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Abstract: Let Q be a planar Jordan domain and a > 0. We consider double-dome-like surfaces X(Q, t%) over
Q where the height of the surface over any point x € Q equals dist(x, 0Q)*. We identify the necessary and
sufficient conditions in terms of Q and a so that these surfaces are quasisymmetric to S?> and we show that
2(Q, t%) is quasisymmetric to the unit sphere S? if and only if it is linearly locally connected and Ahlfors
2-regular.
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1 Introduction

A metric space which is quasisymmetric to the standard n-sphere S" is called a quasisymmetric n-sphere.
Quasisymmetric circles were completely characterized by Tukia and Vaisild in [9]. Bonk and Kleiner [4] iden-
tified a necessary and sufficient condition for metric 2-spheres to be quasisymmetric spheres. A consequence
of their main theorem is that if a metric 2-sphere is linearly locally connected (or LLC) and Ahlfors 2-regular
then itis a quasisymmetric 2-sphere. Although the LLC property is necessary, there are examples of quasisym-
metric 2-spheres constructed by snowflaking procedures that fail the 2-regularity [3], [5], [7].

In this paper we consider a special case of the double dome-like surfaces constructed over planar Jordan
domains Q in [12]. For a number a > 0 and a Jordan domain Q c R? consider the 2-dimensional surface in
R3

2(Q,t%) = {(x,2): x € Q, z = +(dist(x, 0Q))"}.

As it turns out, for these surfaces the 2-regularity is necessary for quasisymmetric parametrization by S2.

Theorem 1.1. The surface 2(Q, t%) is quasisymmetric to S? if and only if it is linearly locally connected and
2-regular.

What conditions on Q and a ensure that X(Q, t*) is a quasisymmetric 2-sphere? When a > 1, Theorem 1.1
is trivial since, for any Jordan domain Q, the surface X(Q, t*) is not linearly locally connected and hence not
quasisymmetric to S%. If a = 1, 2(Q, ) is quasisymmetric to S? if and only if 0Q is a quasicircle [12, Theorem
1.1]. This result, combined with the fact that the projection of 2(, t) on Q is a bi-Lipschitz mapping, and the
fact that Q is 2-regular if 0 is a quasicircle, gives Theorem 1.1 when & = 1.

In the case a € (0, 1), the part of 2(Q, t*) near 0Q x {0} resembles the product of 0Q with an interval.
Viisila [10] has shown that the product v xI of a Jordan arc v and an interval I is quasisymmetric embeddable
in R? if and only if  satisfies the chord-arc condition (2.2). In view of this result, it is expected that the chord-
arc property of 0Q is necessary for 2(Q, t*) to be a quasisymmetric sphere. Moreover, as the double-dome-like
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surface envelops the interior Q above and below, the following condition on Q is needed to ensure the linear
local connectedness of the surfaces 2(Q, t*). We say that Q has the level quasicircle property (or LQC property)
if there exist €p > 0 and C > 1 such that for all € € [0, €g], the e-level set of Q

ve = {x € Q: dist(x, 0Q) = €}

isa C-quasicircle. A consequence of Theorem 1.21in [12] is that if a planar Jordan domain Q has the LQC property
and 0Q is a chord-arc curve then 2(Q, t*) is quasisymmetric to S for all a € (0, 1).

For these surfaces, the LQC property of Q is essential: if a Jordan domain Q does not have the LQC property
then 2(Q, t%) is not quasisymmetric to S for any a € (0, 1); see Lemma 4.6. However, the chord-arc condition
of 00 is not necessary. Contrary to the intuition based on Vaisdld’s result [10], we construct in Section 5.1 a
Jordan domain Q whose boundary is a non-rectifiable curve and 2(Q, t*) is a quasisymmetric sphere for all
ac(0,1).

Instead, only a weak form of the chord-arc condition is needed: a metric circle I' is said to have the weak
chord-arc condition if there exists Ny > 1 such that every subarc I” ¢ I with diam I’ < 1 can be covered by
at most No(diam I"")! subarcs I; c I"" of diameter at most (diam I")2. Under this terminology we have the
following.

Theorem 1.2. Let Q C R? be a Jordan domain and « € (0, 1). The following are equivalent.

1. The surface 2(Q, t*) is a quasisymmetric sphere.
2. The surface Z(Q, t%) is LLC and 2-regular.
3. Q has the LQC property and 0Q is a weak chord-arc curve.

An immediate consequence of Theorem 1.2 is that the existence of a quasisymmetric parametrization
of 2(Q, t*) by S? does not depend on a € (0, 1). In particular, if 2(Q, t%) is quasisymmetric to S? for some
a € (0, 1) then it is quasisymmetric to S? for all a € (0, 1).

Although not neccessarily rectifiable, any weak chord-arc quasicircle has Hausdorff dimension equal to
1. In fact, a slightly stronger result holds true.

Theorem 1.3. If a quasicircle satisfies the weak chord-arc property then it has Assouad dimension equal to 1.

The example in Section 5.2, however, shows that the converse is false. Moreover, since the Assouad di-
mension is larger than the Hausdorff, upper box counting and lower box-counting dimensions, the conclusion
of Theorem 1.3 holds for any of these dimensions. A consequence of Theorem 1.3 is that if Q is a Jordan do-
main and 02 has Assouad dimension greater than 1, then the surface (@, t%) is not quasisymmetric to S?
forany a € (0, 1).

In Section 3 we define an index that measures how much a curve I' deviates from being a chord-arc curve
on a certain scale, and we discuss the weak chord-arc condition. The proofs of Theorem 1.2 and Theorem
1.3 are given in Section 4. Finally, two examples, based on homogeneous snowflakes, illustrating the weak
chord-arc condition are presented in Section 5.

2 Preliminaries

2.1 Definitions and notation

An embedding f of a metric space (X, dx) into a metric space (Y, dy) is said to be n-quasisymmetric if there
exists a homeomorphism 7: [0, o0) — [0, o0) such that for all x, a, b € X and t > 0 with dx(x, a) < tdx(x, b),

dy(f(x), f(a)) < n()dy(f(x), f(b)).
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A metric n-sphere § that is quasisymmetrically homeomorphic to S" is called a quasisymmetric sphere
when n = 2, and a quasisymmetric circle when n = 1.
A doubling metric circle v is called a C-quasicircle for some C > 1 if it satisfies the 2-point condition:

forall x,y € v, diam~(x, y) < C|x - y|, 2.1)

where v(x, y) denotes the subarc of v connecting x and y of smaller diameter, or either subarc when both have
the same diameter. Tukia and Védisdla [9] proved that quasisymmetric circles are exactly the quasicircles.
Ahlfors [1] showed that a planar Jordan curve v ¢ R? is a C-quasicircle if and only if, there exists an 1-
quasisymmetric homeomorphism f : R? — R? that maps S' onto ~.

A rectifiable metric circle or arc -y is called a c-chord-arc curve for some c > 1 if

forallx,y € v, £y (x,y)) < clx-y|, (2.2

where +/(x, y) is the shortest component of v \ {x, y} and 4(-) denotes length. It is easy to see that a rectifiable
metric circle or arc « is a chord-arc curve if and only if £(y(x, y)) < ¢’|x - y| for some ¢’ > 1; here constants ¢
and ¢’ are quantitatively related.

AJordan arc is any proper subarc of a Jordan curve and a quasiarc is any proper subarc of a quasicircle.
For the rest, all quasicircles, quasiarcs and chord-arc curves are assumed to be subsets of R2.

The notion of linear local connectivity generalizes the 2-point condition (2.1) on curves to general spaces.
A metric space X is A-linearly locally connected (or A-LLC) for A > 1 if the following two conditions are satisfied.

1. (A-LLCy)Ifx € X,r > Oandyq, y» € B(x, r)nX, then there exists a continuum E C B(x, Ar)nX containing

Y1,Y2.
2. (A-LLCy)Ifx € X,r > 0and yq, y» € X\B(x, r), then there exists a continuum E C X\B(x, r/A) containing

Y1, Y2.

A metric space X is said to be Ahlfors Q-regular if there is a constant C > 1 such that the Q-dimensional
Hausdorff measure H? of every open ball B(a, r) in X satisfies

c % < 1%B(a, r) < Cre, (2.3)

when O < r < 2 diam X.
Bonk and Kleiner found in [4] an intrinsic characterization of quasisymmetric 2-spheres and then derived
a readily applicable sufficient condition.

Theorem 2.1 ([4, Theorem 1.1, Lemma 2.5]). Let X be an Ahlfors 2-regular metric space homeomorphic to S?.
Then X is quasisymmetric to S? if and only if X is LLC.

For x € R"and r > 0, define B"(x, r) = {y € R": |[x - y| < r}. Forany a = (a1, a,, a3) € R>, denote by
n(a) = (ay, az,0)

the projection of a on the plane R? x {0}. For x,y € R?, denote by [x, y] the line segment having x, y as its
end points.

In the following, we write u < v (resp. u ~ v) when the ratio u/v is bounded above (resp. bounded above
and below) by positive constants. These constants may vary, but are described in each occurrence.

2.2 Geometry of level sets

For a planar Jordan domain Q and some € > O define the e-level set

ve = {x € Q: dist(x, 0Q) = €}.
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In general the sets ¢ need not be connected and if connected need not be curves; see [11, Figure 1]. We say
that Q has the level quasicircle property (or LQC property), if there exist €9 > 0 and C > 1 such that the level
set ¢ is a C-quasicircle for every O < € < €q. Sufficient conditions for a domain Q to satisfy the LQC property
have been given in [11] in terms of the chordal flatness of 0Q, a scale-invariant parameter measuring the local
deviation of subarcs from their chords.

We list some properties of the level sets from [11] which are used in the proof of Theorem 1.2.

Lemma 2.2 ([11, Lemma 4.1]). Suppose that Q is a Jordan domain and for some € > O the set ~¢ is a Jordan
curve. If 0 is a closed subarc of 0Q then the set 0’ = {z € Q: dist(z, 0Q) = dist(z, 0) = €} is either empty or a
subarc of ~e.

Lemma 2.3 ([11, Lemma 6.1]). There is a universal constant co > 1 such that if ¢ is a Jordan arc and € >
3 diam o then the set 0’ = {x ¢ R2?: dist(x, 0) = €} is a co-chord-arc curve.

Lemma 2.4 ([11, Theorem 1.3]). Let Q be a Jordan domain that has the LQC property. If 0Q is a c-chord-arc
curve then there exist €g > 0 and ¢’ > 1 such that ~¢ is a ¢’-chord-arc curve for all € € [0, €].

3 Aweak-chord arc property

3.1 A chord-arc index

Let I' be a Jordan curve or arc. A partition P of I' is a finite set of mutually disjoint (except for their endpoints)
subarcs of I whose union is all of I'. We denote with |P| the number of elements a partition P has. A §-partition
of I, for § € (0, 1), is a partition P of I such that for each I € P

gdiaml" <diamI"” < §diam .

Standard compactness arguments show that every Jordan curve or arc has §-partitions for all § € (0, 1).
Moreover, if P is a §-partition of I then |P| = 1/8. In the next lemma, we show that if I' is a quasiarc and P is
a 6-partition then, |P| < 672.

Lemma 3.1. For each C > 1 there exists a number C' > 1 depending only on C such that, if T is a C-quasiarc
and A € (0, 1] then, each partition {I';, ..., 'y} with diam I; > A diam I" satisfies N < C'[A?.

Proof. We may assume that diamI" = 1. Fix A € (0, 1) and let {I';, ..., I'y} be a partition of I with diam I'; >
A. Let A = {x¢,X1,...,xy} be the set of endpoints of I'1, ..., I'y. The 2-point condition of I" implies that
|x —y| = A/Cfor all x, y € A. Since all points of A lie in R? which is a doubling, space, there is a universal
constant Cy > 1 such that N < Co(A1/C)™2 = CoC2/A%. O

For a partition P of I" define
1 N
M(T,?P) = JamT r,§€g> diamI".

The finite number M(I', P) measures, on the scale of P, the deviation of I' from being a chord-arc curve. When
4(I) is finite, the number M(I", P) is an estimation of ¢(I')/ diam I': for any € > 0, there exists a partition P of
I' such that |[M(T', P) — ¢(I')/ diam I'| < €. On the other hand, if ¢(I) is infinite then for all M > O there exists a
partition P of I' such that M(I', P) > M. The properties of the gauge M(I', P) are summarized in the following
lemma.

Lemma 3.2. Suppose that I is a Jordan curve or arc.

1. If P is a 8-partition then |P|6 < M(I', P) < |P|6.
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2. Suppose that P = {I'1, ..., 'y} isapartition of I' and foreachi =1, ..., N, P; is a partition of IT';. Then,

N
M(r, | JP) = M(T, P).

i=1
3. AssumethatT isa C-quasiarcand § € (0, 1). There exists M1 > 1 depending on C such that M(T', P)/M(I", P') <
M, for any two §-partitions P, P’ of I.

Proof. Property (1) is an immediate consequence of the definition. For property (2) simply note that diam I'; <
dorep, I'’. Finally, to show (3), let P = {I',...,I'y} and ?" = {I,..., ).} be two §-partitions of I'. By
Lemma 3.1 there exists Ny > 0 depending on C such that each I'; can contain at most N subarcs I ]’ . Thus,
N’ < NoN and (3) follows from (1). O

In the next lemma we show that if a quasiarc resembles a chord-arc curve for partitions of small scale then it
should also do that for partitions of larger scale.

Lemma 3.3. Suppose that I is a C-quasiarc, Ny > 0 and P is a 6-partition of T with § € (0, 1) and |P| < No/6.
There exists N1 depending on C, No such that for all §' < [8, 1) and all §'-partitions P’ of I we have |P'| < N1/§'.

Proof. We prove the lemma for N; = 5M; Ny where M, is as in the third part of Lemma 3.2. Contrary to the

claim, suppose that there exist a number 6’ € [§, 1) and a §’-partition P’ = {I'1, ..., 'y} suchthat N > N;/§'.
Foreachi =1,..., N consider a %ﬁ%‘}if-partition P; of I'y; for those i that diam I'; < §diam I' set P; = {I'}}.
Note that |P;| 2 l;iiﬁammr i and that P* = Uf\i 1 Piis a -partition of I'. By Lemma 3.2,

. 6
M, P) 2 (|Py|+---+ |9’N|)§ > M1 No.

But then M(I", P*)/M(T', P) > M; which is a contradiction. O

The following lemma is used in the proof of Theorem 1.3.

Lemma3.4. LetT beajordanarcandO < & < §' < 1. Suppose that each §-partition of I' has at least N elements

log 6’ +1
for some N > 1. Then, there exists a subarc I’ C T and a §'-partition P’ of I’ with |P'| = N Tog (0012,

Proof. Contrary to the lemma, suppose that for each subarc o C T, every &’ -partition P of g has |P| < N on) .
We construct a partition of I as follows.

Let ko € N be the smallest integer that is greater than lolig,z). Let Py = {I'1, ..., I'y,} bea §'-partition of
I'.Foreachi=1,...,NoletP?; = {I'y,..., iy} bea §-partition of I';. Inductively, suppose that I'y has been
defined where w = iyi; ..., i; € Nand k < ko. Then let Pw = {I'y1,...,Tyn, } bea &’ -partition of T'y.

Define P* = J,, Pw where the union is taken over all words w = i; ... i}, . Note that for each I'y € %",

&\  diamT, nko . 6
(5) < diamr < %) <3

Moreover, by our assumptions, for all partitions P, defined,

log 8’ +1
|:PW| < Nlog(857/2) ,

: log (6/2
Consequently, since ko < % +1,
* log 8" +1 ko log 8" kO
|P| < | NesG'72) < | Nlog(6772) < N.

If P is a §-partition of I' then, for each I" € P and each I'y € P*, diamI'y < diamI”. Thus, |P| < |P"| < N
which is a contradiction. O
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3.2 Aweak chord-arc property

Note that if a curve I' is a chord-arc curve then there exists My > 1 such that for all subarcs I’ c T, all§ > 0
and all §-partitions P of I, we have M(I", P) < My.

A curve or arc I is said to have the weak chord-arc property if there exists My > 0 such that for all subarcs
I c I'withdiam I’ < 1, there exists a diam I"'-partition P of I satisfying M(I", P) < M.

In other words, a curve I is a weak chord-arc curve if there exists My = 1 such that any subarc I of I
can be partitioned to at most 2My/ diam I subarcs I'y, ..., I'y of diameters comparable to (diam I")2. It is
clear that a chord-arc curve is a weak chord-arc curve but the converse fails; see Section 5.1. The third claim
of Lemma 3.2 implies that, for quasicircles, the weak chord-arc property is equivalent to a stronger condition.

Lemma 3.5. Suppose that I is a C-quasicircle that satisfies the weak chord-arc property with constant My > 1.
Foreach a € (0, 1) there exists My > 1 depending only on C, My, a such that for all subarcs I’ C T of diameter
less than 1 and all (diam I’ )ﬁ‘l-partitions P we have M(I"’, P) < M.

Proof. If a € [%, 1) then the claim follows immediately from Lemma 3.3 with My = 10MyM; where M, is as
in Lemma 3.2.

Suppose now that a € (0, %) and let ko be the smallest integer with 27% < a. Fix a subarc I'y ¢ I with
diam Iy < 1and a diam I'p-partition Pg = {I'1,..., 'y, } of o with |Po| < 2Mp. Foreachi=1,..., Nglet P; be
a (dé?;‘nf 1&’34 -partition of I';. The weak chord-arc property of I'; and Lemma 3.3 imply | P;| < 10MoM; (diam I'p) 2.

Inductively, suppose that I'y has been defined where w = i;---i}, i; € Nand k < ko. Then, let Py =
. k+1
{T'wi,...,Twn,} bea M-partition of I'y. Again, note that |Pw| < 10MoM;(diam Fo)’zk.

diam Iy,
Define P* = J,, Pw where the union is taken over all words w = i; - - - i}, constructed as above. Note that

P is a (diam I o)zko‘l-partition of I'; with

(diam I'p)2®

M(To, ') < diam I’y

S |Pwl < Q0MoMy)*.

Wiy,

Since (diam I'p)!/® > (diam I',)2" > diam I'y forall T € P, it follows from Lemma 3.3 that every (diam I)«~1-
partition P of I'y satisfies M(I'o, P) < Mg with My = (10Mo M)+, O

By interchanging the roles of % and a, and applying the arguments in the proof of Lemma 3.5, the following
converse can be obtained.

Remark 3.6. Suppose that I is a C-quasicircle and that there exist a € (0, 1) and Mg > 1 such that every
subarc I" c I withdiamI” < 1 has a (diam F/)%‘l—partition P satisfying M(I", P) < M. Then T has the weak
chord-arc property.

4 Proofs of the main results

The proof of Theorem 1.2 is given in Section 4.1 and Section 4.2. By the theorem of Bonk and Kleiner, it is clear
that (2) implies (1).

To show that (3) implies (2) we first show in Lemma 4.6 that if Q satisfies the LQC property then X(Q, t%)
is LLC for all « € (0, 1). Then, in Proposition 4.1 we prove that if Q has the LQC property and 0Q is a weak
chord-arc curve then 2(Q, t%) is 2-regular.

To prove that (1) implies (3), we show in Lemma 4.6 that if 2(Q, t*) is LLC for some a € (0, 1) then Q
satisfies the LQC property. Then, in Proposition 4.7 we show that if Q has the LQC property and X(Q, t*) is
quasisymmetric to S? then 0. is a weak chord-arc curve.

The proof of Theorem 1.3 is given in Section 4.3.
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4.1 Ahlfors 2-regularity
The following proposition connects the weak chord-arc property of 0Q with the 2-regularity of 2(Q, t%).

Proposition 4.1. Suppose that Q has the LQC property, 0Q has the weak chord-arc property and a € (0, 1).
Then, 2(Q, t%) is 2-regular.

For the rest of Section 4.1 we assume that there exist Co > 1 and ¢q € (0, SlTO) such that for any € € [0, €],
the level set ¢ is a Co-quasicircle. To show (2.3) we first apply some reductions on a € 2(Q, t*) and r > 0.
Reduction 1. Let 2(Q, t*)" = 2(Q, t) N {x e R?: x3 2 0}. If a € Z(Q, t*)" and r > 0 then by symmetry of
2(Q, t%) with respect to R? x {0} we have
H*(B*(a, ) N 2(Q, t)) < H2(BP(a, 1) N 2(Q, t%)) < 20*(B*(a, 1) N Z(2, t9)*).
Therefore, it is enough to verify
C'r? < 3%(B’(a, ) N 2(Q, t9)") < Cr?, (4.1)

for some C > 1 and forall a € X(Q, t%)* and r < 2 diam X(Q, t%).

_1
> 180C3

pending only on €y, diam Q and a such that each ball B>(a, r) N 2(Q, t*)* with r = ry can be covered by at
most ¢y balls B3(a;, r;)) N 2(Q, t*)" with a; € 2(Q, t¥)" and r; < ro. Hence, it suffices to show (4.1) for r < ro.

Reduction 2. Let rq = min{ep/3 diam Q}. By the doubling property of R>, there exists c; > 1 de-

Reduction 3. We claim that it is enough to verify (4.1) only for those points a € 2(Q, t*)* whose projection
satisfies dist(rr(a), 0Q) < €o. Indeed, following the notation in [12], let A, /5 be the set of all points in Q whose
distance from 00 is greater than €y/3 and A;O /3 be the subset of Z(Q, t*)* whose projection on R?x{0} is A eo/3"
Since 0A. /3 = ,/3 is a quasicircle, the domain A, ;5 is 2-regular. Therefore, the surface AZO /30 which is the
graph of a Lipschitz function on A, /3, is 2-regular as well. Thus, if a € X(Q, t*)* satisfies dist(7r(a), 0Q) > €

and r € (0, €o/3) then B3(a, r) N 2(Q, t*)* C Af 5 and H2(B3(a, r) N 2(Q, t9*) ~ 1.

Reduction 4. We show in Lemma 4.2 that it is enough to check the Hausdorff 2-measure of certain subsets
on X(Q, t%) defined as follows. Suppose that x1, y1, x2, ¥» are points in X(Q, t*)* satisfying the following
properties:

(@) m(x1), 1(y1) € v, and 71(x3), 7(y2) € v, for some 0 < ¢, < t; < €,
(i) |m(x1) - m(x2)| = dist(m(x1), vt,) = [(y1) - n(y2)| = dist(n(y1), v,) = t1 - t2,
(iii) ch0|"1 —yilsti—ty+t{ —t§ < $x1 - y1] < cho diam Q.

Property (i) implies that for each i = 1, 2, x; is on the same horizontal plane as y;. Property (ii) implies that
11(x,), n1(y,) are the points of ¢, which are closest to 71(x;), 71(y1) respectively. Property (iii) implies that |x; -
Yjl, X1 = x2| and |y - y»| are all comparable and sufficiently small. If xo, yo € 0Q are the closest points to
m(x1), n(y1) respectively, then |7(x;) — xo| = |7(y2) — yo| = t2. Therefore, m(x1), 71(x3), xo are colinear and the
line segment [77(x1), 71(x;)] joining the points 77(x,) and 71(x;) is entirely in Q. Similarly, [7(y1), 7(y,)] C Q.

Denote with D = D(x1, y1, X2, y>) the subset on 2(, t*)* whose projection on R? is the quadrilateral
bounded by [71(x1), m(x2)], V¢, ((x1), 1(y1)), [(y1), 1(y2)], e, (T(x2), m(y2)). We call D a square piece on
2(Q, tY)*.

The following lemma is a corollary of [12, (6.4)] and [12, Remark 6.1].

Lemma 4.2. There exist C1, C, > 1 depending on Cy, €g, diam Q such that

1. diam D < Cq|x1 — y1| for every square piece D = D(x1, ¥1, X2, ¥2),
2. foralla € X(Q, t*)" andr > 0 as above, there exist square pieces D, and D, such that 1 < diam D,/ diam D; <
C, and
Dy C B*(a,n) N 2(Q, t%)*" c D,.
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Thus, by (iii), choosing €, small enough, we may assume from now on that diam D < (4C,) ! for all square
pieces D. By Lemma 4.2 and the discussion above, Proposition 4.1 is now equivalent to the following lemma.

Lemma 4.3. There exists C > 1 depending on Co and the weak chord-arc constant Mg such that
C Y(diam D)? < #¢2(D) < C(diam D)? (4.2)
for all square pieces D on 2(Q, t*)* defined as above.

The lower bound in (4.2) was shown in [12, Section 6.2.1]. For the upper bound, the following lemma is
used; we only give a sketch of its proof since it is similar to the discussion in [12, Section 6.2.1].

Lemma 4.4. Let S be a closed subset of Z(Q, t*)* and 0 < t, < t1 be such that 11(S) intersects with - if and only
ift € [ty, t1]. Suppose that, for all t, t' € [t,, t1], the Hausdor{f distance between ri(S) N ~¢ and m(S) N~y is less
than c1|t - t'| for some ¢, > 1, and 71(S) N~ is a c,-chord-arc curve for some c; > 1. Then H*(S) < C(diam S)?
for some C depending on cq, c5.

Proof. Fix e > 0.Lett, = 71 < -+ < Ty = t; be such that the sets S; = S N (v, x {1}}) satisfy €/4 <
dist(S;, Sis1) < €/2. By the first assumption of the lemma, it is straightforward to check that N < N; diam S/¢
for some N, depending on c;. The second assumption implies that each S; contains points x; 1, ..., X; p,
satisfying |x; j - x; ;1| < €/2 and n; < N, diam S;/€ < N, diam S/e for some N, depending on c,. Thus, S can
be covered by at most N1 N, (diam S)?/e? balls of radius € and the lemma follows. O

For the upper bound of (4.2) we consider two cases. The first case is an application of Lemma 4.4 while in the
second case we use the weak chord-arc condition to subdivide D into smaller pieces on which the first case
applies.

Proof of Lemma 4.3. As mentioned already, the lower bound of (4.2) follows from the discussion in [12, Section
6.2.1] even without the weak chord-arc assumption of 00Q. It remains to show the upper bound. By Lemma
3.3, there exists My > 1 such that for any subarc I' ¢ 9Q with diam I" < 1 and for any (diam I )i’l-partition P
of I we have M(I", P) < M,.
Fix a square piece D = D(x1, y1, X2, y») where x1, y1, X2, ¥, satisfy equations (i)-(iii). Let xq, yo € 0Q be
such that
X0 — m(x1)| = lyo — t(y1)| = t1 and |xo - m(x2)| = [yo - 71(y2)| = 2

and set I'y to be the subarc of 0Q, of smaller diameter, with endpoints xq, yo. The choice of €y implies
diam I'y < Co|xo - yo| £ Co(diam D + 2t1) < Co(diam D + 2€) < 1/2.

Case 1. Suppose that (diam To)a < t2/10. We claim that thereis C > 1 depending on Cy, M such that for
each e € [t,, t1], the arc veNm(D) is a C-chord-arc curve. Assuming the claim, the upper bound of (4.2) follows
from Lemma 4.4. To prove the claim, it suffices to show that ¢, N 77(D) is a C-chord-arc curve. Then, using the
fact that for each € > t,, the set ¢ is the (e — t,)-level set of ;,, the claim follows from Lemma 2.4. Let o be a
subarc of v, N D and x, y be the endpoints of o. Since ~;, is a quasicircle, it suffices to show that there exists
C > 1 such that ¢(0) < Cdiam 0. Let X', y’ € I'y be such that [x - x| = |y = y'| = t; and set 0’ = I')(x’, y’).

If diam ¢’ < t,/10 then, by Lemma 2.3, 0 is a co-chord-arc curve for some universal ¢y > 1.

If diam ¢’ € [t,/10, 10¢,] then apply Lemma 3.1 to get a 10™2-partition P = a7/, ..., o) of ¢/ with N
bounded above by a positive constant depending on Cy. Foreachn = 1,..., N let o, be the set of all points
z in ¢ that satisfy dist(z, 67,) = t,. By Lemma 2.2, {0} are subarcs of ¢, perhaps not mutually disjoint. Thus,
o0 is a union of N c¢y-chord-arc curves, hence 4(0) < c; diam ¢ for some c¢; > 1 depending on Cy.

Finally, if diam ¢’ > 10t, note that diam ¢ ~ diam ¢’. Since (diam ¢’ )z < (diam FO)% < t,/10, Lemma 3.3
and the weak chord-arc property of o’ imply that there exists a (15g2—)-partition P = {07, ..., oy} of 0’
with N < Ny diam ¢’/t, and Ny depending on Cy, My. Define o4, ..., oy as above and note that each o, is a
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co-chord-arc curve and satisfies diam oy, < diam oy, + ¢, < t,. Hence,

N N
/(o) < Z o) < Z c1 diam oy < Nt; < diam ¢’ ~ diam 0.
n=1 n=1
Case 2. Suppose that (diam 1"0)% > t5/10. Let H = 10%/. For a subarc I'' C I'y define D(I") to be the set of
all points (z, (dist(z, 0Q))%) such that z € Q, dist(z, 0Q) = dist(z, ') and

0 < dist(z, 0Q) < H(diam I")"/®.

Note that diam D(I") < 2(H* diam I" + H(diam I")/% + diam 7, (x1, 1)) < diam I'. From the middle inequality
of (iii), it is easy to see that t; < H(diam I';)"/® and thus D ¢ D(I'y). Let

Eq = {x € D(I'p): dist(n1(x), 0Q2) = 10(diam Fo)z/“}

and note that diam Eq < diam D(I'y) < diam I'y.

We claim that H?(E,) < C(diam I'y)? for some C > 1 depending on Co, Mg. As in Case 1, it is enough to
show that v = ~; N (Ey) is a chord-arc curve when t = 10(diam I' 0)%. The claim then follows from Lemma
2.4 and Lemma 4.4. Let 0 C v and define ¢’ C T as in Case 1. If diam ¢’ < 10t then the claim follows from
Lemma 2.3 and Lemma 3.3 as in Case 1. If diam ¢’ > 10t then let {0}, ..., oy, } be a (diam ¢’ )%‘1-partition of
o' withm < 2M,. Foreachi=1,...,mlet {0};,..., GQNI_} be a (t(diam 0’)‘§)-partition of g}. Define subarcs
{0j;} of 0 as in Case 1. Since diam ogj < t < 10t, each oy is a ¢1-chord-arc curve for some ¢; > 1 depending on
Co. Moreover, by the weak chord-arc property and Lemma 3.5, Ny + -+ + Ny < 10M1 M, 2 diam o’ /t where M,
is as in Lemma 3.2. Since diam ¢’ ~ diam o,

m
/(o) < ZK(GU) <c, Z diamoy; < tz N; < diam ¢’ < diamo.
i,j ij i=1
and the claim follows.
Let P; = {I1,..., 'y} bea (diam I'p)a!-partition of I', with N < 2Mg(diam I';)'"«. Define D(I;), E; as
above and note that the choice of H yields D(I'y) C EqU Ufi 1 D(I;). Similarly as above, H2(E;) < C(diam T 0)% .

. 2
Foreachi=1,...,Nlet{I';,..., Iy }bea M-partition ofI';and set P, = {I';;}. The weak chord-

diam I;
arc condition and Lemma 3.1 imply that N; < 10MaM;(diam Fi)l‘% < 1OMaM12%‘1(diam I“o)%_b%2 where M,
1
is as in Lemma 3.2. Thus, |P,| < (m23~1)2(diam I'p)! " with mo = 10M,M;. Again, the choice of H yields

N N N;
D(Io)  Eo u| JE;u | JDTy).
i=1 i=1j=1

Inductively, we obtain partitions Py = {I7,..; } with
[Pyl < (mo2+ 1) (diam [o)' &

and square-like pieces Ej, ...;, with

D(F()) CEOUUEiU U Eil,iz U---U U D(Filn-ik)
i i1,i> Fil---ikej)k
and J{Z(Eil...ik) < C(diam I"O)alk. Therefore, since D C D(I'y),
H(D) < H(Eo) + > H*(E) + > H*(Eyy i) +...
i i1,i

S (diamT'o)* 3 (mo2+™)¥ (diam Fo)
k=0

It is easy to see that the latter series converges. Since diam Iy < diam D, we conclude that 7?(D) < (diam D)?
and the proof is complete. O



DE GRUYTER OPEN Double-Dome Quasisymmetric Spheres =—— 63

4.2 The LQC property and Vdisdla’s method

The connection between the LQC property of Q and the LLC property of 2(Q, t*) is established in the following
proposition from [12].

Proposition 4.5 ([12, Proposition 5.1, Lemma 5.6]). Suppose that a € (0, 1) and Q is a Jordan domain whose
boundary 0Q is a quasicircle. Then 2(Q, t*) is LLC if and only if Q has the LQC property.

It turns out that the quasicircle assumption of 002 can be dropped in Proposition 4.5.

Lemma 4.6. Suppose that Q is a Jordan domain and a € (0, 1). Then, 2(Q, t%) is LLC if and only if Q has the
LQC property.

Proof. Suppose that & = X(Q, t%) is A-LLC for some A > 1. We show that 00 is a (4A?)-quasicircle and the
proof follows then from Proposition 4.5.

Let x, y € 0Q and v, ' be the two components of 0Q \ {x, y}. By the A - LLC; property, the points x, y are
contained in a continuum E in B3(x, 2A|x-y|)nZ. Then the projection 77(E) is a continuum in Q containing x, y.
Suppose that there exist points z, z’ in v, 7 respectively, which lie outside of B>(x, 2A%|x - y|). The A - LLC,
property implies that there exists a continuum E’ ¢ X\ B3(x, 2A|x - y|) that contains z, z’. But then, the
projection 77(E’) is a continuum in Q containing z, z’. It follows that (E) N (E") # 0 and, since X is symmetric
with respect to R? x {0}, E' intersects B3(x, 2A|x - y|) which is a contradiction. Therefore, at least one of ~y, ~/
lies in B’ (x, 2A%|x - y|) and min{diam ~, diam o'} < 4A%|x - y. O

We now show that the weak chord-arc condition of 0 is necessary for (@, t%) to be quasisymmetric to S2.
This concludes the proof of Theorem 1.2. The proof follows closely that of [12, Proposition 6.2]. The main idea
used is due to Viisila from [10].

Proposition 4.7. Suppose that Q has the LQC property and a < (0, 1). If 2(Q, t*) is quasisymmetric to S> then
0Q is a weak chord-arc curve.

Proof. By our assumptions, there exist €y > 0 and C > 1 such that, for all € € [0, €¢], the set ¢ satisfies (2.1)
with constant C. Set 0Q =T.

Suppose that the claim is false. Then, by Remark 3.6, for each n € N, there exists a subarc I'y C T, of
diameter less than 1, and a (diam Fn)i‘l-partition Pn=A{ln1,...,Tnn,} with M(I'n, Pn) > 4Cn. By Lemma
3.2, the latter implies that

Ny > 4Cn(diam I"n)l"%.
Let {xn,0, Xn,1, ..., Xn N, } be the endpoints of the arcs I'y,1, . . ., I'n,n, , Ordered consecutively according
to the orientation in I'; with x50, x5, being the endpoints of I'. For these points, (2.1) implies that
1 ... 1 . 1
i(dlam Tn)a < |Xp,; = Xp,i-1| < (diam I'p)=.
By adding more points from each subarc I', ; in this collection, if necessary, we may further assume that

1.,.. 1 1., 1
4—C(d1am1"n)a < [Xp,i = Xnic1] < i(dlaml"n)a.

The existence of these new points follows easily from the doubling property of R? and the 2-point condition
of I'. As we may have increased the number of points, it follows that

Nn
Z [Xn,io1 = Xn,il 2 Nn%(diaml"n)% > ndiam I'y.
i=1

Set dn = (10C*)™ miny.icy, |Xn,i = Xn,i-1| and note that d% ~ diam I'r.
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The rest of the proof is identical to that of [12, Proposition 5.1] by setting ¢(t) = t* therein. We sketch the
remaining steps for the sake of completeness.

Fix n € N and write N, = N and x,,; = x;. Assume that there exists an n-quasisymmetric map F from
2(Q, t%) onto S%. Composing F with a suitable M6bius map we may assume that F(Z(Q, t¥)*) is contained in
the unit disc B2. Since 9Q is a quasicircle, we can find points wo, ..., wy on I and points wy, ..., w}\, on
va = {x € Q: dist(x, 0Q) = d} which follow the orientation of {xg, ..., xy} such that |w; - x;| € [d, 3Cod]
and |w; - w}| = d. Hence, |w; — w;,1| ~ d. Let D be the square-like piece on (2, t*)* whose projection on
R? x {0} is the Jordan domain bounded by I'(wo, wy), 7a(Wg, W), [wo, wpl, [wy, wil.

The partition of I'(wg, wy) into the subarcs I'(w;_1,w;), i = 1,..., N induces a partition of D into N
tall and narrow strips D; with height in the magnitude d* and width in the magnitude d. Each D; is further
partitioned by planes parallel to R? x {0} into k square-like pieces D;; with k ~ d* 1. The quasisymmetry
of F implies that (diam F (Dl-]-))2 < clﬂfz(Dij) with ¢; > 1 depending on n, C. Summing first over j and then
over i, and applying Hélder’s inequality twice, we obtain (diam F(D))? < Nkc;H?(D) < conH?(D) with ¢ > 1
depending on 7, C. On the other hand, the quasisymmetry of F on D implies that H?(F(D)) < c3(diam F(D))?
with ¢3 > 1 depending on 7, C. Since diam F(D) # 0, letting n — o, we obtain a contradiction. O

4.3 Assouad dimension

The Assouad dimension of a metric space (X, d), introduced in [2], is the infimum of all s > O that satisfy the
following property: there exists C > 1 such that forany Y ¢ X and § € (0, 1), the set Y can be covered by
at most C6~5 subsets of diameter at most § diam Y. In a sense, the main difference between Hausdorff and
Assouad dimension of a space X is that that the former is related to the average small scale structure of X,
while the latter measures the size of X in all scales. The doubling metric spaces are exactly the metric spaces
of finite Assouad dimension. See [6] for a detailed survey of the concept.

Remark 4.8. If X is a quasicircle, then all sets in the definition of the Assouad dimension can be replaced by
subarcs of X.

The claim of the remark becomes evident after noticing that for all subsets Y of a C-quasicircle I' there
exists a subarc I” ¢ T containing Y, such that diamI"” < Cdiam Y.

We now turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. Suppose that I is a C-quasicircle with Assouad dimension greater than 1; in particular,
greater than 1 + € for some fixed € € (0, 1). We claim that I" does not have the weak chord-arc property.
Contrary to the claim, assume that I satisfies the weak chord-arc condition for some My > 1. By Lemma
3.3 there exists Ny > 1 depending on My, C such that forall I” ¢ I'with diam I’ < 1 and all diam I'"’-partitions
P of I’ we have |P| < Ng. By our assumption on the Assouad dimension of I', there exists a subarc I’ ¢ I' and
anumber § € (0, 1) such that all §-partitions P of I' satisfy |P| > M6717¢ where M = 10NoM1 My, M7 > 11is

as in the third claim of Lemma 3.2, My > 1 is the number in Lemma 3.5 associated to « = VB and g = 1e/2

1+\/B 1+e
The subarc I can be chosen small enough so that diam I < min{(2MoM;) /¢, e‘l/(l‘\/ﬁ)}.
Case 1. Suppose that diam I" < 260-VP/VE, Assume first that 6 > diam I”. Let P be a §-partition of I'.
The weak chord-arc property of I’ and Lemma 3.3 yield |P| < No6™! < M§~17€ which is false.
Assume now that § < diam I. Let & € (0, 1) be such that (diam I")# ! = §. The assumption ondiamI”, §

and the fact that diamI” < 1/2 yield a’ > 1:% = a. By Lemma 3.3 and Lemma 3.5, every §-partition P of I

satisfies |P| < 10Mq M6 1 < M&17€ which is also false.
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Case 2. Suppose that diam I > 260-VPIVB, By our assumptions on § and diam I’ we have
log(diamI")+1 log(diamI”)+1 log 6 log (diam I')

log (8 diam I'") ~ log(diamI") log (diamI7)  logé
. ﬁlog (diamI")
- logé

Apply Lemma 3.4 for I'” with §’ = diam I'and N = § 1€, There exists a subarc I’ I and a diam I”-partition
P’ such that

log (diam )

‘ﬂ)/| > §C1-OB™ 00— 5 (diaml—-/)—(he/z).

We create a diam I'’-partition of I'’ as follows. For each ¢ € P’ let P(0) be a %-partition of g; for

those o € P’ that satisfy diam o < (diam I"’)? set P(0) = {o}. Define P” to be the union of all partitions P(0).
It is easy to see that P is a diam I'’-partition of I'” and Lemma 3.2 gives

MT",P"y = M, P > %(diam )¢ > MoM;.

The latter, however, is false by Lemma 3.2 and the proof is complete. O

5 Examples from homogeneous snowflakes

Let N = 4 be a natural number and p € (1/4, 1/2). A homogeneous (N, p)-snowflake in R? is constructed as
follows. Let Sy be a regular N-gon, of diameter equal to 1/2. At the n-th step, the polygon S, is constructed
by replacing all of the N4™ edges of S, by the same rescaled and rotated copy of one of the two polygonal arcs
of Figure 1, in such a way that the polygonal regions are expanding. The curve § is obtained by taking the limit
of Sy, just as in the construction of the usual von Koch snowflake. It is easy to verify that every homogeneous
snowflake satisfies (2.1) for some C depending on N, p, and as a result is a quasicircle. See [8] for relevant
results.

1/4 1/4 1/4 114

Figure 1

Let E be an edge of some S, towards the construction of 8. Denote with Sg the subarc of 8, of smaller
diameter, having the same endpoints as E. The next lemma will ease some of the computations in the rest.

Lemma 5.1. A homogeneous (N, p)-snowflake S is a weak chord-arc curve if and only if there exists M* > 1
such that every subarc Sg has a diam Sg-partition P with M(Sg, P) < M.

Proof. The necessity is clear. For the sufficiency, fix a subarc I' C 8 and let ng be the greatest integer n for
which I is contained in Sg for some edge E of S,. Assume for now that ng > 0. Denoteby E;,i=1,..., 4, the
oriented four segments constructed after E in the ng + 1 step, that is Sg = Uf-‘:l 8g,. Inductively, if w =iy - -+ iy
with i; € {1, ..., 4}, let E,;, be the oriented four segments constructed after Ey in the ng + k + 1 step.

Suppose that I" contains a subarc 8g,, i = 1,...,4. Then diamI" = %diam S8 = %diam E. Let P be a
(4 diam E)-partition of 8g and P’ = {I"NI': I € P}. The weak chord-arc property of Sy and Lemma 3.2 imply
that there exists Ny > 0 such that |?'| < |P| < No(diam I)". Since diam I < (diam I')? for each I € P’ it
follows that I' has the weak chord-arc property for some M" depending on Nj.
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Suppose now that I' contains none of the 8¢, i = 1, ..., 4. Then, there exist i € {1, 2, 3} and maximal
integers r,q > O such that I' C Sg,, U Sg,, - In this case, apply the arguments above for I' N Sg,,, and
Irn SE(M)N'

If ng = O then apply the arguments above for I' N 8, ..., I' N 8, where Ey, ..., Ey are the edges of
So. O

5.1 A non-rectifiable Jordan curve that satisfies the weak chord-arc property

Let 8 be the homogeneous (N, p)-snowflake where the first polygonal arc in Figure 1is used only at the 10"-th
steps, n € N. We also require that diam 8 < (4p)~!. Note that at the 10* step of construction, the length of
the polygonal curve S is equal to (ap)k. Thus, $ is not rectifiable. We claim that $ has the weak chord-arc
property.

By Lemma 5.1, it suffices to check that all subarcs Sg are weak chord-arc curves. Fix an edge E built at
step n. Then diam E > 47, Let ko be the smallest k € N such that diam E’ < (diam E)? for all E’ € S,,,. We
claim that ko < 9n. Indeed, the construction of § implies that at step 10n, each edge has diameter equal to
(4p)4~°" diam E < (4p)(diam E)'° since the first polygonal arc in Figure 1 has been used only once. The claim
follows from our assumption that diam E < diam 8 < (4p)~1.

Let P be the set of all subarcs Sg» where E’ are constructed at step n + ko and have E as their common
parent. Then, diam E’ = 47 C diam E with C = 4p if the first polygonal arc has been used in the kg steps or
C = 1 otherwise. Since kg is minimal,

%(diam Sp)? < diam 8y < (diam Sg)?.

Therefore, |P| = 4% < 4C(diam E)™" = 4C(diam Sg)~!. By Lemma 3.1, there exists a diam Sg-partition of S that
has at most C’(diam Sg)~! elements, for some C’ > 1 depending on N, p. Hence, Sg has the weak chord-arc

property.

Corollary 5.2. There exists a Jordan domain Q with nonrectifiable boundary such that 2(Q, t%) is a quasisym-
metric sphere for all a € (0, 1].

Proof. It follows from the discussion in Section 7 of [11] that there exists po € (%, %) and an integer Ny > 4
such that every homogeneous (N, p)-snowflake with p < pg, N > Ny bounds a domain that satisfies the LQC
property. Let Q be the domain bounded by the snowflake constructed above with p < pg, N = Nj. Since S is a
quasicircle, 2(Q, t) is a quasisymmetric sphere. Moreover, the weak chord-arc property of § and Theorem 1.2
imply that X(Q, t%) is a quasisymmetric sphere for all a € (0, 1). O

5.2 A quasicircle of Assouad dimension 1 that does not satisfy the weak chord-arc
property

Let 8 be the homogeneous (N, p)-snowflake where the first polygonal arc in Figure 1is used only at the n?-th
steps for n € N. For convenience we also assume that each edge of Sy has length equal to 1. Then, if E is an
edge of Sp, diam E = 4™ "(4p) vl where, | x| denotes the greatest integer which is smaller than x.

We show that 8 has Assouad dimension equal to 1 but does not have the weak chord-arc property.

Fix € > 0; we claim that 8 has Assouad dimension less than 1+ €. Similarly to Lemma 5.1, it is easy to show
that it is enough to verify the Assouad condition only for the subarcs §g. Take § € (0, 1) and an edge E of the
n-th step polygon Sy, for some n € N. Let m be the largest integer such that diam E’ > § diam E for all edges
E’ of Sm and P be the set of all subarcs Sg C Sg where E’ is an edge of S,. Then, 4" ™ (4p)LV™I-Lv1l > § and

(m-n)log4 - (vVm-+/n)log4p < -log b +log4p (5.1)
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By elementary calculus, there exists M > 0 depending on €, p such that /x-/y < 15 12(;34‘; (x-y)forallx > M

and 0 < y < x.Ifm < Mthenclearly |P| = 4™ < 4M < 4M§71-¢ If m > M then (m-n)log 4—(v/m—/n)log 4p >
1984 (1 _ ) and by (5.1)

1+e

(m-n)log4 <log§ 1€ +2logap.

Therefore, |P| = 4™ < 4M(4p)?6717¢ and the claim follows. Since € was chosen arbitrarily, § has Assouad
dimension equal to 1.

We show now that 8 does not have the weak chord-arc property. Let n € N, E be an edge of the n-th step
polygon S, and m = n be the greatest integer such that diam E’ > (diam E)? for each edge E’ of Si. Let P be
the set of all subarcs g C 8 where E’ are edges of Si,. Then,

2
(4_"(4p)ﬁ_1) < (diam E)? < diam E' < 4™ (4p)¥V™

which yields

2 m

1 n _ log(4p) (1 _ n) . log 4p

2 ms\/ﬁloga mlog4’
25

Note that as n goes to infinity, m goes to infinity and n/m goes arbitrarily close to 1/2. Hence, m > £2n for all
sufficiently large n. Therefore,

diam S/ _/n- -
M(se, P) = [Pl G0 = (4p)Y "V 2 (ap) T 2 (ap)

which goes to infinity as n goes to infinity. Thus 8 is not a weak chord-arc curve.
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