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Abstract: Let Ω be a planar Jordan domain and α > 0. We consider double-dome-like surfaces Σ(Ω, tα) over
Ω where the height of the surface over any point x ∈ Ω equals dist(x, ∂Ω)α. We identify the necessary and
su�cient conditions in terms of Ω and α so that these surfaces are quasisymmetric to S2 and we show that
Σ(Ω, tα) is quasisymmetric to the unit sphere S2 if and only if it is linearly locally connected and Ahlfors
2-regular.
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1 Introduction
A metric space which is quasisymmetric to the standard n-sphere Sn is called a quasisymmetric n-sphere.
Quasisymmetric circles were completely characterized by Tukia and Väisälä in [9]. Bonk and Kleiner [4] iden-
ti�ed a necessary and su�cient condition for metric 2-spheres to be quasisymmetric spheres. A consequence
of their main theorem is that if a metric 2-sphere is linearly locally connected (or LLC) and Ahlfors 2-regular
then it is a quasisymmetric2-sphere. Although the LLCproperty is necessary, there are examples of quasisym-
metric 2-spheres constructed by snow�aking procedures that fail the 2-regularity [3], [5], [7].

In this paper we consider a special case of the double dome-like surfaces constructed over planar Jordan
domains Ω in [12]. For a number α > 0 and a Jordan domain Ω ⊂ R2 consider the 2-dimensional surface in
R3

Σ(Ω, tα) = {(x, z) : x ∈ Ω , z = ±(dist(x, ∂Ω))α}.

As it turns out, for these surfaces the 2-regularity is necessary for quasisymmetric parametrization by S2.

Theorem 1.1. The surface Σ(Ω, tα) is quasisymmetric to S2 if and only if it is linearly locally connected and
2-regular.

What conditions on Ω and α ensure that Σ(Ω, tα) is a quasisymmetric 2-sphere?When α > 1, Theorem 1.1
is trivial since, for any Jordan domain Ω, the surface Σ(Ω, tα) is not linearly locally connected and hence not
quasisymmetric to S2. If α = 1, Σ(Ω, t) is quasisymmetric to S2 if and only if ∂Ω is a quasicircle [12, Theorem
1.1]. This result, combined with the fact that the projection of Σ(Ω, t) on Ω is a bi-Lipschitz mapping, and the
fact that Ω is 2-regular if ∂Ω is a quasicircle, gives Theorem 1.1 when α = 1.

In the case α ∈ (0, 1), the part of Σ(Ω, tα) near ∂Ω × {0} resembles the product of ∂Ω with an interval.
Väisälä [10] has shown that the product γ× I of a Jordan arc γ and an interval I is quasisymmetric embeddable
inR2 if and only if γ satis�es the chord-arc condition (2.2). In view of this result, it is expected that the chord-
arc property of ∂Ω is necessary for Σ(Ω, tα) to be a quasisymmetric sphere.Moreover, as the double-dome-like
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surface envelops the interior Ω above and below, the following condition on Ω is needed to ensure the linear
local connectedness of the surfaces Σ(Ω, tα). We say thatΩ has the level quasicircle property (or LQC property)
if there exist ϵ0 > 0 and C > 1 such that for all ϵ ∈ [0, ϵ0], the ϵ-level set of Ω

γϵ = {x ∈ Ω : dist(x, ∂Ω) = ϵ}

is a C-quasicircle. A consequence of Theorem 1.2 in [12] is that if a planar JordandomainΩ has the LQCproperty
and ∂Ω is a chord-arc curve then Σ(Ω, tα) is quasisymmetric to S2 for all α ∈ (0, 1).

For these surfaces, the LQCproperty ofΩ is essential: if a JordandomainΩ doesnot have the LQCproperty
then Σ(Ω, tα) is not quasisymmetric to S2 for any α ∈ (0, 1); see Lemma 4.6. However, the chord-arc condition
of ∂Ω is not necessary. Contrary to the intuition based on Väisälä’s result [10], we construct in Section 5.1 a
Jordan domain Ω whose boundary is a non-recti�able curve and Σ(Ω, tα) is a quasisymmetric sphere for all
α ∈ (0, 1).

Instead, only a weak form of the chord-arc condition is needed: a metric circle Γ is said to have the weak
chord-arc condition if there exists N0 > 1 such that every subarc Γ′ ⊂ Γ with diam Γ′ ≤ 1 can be covered by
at most N0(diam Γ′)−1 subarcs Γi ⊂ Γ′ of diameter at most (diam Γ′)2. Under this terminology we have the
following.

Theorem 1.2. Let Ω ⊂ R2 be a Jordan domain and α ∈ (0, 1). The following are equivalent.

1. The surface Σ(Ω, tα) is a quasisymmetric sphere.
2. The surface Σ(Ω, tα) is LLC and 2-regular.
3. Ω has the LQC property and ∂Ω is a weak chord-arc curve.

An immediate consequence of Theorem 1.2 is that the existence of a quasisymmetric parametrization
of Σ(Ω, tα) by S2 does not depend on α ∈ (0, 1). In particular, if Σ(Ω, tα) is quasisymmetric to S2 for some
α ∈ (0, 1) then it is quasisymmetric to S2 for all α ∈ (0, 1).

Although not neccessarily recti�able, any weak chord-arc quasicircle has Hausdor� dimension equal to
1. In fact, a slightly stronger result holds true.

Theorem 1.3. If a quasicircle satis�es the weak chord-arc property then it has Assouad dimension equal to 1.

The example in Section 5.2, however, shows that the converse is false. Moreover, since the Assouad di-
mension is larger than theHausdor�, upper box counting and lower box-countingdimensions, the conclusion
of Theorem 1.3 holds for any of these dimensions. A consequence of Theorem 1.3 is that if Ω is a Jordan do-
main and ∂Ω has Assouad dimension greater than 1, then the surface Σ(Ω, tα) is not quasisymmetric to S2

for any α ∈ (0, 1).

In Section 3 we de�ne an index that measures howmuch a curve Γ deviates from being a chord-arc curve
on a certain scale, and we discuss the weak chord-arc condition. The proofs of Theorem 1.2 and Theorem
1.3 are given in Section 4. Finally, two examples, based on homogeneous snow�akes, illustrating the weak
chord-arc condition are presented in Section 5.

2 Preliminaries

2.1 De�nitions and notation

An embedding f of a metric space (X, dX) into a metric space (Y , dY ) is said to be η-quasisymmetric if there
exists a homeomorphism η : [0,∞)→ [0,∞) such that for all x, a, b ∈ X and t > 0 with dX(x, a) ≤ tdX(x, b),

dY (f (x), f (a)) ≤ η(t)dY (f (x), f (b)).
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56 | Vyron Vellis

A metric n-sphere S that is quasisymmetrically homeomorphic to Sn is called a quasisymmetric sphere
when n ≥ 2, and a quasisymmetric circle when n = 1.

A doubling metric circle γ is called a C-quasicircle for some C > 1 if it satis�es the 2-point condition:

for all x, y ∈ γ, diam γ(x, y) ≤ C|x − y|, (2.1)

where γ(x, y) denotes the subarc of γ connecting x and y of smaller diameter, or either subarcwhen both have
the same diameter. Tukia and Väisälä [9] proved that quasisymmetric circles are exactly the quasicircles.
Ahlfors [1] showed that a planar Jordan curve γ ⊂ R2 is a C-quasicircle if and only if, there exists an η-
quasisymmetric homeomorphism f : R2 → R2 that maps S1 onto γ.

A recti�able metric circle or arc γ is called a c-chord-arc curve for some c > 1 if

for all x, y ∈ γ, `(γ′(x, y)) ≤ c|x − y|, (2.2)

where γ′(x, y) is the shortest component of γ \ {x, y} and `(·) denotes length. It is easy to see that a recti�able
metric circle or arc γ is a chord-arc curve if and only if `(γ(x, y)) ≤ c′|x − y| for some c′ > 1; here constants c
and c′ are quantitatively related.

A Jordan arc is any proper subarc of a Jordan curve and a quasiarc is any proper subarc of a quasicircle.
For the rest, all quasicircles, quasiarcs and chord-arc curves are assumed to be subsets of R2.

The notion of linear local connectivity generalizes the 2-point condition (2.1) on curves to general spaces.
Ametric spaceX is λ-linearly locally connected (or λ−LLC) for λ ≥ 1 if the following two conditions are satis�ed.

1. (λ−LLC1) If x ∈ X, r > 0 and y1, y2 ∈ B(x, r)∩X, then there exists a continuum E ⊂ B(x, λr)∩X containing
y1, y2.

2. (λ−LLC2) If x ∈ X, r > 0 and y1, y2 ∈ X\B(x, r), then there exists a continuum E ⊂ X\B(x, r/λ) containing
y1, y2.

A metric space X is said to be Ahlfors Q-regular if there is a constant C > 1 such that the Q-dimensional
Hausdor� measureHQ of every open ball B(a, r) in X satis�es

C−1rQ ≤ HQ(B(a, r)) ≤ CrQ , (2.3)

when 0 < r ≤ 2diam X.
Bonk andKleiner found in [4] an intrinsic characterization of quasisymmetric2-spheres and then derived

a readily applicable su�cient condition.

Theorem 2.1 ([4, Theorem 1.1, Lemma 2.5]). Let X be an Ahlfors 2-regular metric space homeomorphic to S2.
Then X is quasisymmetric to S2 if and only if X is LLC.

For x ∈ Rn and r > 0, de�ne Bn(x, r) = {y ∈ Rn : |x − y| < r}. For any a = (a1, a2, a3) ∈ R3, denote by

π(a) = (a1, a2, 0)

the projection of a on the plane R2 × {0}. For x, y ∈ R2, denote by [x, y] the line segment having x, y as its
end points.

In the following, we write u . v (resp. u ' v) when the ratio u/v is bounded above (resp. bounded above
and below) by positive constants. These constants may vary, but are described in each occurrence.

2.2 Geometry of level sets

For a planar Jordan domain Ω and some ϵ > 0 de�ne the ϵ-level set

γϵ = {x ∈ Ω : dist(x, ∂Ω) = ϵ}.
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In general the sets γϵ need not be connected and if connected need not be curves; see [11, Figure 1]. We say
that Ω has the level quasicircle property (or LQC property), if there exist ϵ0 > 0 and C ≥ 1 such that the level
set γϵ is a C-quasicircle for every 0 ≤ ϵ ≤ ϵ0. Su�cient conditions for a domain Ω to satisfy the LQC property
have been given in [11] in terms of the chordal �atness of ∂Ω, a scale-invariant parameter measuring the local
deviation of subarcs from their chords.

We list some properties of the level sets from [11] which are used in the proof of Theorem 1.2.

Lemma 2.2 ([11, Lemma 4.1]). Suppose that Ω is a Jordan domain and for some ϵ > 0 the set γϵ is a Jordan
curve. If σ is a closed subarc of ∂Ω then the set σ′ = {z ∈ Ω : dist(z, ∂Ω) = dist(z, σ) = ϵ} is either empty or a
subarc of γϵ.

Lemma 2.3 ([11, Lemma 6.1]). There is a universal constant c0 > 1 such that if σ is a Jordan arc and ϵ >
3diam σ then the set σ′ = {x ∈ R2 : dist(x, σ) = ϵ} is a c0-chord-arc curve.

Lemma 2.4 ([11, Theorem 1.3]). Let Ω be a Jordan domain that has the LQC property. If ∂Ω is a c-chord-arc
curve then there exist ϵ0 > 0 and c′ > 1 such that γϵ is a c′-chord-arc curve for all ϵ ∈ [0, ϵ0].

3 A weak-chord arc property

3.1 A chord-arc index

Let Γ be a Jordan curve or arc. A partition P of Γ is a �nite set of mutually disjoint (except for their endpoints)
subarcs of Γ whose union is all of Γ.We denotewith |P| the number of elements a partitionPhas. A δ-partition
of Γ, for δ ∈ (0, 1), is a partition P of Γ such that for each Γ′ ∈ P

δ
2 diam Γ ≤ diam Γ′ ≤ δ diam Γ .

Standard compactness arguments show that every Jordan curve or arc has δ-partitions for all δ ∈ (0, 1).
Moreover, if P is a δ-partition of Γ then |P| ≥ 1/δ. In the next lemma, we show that if Γ is a quasiarc and P is
a δ-partition then, |P| . δ−2.

Lemma 3.1. For each C > 1 there exists a number C′ > 1 depending only on C such that, if Γ is a C-quasiarc
and λ ∈ (0, 1] then, each partition {Γ1, . . . , ΓN} with diam Γi ≥ λ diam Γ satis�es N ≤ C′/λ2.

Proof. We may assume that diam Γ = 1. Fix λ ∈ (0, 1) and let {Γ1, . . . , ΓN} be a partition of Γ with diam Γi ≥
λ. Let A = {x0, x1, . . . , xN} be the set of endpoints of Γ1, . . . , ΓN . The 2-point condition of Γ implies that
|x − y| ≥ λ/C for all x, y ∈ A. Since all points of A lie in R2 which is a doubling, space, there is a universal
constant C0 > 1 such that N ≤ C0(λ/C)−2 = C0C2/λ2.

For a partition P of Γ de�ne
M(Γ ,P) = 1

diam Γ
∑
Γ′∈P

diam Γ′.

The �nite numberM(Γ ,P)measures, on the scale ofP, the deviation of Γ from being a chord-arc curve.When
`(Γ) is �nite, the number M(Γ ,P) is an estimation of `(Γ)/ diam Γ: for any ϵ > 0, there exists a partition P of
Γ such that |M(Γ ,P) − `(Γ)/ diam Γ| < ϵ. On the other hand, if `(Γ) is in�nite then for all M > 0 there exists a
partition P of Γ such that M(Γ ,P) > M. The properties of the gauge M(Γ ,P) are summarized in the following
lemma.

Lemma 3.2. Suppose that Γ is a Jordan curve or arc.

1. If P is a δ-partition then 1
2 |P|δ ≤ M(Γ ,P) ≤ |P|δ.
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2. Suppose that P = {Γ1, . . . , ΓN} is a partition of Γ and for each i = 1, . . . , N, Pi is a partition of Γi. Then,

M(Γ ,
N⋃
i=1

Pi) ≥ M(Γ ,P).

3. Assume that Γ is a C-quasiarc and δ ∈ (0, 1). There existsM1 > 1dependingon C such thatM(Γ ,P)/M(Γ ,P′) ≤
M1 for any two δ-partitions P,P′ of Γ.

Proof. Property (1) is an immediate consequence of the de�nition. For property (2) simply note that diam Γi ≤∑
Γ′∈Pi

Γ′. Finally, to show (3), let P = {Γ1, . . . , ΓN} and P′ = {Γ′1, . . . , Γ′N′} be two δ-partitions of Γ. By
Lemma 3.1 there exists N0 > 0 depending on C such that each Γi can contain at most N0 subarcs Γ′j . Thus,
N′ ≤ N0N and (3) follows from (1).

In the next lemma we show that if a quasiarc resembles a chord-arc curve for partitions of small scale then it
should also do that for partitions of larger scale.

Lemma 3.3. Suppose that Γ is a C-quasiarc, N0 > 0 and P is a δ-partition of Γ with δ ∈ (0, 1) and |P| ≤ N0/δ.
There exists N1 depending on C, N0 such that for all δ′ ∈ [δ, 1) and all δ′-partitionsP′ of Γ we have |P′| ≤ N1/δ′.

Proof. We prove the lemma for N1 = 5M1N0 where M1 is as in the third part of Lemma 3.2. Contrary to the
claim, suppose that there exist a number δ′ ∈ [δ, 1) and a δ′-partitionP′ = {Γ1, . . . , ΓN} such that N > N1/δ′.
For each i = 1, . . . , N consider a δ diam Γ

diam Γi -partition Pi of Γi; for those i that diam Γi ≤ δ diam Γ set Pi = {Γ′i}.
Note that |Pi| ≥ diam Γi

δ diam Γ and that P* =
⋃N
i=1 Pi is a δ-partition of Γ. By Lemma 3.2,

M(Γ ,P*) ≥ (|P1| + · · · + |PN |)
δ
2 > M1N0.

But then M(Γ ,P*)/M(Γ ,P) > M1 which is a contradiction.

The following lemma is used in the proof of Theorem 1.3.

Lemma 3.4. Let Γ be a Jordan arc and0 < δ < δ′ < 1. Suppose that each δ-partition of Γ has at leastN elements
for some N > 1. Then, there exists a subarc Γ′ ⊂ Γ and a δ′-partition P′ of Γ′ with |P′| ≥ N

log δ′+1
log (δδ′ /2) .

Proof. Contrary to the lemma, suppose that for each subarc σ ⊂ Γ, every δ′-partitionP of σ has |P| ≤ N
log δ′+1
log (δδ′ /2) .

We construct a partition of Γ as follows.
Let k0 ∈ N be the smallest integer that is greater than log (δ/2)

log δ′ . Let P0 = {Γ1, . . . , ΓN0} be a δ′-partition of
Γ. For each i = 1, . . . , N0 let Pi = {Γi1, . . . , ΓiNi} be a δ′-partition of Γi. Inductively, suppose that Γw has been
de�ned where w = i1i2 . . . ik, ij ∈ N and k < k0. Then let Pw = {Γw1, . . . , ΓwNw} be a δ′-partition of Γw.

De�ne P* =
⋃
w Pw where the union is taken over all words w = i1 . . . ik0 . Note that for each Γw ∈ P*,(

δ′
2

)k0
≤ diam Γw

diam Γ ≤ (δ′)k0 < δ2 .

Moreover, by our assumptions, for all partitions Pw de�ned,

|Pw| ≤ N
log δ′+1
log (δδ′ /2) .

Consequently, since k0 ≤ log (δ/2)
log δ′ + 1,

|P*| ≤
(
N

log δ′+1
log (δδ′ /2)

)k0
<
(
N

log δ′
log (δδ′ /2)

)k0
≤ N .

If P is a δ-partition of Γ then, for each Γ′ ∈ P and each Γw ∈ P*, diam Γw < diam Γ′. Thus, |P| ≤ |P*| < N
which is a contradiction.
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3.2 A weak chord-arc property

Note that if a curve Γ is a chord-arc curve then there exists M0 > 1 such that for all subarcs Γ′ ⊂ Γ, all δ > 0
and all δ-partitions P of Γ′, we have M(Γ′,P) < M0.

A curve or arc Γ is said to have the weak chord-arc property if there exists M0 > 0 such that for all subarcs
Γ′ ⊂ Γ with diam Γ′ < 1, there exists a diam Γ′-partition P of Γ′ satisfying M(Γ′,P) ≤ M0.

In other words, a curve Γ is a weak chord-arc curve if there exists M0 ≥ 1 such that any subarc Γ′ of Γ
can be partitioned to at most 2M0/ diam Γ′ subarcs Γ1, . . . , ΓN of diameters comparable to (diam Γ′)2. It is
clear that a chord-arc curve is a weak chord-arc curve but the converse fails; see Section 5.1. The third claim
of Lemma 3.2 implies that, for quasicircles, the weak chord-arc property is equivalent to a stronger condition.

Lemma 3.5. Suppose that Γ is a C-quasicircle that satis�es the weak chord-arc property with constantM0 > 1.
For each α ∈ (0, 1) there existsMα > 1 depending only on C,M0, α such that for all subarcs Γ′ ⊂ Γ of diameter
less than 1 and all (diam Γ′) 1α −1-partitions P we have M(Γ′,P) ≤ Mα.

Proof. If α ∈ [12 , 1) then the claim follows immediately from Lemma 3.3 with Mα = 10M0M1 where M1 is as
in Lemma 3.2.

Suppose now that α ∈ (0, 12 ) and let k0 be the smallest integer with 2−k0 ≤ α. Fix a subarc Γ0 ⊂ Γ with
diam Γ0 < 1 and a diam Γ0-partitionP0 = {Γ1, . . . , ΓN0} of Γ0 with |P0| ≤ 2M0. For each i = 1, . . . , N0 letPi be
a (diam Γ0)4

diam Γi -partition of Γi. Theweak chord-arc property of Γi and Lemma 3.3 imply |Pi| ≤ 10M0M1(diam Γ0)−2.
Inductively, suppose that Γw has been de�ned where w = i1 · · · ik, ij ∈ N and k < k0. Then, let Pw =

{Γw1, . . . , ΓwNw} be a (diam Γ0)2
k+1

diam Γw -partition of Γw. Again, note that |Pw| ≤ 10M0M1(diam Γ0)−2
k
.

De�ne P* =
⋃
w Pw where the union is taken over all words w = i1 · · · ik0 constructed as above. Note that

P* is a (diam Γ0)2
k0−1-partition of Γ0 with

M(Γ0,P*) ≤
(diam Γ0)2

k0

diam Γ0

∑
w=i1···ik0

|Pw| ≤ (10M0M1)k0 .

Since (diam Γ0)1/α ≥ (diam Γ0)2
k0 ≥ diam Γw for all Γw ∈ P*, it follows fromLemma3.3 that every (diam Γ′) 1α −1-

partition P of Γ0 satis�es M(Γ0,P) ≤ Mα with Mα = (10M0M1)k0+1.

By interchanging the roles of 1
2 and α, and applying the arguments in the proof of Lemma 3.5, the following

converse can be obtained.

Remark 3.6. Suppose that Γ is a C-quasicircle and that there exist α ∈ (0, 1) and Mα > 1 such that every
subarc Γ′ ⊂ Γ with diam Γ′ < 1 has a (diam Γ′) 1α −1-partition P satisfying M(Γ′,P) ≤ Mα. Then Γ has the weak
chord-arc property.

4 Proofs of the main results
The proof of Theorem 1.2 is given in Section 4.1 and Section 4.2. By the theorem of Bonk and Kleiner, it is clear
that (2) implies (1).

To show that (3) implies (2)we �rst show in Lemma 4.6 that if Ω satis�es the LQC property then Σ(Ω, tα)
is LLC for all α ∈ (0, 1). Then, in Proposition 4.1 we prove that if Ω has the LQC property and ∂Ω is a weak
chord-arc curve then Σ(Ω, tα) is 2-regular.

To prove that (1) implies (3), we show in Lemma 4.6 that if Σ(Ω, tα) is LLC for some α ∈ (0, 1) then Ω
satis�es the LQC property. Then, in Proposition 4.7 we show that if Ω has the LQC property and Σ(Ω, tα) is
quasisymmetric to S2 then ∂Ω is a weak chord-arc curve.

The proof of Theorem 1.3 is given in Section 4.3.
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4.1 Ahlfors 2-regularity

The following proposition connects the weak chord-arc property of ∂Ω with the 2-regularity of Σ(Ω, tα).

Proposition 4.1. Suppose that Ω has the LQC property, ∂Ω has the weak chord-arc property and α ∈ (0, 1).
Then, Σ(Ω, tα) is 2-regular.

For the rest of Section 4.1 we assume that there exist C0 > 1 and ϵ0 ∈ (0, 1
8C0 ) such that for any ϵ ∈ [0, ϵ0],

the level set γϵ is a C0-quasicircle. To show (2.3) we �rst apply some reductions on a ∈ Σ(Ω, tα) and r > 0.

Reduction 1. Let Σ(Ω, tα)+ = Σ(Ω, tα) ∩ {x ∈ R3 : x3 ≥ 0}. If a ∈ Σ(Ω, tα)+ and r > 0 then by symmetry of
Σ(Ω, tα) with respect to R2 × {0} we have

H2(B3(a, r) ∩ Σ(Ω, tα)+) ≤ H2(B3(a, r) ∩ Σ(Ω, tα)) ≤ 2H2(B3(a, r) ∩ Σ(Ω, tα)+).

Therefore, it is enough to verify

C−1r2 ≤ H2(B3(a, r) ∩ Σ(Ω, tα)+) ≤ Cr2, (4.1)

for some C > 1 and for all a ∈ Σ(Ω, tα)+ and r ≤ 2diam Σ(Ω, tα).

Reduction 2. Let r0 = min{ϵ0/3, 1
180C20

diamΩ}. By the doubling property of R3, there exists c1 > 1 de-
pending only on ϵ0, diamΩ and α such that each ball B3(a, r) ∩ Σ(Ω, tα)+ with r ≥ r0 can be covered by at
most c1 balls B3(ai , ri) ∩ Σ(Ω, tα)+ with ai ∈ Σ(Ω, tα)+ and ri < r0. Hence, it su�ces to show (4.1) for r ≤ r0.

Reduction 3.We claim that it is enough to verify (4.1) only for those points a ∈ Σ(Ω, tα)+ whose projection
satis�es dist(π(a), ∂Ω) ≤ ϵ0. Indeed, following the notation in [12], let ∆ϵ0/3 be the set of all points in Ωwhose
distance from ∂Ω is greater than ϵ0/3 and ∆+ϵ0/3 be the subset of Σ(Ω, t

α)+whoseprojectiononR2×{0} is ∆ϵ0/3.
Since ∂∆ϵ0/3 = γϵ0/3 is a quasicircle, the domain ∆ϵ0/3 is 2-regular. Therefore, the surface ∆+ϵ0/3, which is the
graph of a Lipschitz function on ∆ϵ0/3, is 2-regular as well. Thus, if a ∈ Σ(Ω, tα)+ satis�es dist(π(a), ∂Ω) > ϵ0
and r ∈ (0, ϵ0/3) then B3(a, r) ∩ Σ(Ω, tα)+ ⊂ ∆+ϵ0/3 andH2(B3(a, r) ∩ Σ(Ω, tα)+) ' r2.

Reduction 4.We show in Lemma 4.2 that it is enough to check the Hausdor� 2-measure of certain subsets
on Σ(Ω, tα) de�ned as follows. Suppose that x1, y1, x2, y2 are points in Σ(Ω, tα)+ satisfying the following
properties:

(i) π(x1), π(y1) ∈ γt1 and π(x2), π(y2) ∈ γt2 for some 0 ≤ t2 < t1 ≤ ϵ0,
(ii) |π(x1) − π(x2)| = dist(π(x1), γt2 ) = |π(y1) − π(y2)| = dist(π(y1), γt2 ) = t1 − t2,
(iii) 1

20C0 |x1 − y1| ≤ t1 − t2 + t
α
1 − tα2 ≤ 1

3 |x1 − y1| ≤
1

10C0 diamΩ.

Property (i) implies that for each i = 1, 2, xi is on the same horizontal plane as yi. Property (ii) implies that
π(x2), π(y2) are the points of γt2 which are closest to π(x1), π(y1) respectively. Property (iii) implies that |xi −
yj|, |x1 − x2| and |y1 − y2| are all comparable and su�ciently small. If x0, y0 ∈ ∂Ω are the closest points to
π(x1), π(y1) respectively, then |π(x2) − x0| = |π(y2) − y0| = t2. Therefore, π(x1), π(x2), x0 are colinear and the
line segment [π(x1), π(x2)] joining the points π(x1) and π(x2) is entirely in Ω. Similarly, [π(y1), π(y2)] ⊂ Ω.

Denote with D = D(x1, y1, x2, y2) the subset on Σ(Ω, tα)+ whose projection on R2 is the quadrilateral
bounded by [π(x1), π(x2)], γt1 (π(x1), π(y1)), [π(y1), π(y2)], γt2 (π(x2), π(y2)). We call D a square piece on
Σ(Ω, tα)+.

The following lemma is a corollary of [12, (6.4)] and [12, Remark 6.1].

Lemma 4.2. There exist C1, C2 > 1 depending on C0, ϵ0, diamΩ such that

1. diamD ≤ C1|x1 − y1| for every square piece D = D(x1, y1, x2, y2),
2. for all a ∈ Σ(Ω, tα)+ and r > 0asabove, there exist squarepiecesD1 andD2 such that1 < diamD2/ diamD1 ≤
C2 and

D1 ⊂ B3(a, r) ∩ Σ(Ω, tα)+ ⊂ D2.

Brought to you by | Jyväskylän Yliopisto University
Authenticated

Download Date | 3/21/16 1:59 PM



Double-Dome Quasisymmetric Spheres | 61

Thus, by (iii), choosing ϵ0 small enough,wemay assume fromnowon thatdiamD ≤ (4C0)−1 for all square
pieces D. By Lemma 4.2 and the discussion above, Proposition 4.1 is now equivalent to the following lemma.

Lemma 4.3. There exists C > 1 depending on C0 and the weak chord-arc constant M0 such that

C−1(diamD)2 ≤ H2(D) ≤ C(diamD)2 (4.2)

for all square pieces D on Σ(Ω, tα)+ de�ned as above.

The lower bound in (4.2) was shown in [12, Section 6.2.1]. For the upper bound, the following lemma is
used; we only give a sketch of its proof since it is similar to the discussion in [12, Section 6.2.1].

Lemma 4.4. Let S be a closed subset of Σ(Ω, tα)+ and 0 ≤ t2 ≤ t1 be such that π(S) intersects with γt if and only
if t ∈ [t2, t1]. Suppose that, for all t, t′ ∈ [t2, t1], the Hausdor� distance between π(S)∩ γt and π(S)∩ γt′ is less
than c1|t − t′| for some c1 > 1, and π(S) ∩ γt is a c2-chord-arc curve for some c2 > 1. ThenH2(S) ≤ C(diam S)2

for some C depending on c1, c2.

Proof. Fix ϵ > 0. Let t2 = τ1 < · · · < τN = t1 be such that the sets Si = S ∩ (γτi × {ταi }) satisfy ϵ/4 ≤
dist(Si , Si+1) ≤ ϵ/2. By the �rst assumption of the lemma, it is straightforward to check that N ≤ N1 diam S/ϵ
for some N1 depending on c1. The second assumption implies that each Si contains points xi,1, . . . , xi,ni
satisfying |xi,j − xi,j+1| ≤ ϵ/2 and ni ≤ N2 diam Si/ϵ ≤ N2 diam S/ϵ for some N2 depending on c2. Thus, S can
be covered by at most N1N2(diam S)2/ϵ2 balls of radius ϵ and the lemma follows.

For the upper bound of (4.2) we consider two cases. The �rst case is an application of Lemma 4.4 while in the
second case we use the weak chord-arc condition to subdivide D into smaller pieces on which the �rst case
applies.

Proof of Lemma 4.3. Asmentionedalready, the lowerboundof (4.2) follows from thediscussion in [12, Section
6.2.1] even without the weak chord-arc assumption of ∂Ω. It remains to show the upper bound. By Lemma
3.3, there existsMα > 1 such that for any subarc Γ ⊂ ∂Ω with diam Γ < 1 and for any (diam Γ) 1α −1-partition P

of Γ we have M(Γ ,P) ≤ Mα.
Fix a square piece D = D(x1, y1, x2, y2) where x1, y1, x2, y2 satisfy equations (i)-(iii). Let x0, y0 ∈ ∂Ω be

such that
|x0 − π(x1)| = |y0 − π(y1)| = t1 and |x0 − π(x2)| = |y0 − π(y2)| = t2

and set Γ0 to be the subarc of ∂Ω, of smaller diameter, with endpoints x0, y0. The choice of ϵ0 implies
diam Γ0 ≤ C0|x0 − y0| ≤ C0(diamD + 2t1) ≤ C0(diamD + 2ϵ0) < 1/2.

Case 1. Suppose that (diam Γ0)
1
α ≤ t2/10. We claim that there is C > 1 depending on C0,Mα such that for

each ϵ ∈ [t2, t1], the arc γϵ∩π(D) is a C-chord-arc curve. Assuming the claim, the upper bound of (4.2) follows
from Lemma 4.4. To prove the claim, it su�ces to show that γt2 ∩ π(D) is a C-chord-arc curve. Then, using the
fact that for each ϵ > t2, the set γϵ is the (ϵ − t2)-level set of γt2 , the claim follows from Lemma 2.4. Let σ be a
subarc of γt2 ∩ D and x, y be the endpoints of σ. Since γt2 is a quasicircle, it su�ces to show that there exists
C > 1 such that `(σ) ≤ C diam σ. Let x′, y′ ∈ Γ0 be such that |x − x′| = |y − y′| = t2 and set σ′ = Γ0(x′, y′).

If diam σ′ ≤ t2/10 then, by Lemma 2.3, σ is a c0-chord-arc curve for some universal c0 > 1.
If diam σ′ ∈ [t2/10, 10t2] then apply Lemma 3.1 to get a 10−2-partition P = σ′1, . . . , σ′N of σ′ with N

bounded above by a positive constant depending on C0. For each n = 1, . . . , N let σn be the set of all points
z in σ that satisfy dist(z, σ′n) = t2. By Lemma 2.2, {σn} are subarcs of σ, perhaps not mutually disjoint. Thus,
σ is a union of N c0-chord-arc curves, hence `(σ) ≤ c1 diam σ for some c1 > 1 depending on C0.

Finally, if diam σ′ > 10t2 note that diam σ ' diam σ′. Since (diam σ′) 1α ≤ (diam Γ0)
1
α ≤ t2/10, Lemma 3.3

and the weak chord-arc property of σ′ imply that there exists a ( t2
10 diam σ′ )-partition P = {σ′1, . . . , σ′N} of σ′

with N ≤ N0 diam σ′/t2 and N0 depending on C0,Mα. De�ne σ1, . . . , σN as above and note that each σn is a
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c0-chord-arc curve and satis�es diam σn ≤ diam σ′n + t2 . t2. Hence,

`(σ) ≤
N∑
n=1

`(σn) ≤
N∑
n=1

c1 diam σn . Nt2 . diam σ′ ' diam σ.

Case 2. Suppose that (diam Γ0)
1
α > t2/10. Let H = 102/α. For a subarc Γ′ ⊂ Γ0 de�ne D(Γ′) to be the set of

all points (z, (dist(z, ∂Ω))α) such that z ∈ Ω, dist(z, ∂Ω) = dist(z, Γ′) and

0 ≤ dist(z, ∂Ω) ≤ H(diam Γ′)1/α .

Note thatdiamD(Γ′) ≤ 2(Hα diam Γ′+H(diam Γ′)1/α+diam γt1 (x1, y1)) . diam Γ′. From themiddle inequality
of (iii), it is easy to see that t1 < H(diam Γ0)1/α and thus D ⊂ D(Γ0). Let

E0 = {x ∈ D(Γ0) : dist(π(x), ∂Ω) ≥ 10(diam Γ0)2/α}

and note that diam E0 ≤ diamD(Γ0) . diam Γ0.
We claim that H2(E0) ≤ C(diam Γ0)2 for some C > 1 depending on C0,Mα. As in Case 1, it is enough to

show that γ = γt ∩ π(E0) is a chord-arc curve when t = 10(diam Γ0)
2
α . The claim then follows from Lemma

2.4 and Lemma 4.4. Let σ ⊂ γ and de�ne σ′ ⊂ Γ0 as in Case 1. If diam σ′ ≤ 10t then the claim follows from
Lemma 2.3 and Lemma 3.3 as in Case 1. If diam σ′ ≥ 10t then let {σ′1, . . . , σ′m} be a (diam σ′) 1α −1-partition of
σ′ with m ≤ 2Mα. For each i = 1, . . . ,m let {σ′i1, . . . , σ′iNi} be a (t(diam σ′)− 1

α )-partition of σ′i. De�ne subarcs
{σij} of σ as in Case 1. Since diam σ′ij ≤ t < 10t, each σij is a c1-chord-arc curve for some c1 > 1 depending on
C0. Moreover, by the weak chord-arc property and Lemma 3.5, N1 + · · · + Nm ≤ 10M1M2

α diam σ′/t where M1
is as in Lemma 3.2. Since diam σ′ ' diam σ,

`(σ) ≤
∑
i,j
`(σij) ≤ c1

∑
i,j

diam σij . t
m∑
i=1

Ni . diam σ′ . diam σ.

and the claim follows.
Let P1 = {Γ1, . . . , ΓN} be a (diam Γ0)

1
α −1-partition of Γ0 with N ≤ 2Mα(diam Γ0)1−

1
α . De�ne D(Γi), Ei as

above and note that the choice of H yields D(Γ0) ⊂ E0∪
⋃N
i=1 D(Γi). Similarly as above,H2(Ei) ≤ C(diam Γ0)

2
α .

For each i = 1, . . . , N let {Γi1, . . . , ΓiNi}be a
(diam Γ0)1/α

2

diam Γi -partition of Γi and setP2 = {Γij}. Theweak chord-
arc condition and Lemma 3.1 imply that Ni ≤ 10MαM1(diam Γi)1−

1
α ≤ 10MαM12

1
α −1(diam Γ0)

1
α −

1
α2 where M1

is as in Lemma 3.2. Thus, |P2| ≤ (m02
1
α −1)2(diam Γ0)1−

1
α2 with m0 = 10MαM1. Again, the choice of H yields

D(Γ0) ⊂ E0 ∪
N⋃
i=1
Ei ∪

N⋃
i=1

Ni⋃
j=1
D(Γij).

Inductively, we obtain partitions Pk = {Γi1···ik} with

|Pk| ≤ (m02
1
α −1)k(diam Γ0)1−

1
αk

and square-like pieces Ei1···ik with

D(Γ0) ⊂ E0 ∪
⋃
i
Ei ∪

⋃
i1 ,i2

Ei1 ,i2 ∪ · · · ∪
⋃

Γi1 ···ik∈Pk

D(Γi1···ik )

andH2(Ei1···ik ) ≤ C(diam Γ0)
2
αk . Therefore, since D ⊂ D(Γ0),

H2(D) ≤ H2(E0) +
∑
i
H2(Ei) +

∑
i1 ,i2

H2(Ei1 ,i2 ) + . . .

. (diam Γ0)2
∞∑
k=0

(m02
1
α −1)k(diam Γ0)

1
αk
−1

≤ (diam Γ0)2
∞∑
k=0

(m02
1
α −1)k

2
1
αk
−1

.

It is easy to see that the latter series converges. Since diam Γ0 ≤ diamD, we conclude thatH2(D) . (diamD)2

and the proof is complete.
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4.2 The LQC property and Väisälä’s method

The connection between the LQCproperty ofΩ and the LLCproperty of Σ(Ω, tα) is established in the following
proposition from [12].

Proposition 4.5 ([12, Proposition 5.1, Lemma 5.6]). Suppose that α ∈ (0, 1) and Ω is a Jordan domain whose
boundary ∂Ω is a quasicircle. Then Σ(Ω, tα) is LLC if and only if Ω has the LQC property.

It turns out that the quasicircle assumption of ∂Ω can be dropped in Proposition 4.5.

Lemma 4.6. Suppose that Ω is a Jordan domain and α ∈ (0, 1). Then, Σ(Ω, tα) is LLC if and only if Ω has the
LQC property.

Proof. Suppose that Σ = Σ(Ω, tα) is λ-LLC for some λ > 1. We show that ∂Ω is a (4λ2)-quasicircle and the
proof follows then from Proposition 4.5.

Let x, y ∈ ∂Ω and γ, γ′ be the two components of ∂Ω \ {x, y}. By the λ −LLC1 property, the points x, y are
contained in a continuum E in B3(x, 2λ|x−y|)∩Σ. Then theprojection π(E) is a continuum inΩ containing x, y.
Suppose that there exist points z, z′ in γ, γ′ respectively, which lie outside of B3(x, 2λ2|x − y|). The λ − LLC2
property implies that there exists a continuum E′ ⊂ Σ \ B3(x, 2λ|x − y|) that contains z, z′. But then, the
projection π(E′) is a continuum in Ω containing z, z′. It follows that π(E)∩π(E′) = ̸ ∅ and, since Σ is symmetric
with respect toR2 × {0}, E′ intersects B3(x, 2λ|x − y|)which is a contradiction. Therefore, at least one of γ, γ′

lies in B3(x, 2λ2|x − y|) andmin{diam γ, diam γ′} ≤ 4λ2|x − y|.

We now show that the weak chord-arc condition of ∂Ω is necessary for Σ(Ω, tα) to be quasisymmetric to S2.
This concludes the proof of Theorem 1.2. The proof follows closely that of [12, Proposition 6.2]. The main idea
used is due to Väisälä from [10].

Proposition 4.7. Suppose that Ω has the LQC property and α ∈ (0, 1). If Σ(Ω, tα) is quasisymmetric to S2 then
∂Ω is a weak chord-arc curve.

Proof. By our assumptions, there exist ϵ0 > 0 and C > 1 such that, for all ϵ ∈ [0, ϵ0], the set γϵ satis�es (2.1)
with constant C. Set ∂Ω = Γ.

Suppose that the claim is false. Then, by Remark 3.6, for each n ∈ N, there exists a subarc Γn ⊂ Γ, of
diameter less than 1, and a (diam Γn)

1
α −1-partition Pn = {Γn,1, . . . , Γn,Nn} with M(Γn ,Pn) > 4Cn. By Lemma

3.2, the latter implies that
Nn > 4Cn(diam Γn)1−

1
α .

Let {xn,0, xn,1, . . . , xn,Nn} be the endpoints of the arcs Γn,1, . . . , Γn,Nn , ordered consecutively according
to the orientation in Γn with xn,0, xn,Nn being the endpoints of Γn. For these points, (2.1) implies that

1
2C (diam Γn)

1
α ≤ |xn,i − xn,i−1| ≤ (diam Γn)

1
α .

By adding more points from each subarc Γn,i in this collection, if necessary, we may further assume that

1
4C (diam Γn)

1
α ≤ |xn,i − xn,i−1| ≤

1
2C (diam Γn)

1
α .

The existence of these new points follows easily from the doubling property of R2 and the 2-point condition
of Γ. As we may have increased the number of points, it follows that

Nn∑
i=1
|xn,i−1 − xn,i| ≥ Nn

1
4C (diam Γn)

1
α > n diam Γn .

Set dn = (10C2)−1min1≤i≤Nn |xn,i − xn,i−1| and note that dαn ' diam Γn.
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The rest of the proof is identical to that of [12, Proposition 5.1] by setting φ(t) = tα therein. We sketch the
remaining steps for the sake of completeness.

Fix n ∈ N and write Nn = N and xn,i = xi. Assume that there exists an η-quasisymmetric map F from
Σ(Ω, tα) onto S2. Composing F with a suitable Möbius map we may assume that F(Σ(Ω, tα)+) is contained in
the unit disc B2. Since ∂Ω is a quasicircle, we can �nd points w0, . . . , wN on Γ and points w′

0, . . . , w′
N on

γd = {x ∈ Ω : dist(x, ∂Ω) = d} which follow the orientation of {x0, . . . , xN} such that |wi − xi| ∈ [d, 3C0d]
and |wi − w′

i| = d. Hence, |wi − wi+1| ' d. Let D be the square-like piece on Σ(Ω, tα)+ whose projection on
R2 × {0} is the Jordan domain bounded by Γ(w0, wN), γd(w′

0, w′
N), [w0, w′

0], [wN , w′
N ].

The partition of Γ(w0, wN) into the subarcs Γ(wi−1, wi), i = 1, . . . , N induces a partition of D into N
tall and narrow strips Di with height in the magnitude dα and width in the magnitude d. Each Di is further
partitioned by planes parallel to R2 × {0} into k square-like pieces Dij with k ' dα−1. The quasisymmetry
of F implies that (diam F(Dij))2 ≤ c1H2(Dij) with c1 > 1 depending on η, C. Summing �rst over j and then
over i, and applying Hölder’s inequality twice, we obtain (diam F(D))2 ≤ Nkc1H2(D) ≤ c2nH2(D)with c2 > 1
depending on η, C. On the other hand, the quasisymmetry of F on D implies thatH2(F(D)) ≤ c3(diam F(D))2

with c3 > 1 depending on η, C. Since diam F(D) = ̸ 0, letting n →∞, we obtain a contradiction.

4.3 Assouad dimension

The Assouad dimension of a metric space (X, d), introduced in [2], is the in�mum of all s > 0 that satisfy the
following property: there exists C > 1 such that for any Y ⊂ X and δ ∈ (0, 1), the set Y can be covered by
at most Cδ−s subsets of diameter at most δ diam Y. In a sense, the main di�erence between Hausdor� and
Assouad dimension of a space X is that that the former is related to the average small scale structure of X,
while the latter measures the size of X in all scales. The doubling metric spaces are exactly the metric spaces
of �nite Assouad dimension. See [6] for a detailed survey of the concept.

Remark 4.8. If X is a quasicircle, then all sets in the de�nition of the Assouad dimension can be replaced by
subarcs of X.

The claim of the remark becomes evident after noticing that for all subsets Y of a C-quasicircle Γ there
exists a subarc Γ′ ⊂ Γ containing Y, such that diam Γ′ ≤ C diam Y.

We now turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. Suppose that Γ is a C-quasicircle with Assouad dimension greater than 1; in particular,
greater than 1 + ϵ for some �xed ϵ ∈ (0, 1). We claim that Γ does not have the weak chord-arc property.

Contrary to the claim, assume that Γ satis�es the weak chord-arc condition for some M0 > 1. By Lemma
3.3 there exists N0 > 1 depending onM0, C such that for all Γ′ ⊂ Γ with diam Γ′ < 1 and all diam Γ′-partitions
P of Γ′ we have |P| < N0. By our assumption on the Assouad dimension of Γ, there exists a subarc Γ′ ⊂ Γ and
a number δ ∈ (0, 1) such that all δ-partitions P of Γ′ satisfy |P| ≥ Mδ−1−ϵ where M = 10N0M1Mα, M1 > 1 is
as in the third claim of Lemma 3.2,Mα > 1 is the number in Lemma 3.5 associated to α = 1−

√
β

1+
√
β
and β = 1+ϵ/2

1+ϵ .

The subarc Γ′ can be chosen small enough so that diam Γ′ < min{(2M0M1)−2/ϵ , e−1/(1−
√
β)}.

Case 1. Suppose that diam Γ′ ≤ 2δ(1−
√
β)/
√
β. Assume �rst that δ > diam Γ′. Let P be a δ-partition of Γ′.

The weak chord-arc property of Γ′ and Lemma 3.3 yield |P| ≤ N0δ−1 < Mδ−1−ϵ which is false.
Assumenow that δ ≤ diam Γ′. Let α′ ∈ (0, 1)be such that (diam Γ′)

1
α′ −1 = δ. The assumption ondiam Γ′, δ

and the fact that diam Γ′ < 1/2 yield α′ ≥ 1−
√
β

1+
√
β
= α. By Lemma 3.3 and Lemma 3.5, every δ-partition P of Γ′

satis�es |P| ≤ 10MαM1δ−1 < Mδ−1−ϵ which is also false.
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Case 2. Suppose that diam Γ′ > 2δ(1−
√
β)/
√
β. By our assumptions on δ and diam Γ′ we have

log (diam Γ′) + 1
log ( δ2 diam Γ′)

= log (diam Γ′) + 1
log (diam Γ′)

log δ
log ( δ2 diam Γ′)

log (diam Γ′)
log δ

≥ β log (diam Γ′)
log δ .

Apply Lemma 3.4 for Γ′ with δ′ = diam Γ and N = δ−1−ϵ. There exists a subarc Γ′′ ⊂ Γ′ and a diam Γ′-partition
P′ such that

|P′| ≥ δ(−1−ϵ)β
log (diam Γ′)

log δ ≥ (diam Γ′)−(1+ϵ/2).

We create a diam Γ′′-partition of Γ′′ as follows. For each σ ∈ P′ let P(σ) be a (diam Γ′′)2
diam σ -partition of σ; for

those σ ∈ P′ that satisfy diam σ < (diam Γ′′)2 set P(σ) = {σ}. De�ne P′′ to be the union of all partitions P(σ).
It is easy to see that P′′ is a diam Γ′′-partition of Γ′′ and Lemma 3.2 gives

M(Γ′′,P′′) ≥ M(Γ′′,P′) ≥ 12(diam Γ′)−ϵ/2 > M0M1.

The latter, however, is false by Lemma 3.2 and the proof is complete.

5 Examples from homogeneous snowflakes
Let N ≥ 4 be a natural number and p ∈ (1/4, 1/2). A homogeneous (N, p)-snow�ake in R2 is constructed as
follows. Let S0 be a regular N-gon, of diameter equal to 1/2. At the n-th step, the polygon Sn+1 is constructed
by replacing all of the N4n edges of Sn by the same rescaled and rotated copy of one of the two polygonal arcs
of Figure 1, in such away that the polygonal regions are expanding. The curve S is obtained by taking the limit
of Sn, just as in the construction of the usual von Koch snow�ake. It is easy to verify that every homogeneous
snow�ake satis�es (2.1) for some C depending on N, p, and as a result is a quasicircle. See [8] for relevant
results.

Figure 1

Let E be an edge of some Sn towards the construction of S. Denote with SE the subarc of S, of smaller
diameter, having the same endpoints as E. The next lemma will ease some of the computations in the rest.

Lemma 5.1. A homogeneous (N, p)-snow�ake S is a weak chord-arc curve if and only if there exists M* > 1
such that every subarc SE has a diamSE-partition P with M(SE ,P) ≤ M0.

Proof. The necessity is clear. For the su�ciency, �x a subarc Γ ⊂ S and let n0 be the greatest integer n for
which Γ is contained in SE for some edge E of Sn. Assume for now that n0 > 0. Denote by Ei, i = 1, . . . , 4, the
oriented four segments constructed after E in the n0 + 1 step, that is SE =

⋃4
i=1 SEi . Inductively, if w = i1 · · · ik

with ij ∈ {1, . . . , 4}, let Ewi, be the oriented four segments constructed after Ew in the n0 + k + 1 step.
Suppose that Γ contains a subarc SEi , i = 1, . . . , 4. Then diam Γ ≥ 1

4 diamSE = 1
4 diam E. Let P be a

(14 diam E)-partition of SE and P′ = {Γ′ ∩ Γ : Γ′ ∈ P}. The weak chord-arc property of SE and Lemma 3.2 imply
that there exists N0 > 0 such that |P′| ≤ |P| ≤ N0(diam Γ)−1. Since diam Γ′ ≤ (diam Γ)2 for each Γ′ ∈ P′ it
follows that Γ has the weak chord-arc property for some M* depending on N0.
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Suppose now that Γ contains none of the SEi , i = 1, . . . , 4. Then, there exist i ∈ {1, 2, 3} and maximal
integers r, q ≥ 0 such that Γ ⊂ SEi4q ∪ SE(i+1)1r . In this case, apply the arguments above for Γ ∩ SEi4q and
Γ ∩ SE(i+1)1r .

If n0 = 0 then apply the arguments above for Γ ∩ SE1 , . . . , Γ ∩ SEN where E1, . . . , EN are the edges of
S0.

5.1 A non-recti�able Jordan curve that satis�es the weak chord-arc property

Let S be the homogeneous (N, p)-snow�akewhere the �rst polygonal arc in Figure 1 is used only at the 10n-th
steps, n ∈ N. We also require that diamS < (4p)−1. Note that at the 10k step of construction, the length of
the polygonal curve S10k is equal to (4p)k. Thus, S is not recti�able. We claim that S has the weak chord-arc
property.

By Lemma 5.1, it su�ces to check that all subarcs SE are weak chord-arc curves. Fix an edge E built at
step n. Then diam E ≥ 4−n. Let k0 be the smallest k ∈ N such that diam E′ ≤ (diam E)2 for all E′ ∈ Sn+k. We
claim that k0 ≤ 9n. Indeed, the construction of S implies that at step 10n, each edge has diameter equal to
(4p)4−9n diam E ≤ (4p)(diam E)10 since the �rst polygonal arc in Figure 1 has been used only once. The claim
follows from our assumption that diam E ≤ diamS < (4p)−1.

Let P be the set of all subarcs SE′ where E′ are constructed at step n + k0 and have E as their common
parent. Then, diam E′ = 4−k0C diam E with C = 4p if the �rst polygonal arc has been used in the k0 steps or
C = 1 otherwise. Since k0 is minimal,

1
4(diamSE)2 ≤ diamSE′ ≤ (diamSE)2.

Therefore, |P| = 4k0 ≤ 4C(diam E)−1 = 4C(diamSE)−1. By Lemma3.1, there exists adiamSE-partition ofSE that
has at most C′(diamSE)−1 elements, for some C′ > 1 depending on N, p. Hence, SE has the weak chord-arc
property.

Corollary 5.2. There exists a Jordan domain Ω with nonrecti�able boundary such that Σ(Ω, tα) is a quasisym-
metric sphere for all α ∈ (0, 1].

Proof. It follows from the discussion in Section 7 of [11] that there exists p0 ∈ (14 ,
1
2 ) and an integer N0 ≥ 4

such that every homogeneous (N, p)-snow�ake with p ≤ p0, N ≥ N0 bounds a domain that satis�es the LQC
property. Let Ω be the domain bounded by the snow�ake constructed above with p ≤ p0, N ≥ N0. Since S is a
quasicircle, Σ(Ω, t) is a quasisymmetric sphere. Moreover, the weak chord-arc property of S and Theorem 1.2
imply that Σ(Ω, tα) is a quasisymmetric sphere for all α ∈ (0, 1).

5.2 A quasicircle of Assouad dimension 1 that does not satisfy the weak chord-arc
property

Let S be the homogeneous (N, p)-snow�ake where the �rst polygonal arc in Figure 1 is used only at the n2-th
steps for n ∈ N. For convenience we also assume that each edge of S0 has length equal to 1. Then, if E is an
edge of Sn, diam E = 4−n(4p)b

√
nc where, bxc denotes the greatest integer which is smaller than x.

We show that S has Assouad dimension equal to 1 but does not have the weak chord-arc property.
Fix ϵ > 0; we claim that S has Assouad dimension less than 1+ϵ. Similarly to Lemma 5.1, it is easy to show

that it is enough to verify the Assouad condition only for the subarcs SE. Take δ ∈ (0, 1) and an edge E of the
n-th step polygon Sn, for some n ∈ N. Let m be the largest integer such that diam E′ ≥ δ diam E for all edges
E′ of Sm and P be the set of all subarcs SE′ ⊂ SE where E′ is an edge of Sm. Then, 4n−m(4p)b

√
mc−b

√
nc ≥ δ and

(m − n) log 4 − (
√
m −
√
n) log 4p ≤ − log δ + log 4p (5.1)
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By elementary calculus, there existsM > 0 depending on ϵ, p such that
√
x−√y ≤ ϵ

1+ϵ
log 4
log 4p (x−y) for all x > M

and0 < y < x. Ifm < M then clearly |P| = 4m−n ≤ 4M < 4Mδ−1−ϵ. Ifm ≥ M then (m−n) log 4−(
√
m−
√
n) log 4p ≥

log 4
1+ϵ (m − n) and by (5.1)

(m − n) log 4 ≤ log δ−1−ϵ + 2 log 4p.

Therefore, |P| = 4m−n ≤ 4M(4p)2δ−1−ϵ and the claim follows. Since ϵ was chosen arbitrarily, S has Assouad
dimension equal to 1.

We show now that S does not have the weak chord-arc property. Let n ∈ N, E be an edge of the n-th step
polygon Sn and m ≥ n be the greatest integer such that diam E′ ≥ (diam E)2 for each edge E′ of Sm. Let P be
the set of all subarcs SE′ ⊂ SE where E′ are edges of Sm. Then,(

4−n(4p)
√
n−1
)2
≤ (diam E)2 ≤ diam E′ ≤ 4−m(4p)

√
m

which yields
1
2 −

n
m ≤ log(4p)√

m log 4

(
1
2 −

√
n
m

)
+ log 4p
m log 4 .

Note that as n goes to in�nity,m goes to in�nity and n/m goes arbitrarily close to 1/2. Hence,m > 25
16n for all

su�ciently large n. Therefore,

M(SE ,P) ' |P|
diamSE′

diamSE
≥ (4p)

√
m−

√
n−1 & (4p)

√
m−

√
n ≥ (4p)

√
n/4

which goes to in�nity as n goes to in�nity. Thus S is not a weak chord-arc curve.
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