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DIFFERENTIABILITY IN THE SOBOLEV SPACE W1,n−1

VILLE TENGVALL

Abstract Let Ω ⊂ Rn be a domain, n ≥ 2. We show that a continuous, open and
discrete mapping f ∈W1,n−1

loc (Ω,Rn) with integrable inner distortion is differentiable
almost everywhere on Ω. As a corollary we get that the branch set of such a map-
ping has measure zero.

Mathematics Subject Classification (2010) 26B10, 30C65, 28A5, 46E35.

1 Introduction

Suppose that Ω ⊂ Rn, n ≥ 2, is a domain and f : Ω → Rn a continuous, discrete
and open mapping in the Sobolev space W1,n−1

loc (Ω,Rn). A theorem of Gehring and
Lehto asserts that if n = 2, then f is differentiable at almost every point [7]. For
planar homeomorphisms the result was established earlier by Menchoff [29]. These
results are false in higher dimensions. Indeed, if n ≥ 3, one can construct a nowhere
differentiable homeomorphism in W1,n−1(Ω,Rn), see [2, Example 5.2].

In this paper we study sufficient conformality conditions that guarantee dif-
ferentiability almost everywhere for discrete and open mappings in W1,n−1

loc (Ω,Rn).
Such conformality conditions are usually given in terms of a distortion function.
There are several distortion functions, each having considerable interest in geomet-
ric function theory, see [16, §6.4]. The principal feature of these distortions is that
they provide some control on the lower order minors of the differential matrix in
terms of the determinant.

The most flexible distortion inequality is given in terms of the (n − 1) × (n − 1)-
minors of the differential matrix. Precisely, we say that f ∈W1,1

loc(Ω,R
n) is a mapping

of finite inner distortion if

(1) J(·, f ) ∈ L1
loc(Ω),

(2) J(·, f ) ≥ 0 almost everywhere and
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(3) adj D f (·) vanishes almost everywhere in the zero set of the Jacobian J(·, f ).

With such mappings we associate a measurable function KI : Ω→ [0,∞] as follows

KI(x, f ),=
{
| adj D f (x) |n

J(x, f ) n−1 , if J(x, f ) > 0
1, otherwise.

Here adj A stands for the adjugate of a matrix A which is the transpose of the
cofactor matrix, denoted by cof A. For a regular matrix A we have

A adj A = I det A,

where det A denotes the determinant of matrix A and I is the identity matrix. We
also denote the adjungate matrix of D f (x) by D] f (x).

The most restrictive and most studied distortion function is the outer distortion.
Precisely, we say that f ∈W1,1

loc(Ω,R
n) is a mapping of finite outer distortion if

(1) J(·, f ) ∈ L1
loc(Ω),

(2) J(·, f ) ≥ 0 almost everywhere and

(3) D f (·) vanishes almost everywhere in the zero set of the Jacobian J(·, f ).

With such mappings we associate a measurable function KO : Ω → [0,∞] by the
rule

KO(x, f ) =

{
|D f (x) |n

J(x, f ) , if J(x, f ) > 0
1, otherwise.

We call KI(·, f ) the inner distortion of f and KO(·, f ) the outer distortion of f .
Note that a mapping of finite inner distortion does not have to be a mapping of
finite outer distortion. For instance, the mapping f : Rn

→ Rn, n ≥ 3,

f (x1, . . . , xn) = (x1, 0, . . . , 0)

is a mapping of finite inner distortion, but not a mapping of finite outer distortion.
However, we are able to show that a discrete and open mapping with KI(·, f ) ∈
L1

loc(Ω) has a finite outer distortion almost everywhere. Our main result reads as
follows.

Theorem 1.1. Suppose that Ω ⊂ Rn, n ≥ 2, is a domain. Let f ∈ W1,n−1
loc (Ω,Rn) be a

continuous, discrete and open mapping of finite inner distortion with KI( · , f ) ∈ L1
loc(Ω).

Then f is differentiable almost everywhere and has finite outer distortion.

Theorem 1.1 is new even when f is assumed to be a homeomorphism. More-
over, we are able to relax the integrability assumption on the inner distortion, see
Theorem 5.1. The sharpness of this refinement is given in Example 5.5. We show
as a corollary of Theorem 1.1 that the branch set of f , i.e. the set of points where
f is not a local homeomorphism, has measure zero, see Corollary 5.4. This leads
to a natural generalization of theorem by Hencl and Koskela [10, Theorem 1.3] in
higher dimensions for open and discrete mappings.
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Theorem 1.2. Suppose that Ω ⊂ Rn, n ≥ 2, is a domain. Let f ∈ W1,n−1
loc (Ω,Rn) be a

continuous, discrete and open mapping of finite inner distortion with KI(·, f ) ∈ L1
loc(Ω).

Then for almost every x ∈ Ω there is an open neighborhood Ux ⊂⊂ Ω of x such that the
restriction map f |Ux : Ux → f (Ux) is a homeomorphism. For the inverse mapping we have
( f |Ux)−1

∈ W1,n
loc( f (Ux),Rn) and ( f |Ux)−1 is a mapping of finite distortion. Moreover, f

and ( f |Ux)−1 are differentiable almost everywhere.

Our results have a strong connection to the study of the regularity of the inverse
of a Sobolev homeomorphism. Under the minimal conformality assumptions these
questions can be traced back to the works of Iwaniec and S̆verák [17], Koskela and
Onninen [21] and Astala, Iwaniec, Martin and Onninen [1]. The study of the
regularity of the inverse mapping under the natural Sobolev setting W1,n

loc goes back
to the pioneering work of Hencl and Koskela [10], and has recently been futher
developed by several authors, see [11], [12], [30] and [31]. Regularity questions in
the Sobolev space W1,n−1

loc (Ω,Rn) were first studied by Csörnyei, Hencl and Malý [2].
For our purposes, one of the important observations that Csörnyei, Hencl and Malý
made on their paper was that a homeomorphism in the Sobolev space W1,n−1

loc (Ω,Rn)
satisfies Lusin’s condition (N) on almost every hyperplane. By modifying their
proof we are able to show that this is true also for a discrete and open mapping in
the Sobolev space W1,n−1

loc (Ω,Rn).
It is important to notice that it is possible to study the regularity properties of

mappings without assuming injectivity. For instance, by applying modulus and
capacity methods, see [35], [40] and [32], it is possible to answer to many regularity
questions in terms of inner distortion without using any invertibility of mapping.

We say that a mapping f ∈ W1,n
loc(Ω,Rn) is a mapping of bounded distortion, or

a quasiregular mapping, if it satisfies distortion inequality

|D f (x) |n ≤ K J(x, f ) a.e.(1)

with some global constant 1 ≤ K < ∞. There has been a lot of study on mappings of
bounded distortion, see [34] and [35], and mappings of finite distortion are natural
generalizations of these mappings.

By the fundamental theorem of Reshetnyak [34], every mapping of bounded
distortion is continuous, i.e. has a continuous representative, and is either constant
or discrete and open. However, this is not always the case with mappings of finite
distortion. Especially, a mapping f ∈ W1,n−1

loc (Ω,Rn) of finite inner distortion with
KI(·, f ) ∈ L1

loc(Ω) does not have to be continuous, discrete or open. Thus, it is
justifiable to assume these properties from f in the Theorem 1.1. For more details
about the sharp analytic assumptions that guarantee continuity, discreteness and
openness for mappings of finite distortion, see [9], [13], [15], [17], [18], [19], [25]
and [26].

In the theory of mappings of bounded distortion one of the powerful tools to
deal with non-injective mappings is the Poletsky inequality, see [35, Theorem 8.1,
Theorem 10.10]. Koskela and Onninen generalized this result in [21] by showing
that a mapping of finite distortion with KI(·, f ) ∈ L1

loc(Ω) and f ∈W1,n
loc(Ω,Rn) enjoys

a Poletsky-type inequality. It was further shown that the regularity assumption
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f ∈W1,n
loc(Ω,Rn) can be slightly relaxed, say to |D f |n log−1(e+ |D f |) ∈ L1

loc(Ω). These
results were based on a duality argument, relying on integration by parts against
the Jacobian determinant. This method does not work when we only assume
f ∈W1,p

loc(Ω,R
n), for some p < n. By using the duality of p-capacity we are now able

to establish Poletsky-type inequality, Lemma 4.4, for mappings in W1,n−1
loc (Ω,Rn)

with integrable inner distortion. We apply this result to prove Theorem 1.1.

2 Preliminaries

Let Ω be a domain in Rn. We say that f : Ω → Rn belongs to the Sobolev space
W1,p

loc(Ω,R
n), 1 ≤ p < ∞, if the coordinate functions of f are locally p-integrable and

have locally p-integrable distributional derivatives.
For x ∈ Rn we denote by xi, i = 1, 2, . . . ,n, its coordinates, i.e. x = (x1, x2, . . . , xn).

Fix y ∈ R. Then { y } × Rn−1 is a copy of Rn−1 and thus its Hausdorff measure
coincides with (n − 1)-dimensional Lebesgue measure and we might sometimes
write dz instead of dHn−1(z).

We denote the Euclidean norm of x ∈ Rn by | x |, the open ball centered at x ∈ Rn

with radius r > 0 by
B(x, r) = { y ∈ Rn : | x − y | < r },

and its closure by B(x, r). Similarly, we denote the corresponding sphere by

S(x, r) = { y ∈ Rn : | x − y | = r }.

We define an n-dimensional open cube centered at x ∈ Rn with radius r > 0 by

Q(x, r) = { y ∈ Rn : xi − yi ∈ (−r, r) for every i = 1, . . . ,n }.(2)

For the convenience of the reader we recall the boxing lemma, proved in [8].

Lemma 2.1 (Gustin’s boxing lemma). Every compact set K ⊂ Rn can be covered by balls
B(xi, ri), i = 1, . . . , p, such a way that

p∑
i=1

rn−1
i ≤ C(n)Hn−1(∂K),(3)

where the constant C(n) > 0 depends only on dimension n. Moreover, for every compact
set K we have

H
n−1
∞

(K) ≤ C(n)Hn−1(∂K).(4)

HereHn−1
∞

stands for the Hausdorff (n − 1)-content.

If E ⊂ Rn is a measurable set, then we denote by |E | its Lebesgue measure. We
say that a mapping f : Ω→ Rn satisfies Lusin’s condition (N) on E if | f (A) | = 0 for
every A ⊂ E such that |A | = 0.
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The notation E ⊂⊂ Ω means that the closure of E is compact and E ⊂ Ω. For a
mapping f : Ω→ Rn and a Borel set E ⊂⊂ Ω, the multiplicity function N(y, f ,E) of
f is defined by

N(y, f ,E) = card f −1(y) ∩ E,

i.e. N(y, f ,E) is the number of preimages of y lying on E under the mapping f .
For f ∈W1,1

loc(Ω,R
m), Ω ⊂ Rn, we can form the Jacobi matrix[ ∂ fi

∂x j
(x)

]
i=1,...,m
j=1,...,n

∈ Rm×n,

where f = ( f1, . . . , fm). Let I(r, k) be the set of all increasing multi-indices from
{ 1, . . . , r }k, i.e. α = (α1, . . . , αk) ∈ I(r, k) if α j are integers, 1 ≤ α1 < · · · < αk ≤ r. If
α ∈ I(m, k) and β ∈ I(n, k), we define the k-dimensional Jacobian of f at x as

Jk(x, f ) =
[

det
( ∂ fαi

∂xβ j

)
i, j=1,...k

]
α∈I(m,k)
β∈=I(n,k)

.

We write J(x, f ) = Jn(x, f ).
If f ∈W1,1

loc(Ω,R
m), where Ω ⊂ Rn and m ≥ n, we say that the area formula holds

for f on Ω′ ⊂ Ω if for each measurable set E ⊂ Ω′ we have∫
E
η( f (x)) | J(x, f ) | dx =

∫
Rm
η(y) N(y, f ,E) dy(5)

for any nonnegative Borel measurable function η on Rm. It follows from [4, 3.1.4,
3.1.8 and 3.2.5] that the area formula holds for f ∈ W1,1

loc(Ω,R
m) on each set on

which Lusin’s condition (N) is satisfied. Moreover, due to [4, 3.1.8], there exists a
Borel set Ω′ ⊂ Ω of full measure such that the area formula holds for f on Ω′. If
f ∈ W1,1

loc(Ω,R
m), then for every Borel set E ⊂⊂ Ω and for any nonnegative Borel

measurable function η on Rm we have∫
E
η( f (x)) | J(x, f ) | dx ≤

∫
Rm
η(y) N(y, f ,E) dy.(6)

Next we collect some topological facts about open and discrete mappings. For
more details we refer to [35, I.4]. A mapping f : Ω → Rn is open if it maps open
sets in Ω to open sets in Rn. A mapping f is discrete if the set f −1(y) of preimages
does not accumulate in Ω for any y ∈ Rn. Next we assume that f : Ω → Rn is a
discrete and open mapping. From now on we always assume that f is continuous.
A domain U ⊂⊂ Ω is called a normal domain of f if f (∂U) = ∂ f (U). The openness
of f implies that ∂ f (U) ⊂ f (∂U) holds for every domain U. If D ⊂ Rn is a domain
and U is a component of f −1(D) such that U ⊂⊂ Ω, then U is a normal domain and
f (U) = D ⊂⊂ f (Ω). In particular, N(y, f ,U) is a bounded function of y. If x ∈ Ω and
U is a normal domain of f such that U ∩ f −1( f (x)) = { x }, then U is called a normal
neighborhood of x.
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Let f : Ω → Rn be a continuous mapping from a domain Ω ⊂ Rn. Then
we can define the local degree deg(y, f ,U) ∈ Z for any subdomain U ⊂⊂ Ω and
every y ∈ Rn

\ f (∂U), see [35]. If y < f (∂U), we say that y is an ( f ,U)-admissible
point. If f and g are two homotopic mappings via homotopy ht, t ∈ [0, 1], and y is
(ht,U)-admissible for all t ∈ [0, 1], then deg(y, f ,U) = deg(y, g,U).

If points y and z belong to the same component ofRn
\ f (∂U), then deg(y, f ,U) =

deg(z, f ,U). Moreover, if U is a normal domain of f , then f (U) ∩ f (∂U) = ∅ and
hence deg(y, f ,U) is a constant for y ∈ f (U).

By a condenser in Ω ⊂ Rn we understand a pair (E,G) of sets with G ⊂⊂ Ω
open and E compact in Rn and with E ⊂ G. The p-capacity of a condenser (E,G) is
defined as

capp(E,G) = inf
u

∫
G
| 5u(x) |p dx,(7)

where the infimum is taken over all smooth functions u ≥ 0 with support in G
such that u ≥ 1 on E. We call such functions admissible for capp(E,G). The n-
capacity is also called conformal capacity. A condenser (E,G) is ringlike if E and
the complement of G are connected.

We will say that a set σ separates a set A from a set B if σ is a compact set in Rn

and if there are disjoint open sets A and B such that Rn
\σ = A ∪ B, A ⊂ A and

B ⊂ B. Let Λ denote the class of all sets that separate A from B. For every σ ∈ Λ we
associate a complete measure µ as follows. For aHn−1-measurable set D ⊂ Rn, we
define

µ(D) = Hn−1(D ∩ σ).

It follows from the properties of Hausdorff measure that the Borel sets of Rn are
µ-measurable. The modulus of Λ is defined as follows.

MS
p(Λ) = inf

{ ∫
Rn
ρ(x)p dx : ρ : Rn

→ [0,+∞] is Borel measurable,∫
σ

ρ(x) dHn−1(x) ≥ 1 for every σ ∈ Λ
}
,

and for h ∈ L1
loc(Ω)

MS
p,h(Λ) = inf

{ ∫
Rn
ρ(x)p h(x) dx : ρ : Rn

→ [0,+∞] is Borel measurable,∫
σ

ρ(x) dHn−1(x) ≥ 1 for every σ ∈ Λ
}
.

If now (E,G) is a condenser in Rn and Λ is the class of all the sets separating E
form Rn

\G then, by [42], we have the following duality

capn(E,G) = MS
n′(Λ)−(n−1),(8)

6



where n′ = n
n−1 . More generally, for 1 < p < ∞

capp(E,G) = MS
p′(Λ)−(p−1),(9)

where p′ =
p

p−1 . One can find more information about p-capacity and the relations
(8) and (9) from [35], [42] and [43].

3 Lusin’s condition (N) on hyperplanes

In this section we show that a discrete and open mapping f ∈W1,n−1
loc (Ω,Rn) satisfies

Lusin’s condition (N) on almost every hyperplane. This fact has been proven for
homeomorphisms by Csörnyei, Hencl and Malý in [2], and we use methods similar
to theirs.

Let ϕ be the standard smooth mollification kernel on Rn i.e.

ϕ(x) =

{
C exp[−1/(1 − | x |2)], if | x | < 1
0, if | x | ≥ 1

where the constant C is chosen such that
∫
Rn ϕ(x) dx = 1. Then for δ > 0 we define

the family of mollifiers ϕδ by the formula

ϕδ(x) = δ−n ϕ
(x
δ

)
.(10)

This means that ϕδ is a smooth nonnegative function supported in B(0, δ) and∫
Rn ϕδ(x) dx = 1. Moreover, ϕδ > 0 on B(0, δ).

We also introduce a "crude family" of mollification kernels

ϕ̃δ = (2δ)−nχQ(0,δ).

Here Q is a cube defined in (2) and χE denotes the characteristic function of E i.e.

χE(x) =

{
1, if x ∈ E
0, otherwise.

Lemma 3.1. Let Ω ⊂ Rn be a domain. Suppose that f : Ω → Rn is a discrete and open
mapping. Let U ⊂⊂ Ω be a normal domain of f , and let D ⊂⊂ U be an open n-interval. If
the restriction of f to ∂D belongs to the Sobolev space W1,n−1, then

H
n−1
∞

( f (D)) ≤ C(n)
∫
∂D
| cof D f (x) νD(x) | dHn−1(x),

where νD is the outer normal of D.
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Proof. Let { fk}
∞

k=1 be a sequence of smooth approximations of f such that fk → f in
W1,n−1(∂D,Rn) and fk → f uniformly in D. Since U is a normal domain of f , the
degree of f is constant in f (U). We set m = deg(·, f ,U).

Because f is a continuous, discrete and open mapping, it is either sense-
preserving or sense-reversing, see [28, p. 151]. Without loss of generality we may
assume that f is sense-preserving. Then m ≥ 1, and we have 1 ≤ deg(y, f ,D) ≤ m
for every y ∈ f (D)\ f (∂D). Set

Gk = { y ∈ f (U) : 1 ≤ deg(y, fk,D) ≤ m }.

Then by Gustin’s boxing lemma we have

H
n−1
∞

(Gk) ≤ Hn−1
∞

(Gk) ≤ C(n)Hn−1(∂Gk).

Now fk(∂D) divides Rn to open components. Since deg(·, fk,D) is constant on each
component of Rn

\ fk(∂D), ∂Gk is contained in fk(∂D), and thus by area formula for
smooth mappings [24, Theorem 4.6], we have

H
n−1
∞

(Gk) ≤ C(n)Hn−1( fk(∂D)) ≤ C(n)
∫
∂D
| cof D fk(x) νD(x) | dHn−1(x).(11)

Now the integrand above is continuous in W1,n−1, and thus∫
∂D
| cof D fk(x) νD(x) | dHn−1(x)→

∫
∂D
| cof D f (x) νD(x) | dHn−1(x),

as k → ∞. Moreover, because fk → f uniformly in D, for any y ∈ f (D) we can
choose ky such that y is (hk

t ,D)-admissible for all t ∈ [0, 1] and for every homotopy

hk
t (x) = t fk(x) + (1 − t) f (x), k ≥ ky.

Thus, by [35, Proposition 4.4] deg(y, fk,D) = deg(y, f ,D) for every k ≥ ky, and we
have

f (D) ⊂
∞⋃

k=1

⋂
j≥k

G j.(12)

By using (12) and [4, Theorem 2.10.22], we have

H
n−1
∞

( f (D)) ≤ Hn−1
∞

( ∞⋃
k=1

⋂
j≥k

G j

)
= lim

k→∞
H

n−1
∞

( ⋂
j≥k

G j

)
≤ lim sup

j→∞
H

n−1
∞

(G j).

The claim follows now from (11) when k→∞. �

Let U ⊂⊂ Ω be a domain. Then for every t ∈ R we denote

Ut = { x ∈ U : xn = t }.

For δ > 0 small enough, we define

Uδ = { x ∈ U : inf
y∈∂U
| x − y | > δ }.
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Lemma 3.2. Suppose that f : U→ Rn is a discrete and open mapping of the class W1,n−1,
where U is a normal domain of f . Let t ∈ R be such that f ∈ W1,n−1(Ut,Rn) and the
condition

lim inf
δ→0+

∫
(Uδ)t

ϕδ ∗ |D f |n−1(x) dHn−1(x) ≤
∫

Ut

|D f (x) |n−1 dHn−1(x)(13)

is satisfied. Then

H
n−1
∞

( f (Q × { t })) ≤ C(n)
∫

Q×{ t }
|D f (x) |n−1 dHn−1(x)

for each (n − 1)-dimensional closed cube Q × { t } ⊂ Ut.

Proof. For simplicity, let us assume that t = 0 and Q = [−R,R]n−1. We denote

J = Q × { 0 }

Ir = (−R − r,R + r)n−1
× (−r, r).

Consider ρ > 0 such that I2ρn ⊂ U. Because f|∂Ir ∈ W1,n−1 for almost every r ∈ (0, ρ),
by Lemma 3.1 we have

H
n−1
∞

( f (J)) ≤ C(n)
∫
∂Ir

| cof D f (x) νIr(x) | dHn−1(x)

≤ C(n)
∫
∂Ir

|D f (x) |n−1 dHn−1(x)

for almost every r ∈ (0, ρ). We integrate over the interval (0, ρ) with respect to r and
use Fubini’s theorem to obtain

ρHn−1
∞

( f (J)) ≤ C(n)
∫ ρ

0

∫
∂Ir

|D f (x) |n−1 dHn−1(x) dr

= C(n)
∫

Iρ
|D f (x) |n−1 dx.

Let x ∈ Iρ. Then
H

n−1(J ∩Q(x, 2ρ)) ≥ ρn−1.

Hence, using Fubini’s theorem and the fact that y ∈ Q(x, 2ρ) if and only if x ∈
Q(y, 2ρ) we obtain

ρn−1
∫

Iρ
|D f (x) |n−1 dx ≤

∫
Iρ

( ∫
J∩Q(x,2ρ)

|D f (x) |n−1 dHn−1(y)
)

dx

=

∫
J

( ∫
Q(y,2ρ)∩Iρ

|D f (x) |n−1 dx
)

dHn−1(y)

≤

∫
J

( ∫
Q(y,2ρ)

|D f (x) |n−1 dx
)

dHn−1(y)

= 4n ρn
∫

J
(ϕ̃2ρ ∗ |D f |n−1)(y) dHn−1(y).
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Since ϕ̃2ρ ≤ C(n)ϕ2ρn, we have

H
n−1
∞

( f (J)) ≤ C(n)
∫

J
(ϕ2ρn ∗ |D f |n−1)(x) dHn−1(x).

Now the claim follows from the condition (13). �

Now we are ready to prove that a discrete and open mapping f ∈W1,n−1
loc (Ω,Rn)

satisfied Lusin’s condition (N) on almost every hyperplane inside a normal domain
U of f .

Proposition 3.3. Let f ∈W1,n−1
loc (Ω,Rn) be an open and discrete mapping, and let U ⊂⊂ Ω

be a domain. Then for almost every t the mapping f |Ut satisfies Lusin’s condition (N), i.e.,
for every A ⊂ Ut withHn−1(A) = 0, alsoHn−1( f |Ut(A)) = 0.

Proof. We may assume that U is a normal domain of f . By using a translation, if
necessary, we may assume that Ut , ∅ if and only if t ∈ (−u,u). First we show that
f satisfies condition (13) for almost every t ∈ (−u,u). For this purpose, we denote

Φδ(t) =

∫
(Uδ)t

∣∣∣∣∣ |D f |n−1
− ϕδ ∗ |D f |n−1

∣∣∣∣∣.
By L1-convergence of the mollifications, Fatou’s lemma and Fubini’s theorem, we
have ∫ u

−u
lim inf
δ→0+

Φδ(t) dt ≤ lim inf
δ→0+

∫ u

−u
Φδ(t) dt

= lim inf
δ→0+

∫
Uδ

∣∣∣∣∣ |D f |n−1
− ϕδ ∗ |D f |n−1

∣∣∣∣∣ = 0.

This means that lim inf Φδ(t) = 0 for almost every t ∈ (−u,u), and each such t
satisfies (13).

Next we fix t ∈ (−u,u) in such a way that (13) is satisfied and
∫

Ut
|D f (x) |n−1 dHn−1(x) <

∞. This is true for almost every t ∈ (−u,u). By Lemma 3.2

H
n−1
∞

( f (Q × { t })) ≤ C(n)
∫

Q×{ t }
|D f (x) |n−1 dHn−1(x)

holds for every closed cube Q × { t } ⊂ Ut. Let E ⊂ Ut be a set of (n − 1)-measure
zero. Given ε > 0, we find an open set G ⊂ Ut such that E ⊂ G and∫

G×{ t }
|D f (x) |n−1 dHn−1(x) < ε.

Let {Q j } j be a sequence of non-overlapping cubes in Ut such that G =
⋃

j Q j. Then

H
n−1
∞

( f (E)) ≤ Hn−1
∞

( f (G)) ≤
∞∑
j=1

H
n−1
∞

( f (Q j × { t }))

≤ C(n)
∑

j

∫
Q j×{ t }

|D f |n−1 = C(n)
∫

G×{ t }
|D f |n−1 < C(n) ε.

Letting ε→ 0 the claim follows. �
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The following corollary follows easily from Proposition 3.3.

Corollary 3.4. Let f ∈ W1,n−1
loc (Ω,Rn) be a discrete and open mapping. Let U ⊂⊂ Ω be

a normal domain of f and B(x, r) ⊂⊂ U. Then for almost every t ∈ (0, r) the mapping
f |S(x,t): S(x, t)→ Rn satisfies Lusin’s condition (N) i.e. for almost every t ∈ (0, r)

H
n−1( f |S(x,t) (A)) = 0 for every A ⊂ S(x, t) such thatHn−1(A) = 0.

4 Poletsky’s inequality for spherical rings

In view of Corollary 3.4 every discrete and open mapping f ∈ W1,n−1
loc satisfies

Lusin’s condition (N) on almost every (n − 1)-dimensional sphere. Using this fact
we are able to show that if f ∈W1,n−1

loc has integrable inner distortion, then it satisfies
a Poletsky type inequality, see Lemma 4.4. The importance of this result is based
on the fact that it allows us to use modulus and capacity methods in the study of
non-homeomorphic mappings. For more details, see [35].

To prove Theorem 1.1 it would be enough to use only the duality of conformal
capacity, introduced in (8). However, to prove Theorem 5.1 in Chapter 5 we have to
use a more general duality of p-capacity, introduced in (9). The duality of capacity
is also a strong tool in the applications that use modulus and capacity methods.
Gehring [6] showed that the conformal capacity is related to the extremal length of
a family of surfaces that separate the boundary components of a ring. Also other
authors have dealt with the extremal length of separating surfaces, see [6], [5], [36],
[14], [42] and [43]. In this paper we follow closely the work of Ziemer, see [42] and
[43].

We give next a change of variables -type formula for subsets of spheres. This
result follows from [24, Theorem 9.2], see also [33].

Lemma 4.1. Let f ∈ W1,1
loc(Ω,R

n), Ω ⊂ Rn, be a continuous mapping, and B(x, r) ⊂⊂ Ω.
If f satisfies condition (N) on almost every (n − 1)-dimensional sphere S(x, t), 0 < t < r,
with respect to measureHn−1, then for almost every t ∈ (0, r) we have∫

E
u(x)|D] f (x) | dHn−1(x) ≥

∫
Rn

( ∑
x∈ f−1(y)∩E

u(x)
)

dHn−1(y),(14)

for allHn−1-measurable subsets E ⊂ S(x, t) and for allHn−1-measurable functions u : E→
R.

The next lemma is crucial in our proof of Poletsky type -inequality for rings.
This lemma is a modified version of [33, Theorem 3.2].

Lemma 4.2. Let f : Ω→ Rn be a continuous, discrete and open mapping in W1,n−1
loc (Ω,Rn),

and p > 1. Assume that U is a normal domain and B(x0, r) ⊂⊂ U. Suppose that I ⊂ (0, r)
is a Borel set. Let

Λ := {S(x0, t) : t ∈ I }.

11



Let ρ : Rn
→ [0,+∞] be a Borel function with the property∫

f (St)
N(y, f ,St)ρ(y) dHn−1(y) ≥ 1 for all t ∈ I,

where St := S(x0, t). Then

MS
p′,Ap′

(Λ) ≤ m
∫
Rn
ρ(y)p′ dy,

where the constant m is the degree of mapping f on normal domain U, p′ =
p

p−1 and

Ap′ := Ap′(x) =

 J(x, f )
|D] f (x) |p′

, if |D] f (x) | > 0
1, otherwise.

Proof. Let ρ be a test function as in the statement of the lemma. Define a Borel
function ρ̃ : B(x0, r)→ [0,+∞] by setting

ρ̃(x) =

{
ρ( f (x)) |D] f (x) |, if D] f (x) is well-defined
0, otherwise.

By Corollary 3.4 the restriction of f to the sphere St satisfies condition (N) with
respect toHn−1 for almost every t ∈ (0, r). Lemma 4.1 shows that∫

St

ρ̃(x) dHn−1(x) =

∫
St

ρ( f (x)) |D] f (x) | dHn−1(x)

≥

∫
Rn

N(y, f ,St)ρ(y) dHn−1(y) ≥ 1

for almost every t ∈ I. On the other hand∫
Br

ρ̃(x)p′ Ap′(x) dx =

∫
Br

ρ( f (x))p′
|D] f (x) |p

′

Ap′(x) dx =

∫
Br

ρ( f (x))p′ J(x, f ) dx

≤

∫
Rn

N(y, f ,Br)ρ(y)p′ dy ≤ m
∫
Rn
ρ(y)p′ dy.

This completes the proof. �

Next we will prove our duality result, Lemma 4.3. To formulate this result,
we have to define some new concepts that are not in common use in literature.
For this purpose, let U ⊂⊂ Ω be a normal domain of f and B(x0, 2r) ⊂⊂ U. Let
M : Ω→ R be a weight function. Then we can define the capacity of the condenser
(B(x0, r),B(x0, 2r)) with respect to symmetric test functions and weight M as

capsym
p,M(B(x0, r),B(x0, 2r)) = inf

{ ∫
Rn
| 5u(x) |p M(x) dx : u ∈ Ad(sym)

}
,

where with Ad(sym) we denote the set of admissible Borel functions for capacity
capp(B(x0, r),B(x0, 2r)) with the additional assumption that for every s ∈ (0, 1) the
set u−1(s) is a sphere S(x0, t), for some r < t < 2r.

12



Lemma 4.3. Let f ∈W1,n−1
loc (Ω,Rn) be a discrete and open mapping of finite inner distortion

and 1 < p ≤ n. Assume that U is a normal domain of f and B(x0, 2r) ⊂⊂ U. Let

Λ = {S(x0, t) : r < t < 2r }.

Then
MS

p′,Ap′
(Λ) ≥ capsym

p,Bp
(B(x0, r),B(x0, 2r))

−1
p−1 ,

where Ap′ is as in Lemma 4.2 and

Bp := Bp(x) =

{
KI(x, f )p/n J(x, f )(n−p)/n, if J(x, f ) > 0
1, otherwise.

Proof. Choose ε > 0 and let ρ be any Borel function in U with property∫
σ

ρ(x) dHn−1(x) ≥ 1 for every σ ∈ Λ.

Let u be any admissible function for C := capsym
p,Bp

(B(x0, r),B(x0, 2r)) such that∫
Rn
| 5u |n Bp(x) dx < C + ε.

It is clear that u−1(s) ∈ Λ for every 0 < s < 1. Hence, by Hölder’s inequality and
coarea formula [41], we have( ∫

Rn
ρp′(x) Ap′(x) dx

) 1
p′

(C + ε)
1
p

≥

( ∫
Rn
ρ(x)p′ Ap′(x) dx

) 1
p′
( ∫

Rn
| 5u(x) |p Bp(x) dx

) 1
p

≥

∫
Rn
ρ(x) | 5u(x) |Ap′(x)

1
p′ Bp(x)

1
p dx

=

∫
Rn
ρ(x) | 5u(x) | dx

=

∫ 1

0

∫
u−1(s)

ρ dHn−1(x) ds ≥ 1.

Since ε > 0 was arbitary, ∫
Rn
ρ(x)p′ Ap′(x) dx ≥ C−1/(p−1)

which is also true when the infimum is taken on the left hand side over all admissible
test functions ρ. �
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We could have formulated Lemma 4.3 also for more general weights. However,
for our purpose it is enough to use the weight function Bp defined above.

The following Poletsky-type inequality is crucial for our proof of Theorem 1.1.
It would be interesting to know if it is possible to prove this result also for more
general condensers.

Lemma 4.4. Let f ∈ W1,n−1
loc (Ω,Rn) be a discrete and open mapping of finite inner dis-

tortion. Assume that U ⊂⊂ Ω is a normal domain of f and B(x0, 2r) ⊂⊂ U. Let
E = (B(x0, r),B(x0, 2r)) be a condenser in U. Then

capp( f (B(x0, r)), f (B(x0, 2r))) ≤ mp−1 capsym
p,Bp

(B(x0, r),B(x0, 2r)),

where C(n,m) > 0 is a constant depending only on dimension n and on the degree m of the
mapping f on normal domain U, and Bp is defined as in Lemma 4.3.

Proof. Now ( f (B(x0, r)), f (B(x0, 2r))) is a condenser in U and we can define Λ′ to be
the family of sets separating Rn

\ f (B(x0, 2r)) from f (B(x0, r))). Notice that because
f is an open mapping, we have Λ′ , ∅. Moreover, openness of f implies that
f (B(x0, 2r)) is an open set and continuity of f impliest that f (B(x0, r)) is a compact
set. Thus ( f (B(x0, r)), f (B(x0, 2r))) is a condenser in f (U). We set

ΛL := {St : t ∈ (r, 2r) }

and

Λl := {S′t : t ∈ (r, 2r) },

where
S′t = { x ∈ St : f (x) ∈ ∂ f (St) },

where St := Sn−1(x0, t). Because every admissible test function for the modulus
MS

p′( f (Λl)) is also admissible for the modulus MS
p′( f (ΛL)), we have that MS

p′( f (ΛL)) ≤
MS

p′( f (Λl)). Moreover, we also have Λ′ ⊃ f (Λl). Thus we have by (8), using the
monotonicity of modulus and by Lemma 4.2 and Lemma 4.3

capp( f (B(x0, r)), f (B(x0, 2r))) = MS
p′(Λ

′)−(p−1)
≤MS

p′( f (Λl))−(p−1)

≤MS
p′( f (ΛL))−(p−1)

≤ mp−1 MS
p′,Ap′

(ΛL)−(p−1)

≤ mp−1 capsym
p,Bp

(B(x0, r),B(x0, 2r)),

where Ap′ is as in Lemma 4.2 and Lemma 4.3. �
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5 Differentiability in the Sobolev space W1,n−1

In this section we prove our main result which says that a discrete and open
mapping f ∈W1,n−1

loc (Ω,Rn) with integrable inner distortion is differentiable almost
everywhere in Ω. The integrability assumption of the distortion function can be
relaxed if we assume higher integrability of the Jacobian determinant. Indeed, we
will prove the following result.

Theorem 5.1. Suppose that Ω ⊂ Rn, n ≥ 2, is a domain. Let f ∈W1,n−1
loc (Ω,Rn) be a con-

tinuous, discrete and open mapping of finite inner distortion with K p/n
I ( · , f ) J(·, f ) (n−p)/n

∈

L1
loc(Ω), for some n − 1 < p ≤ n. Then f is differentiable almost everywhere. Moreover, f

is a mapping of finite outer distortion.

Theorem 1.1 follows from Theorem 5.1 when we choose p = n. In the proof of
Theorem 5.1 we apply the Rademacher-Stepanov theorem [38], see also [23].

Lemma 5.2 (Rademacher-Stepanov). A mapping f : Ω → Rn is differentiable almost
everywhere if and only if

lim sup
y→x

| f (x) − f (y) |
| x − y |

< ∞ a.e.

The following lemma can be originally found from [22, Proposition 6], see also
[27, Lemma 5.9]. A big part of the geometric structure of the proof of Theorem 5.1
and Theorem 1.1 is in Lemma 5.3. Indeed, in the case where f is a homeomorphism
of finite outer distortion it is possible to prove Theorem 1.1 by only combining
[31, Lemma 2.1] and [30, Theorem 2.1]. Proof of [31, Lemma 2.1] uses the same
techniques that are used in the proof of Lemma 5.3 given in [22].

Lemma 5.3. Let (E,G) be a condenser in domain Ω ⊂ Rn, n ≥ 3. If E ⊂ Rn is connected,
then for n − 1 < p ≤ n

capn−1
p (E,G) ≥ C(n, p)

(diam E)p

|G |1−n+p .(15)

Proof. See [22, Proposition 6]. �

We are now ready to prove our main result Theorem 5.1. We will follow the
idea of the proof of Theorem 1 by Salimov and Sevost’yanov in [37], see also [28,
§4.3].

Proof of Theorem 5.1. If n = 2, the result follows from the theorem of Gehring and
Lehto [6], and from the fact that in the planar case every mapping of finite inner
distortion is always a mapping of finite outer distortion.

Next, assume that n ≥ 3. Let Bp be as in Lemma 4.3 and Lemma 4.4. Then,
because K p/n

I ( · , f ) J(·, f ) (n−p)/n
∈ L1

loc(Ω), we have Bp ∈ L1
loc(Ω). First we show that f

is differentiable almost everywhere. Let us define

µ′f (x) := lim sup
r→0

| f (B(x, r)) |
|B(x, r) |

.(16)
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By differentiating the measure

E 7→
∫
Rn

N(y, f ,E) dy

and applying [3, Theorem 1 p.38], we see that µ′f (x) < ∞ for almost every x ∈ Ω.
Assume that U ⊂⊂ Ω is a normal domain of f and let x0 ∈ U. Let r > 0 be so
small that B(x0, 2r) ⊂⊂ U. Then E = (B(x0, r),B(x0, 2r)) is a condenser in U and
E′ = ( f (B(x0, r)), f (B(x0, 2r))) is a condenser in f (U). We define a Borel function
u : Rn

→ [0,+∞] by setting

u(y) =


1, if | x0 − y | ≤ r
2r−| x0−y |

r , if r < | x0 − y | < 2r
0, if | x0 − y | ≥ 2r.

Then

| 5u(y) | =


0, if | x0 − y | < r
r−1, if r < | x0 − y | < 2r
0, if | x0 − y | > 2r.

Let n − 1 < p ≤ n. By Lemma 4.4 we get

capp( f (B(x0, r)), f (B(x0, 2r))) ≤ C(n,m) capsym
p,Bp

(B(x0, r),B(x0, 2r))(17)

≤ C(n,m)
∫

B(x0,2r)
| 5u(x) |p Bp(x) dx ≤

C(n,m)
rp

∫
B(x0,2r)

Bp(x) dx.

On the other hand, by Lemma 5.3

capp( f (B(x0, r)), f (B(x0, 2r))) ≥ C(n, p)
(

(diam ( f (B(x0, r))))p

| f (B(x0, 2r)) |1−n+p

) 1
n−1

.(18)

Combining (17) and (18) we have

diam ( f (B(x0, r)))
r

≤ C′(n,m, p)
(
| f (B(x0, 2r)) |

|B(x0, 2r) |

) 1−n+p
p

( ?
B(x0,2r)

Bp(y) dy
) n−1

p

.(19)

By using Lebesgue differentiation theorem to estimate (19) and (16) we have

lim sup
y→x0

| f (x0) − f (y) |
| x0 − y |

≤ C(n, p,m) [µ′f (x0)]
1−n+p

p [Bp(x0)]
n−1

p < ∞(20)

for almost every x0 ∈ U, whenever Bp ∈ L1
loc(Ω). Thus, by Lemma 5.2 f is differen-

tiable almost everywhere.
Next we show that f is a mapping of finite outer distortion. Because f is a

mapping of finite inner distortion, it is enough to show that J(x, f ) = 0 implies
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D f (x) = 0 for almost every x ∈ Ω. Let U ⊂⊂ Ω be a normal domain of f with
m = deg(·, f ,U). By using the proof of Lemma II. 2.9 in [34], we have that

µ′f (x) = | J(x, f ) |

in the points of differentiability of f . Thus, by using the estimate (20) and the fact
that J(x, f ) ≥ 0 almost everywhere, we have

|D f (x) | ≤ C(n, p,m)µ′f (x)
1−n+p

p Bp(x)
n−1

p ≤ C(n) J(x, f )
1−n+p

p Bp(x)
n−1

p

for almost every x ∈ U. Thus J(x, f ) = 0 implies D f (x) = 0 for almost every x ∈ Ω.
Therefore f is a mapping of outer distortion. �

Corollary 5.4. Let f ∈W1,n−1
loc (Ω,Rn), n ≥ 2, be a continuous, open and discrete mapping

of finite inner distortion with locally integrable inner distortion. Then for the branch set
B f of f , i.e. for the set of points where f is not a local homeomorphism, we have

|B f | = 0.

Proof. By [20, Theorem 1.2] J(x, f ) > 0 for almost every x ∈ Ω and by [35, I.4.11]
J(x, f ) = 0 for every point x ∈ B f of differentiability. Because by Theorem 1.1 f is
differentiable almost everywhere, we have |B f | = 0. �

By using Theorem 1.1 and Corollary 5.4 we can now prove Theorem 1.2.

Proof of Theorem 1.2. By Theorem 1.1 we already know that f is differentiable almost
everywhere and that it is a mapping of finite distortion. Moreover, by Corollary
5.4 we know that for almost every x ∈ Ω we can find a neighborhood Ux such that
the restriction map f |Ux : Ux → f (Ux) is a homeomorphism.

If n = 2, the result follows now from the theorem of Hencl and Koskela [10, The-
orem 1.3]. Thus, we may assume that n ≥ 3. Because f |Ux∈W1,n−1

loc (Ux,Rn) is a home-
omorphism of finite distortion, by [2, Theorem 1.2] ( f |Ux)

−1 is a mapping of finite
distortion. Moreover, by [30, Theorem 1.2] we have that ( f |Ux)

−1
∈ W1,n

loc( f (Ux),Rn)
with ∫

f (Ux)
|D( f |Ux)

−1(y) |n dy =

∫
Ux

KI(x, f |Ux) dx.

Because ( f |Ux)
−1
∈ W1,n

loc( f (Ux),Rn) is a homeomorphism, it is differentiable almost
everywhere by the differentiability result of Väisälä [39]. �

Theorem 5.1 is sharp in the sense that one cannot allow p = n − 1. To see this,
we follow an idea by Csörnyei, Hencl and Malý [2, Example 5.2].

Example 5.5. There is a homeomorphism f ∈ W1,n−1
loc (Ω,Rn), n ≥ 3, with KI(·, f ) ∈

L(n−1)/n
loc (Ω) such that f is nowhere differentiable.
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Proof. It is possible to construct a nowhere differentiable continuous function ϕ :
(−1, 1)n−1

→ Rn such that ϕ ∈ W1,n−1((−1, 1)n−1). For more details, see [2, Example
5.2]. Next we define f : (−1, 1)n

→ Rn by setting

f (x1, . . . , xn) = (x1, . . . , xn−1, xn + ϕ(x1, . . . , xn−1)).

One can check that f is a homeomorphism in W1,n−1. Analogously we obtain that
f −1
∈W1,n−1

loc ( f ((−1, 1)n), (−1, 1)n)

f −1(y1, . . . , yn) = (y1, . . . , yn−1, yn − ϕ(y1, . . . , yn−1)).

It is also easy to see that J(x, f ) = 1 for every x ∈ (−1, 1)n and J(y, f −1) = 1 for every
y ∈ f ((−1, 1)n). Moreover, we notice that f and f −1 are nowhere differentiable. Next
we calculate for any compact set F ⊂⊂ (−1, 1)n∫

F
K

n−1
n

I (x, f ) J(x, f )
1
n dx =

∫
F

(
|D] f (x) |

J(x, f )

)n−1

J(x, f ) dx

=

∫
F
|D f −1( f (x)) |n−1 J(x, f ) dx

≤

∫
f (F)
|D f −1(y) |n−1 dy < ∞,

and the claim follows. �

To construct our mapping in Example 5.5 we had to assume that n ≥ 3. Indeed,
every continuous mapping f ∈ W1,1

loc(Ω,R
2), Ω ⊂ R2, has finite partial derivatives

almost everywhere, because it is absolutely continuous on almost every line parallel
to coordinate axes, see [35, I.1.2]. Therefore, as a consequence of theorem by
Gehring and Lehto [7, Theorem 2], we have that every planar homeomorphism
f ∈W1,1

loc(Ω,R
2), Ω ⊂ R2, is differentiable almost everywhere.

We do not know what is the sharp integrability assumption for KI(·, f ) that
guarantees differentiability at almost every point in Theorem 1.1. However, we
believe that the correct assumption should be KI(·, f ) ∈ L1

loc(Ω).
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[2] M. Csörnyei, S. Hencl and J. Malý: Homeomorphisms in the Sobolev space W1,n−1,
J. Reine Angew. Math. 644, 221–235 (2010).

[3] L.C. Evans and R.F. Gariepy: Measure theory and Fine Properties of Functions,
Studies in AdvancedMathematics. CRC Press, Boca Raton, FL (1992).

[4] H. Federer: Geometric measure theory, Die Grundlehren der mathematis-
chenWissenschaften, Band 153 Springer-Verlag, New York, Second edition
(1996).

[5] B. Fuglede: Extremal length and functional completion, Acta Math. 98, 171–219
(1957).

[6] F.W. Gehring: Extremal length definitions for the conformal capacity in space, Michi-
ganMath J. 9, 137–150 (1962).

[7] F.W. Gehring and O. Lehto: On the total differentiability of functions of a complex
variable, Ann. Acad. Sci. Fennn. Ser. A. I No. 272, 1–9 (1959).

[8] W. Gustin: Boxing inequalities, J. Math. Mech. 9, 229–239 (1960).

[9] V. Gol’dstein and S. Vodop’yanov: Quasiconformal mappings and spaces of func-
tions with generalized first derivatives, Sibirsk. Mat. Z. 17, 515–531 (1976).

[10] S. Hencl and P. Koskela: Regularity of the inverse of a planar Sobolev homeomor-
phism, Arch. RationalMech. Anal. 180, 75–95 (2006).
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