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Abstract

We consider the numerical pricing of American options under the Bates model which adds log-normally distributed jumps

for the asset value to the Heston stochastic volatility model. A linear complementarity problem (LCP) is formulated where

partial derivatives are discretized using finite differences and the integral resulting from the jumps is evaluated using simple

quadrature. A rapidly converging fixed point iteration is described for the LCP, where each iterate requires the solution of an

LCP. These are easily solved using a projected algebraic multigrid (PAMG) method. The numerical experiments demonstrate

the efficiency of the proposed approach. Furthermore, they show that the PAMG method leads to better scalability than the

projected SOR (PSOR) method when the discretization is refined.

Keywords: American option; Bates model; Finite difference method; Iterative method; Linear complementarity problem

1. Introduction

In this paper we consider the numerical pricing of American options. Such options can be exercised prior to

the date of maturity which leads to a free-boundary problem. This is in contrast to European options that can only

be exercised on the date of maturity leading to an easier problem to solve. Since trading of options has grown to

a tremendous scale during the last decades the need for accurate and effective numerical option pricing methods

is obvious. The most common options give the holder either the right to sell (put option) or buy (call option) the

underlying asset for the strike price. A mathematical model to describe the behavior of the underlying asset is

needed to compute the option price. Many such models of varying complexity exist. Typically, more complicated

models reproduce more realistic paths of the underlying asset and are hence better to give accurate option prices

but they also make the numerical pricing process more challenging. The most commonly used model is the Black-

Scholes model [1], which assumes the value of the underlying asset to follow a geometric Brownian motion. In the

Merton model [2] log-normally distributed jumps are added to the Black-Scholes model, while in the Kou model

[3] the jumps are log-doubly-exponentially distributed. By making the volatility a stochastic quantity the Heston

model is derived [4], while the Bates model [5] combines the Merton model with the Heston model by adding

log-normally distributed jumps to the latter one. Finally, the correlated jump model [6] also lets the volatility jump

in the Bates model.
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One way to price options is to employ a Monte-Carlo type solver that simulates the behavior of the underlying

asset using the model employed and then compute discounted mean values. Such methods are known to have

nonfavorable convergence properties and the treatment of the early exercise feature is nontrivial which is why

we use another approach here. We formulate a linear complementarity problem (LCP) for a partial (integro-)

differential equation (P(I)DE) operator for the price, discretize the P(I)DE, and then solve the resulting LCPs.

Several methods have been proposed for solving the resulting LCPs. The Brennan and Schwartz algorithm [7] is

a direct method for pricing American options under the Black-Scholes model; see also [8]. Numerical methods

for pricing under the Heston model have been developed in [9], [10], [11], [12], [13], [14], for example. The

treatment of the jumps in the Merton and Kou models have been studied in [15], [16], [17], [18], [19], [20], for

example. Pricing under the Bates model has been considered in [21], [22] and under the correlated jump model in

[23].

In this paper, we price American call options under the Bates model. The spatial partial derivatives in the

resulting partial integro-differential operator are discretized using a seven-point finite difference stencil and the

integral term is discretized using a simple quadrature rule. The Rannacher scheme [24] is employed for the time

stepping. We solve the resulting LCPs by employing a fixed point iteration described and analyzed in [25] where

each iteration requires the solution of an LCP. These are solved using a projected multigrid (PAMG) method which

was recently introduced in [26]. The numerical experiments demonstrate that the proposed method is orders of

magnitude faster than the projected successive overrelaxation (PSOR) method.

The outline of the paper is the following. The Bates model and an LCP formulation for an American call

option is described in Sect. 2. In Sect. 3 the discretization of the LCPs is introduced and the iterative method to

solve them is proposed in Sect. 4. Numerical experiments are presented in Sect. 5 and conclusions are given in

Sect. 6.

2. Option Pricing Model

Here, we consider the Bates model [5] that combines the Merton jump model [2] and the Heston stochastic

volatility model [4]. It describes the behavior of the asset value s and its variance y by the coupled stochastic

differential equations

ds = (μ − λξ)sdt +
√

ysdw1 + (J − 1)sdn,

dy = κ(θ − y)dt + σ
√

ydw2.

Here μ is the growth rate of the asset value, κ is the rate of reversion to the mean level of y, θ is the mean level of y,

and σ is the volatility of the variance y. The two Wiener processes w1 are w2 have the correlation ρ. The Poisson

arrival process n has the rate λ and the jump size J is taken from a distribution

f (J) =
1√

2πδJ
exp

(
− [ln J − (γ − δ2/2)]2

2δ2

)
,

where γ and δ define the mean and variance of the jump. The mean jump ξ is given by ξ = exp(γ) − 1.

For simplicity, from now on we assume that the market prices of the volatility and jump risks are zero. Apply-

ing the Feynman-Kac formula to the Bates model we arrive at the following PIDE

0 = ∂u
∂τ
− 1

2
ys2 ∂2u

∂s2 − ρσys ∂
2u
∂s∂y − 1

2
σ2y ∂

2u
∂y2 − (r − q − λξ)s ∂u

∂s − κ(θ − y) ∂u
∂y + (r + λ)u − λ ∫ ∞

0
u(Js, y, τ) f (J)dJ

= ∂u
∂τ
− a11

∂2u
∂s2 − a12

∂2u
∂s∂y − a22

∂2u
∂y2 − a1

∂u
∂s − a2

∂u
∂y + (r + λ)u − λ ∫ ∞

0
u(Js, y, τ) f (J)dJ =: Lu,

(1)

where u is the price of a European option, τ = T − t is the time to expiry and q is the dividend yield. The initial

condition for (1) is defined by

u = g(s, y),

where g is the payoff function which gives the value of option at the expiry. In the following, we consider only

call options. A similar approach can be also applied for put options. The payoff function for a call option with the

strike price K is

g(s, y) = max(s − K, 0).
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For the computations, the unbounded domain is truncated to

(s, y, τ) ∈ (0, S ) × (0, Y) × (0, T ] (2)

with sufficiently large S and Y .

The price u of an American option under the Bates model satisfies an LCP

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lu ≥ 0,
u ≥ g,
(Lu) (u − g) = 0.

(3)

We impose the boundary conditions

{
u(0, y, τ) = g(0, y),
u(S , y, τ) = g(S , y),

y ∈ (0, Y),

uy(s, Y, τ) = 0, s ∈ (0, S ).

Beyond the boundary s = S , the price u is approximated to be the same as the payoff g, that is, u(s, y, τ) = g(s, y)

for s ≥ S . On the boundary y = 0, the LCP (3) holds and no additional boundary condition needs to be posed.

3. Discretization

We will compute approximate prices u on a space-time grid defined by the grid points (xi, y j, τk), 0 ≤ i ≤ m,

0 ≤ j ≤ n, 0 ≤ k ≤ l. In space we use a uniform grid with grid steps Δs = S/m in the s-direction and Δy = Y/n in

the y-direction. We start by introducing a semidiscrete approximation for

u(si, y j, τ), 0 ≤ i ≤ m, 0 ≤ j ≤ n.

For the non cross-derivatives in (1) we use standard second-order, centered finite difference approximations.

In this paper, we assume that the correlation ρ is negative. Due to the cross-derivative, we use a seven-point

finite difference stencil. A similar stencil has been described in [21], [22]. For a positive correlation ρ, a suitable

seven-point stencil is given in [10], [11]. The cross-derivative is approximated by

∂2u
∂s∂y

(si, y j, τ) ≈ 1

2ΔsΔy

(
2u(si, y j, τ) − u(si−1, y j+1, τ) − u(si+1, y j−1, τ)

− (Δs)2 ∂
2u
∂s2

(si, y j, τ) − (Δy)2 ∂
2u
∂y2

(xi, y j, τ)

)
.

(4)

Due to the additional derivative terms in (4), we define modified coefficients for ∂
2u
∂s2 and ∂

2u
∂y2 as

ã11 = a11 +
1

2

Δs
Δy

a12, and ã22 = a22 +
1

2

Δy
Δs

a12.

To avoid positive weights in the computational stencil when the convection dominates the diffusion, we add

some artificial diffusion according to

â11 = min

{
ã11, −1

2
b1Δs,

1

2
b1Δs

}
and â22 = min

{
ã22, −1

2
b2Δy,

1

2
b2Δy

}
.

This is equivalent to using a combination of one-sided and central differences for the convection part. The resulting

matrix is an M-matrix with nonpositive off-diagonals and positive diagonal. It is strictly diagonally dominant when

r + λ > 0.
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The integral term in (1) at each grid point si is denoted by Ii. We start by making the change of variable J = ez,

to obtain

Ii =

∫ ∞

0

u(Jsi, y, τ) f (J)dJ =
∫ ∞

−∞
u(ezxi, y, τ)p(z)dz,

where p is the probability density function of the normal distribution with mean γ− δ2/2 and variance δ2 given by

p(z) =
1√
2πδ

exp

(
− [z − (γ − δ2/2)]2

2δ2

)
.

Then we decompose Ii into one integral over the computational domain defined in (2) and one integral over the

remainder of the interval. The first part is then divided on the spatial grid so that we get

Ii =

n−1∑
j=0

Ii, j +

∫ ∞

ln sn−ln si

g(ezsi, y)p(z)dz, (5)

where

Ii, j =

∫ ln s j−ln si

ln s j+1−ln si

u(ezsi, y, τ)p(z)dz. (6)

The price function u(s, y, τ) needs to be approximated between each grid point pair (si, si+1) in order to define

approximate values of Ii, j. For this, we use a piecewise linear interpolation

u(s, y, τ) ≈ si+1 − s
si+1 − si

u(si, y, τ) +
s − si

si+1 − si
u(si+1, y, τ) (7)

for s ∈ [si, si+1]. Using (7) in (6) we get

Ii, j ≈ eγ

2

[
erf

(
si, j+1 − δ2/2
δ
√

2

)
− erf

(
si, j − δ2/2
δ
√

2

)]
α j xi +

1

2

[
erf

(
si, j+1 + δ

2/2

δ
√

2

)
− erf

(
si, j + δ

2/2

δ
√

2

)]
β j xi,

where erf(·) is the error function, si, j = ln s j − ln si − γ,

α j =
u(s j+1, y, τ) − u(s j, y, τ)

s j+1 − s j
, and β j =

u(s j, y, τ)s j+1 − u(s j+1, y, τ)s j

s j+1 − s j
.

The spatial discretization leads to a semi-discrete LCP

⎧⎪⎪⎪⎨⎪⎪⎪⎩
uτ + Au + a ≥ 0,
u ≥ g,
(uτ + Au + a)T (u − g) = 0,

where A is an (m + 1)(n + 1) × (m + 1)(n + 1) matrix, a is a vector resulting from the second term in (5), u and

g are vectors containing the grid point values of the price u and the payoff g, respectively. In the above LCP, the

inequalities hold componentwise.

For the temporal discretization we use the Rannacher scheme [24]; see also [27]. The first four time steps

are performed with the implicit Euler method with the time step Δτ/2, and then the rest of the time steps are

performed with the Crank-Nicolson method with the time step Δτ, where Δτ = T/(l − 2). Thus, the time grid is

defined by

τk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k

2(l−2)
T, k = 0, 1, 2, 3,

k−2
l−2

T, k = 4, 5, . . . , l.

The purpose of a few Euler steps in the beginning of the time-stepping process is to damp oscillatory components

of the solution. The discretization in time leads to the solution of the following sequence of LCPs:

LCP(B(k+1), u(k+1), b(k+1), g), (8)
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where u(k) denotes the vector u at the kth time step. Here LCP(B, u, b, g) denotes the linear complementarity

problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Bu − b) ≥ 0,
u ≥ g,
(Bu − b)T (u − g) = 0.

For the first four time steps k = 0, 1, 2, 3, the implicit Euler method leads to

B(k+1) = I +
1

2
ΔτA and b(k+1) = u(k) − 1

2
Δτa. (9)

For the rest of the time steps k = 4, 5, . . . , l − 1, the Crank-Nicolson method leads to

B(k+1) = I +
1

2
ΔτA and b(k+1) =

(
I − 1

2
ΔτA

)
u(k) − Δτa. (10)

4. The solution of LCPs

The projected SOR method (PSOR) for LCPs was introduced by Cryer in [30]. The method performs suc-

cessive over relaxed corrections for the components of the solution vector combined with a projection when a

component violates the early exercise constraint. For pricing American options this methods has been discussed

in the books [31], [29], for example. The method is fairly simple to implement, but typically the number of iter-

ations grows substantially when the discretization is refined. Thus, it is not usually efficient when fairly accurate

option prices are sought. In this paper we will employ PSOR to (8) for comparison, see Sect. 5.

Here we will focus on an iterative scheme introduced in [22] and [25]. Let B denote the matrix B(k+1) in (9)

or (10) associated with the LCP (8). It has a regular splitting [28]

B = T − J,

where J is a block diagonal matrix with full diagonal blocks resulting from the integral term and T is the rest

which is a block tridiagonal matrix. Based on this splitting, the first two authors of this paper proposed a fixed

point iteration for LCPs in [22], [25]. It is a generalization of an iteration for linear systems described in [29] and

applied in [15], [18], [20]. The fixed point iteration for LCP(B, u, b, g) reads

LCP(T, u j+1, b + Ju j, g), j = 0, 1, . . . (11)

Each iteration requires the solution of an LCP with the block tridiagonal T and the multiplication of a vector by

J. Below we will describe and compare PSOR and PAMG to solve these LCPs.

Based on a convergence result in [25] and the properties of the discretization, we can easily see that the

reduction of the l∞-norm of the error in each iteration of (11) is proportional to Δτλ. In general Δτλ is much less

than one yielding that the iteration converges very rapidly. In practice, typically only a few iterations are needed

to reach sufficient accuracy for practical purposes.

One way to solve the LCPs in (11) is to use PSOR. Since it is not an efficient method for refined discretizations

we will only use it here for comparison and instead make use of a projected algebraic multigrid method (PAMG)

introduced in [26]. With a well designed multigrid method, the number of iterations does not grow with refined

discretizations. For extensive literature on this see, the book [32], for example. For solving LCPs Brandt and

Cryer introduced a projected full approximation scheme (PFAS) multigrid method in [33]. Another multigrid

method for similar problems was described in [34]. The PFAS method was used to price American options under

stochastic volatility by Clarke and Parrott in [9], and Oosterlee in [13]. Some alternative approaches employing

multigrid methods for option pricing have been considered in [35], [36], [37]. Reisinger and Wittum described a

projected multigrid (PMG) method for LCPs which resembles more closely a classical multigrid method for linear

problems in [38]. This method has been used to price American options in [38], [11].

The above mentioned methods are so-called geometrical multigrid methods which means that the spatial oper-

ators are discretized on sequence of grids. Furthermore, transfer operators between grids need to be implemented.



1141 Santtu Salmi et al.  /  Procedia Computer Science   18  ( 2013 )  1136 – 1144 

The geometrical multigrid method can be implemented with some effort especially when the computational do-

main is a rectangle like in this case, but it is not a black-box method to which one can just give the matrix and

vectors defining the LCP. An algebraic multigrid (AMG) method [39], [40] builds the coarse problems and the

transfer operators automatically using the properties of the matrix. Recently, Toivanen and Oosterlee generalized

an AMG method for LCPs and called the resulting method as the projected algebraic multigrid (PAMG) method

[26]. Its treatment of LCPs in the coarser levels resemble the one in the PMG method [38]. The PAMG method is

easy to use and efficient [26]. Below we present the algorithms for one iteration of PSOR and PAMG respectively.

Algorithm One iteration of PSOR(B, u, b, g) Algorithm One iteration of PAMG(B, u, b, g)

for i = 1, . . . , dimB if coarsest level then

ri = bi −∑dimB
j=1 Bi ju j solve LCP(B, u, b, g)

ui = ui + ωri/Bii else

ui = max(ui, gi) PS(B, u, b, g)

end for uc = 0
rc = R̃(b − Bu)

gc = R̂(g − u)

PAMG(Bc, uc, rc, gc)

x = x + P̃xc

PS(B, u, b, g)

end if

Here R̃ and R̂ denote the restriction operators for the solution of the LCP and its constraint respectively. The

prolongation for the LCP is denoted by P̃. Finally PS is a smoother for the LCP. For more details on these

operators, see [26].

Finally, we summarize our algorithm to numerically price American options under the Bates model. Note that

PSOR or PAMG form inner iterations to the outer LCP-iteration. In the next section we will see that for PAMG,

both the outer and inner iteration-count is kept very low for each time-step.

Algorithm
Discretize (3) with (1) giving (8) with (9) and (10)

for k = 1, . . . , l (Time-stepping)

for j = 1, 2, . . . until convergence (LCP-iteration)

Solve (11) using PSOR or PAMG

end for

end for

5. Numerical Experiment

In our numerical example, we price American call options. The parameters for the Bates model are the same

as in [22] and they are defined below.
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Parameter Notation Value

Risk free interest rate r 0.03

Dividend yield q 0.05

Strike price K 100

Correlation between the price and variance processes ρ -0.5

Mean level of the variance θ 0.04

Rate of reversion to the mean level κ 2.0

Volatility of the variance σ 0.25

Jump rate λ 0.2

Mean jump γ -0.5

Variance of jump δ 0.4

The computational domain is (x, y, τ) ∈ [0, 400]× [0, 1]× [0, 0.5]. For the PSOR method, the relaxation parameter

ω = 1.5 is used.

In Table 1 we report the numerical results. The table has the following columns:

• Grid (m, n, l) defines the number of grid-points in x, y, and τ to be m, n, and l, respectively.

• LCP iter. gives the average number of LCP iterations on each time step.

• PSOR/PAMG iter. gives the average number of inner PSOR or PAMG iterations for solving one LCP.

• Error gives the root mean square relative error given by

error =

⎡⎢⎢⎢⎢⎢⎢⎣1

5

5∑
i=1

(
u(xi, θ,T ) − U(xi, θ,T )

U(xi, θ,T )

)2
⎤⎥⎥⎥⎥⎥⎥⎦

1/2

,

where x = (80, 90, 100, 110, 120)T . The reference prices U given in [22] at (xi, θ,T ), i = 1, 2, . . . , 5 are

0.328526, 2.109397, 6.711622, 13.749337, 22.143307. They were computed using a componentwise split-

ting method on the grid (4096, 2048, 514).

• Ratio is the ratio of the consecutive root mean square relative errors.

• CPU gives the CPU time in seconds on a 2.0 GHz Intel Core i7 PC using one thread. For the PAMG method,

the CPU time includes the AMG initialization time.

For the iterations, we use the stopping criterion∥∥∥r̄ j
∥∥∥

2
≤ 10−6‖b‖2,

where r̄ j is the reduced residual for the LCP iterations and the pure PSOR iterations respectively. It is defined by

r̄ j
i =

⎧⎪⎪⎨⎪⎪⎩
Bu j

i − bi if u j
i > gi

0 if u j
i = gi.

For the inner PSOR/PAMG iterations it is defined similarly with T and the associated vectors instead of B, u j, and

b.

The multiplication by the matrix J is the most expensive operation in the iteration. In order to perform it

efficiently with the LCP iterations, we collected all n+ 1 multiplications corresponding to all x-grid lines together

and then performed the resulting matrix-matrix multiplication using the optimized GotoBLAS library [41].

In Table 1, roughly second-order accuracy is observed with the proposed discretization as the ratio is about

four on average. On finer grids, only two LCP iterations are required to satisfy the stopping criterion. With the

coarsest grid (64, 32, 10), the LCP iterations with the PSOR and PAMG methods require the same amount of time

while the pure PSOR is twice slower. On finer grids, the speed differences become large and the number of PSOR

iterations roughly doubles with each refinement. On the finest grid (1024, 512, 130), the LCP iteration with the

PAMG method is about 12 times faster than the LCP iteration with the PSOR method, and it is 150 times faster

than the pure PSOR iteration.
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Table 1. The numerical results with five different space-time discretizations.

method Grid (m, n, l) LCP iter. PSOR/PAMG iter. error ratio CPU

PSOR (64, 32, 10) 47.6 0.11765 0.09

(128, 64, 18) 50.2 0.04068 2.89 1.24

(256, 128, 34) 109.6 0.00740 5.49 42.00

(512, 256, 66) 216.8 0.00227 3.26 1608.39

(1024, 512, 130) 396.6 0.00038 5.93 251758.87

LCP iter. (64, 32, 10) 2.4 35.5 0.11759 0.04

with PSOR (128, 64, 18) 2.0 44.4 0.04064 2.89 0.28

(256, 128, 34) 2.0 101.0 0.00738 5.50 5.19

(512, 256, 66) 2.0 212.4 0.00226 3.27 107.91

(1024, 512, 130) 2.0 417.0 0.00038 5.96 1673.90

LCP iter. (64, 32, 10) 2.5 2.9 0.11760 0.04

with PAMG (128, 64, 18) 2.1 3.5 0.04064 2.89 0.26

(256, 128, 34) 2.0 3.5 0.00738 5.50 2.10

(512, 256, 66) 2.0 3.3 0.00226 3.26 17.85

(1024, 512, 130) 2.0 2.6 0.00038 5.93 133.11

6. Conclusions

In this paper we considered a linear complementarity problem (LCP) with a partial integro-differential operator

for pricing American options under the Bates model. For the partial derivatives and integral we employed finite

differences and simple quadrature respectively. In the numerical experiments, the discretizations are roughly

second-order accurate in both space and time.

We proposed a rapidly converging iteration for solving LCPs at each time step. In each such iteration, an LCP

with a sparse matrix needs to be solved. We demonstrated that these problems can be efficiently and easily solved

with a projected algebraic multigrid method. With finer discretizations this approach leads to an order or several

orders of magnitude faster method than using the projected SOR method.
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