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On a posteriori error bounds for approximations

of the generalized Stokes problem generated
by the Uzawa algorithm

I. ANJAM∗, M. NOKKA†, and S. I. REPIN‡

Abstract — In this paper, we derive computable a posteriori error bounds for approximations com-
puted by the Uzawa algorithm for the generalized Stokes problem. We show that for each Uzawa
iteration both the velocity error and the pressure error are bounded from above by a constant multi-
plied by the L2-norm of the divergence of the velocity. The derivation of the estimates essentially uses
a posteriori estimates of the functional type for the Stokes problem.

1. Introduction

Let Ω ∈ R
n be a bounded connected domain with a Lipschitz continuous boundary

∂Ω. Henceforth, we use the space of vector valued functions

V (Ω,R
n) := W 1

2 (Ω,R
n)

and two spaces of tensor-valued functions

Σ(Ω) := L2(Ω,M
n×n)

Σ(Div,Ω) := {w ∈ Σ(Ω) | Divw ∈ L2(Ω,R
n)}

where M
n×n is the space of symmetric n×n-matrices (tensors). The scalar product

of tensors is denoted by two dots (:), and the L2 norm of Σ is denoted by ‖ · ‖Σ. The
L2 norm of scalar and vector valued functions is denoted by ‖ · ‖.

By S̊(Ω) we denote the closure of smooth solenoidal functions w with compact
supports in Ω with respect to the norm ‖∇w‖Σ. Let V0(Ω,Rn) denote the subspace
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322 I. Anjam, M. Nokka, and S. I. Repin

of V (Ω,Rn) that consists of functions with zero traces on ∂Ω. The space of scalar

valued square summable functions with zero mean is denoted by L̃2(Ω,R).
The classical statement of the generalized Stokes problem consists of finding a

velocity field u ∈ S̊(Ω)+uD and pressure p ∈ L̃2(Ω) which satisfy the relations

−Div(ν∇u)+µu+∇p= f in Ω (1.1)

divu = 0 in Ω (1.2)

u = uD on ∂Ω (1.3)

where f ∈ L2(Ω,Rn), and ∫

∂Ω
uD ·n dx = 0.

Here and later on n denotes the outward unit normal vector to ∂Ω, and we assume
that the material parameters ν and µ belong to the space L∞(Ω,R), and

0 < ν 6 ν(x) 6 ν , ∀x ∈Ω

0 6 µ 6 µ(x) 6 µ , ∀x ∈Ω.

The generalized solution of (1.1)–(1.3) is a function u ∈ S̊(Ω)+uD such that

∫

Ω
(ν∇u : ∇w+µu ·w)dx =

∫

Ω
f ·w dx ∀w ∈ S̊(Ω). (1.4)

It is well known that u can be defined as the first component of the saddle point
problem generated by any of the Lagrangians

L(v,q) :=

∫

Ω

(
1

2
ν |∇v|2 +

1

2
µ |v|2−qdivv− f · v

)
dx

LA(v,q) :=
∫

Ω

(
1

2
ν |∇v|2 +

1

2
µ |v|2 +

1

2
λ |divv|2−qdivv− f · v

)
dx.

The quantity in LA is called the augmented Lagrangian (in which λ ∈ R+). We have

L(v, p) 6 L(u, p) 6 L(u,q) ∀v ∈V0 +uD, q ∈ L2

LA(v, p) 6 LA(u, p) 6 LA(u,q) ∀v ∈V0 +uD, q ∈ L2.

From the right-hand side inequalities we see that
∫
Ω(p− q)divu dx = 0 for all

q ∈ L2, from which we conclude that divu = 0. From the left-hand side inequali-
ties it follows that for any solenoidal v we have J(v) > J(u), where

J(v) :=
∫

Ω

(
1

2
ν |∇v|2 +

1

2
µ |v|2− f · v

)
dx.
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On a posteriori error bounds 323

Indeed, the exact solution of the problems

inf
v∈V0+uD

sup
q∈L2

L(v,q), inf
v∈V0+uD

sup
q∈L2

LA(v,q)

is (u, p). For a detailed exposition of this subject, we refer to [4].
Finding approximations of (u, p) can be performed by the Uzawa algorithm

presented below.

Algorithm 1.1 (Uzawa algorithm).

1: Set k=0 and ρ ∈ R+. Make initial guess for pk ∈ L̃2.

2: Find uk by minimizing the Lagrangian L(v, pk) or LA(v, p
k) w.r.t. v, i.e., by solv-

ing either (1.5) or (1.6), respectively.

For the Lagrangian L, we have the problem: Find uk ∈V0 +uD such that:∫

Ω

(
ν∇uk : ∇w+µuk ·w

)
dx =

∫

Ω

(
f ·w+ pkdivw

)
dx ∀w ∈V0. (1.5)

For the Lagrangian LA, we have the problem: Find uk ∈V0 +uD such that:∫

Ω

(
ν∇uk : ∇w+µuk ·w+λdivuk divw

)
dx

=

∫

Ω

(
f ·w+ pkdivw

)
dx ∀w ∈V0. (1.6)

3: Find
pk+1 = (pk−ρdivuk) ∈ L̃2. (1.7)

4: Set k = k+1 and go to step 2.

Our goal is to deduce computable bounds of the difference between uk and the
exact solution u in terms of the energy norms

||| w |||2 :=
∫

Ω

(
ν |∇w|2 +µ |w|2

)
dx

and

]|| w ||[2λ :=
∫

Ω

(
ν |∇w|2 +µ |w|2+λ |divw|2

)
dx.

Theorem 1.1. The Uzawa algorithm (Algorithm 1.1) converges, i.e.,

uk
k→∞−→ u strongly in V (Ω,R

n)

pk
k→∞−→ p weakly in L2(Ω)

provided that
0 < ρ < 2min(ν ,µ) (1.8)

and p0 ∈ L̃2(Ω). If µ ≡ 0, the condition is 0 < ρ < 2ν . These conditions are the

same for both (1.5) and (1.6).
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324 I. Anjam, M. Nokka, and S. I. Repin

Proof. The proof is based on well known arguments (see, e.g., [13]). However,
for the convenience of the reader, we present the proof for the generalized Stokes
problem, in the case of (1.5).

The exact solution of the generalized Stokes problem satisfies the relation

∫

Ω
(ν∇u : ∇w+µu ·w)dx =

∫

Ω
( f ·w+ pdivw)dx ∀w ∈V0(Ω). (1.9)

We set w = uk−u and subtract (1.9) from (1.5), which gives

||| uk−u |||2=
∫

Ω
(pk− p)div(uk−u)dx.

Let vk := uk−u and qk := pk− p. Then we rewrite this relation in the form

||| vk |||2=
∫

Ω
qkdivvk dx. (1.10)

On the other hand, (1.7) is equivalent to

∫

Ω
(pk+1− pk)φ dx+ρ

∫

Ω
divukφ dx = 0 ∀φ ∈ L2(Ω).

By setting φ = pk+1− p we obtain

∫

Ω
(pk+1− pk)(pk+1− p)dx+ρ

∫

Ω
divuk(pk+1− p)dx = 0

which is equivalent to

∫

Ω
(qk+1−qk)qk+1 dx+ρ

∫

Ω
divvkqk+1 dx = 0

and

‖qk+1‖2−‖qk‖2 +‖qk+1−qk‖2 = −2ρ

∫

Ω
divvkqk+1 dx. (1.11)

By combining (1.10) and (1.11), we obtain

‖qk+1‖2−‖qk‖2+‖qk+1−qk‖2 +2ρ ||| vk |||

= −2ρ

∫

Ω
divvk(qk+1−qk)dx

6 2ρ‖divvk‖ ‖qk+1−qk‖
6 δ−1ρ2‖divvk‖2 +δ‖qk+1−qk‖2

6 δ−1ρ2
(
‖∇vk‖2Σ +‖vk‖2

)
+δ‖qk+1−qk‖2 (1.12)
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On a posteriori error bounds 325

where δ ∈ (0,1). Note that

||| vk |||2 > ν‖∇vk‖2Σ +µ‖vk‖2 > min(ν ,µ)
(
‖∇vk‖2Σ +‖vk‖2

)

and, therefore, (1.12) implies the estimates

‖qk+1‖2−‖qk‖2 +(1−δ )‖qk+1−qk‖2

+ρ
(
2min(ν ,µ)−δ−1ρ

)(
‖∇vk‖2Σ +‖vk‖2

)
6 0. (1.13)

Now, we sum inequalities (1.13) for k = 0, . . . ,N and find that

‖qN+1‖2 +(1−δ )
N

∑
k=0

‖qk+1−qk‖2

+ρ
(
2min(ν ,µ)−δ−1ρ

) N

∑
k=0

(
‖∇vk‖2Σ +‖vk‖2

)
6 ‖q0‖. (1.14)

Because of condition (1.8), there exists a δ∗ ∈ (0,1) such that

2min(ν ,µ)−δ−1
∗ ρ > 0.

We set δ = δ∗ in (1.14), and see that

‖∇vk‖2Σ +‖vk‖2 = ‖∇(uk−u)‖2Σ +‖uk−u‖2 k→∞−→ 0.

Also, we see that ‖qk‖ = ‖pk − p‖ is bounded in L2(Ω), so ‖pk‖ is bounded in
L2(Ω). We also observe from (1.14), that

‖qk+1−qk‖2 = ‖pk+1− pk‖2 k→∞−→ 0

so we can extract from pk a subsequence pk
′
, which converges to some element p∗

weakly in L2(Ω). The equation (1.5) gives in the limit

∫

Ω
(ν∇u : ∇w+µu ·w)dx =

∫

Ω
( f ·w+ p∗divw)dx ∀w ∈V0

and by comparison to (1.9) we find that

∫

Ω
(p− p∗)divw dx = 0 ∀w ∈V0

which means that p∗ = p+ c, where c ∈ R. In other words, the sequence pk
′
con-

verges weakly to p in L̃2(Ω) However, if p0 ∈ L̃2, then it is easy to see from (1.7)

that pk ∈ L̃2 with all k. From this we make the conclusion that the sequence pk
′

converges weakly to p in L2(Ω).
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326 I. Anjam, M. Nokka, and S. I. Repin

2. Error estimates for exact solutions generated
by the Uzawa algorithm

In this section, we show that the errors of approximations generated by the Uzawa
algorithm are controlled by the L2-norm of the divergence of the velocity. First, we
compare approximations computed on two consequent iterations and establish the
following result.

Theorem 2.1. Let (uk, pk) and (uk+1, pk+1) be the solutions of two consecutive

iterations of the Uzawa algorithm. Then, for both (1.5) and (1.6) we have

||| uk+1−uk ||| 6
√
ν
−1
ρ‖divuk‖ (2.1)

‖pk+1− pk‖ = ρ‖divuk‖. (2.2)

In addition, for (1.6) we also have

]|| uk+1−uk ||[λ 6
√
ν
−1
ρ‖divuk‖. (2.3)

Proof. The equation for pressure (2.2) follows directly from (1.7). By subtract-
ing the kth equation (1.5) from the (k+1)th equation, we obtain

∫

Ω
ν∇(uk+1−uk) : ∇w+µ(uk+1−uk) ·w dx =

∫

Ω
(pk+1− pk)divw dx.

Since
‖divw‖ 6 ‖∇w‖Σ 6

√
ν
−1‖

√
ν∇w‖Σ 6

√
ν
−1 ||| w |||

we can estimate the right-hand side with

∫

Ω
(pk+1− pk)divw dx 6 ‖pk+1− pk‖ ‖divw‖

6
√
ν
−1‖pk+1− pk‖ ||| w ||| .

By choosing w = uk+1−uk, we obtain

||| uk+1−uk |||2 6
√
ν
−1‖pk+1− pk‖ ||| uk+1−uk ||| .

By (2.2) we obtain the estimate for velocity (2.1). The estimate (2.3) is obtained
with exactly the same arguments applied for the augmented form (1.6). Since
||| w ||| 6 ]|| w ||[λ for all λ ∈ R+, we see by (2.3), that the estimate (2.1) holds also
for approximations calculated by (1.6).

Henceforth, we will use functional a posteriori error estimates for the Stokes
problem derived in [11,12]. For a consequent exposition of the theory of functional
a posteriori error estimates we refer the reader to [8, 10].

The following lemma is essential in deriving our main results.
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On a posteriori error bounds 327

Lemma 2.1. Let Ω be a bounded domain with Lipschitz continuous boundary

∂Ω. Then there exists a positive constant CLBB depending on the domain Ω such

that for any function g ∈ L̃2(Ω) there is a function v ∈ V0 satisfying the condition
divv = g, and

‖∇v‖Σ 6 C−1
LBB‖g‖.

Here CLBB is the constant in the well-known Ladyzhenskaya-Babuška-Brezzi (LBB)

condition (see, e.g., [1, 2]). See proof in [6, 7].

For some simple domains the constant CLBB, or the bounds for it, are known
(see, e.g., [3, 5, 9]).

Lemma 2.1 implies an important corollary. Let v ∈V0, and divv= g. Then there
exists a function vg ∈V0 such that div(v− vg) = 0, and

‖∇vg‖Σ 6 C−1
LBB‖g‖ = C−1

LBB‖divv‖.

This means that there exists a solenoidal field v0 = (v− vg) ∈ S̊(Ω) such that

‖∇(v− v0)‖Σ 6 C−1
LBB‖divv‖.

A similar estimate holds for v ∈V0+uD. Indeed, for v−uD we can find a solenoidal
field v0 ∈ S̊(Ω) such that

‖∇(v−uD− v0)‖Σ 6 C−1
LBB‖div(v−uD)‖ 6 C−1

LBB‖divv‖.

Thus, we can find a function w0 ∈ S̊(Ω)+uD such that

‖∇(v−w0)‖Σ 6 C−1
LBB‖divv‖. (2.4)

With the help of (2.4) we can now derive our main results. We show that the
errors of uk and pk generated on the iteration k of the Uzawa algorithm are both
estimated from above by the L2-norm of the divergence of uk multiplied by a con-
stant depending on CLBB. The proofs are based on the derivation of functional a
posteriori error estimates for the generalized Stokes problem as they are presented
in [12].

Theorem 2.2. Let uk be the exact solution computed on the iteration k of the

Uzawa algorithm. Then, for solutions calculated by (1.5) or (1.6), we have

||| u−uk ||| 6 2C‖divuk‖ (2.5)

where

C :=C−1
LBB

√
C2
Fµ +ν . (2.6)

Here CF is the constant in the Friedrichs inequality

‖w‖ 6 CF‖∇w‖Σ
and CLBB is the constant in the LBB-condition.
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328 I. Anjam, M. Nokka, and S. I. Repin

Proof. Let u0 ∈ S̊(Ω)+uD be such that, by using (2.4), we have

‖∇(uk−u0)‖Σ 6 C−1
LBB‖divuk‖. (2.7)

Let the pair (uk, pk) be an approximation of the saddle point computed on the itera-
tion k. We can now write

||| u−uk ||| 6 ||| u−u0 ||| + ||| u0−uk ||| . (2.8)

First, we estimate from above the first term on the right-hand side of (2.8). Let w∈ S̊.
By subtracting the integral

∫
Ω (ν∇u0 : ∇w+µu0 ·w)dx from both sides of (1.4) we

obtain

∫

Ω
(ν∇(u−u0) : ∇w+µ(u−u0) ·w)dx

=
∫

Ω
(( f −µu0) ·w−ν∇u0 : ∇w)dx. (2.9)

It is easy to see that

∫

Ω
(Divτ ·w+ τ : ∇w)dx = 0 ∀τ ∈ Σ(Div,Ω), w ∈V0(Ω) (2.10)

and ∫

Ω
(∇q ·w+qdivw)dx = 0 ∀q ∈W 1

2 (Ω,R), w ∈V0(Ω).. (2.11)

By adding (2.10) and (2.11) to the right-hand side of (2.9), we rewrite it in the form

∫

Ω
(( f −µu0 +Divτ−∇q) ·w+(τ−ν∇u0) : ∇w)dx (2.12)

which is equivalent to

∫

Ω

((
f −µuk +Divτ−∇q

)
·w+

(
τ−ν∇uk

)
: ∇w

)
dx

+

∫

Ω

(
ν∇(uk−u0) : ∇w+µ(uk−u0) ·w

)
dx. (2.13)

Let us choose τ = ν∇uk and q = pk. In view of (1.5), we see that that the first
integral of (2.13) vanishes. Indeed,

∫

Ω

((
f −µuk +Divν∇uk−∇pk

)
·w +

(
ν∇uk−ν∇uk

)
: ∇w

)
dx

=
∫

Ω

(
f ·w+ pk divw−ν∇uk : ∇w−µuk ·w

)
dx = 0. (2.14)
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On a posteriori error bounds 329

Since w is a function from S̊, the same conclusion is also true if uk has been calcu-
lated by (1.6). We combine (2.9) with (2.12)–(2.14), and arrive at the relation

∫

Ω
(ν∇(u−u0) : ∇w+ν(u−u0) ·w)dx

=
∫

Ω

(
ν∇(uk−u0) : ∇w+µ(uk−u0) ·w

)
dx. (2.15)

The right-hand side of (2.15) can be estimated from above as follows:
∫

Ω

(
ν∇(uk−u0) : ∇w+µ(uk−u0) ·w

)
dx

=
∫

Ω

(√
ν∇(uk−u0) :

√
ν∇w+

√
µ(uk−u0) ·

√
µw

)
dx

6 ‖
√
ν∇(uk−u0)‖Σ‖

√
ν∇w‖Σ +‖√µ(uk−u0)‖ ‖

√
µw‖

6 ||| uk−u0 ||| ||| w ||| (2.16)

where we have used the Cauchy–Schwarz inequality. We set w = u− u0, and find
that

||| u−u0 ||| 6 ||| uk−u0 ||| . (2.17)

Note that for all w ∈V we have

||| w |||2 = ‖
√
ν∇w‖2Σ +‖√µw‖2

6 ν‖∇w‖2Σ +µ‖w‖2

6 ν‖∇w‖2Σ +C2
Fµ‖∇w‖2Σ

6
(
C2
Fµ +ν

)
‖∇w‖2Σ. (2.18)

We substitute (2.17) into (2.8), and use (2.18) with w = u−u0, and obtain

||| u−uk ||| 6 2 ||| u0−uk |||

6 2

√
C2
Fµ +ν‖∇(u0−uk)‖Σ. (2.19)

Now, (2.7) and (2.19) imply the estimate

||| u−uk ||| 6 2C−1
LBB

√
C2
Fµ +ν‖divuk‖ = 2C‖divuk‖

where C is defined in (2.6).

In order to prove a similar estimate for the pressure, we also need Lemma 2.1.

Let q ∈ L̃2 be an approximation of the exact pressure p. Then (p−q)∈ L̃2 and there
exists a function w ∈V0 such that

div(w) = p−q (2.20)
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330 I. Anjam, M. Nokka, and S. I. Repin

and
‖∇w‖Σ 6C−1

LBB‖p−q‖. (2.21)

Theorem 2.3. Let pk be the function computed on the iteration k of the Uzawa

algorithm. Then,

‖p− pk‖ 6 C‖divuk‖ (2.22)

where C = 2C2 for (1.5), and C = 2C2 +λ for (1.6).

Proof. We use (2.20) for q = pk and obtain

‖p− pk‖2 =
∫

Ω
divw(p− pk)dx =

∫

Ω
divw p+∇pk ·w dx.

Multiplying (1.1) by w and integrating over Ω, we obtain

∫

Ω
divw p dx =

∫

Ω
(ν∇u : ∇w+µu ·w− f ·w)dx.

In view of this relation, we have

‖p− pk‖2 =

∫

Ω

(
ν∇u : ∇w+µu ·w− f ·w+∇pk ·w

)
dx.

We use (2.10) with w = w, and arrive at the relation

‖p− pk‖2 =
∫

Ω

((
− f +µuk−Divτ +∇pk

)
·w+

(
ν∇uk− τ

)
: ∇w

)
dx

+

∫

Ω

(
ν∇(u−uk) : ∇w+µ(u−uk) ·w

)
dx. (2.23)

As before, we choose τ = ν∇uk, and observe that the first integral is zero. By esti-
mating the latter integral with the help of the same arguments as in (2.16), we find
that

‖p− pk‖2 6 ||| u−uk ||| ||| w ||| . (2.24)

By (2.18) and (2.21), we obtain

||| w |||2 6
(
C2
Fµ +ν

)
‖∇w‖2Σ

6 C−2
LBB

(
C2
Fµ +ν

)
‖p− pk‖2

= C2‖p− pk‖2 (2.25)

where C is defined in (2.6). Substituting (2.25) into (2.24) results in the estimate

‖p− pk‖ 6 C ||| u−uk ||| .

Now, we apply Theorem 2.2 and deduce (2.22).
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In the case of (1.6), we add

∫

Ω
λdiv(uk−uk)divw dx = 0

to (2.23) and obtain

‖p− pk‖2 =

∫

Ω

((
− f +µuk−Divτ +∇pk

)
·w+λdivuk divw

)
dx

+

∫

Ω

(
ν∇uk− τ

)
: ∇w dx

+
∫

Ω

(
ν∇(u−uk) : ∇w+µ(u−uk) ·w−λdivuk divw

)
dx.

Again, we choose τ = ν∇uk, and see from (1.6) that the first and second integrals are
zero. By estimating the latter integral with same arguments as in (2.16), we obtain

‖p− pk‖2 6 ||| u−uk ||| ||| w ||| + λ‖divuk‖ ‖divw‖. (2.26)

Recall that divw = p− pk. Now, (2.25) and (2.26) imply the estimate

‖p− pk‖ 6 C ||| u−uk ||| + λ‖divuk‖.

Applying Theorem 2.2 results in (2.22).

By Theorems 2.2 and 2.3, we easily conclude the following statement.

Remark 2.1. The classical Stokes problem corresponds to the case where µ ≡ 0
and ν is a constant. Let (uk, pk) be the exact solution computed on the iteration k of
the Uzawa algorithm, for the Stokes problem. Then, for velocity we have (for both
cases (1.5) and (1.6))

‖∇(u−uk)‖ 6 2C−1
LBB‖divuk‖.

For the pressure we have

‖p− pk‖ 6 C̃‖divuk‖
where C̃ = 2C−2

LBBν for (1.5) and C̃ = 2C−2
LBBν +λ for (1.6).

3. Computable error estimates for approximations
generated by the Uzawa algorithm

Let Th be a mesh having the characteristic size h, and let the spaces V0h(Ω,Rn) and

Qh(Ω) be finite dimensional subspaces of V0(Ω,Rn) and L̃2(Ω), respectively. We
assume that for all vh ∈V0h + uD it holds that divvh ∈ Qh. We also assume that the
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spaces are constructed so that they satisfy the discrete LBB-condition, i.e, for any
qh ∈ Qh with zero mean, there exists vh ∈V0h such that

divvh = qh

and
‖∇vh‖Σ 6 c‖qh‖

where the positive constant c does not depend on h.
Let ukh ∈ V0h + uD be an approximation of uk calculated on the mesh Th. We

need to combine the error of the pure Uzawa algorithm with the approximation
error. Below we present the corresponding results, where we set pk = pkh ∈Qh on

the iteration k, and understand uk as satisfying (1.5), or (1.6), with the chosen pkh.

Then, the pair (uk, pkh) can be viewed as the exact pair associated with the Uzawa
algorithm on iteration k.

Our first goal is to derive fully computable error majorants Mk
⊕ and M

k,λ
⊕ for

approximate solutions (e.g., ukh) of the problems generated at the first step of Uzawa
algorithm by the Lagrangians L and LA, respectively. In order to make the quality of
the majorants robust with respect to small or large values of the material functions
ν or µ , we apply the same method that was suggested in [12] for the generalized
Stokes problem.

Later we combine these estimates with the estimates of the difference between
u and uk and obtain estimates applicable for approximate solutions computed within
the framework of finite dimensional approximations.

First, we prove the following result for the problem generated by the La-
grangian L.

Theorem 3.1. Let (uk, pkh) be the exact solution on the iteration k of the Uzawa

algorithm. Then, for the solutions calculated by (1.5), and for an approximation
ukh ∈V0h +uD we have

||| uk−ukh |||2 6 Mk
⊕(ukh, p

k
h,τ ,β ) ∀τ ∈ H(Div,Ω), β ∈ R+

where

Mk
⊕(ukh, p

k
h,τ ,β ) :=

∫

Ω
H1(ν ,µ ,β )r2(ukh,τ)dx+ H2(β )‖

√
ν
−1
d(ukh, p

k
h,τ)‖2Σ

and

H1(ν ,µ ,β ) :=
C2
F(1+β )

ν +C2
F(1+β )µ

(3.1)

H2(β ) := 1+β−1 (3.2)

r(ukh,τ) := f −µukh +Divτ (3.3)

d(ukh, p
k
h,τ) := τ−ν∇ukh + Ipkh. (3.4)

Here I denotes the unit tensor.
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Proof. By equation (1.5) we have
∫

Ω

(
ν∇uk : ∇w+µuk ·w

)
dx =

∫

Ω

(
f ·w+ pkhdivw

)
dx.

We subtract the integral
∫
Ω

(
ν∇ukh : ∇w+µukh ·w

)
dx from both sides of the above

equation, and obtain

∫

Ω
ν∇(uk−ukh) : ∇w+µ(uk−ukh) ·w dx

=

∫

Ω

(
( f −µukh) ·w−ν∇ukh : ∇w+ pkhdivw

)
dx. (3.5)

By adding (2.10) to the right-hand side of (3.5) we have
∫

Ω

(
ν∇(uk−ukh) : ∇w+µ(uk−ukh) ·w

)
dx

=
∫

Ω

(
( f −µukh +Divτ) ·w+(τ−ν∇ukh + Ipkh) : ∇w

)
dx

=

∫

Ω

(
r(ukh,τ) ·w+d(ukh, p

k
h,τ) : ∇w

)
dx (3.6)

where we have used the notation (3.3) and (3.4). Note that
∫

Ω
r ·w dx =

∫

Ω

(√
µ−1αr ·√µw+(1−α)r ·w

)
dx

6 ‖√µ−1αr‖ ‖√µw‖+‖(1−α)r‖ ‖w‖

6 ‖√µ−1αr‖ ‖√µw‖+CF
√
ν
−1‖(1−α)r‖ ‖

√
ν∇w‖Σ (3.7)

where 0 6 α(x) 6 1. Also, we have
∫

Ω
d : ∇w dx 6 ‖

√
ν
−1
d‖Σ‖

√
ν∇w‖Σ. (3.8)

By (3.7) and (3.8) the right-hand side of (3.6) becomes
(
CF

√
ν
−1‖(1−α)r‖+‖

√
ν
−1
d‖Σ

)
‖
√
ν∇w‖Σ +‖√µ−1αr‖ ‖√µw‖

6

√(
CF

√
ν
−1‖(1−α)r‖+‖

√
ν
−1
d‖Σ

)2

+‖√µ−1αr‖2 ||| w ||| . (3.9)

We set w = uk−ukh, use (3.6) and (3.9), and obtain

||| uk−ukh |||2 6

(
CF

√
ν
−1‖(1−α)r‖+‖

√
ν
−1
d‖Σ

)2

+‖√µ−1αr‖2

6 (1+β )C2
Fν

−1‖(1−α)r‖2

+ (1+β−1)‖
√
ν
−1
d‖2Σ + ‖√µ−1αr‖2. (3.10)
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It is easy to see that the optimal value of α is defined by the relation

α =
C2
F(1+β )µ

ν +C2
F(1+β )µ

(3.11)

so that (3.10) implies the estimate

||| uk−ukh |||2 6

∫

Ω

C2
F(1+β )

ν +C2
F(1+β )µ

r2 dx+(1+β−1)‖
√
ν
−1
d‖2Σ

=
∫

Ω
H1r

2 dx+H2‖
√
ν
−1
d‖2Σ

where we have used the notation (3.1) and (3.2).

Remark 3.1. It is easy to see that the upper boundMk
⊕ is sharp. Indeed, by setting

τ = ν∇uk− Ipkh, and letting β tend to infinity, we get the exact error in the energy
norm ||| · |||.

A similar estimate can be derived for the problem generated by the augmented
Lagrangian LA.

Theorem 3.2. Let (uk, pkh) be the exact solution on the iteration k of the Uzawa
algorithm. Then, for the solutions calculated by (1.6), and for an approximation

ukh ∈V0h +uD we have

||| uk−ukh |||2 6 ]|| uk−ukh ||[2λ 6 M
k,λ
⊕ (ukh, p

k
h,τ ,β ) ∀τ ∈ H(Div,Ω), β ∈ R+

where

M
k,λ
⊕ (ukh, p

k
h,τ ,β ) :=

∫

Ω
H1(ν ,µ ,β )r2(ukh,τ)dx+ H2(β )‖

√
ν
−1
dλ (ukh, p

k
h,τ)‖2Σ.

The quantities H1,H2, and r are defined in (3.1)–(3.3), and

dλ (ukh, p
k
h,τ) := τ−ν∇ukh+ I(pkh−λdivukh). (3.12)

Proof. By (1.6), we have

∫

Ω

(
ν∇uk : ∇w+µuk ·w+λdivuk divw

)
dx =

∫

Ω

(
f ·w+ pkhdivw

)
dx.

We subtract the integral
∫
Ω

(
ν∇ukh : ∇w+µukh ·w+λdivukh divw

)
dx from both sides
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of the above equation, and use (2.10), and obtain
∫

Ω

(
ν∇(uk−ukh) : ∇w+µ(uk−ukh) ·w+λdiv(uk−ukh)divw

)
dx

=

∫

Ω

(
( f −µukh) ·w−ν∇ukh : ∇w+(pkh−λdivukh)divw

)
dx

=
∫

Ω

(
( f −µukh+Divτ) ·w+

(
τ−ν∇ukh+ I(pkh−λdivukh)

)
: ∇w

)
dx

=

∫

Ω

(
r(ukh,τ) ·w+dλ(ukh, p

k
h,τ) : ∇w

)
dx (3.13)

where we have used the notation (3.3) and (3.12). By the same arguments as in (3.7)
and (3.8), we represent the right-hand side of (3.13) in the form

(
CF

√
ν
−1‖(1−α)r‖+‖

√
ν
−1
dλ‖Σ

)
‖
√
ν∇w‖Σ +‖√µ−1αr‖ ‖√µw‖

6

√(
CF

√
ν
−1‖(1−α)r‖+‖

√
ν
−1
dλ‖Σ

)2

+‖√µ−1αr‖2 ]|| w ||[λ (3.14)

since ||| w |||6 ]|| w ||[λ . By choosing w = uk−ukh, (3.13) and (3.14) give

]|| uk−ukh ||[2λ 6

(
CF

√
ν
−1‖(1−α)r‖+‖

√
ν
−1
dλ‖Σ

)2

+‖√µ−1αr‖2

6 (1+β )C2
Fν

−1‖(1−α)r‖2

+ (1+β−1)‖
√
ν
−1
dλ‖2Σ + ‖√µ−1αr‖2.

Again, we see that the optimal value of α is given by the relation (3.11), and obtain

]|| uk−ukh ||[2λ 6

∫

Ω

C2
F(1+β )

ν +C2
F(1+β )µ

r2 dx+(1+β−1)‖
√
ν
−1
dλ‖2Σ

=
∫

Ω
H1r

2 dx+H2‖
√
ν
−1
dλ‖2Σ

where we have used the notation (3.1) and (3.2).

Finally, by using Theorems 2.2, 3.1, and 3.2 we obtain the final result.

Theorem 3.3. Let u be the exact velocity, (uk, pkh) be the exact solution calcu-

lated on the iteration k of the Uzawa algorithm, and ukh ∈V0h + uD be an approxi-

mation of the velocity calculated on this iteration. For (1.5) we have

||| u−ukh ||| 6 Mk
⊕(ukh, p

k
h,τ ,β ) ∀τ ∈ H(Div,Ω), β ∈ R+

and for (1.6) we have

||| u−ukh ||| 6 M
k,λ
⊕ (ukh, p

k
h,τ ,β ) ∀τ ∈ H(Div,Ω), β ∈ R+
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where

Mk
⊕(ukh, p

k
h,τ ,β ) := 2C‖divukh‖+(2C

√
ν
−1 +1)

√
Mk

⊕(ukh, p
k
h,τ ,β )

M
k,λ
⊕ (ukh, p

k
h,τ ,β ) := 2C‖divukh‖+(2C

√
ν
−1 +1)

√
M

k,λ
⊕ (ukh, p

k
h,τ ,β )

with C defined in (2.6).

Proof. It is clear that

||| u−ukh ||| 6 ||| u−uk ||| + ||| uk−ukh ||| .

By Theorem 2.2 we have

||| u−ukh ||| 6 2C‖divuk‖+ ||| uk−ukh |||
6 2C‖divukh‖+2C‖div(uk−ukh)‖+ ||| uk−ukh |||
6 2C‖divukh‖+2C

√
ν
−1‖

√
ν∇(uk−ukh)‖+ ||| uk−ukh |||

6 2C‖divukh‖+(2C
√
ν
−1 +1) ||| uk−ukh ||| .

Using the upper bounds presented in Theorems 3.1 and 3.2 for the two cases (1.5)
and (1.6), respectively, we arrive at the result.

Finally, we note that estimates for the pressure follows from the above derived
estimates. The exact pressure in the Uzawa algorithm is calculated by (1.7), i.e.,

pk+1 = (pkh−ρdivuk) ∈ L̃2(Ω) (3.15)

and an approximation of it is calculated within the framework of the selected finite
dimensional subspaces, i.e.,

pk+1
h = (pkh−ρdivukh) ∈ Qh(Ω). (3.16)

Theorem 3.4. Let (uk, pkh) be the exact solution calculated on the iteration k

of the Uzawa algorithm, and ukh ∈ V0h + uD be an approximation of the velocity

calculated on this iteration. Now, we apply the estimates presented in Theorems 3.1
and 3.2, and obtain for (1.5):

‖pk+1− pk+1
h ‖ 6 ρ

√
ν
−1

√
Mk

⊕(ukh, p
k
h,τ ,β ) ∀τ ∈ H(Div,Ω), β ∈ R+

and for (1.6)

‖pk+1− pk+1
h ‖ 6 ρ

√
ν
−1

√
M

k,λ
⊕ (ukh, p

k
h,τ ,β ) ∀τ ∈ H(Div,Ω), β ∈ R+.
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Proof. Indeed, from (3.15) and (3.16) we find that

‖pk+1− pk+1
h ‖ = ρ‖div(uk−ukh)‖

6 ρ
√
ν
−1‖

√
ν∇(uk−ukh)‖

6 ρ
√
ν
−1 ||| uk−ukh ||| .

Applying the error bounds presented in Theorems 3.1 and 3.2 completes the proof.

This paper is focused on theoretical analysis of a posteriori error bounds for ap-
proximations computed by the Uzawa algorithm. However, it is worth adding some
comments on the practical applications of the above derived error majorants. The
majorants contain the function τ ∈ H(Div,Ω) and a positive parameter β , which in
general can be taken arbitrary. Getting sharp estimates requires a proper selection
of them. Finding an optimal β leads to a one-dimensional optimization problem
which is easy solvable. The reconstruction of the stress tensor τ based upon com-
puted functions ukh and pkh provides a reasonable first guess. A better selection can be
performed by methods that have been developed and tested for various elliptic prob-
lems (see, e.g., [8, 10, 14] and the references cited therein). A systematical study of
computational questions in the context of above derived estimates will be exposed
in a separate paper, which is now in preparation.
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