would mean that some tokens re-
main in the system even when other (less popular or more common) concepts
with similar insertion characteristics get removed.

Thirdly, we observed that {~-RHH performed better than the traditional RHH.
The improvement was still not enough to warrant its use in the context of this



paper, however. As a further direction it would definitely be beneficial to see a
large scale comparison between standard RHH, f~RHH, and perhaps multi-proble
LSH [14].

Lastly, it would be interesting to see how the Forest would react when the
input data becomes that big that it is impossible to keep the tree in the physical
memory available. Then, using a distributed setting, ways should be found to
minimize the overhead when concepts are added and removed from the tree. One
promising idea is the use of consistent hashing for the distribution of knowledge
tokens as proposed in [15].
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