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Abstract

The aim of this thesis is to predict the Higgs boson mass from the
Standard model of particle physics with gravity as an asymptotically
safe theory. To reach this goal, the running of four standard model
couplings in addition to the Higgs self-coupling is derived at one-loop
level in the MS-scheme. Standard model β-functions are supplemented
by asymptotically safe gravity corrections at very large energies, and
differential equation group of β-functions is solved numerically. At
low energies a partial finite renormalisation of the Standard Model is
performed to derive the connection between the self-coupling in the
MS-scheme and the physical, measurable parameters.

Relating the value for the Higgs self-coupling given by the running
of couplings to the physical one leads to a prediction λ̂ ≈ 0.131 for
the Higgs self-coupling which corresponds to a mass m̂h ≈ 126GeV.
In 2012 at CERN the Higgs mass was measured to be m̂h ≈ 125GeV
corresponding to the value of λ̂ ≈ 0.13 for the self-coupling. The
prediction got in this thesis is very close to the measured one when
one takes into account that calculations were done only at one-loop
level.
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Tiivistelmä

Tässä Pro Gradu -tutkielmassa tavoitteena on ennustaa Higgsin
bosonin massa ottaen lähtökohdaksi hiukkasfysiikan standardimalli,
johon on kytketty gravitaatio ns. asymptoottisesti turvallisena teo-
riana. Ennusteen laskemiseksi selvitetään Higgsin bosonin itseiskyt-
kennän ja neljän muun standardimallin kytkinvakion juokseminen, eli
kytkinvakioiden käyttäytyminen energiaskaalan funktiona, johtavassa
kertaluvussa MS-skeemassa. Standardimallista saatuihin β-funktioihin
lisätään asymptoottisesti turvallisen gravitaation antamat korjaukset
suurilla energiaskaaloilla, jonka jälkeen β-funktioiden muodostama dif-
ferentiaaliyhtälöryhmä ratkaistaan numeerisesti. Standardimallin osit-
tainen äärellinen remormalisaatio matalilla energioilla tarvitaan, kun
halutaan johtaa relaatio Higgsin itseiskytkennän MS-skeemassa saa-
man arvon ja fysikaalisten parametrien välille.

Liittämällä kytkinvakioiden juoksemisesta saatu Higgsin itseiskyt-
kennän arvo fysikaalisiin parametreihin, saadaan Higgsin itseiskytken-
nälle ennuste λ̂ ≈ 0,131, jota vastaava Higgsin massa on m̂h ≈ 126GeV.
Laskettu tulos osuu hyvin lähelle vuonna 2012 CERN:ssä mitattua ar-
voa m̂h ≈ 125GeV, jota vastaa itseiskytkentä λ̂ ≈ 0,13, kun otetaan
huomioon, että tässä työssä laskut tehtiin vain johtavassa kertaluvus-
sa.
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1 Introduction
The Standard Model of particle physics (SM) is a quantum field theory (QFT)
about elementary particles and three of fundamental forces of nature (electro-
magnetic, weak and strong interactions). In fall 2012 the SM was completed
when the last missing particle, Higgs boson, was discovered at the LHC in
CERN with mass around 125GeV [1,2].

Despite being so beautiful and self-consistent theory, it is widely believed
that the SM can not be ’the final theory’. The latest research has shown
that the SM can not explain several observed phenomena in the universe.
The most popular problems are the so called dark matter (DM) and dark
energy (DE) problems. It has been shown that DM and DE, yet unknown
constituents, account almost all of the energy content of the universe while
the ordinary matter, formed by the SM particles, account only for a few per
cent of the total [3]. Another problem with the SM is related to the size
of the Higgs mass, the so called hierarchy problem. When one takes into
account quantum corrections to Higgs self-energy, one would expect Higgs to
have a very large mass of the size of the fundamental cut off. The measured
one is at roughly the same scale asW - and Z-boson, at the electroweak scale.
The question is, what makes the Higgs mass to be so small. Furthermore,
the discovery of the Higgs boson at the LHC exposed the problem of non-
stability of electroweak vacuum. It turns out that for the measured value of
Higgs boson mass, assuming that there exists only the SM particles, at large
scales Higgs self-coupling turns negative, which leads to unstable electroweak
vacuum [4].

These problems have induced numerous extensions of the SM but a truly
convincing model in any account is still missing. One possibility for solving
the vacuum stability is presented in [5]. Coupling the gravity minimally to
the SM as an asymptotically safe theory, the SM may stay perturbative at all
scales. Asymptotic safety is a generalisation of the notion of renormalisabil-
ity. As an asymptotically safe theory gravity will induce corrections to SM
results and keep Higgs self-coupling positive at large scales without adding
new particles to model. In this thesis my aim is to go through ideas in [5]
and derive a prediction for the Higgs mass.

I start with an overview of the notion of the running couplings and discuss
in particular the running of Higgs self-coupling. To derive the running of a
coupling, a renormalised Lagrangian for interactions is needed. In Section
2 I go through the renormalisation of the Yang-Mills Lagrangian. After
that I present the renormalisation of the Higgs Lagrangian and the Yukawa
interaction term of the top quark. There is also a quick reminder about the
Lagrangian and properties of a general Yang-Mills theory. The β-functions
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of the five SM couplings at one-loop level are calculated in Section 3. If the
reader is already familiar with these one-loop calculations, it is recommended
to skip Section 3 and go straight to Section 4 in which I consider the notion
of asymptotic safety. I briefly go through the definition of an asymptotically
safe theory, discuss the possibility that gravity is asymptotically safe and
lastly present the corrections to β-functions given by the asymptotically safe
gravity. Differential equation group of β-functions for the five SM couplings
is solved numerically in Section 5, and in Section 6 those results are used
to get a prediction for the Higgs mass. The last section, Section 7, is for
discussion and conclusions.

1.1 Some useful results and notations

In this section I list some useful results relevant for loop calculations. Most
of these results one can find for example in [6] and they are easy to verify
directly.

The following identities for γ-matrices in a d-dimensional spacetime are
often needed:

{γµ, γν} = 2gµν1 (1a)

γµγνγµ = −(d− 2)γν (1b)

γµγνγργσγµ = −2γσγργν + (4− d)γνγργσ (1c)

γµγαγν = γµgαν − γαgµν + γνgµα − iεµανργ5γρ (1d)

Tr [γµγν ] = dgµν (1e)

Tr
[
γµγνγαγβ

]
= d(gµνgαβ − gµαgνβ + gµβgνα) . (1f)

In symmetric integrals with respect to k one can use the following re-
placement:

kµkν →
1

d
k2gµν , (2)

where d is again the spacetime dimension, i.e. the dimension of the phase
space element in the integral.

Projection operators of left- and right-handed components are always
needed when one is considering weak interactions. Operators PL and PR are
defined as

PL =
1− γ5

2
and PR =

1 + γ5

2

and they obey
PL + PR = 1 (3a)

P 2
L = PL , P

2
R = PR (3b)
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PLPR = PRPL = 0 (3c)

γµPL = PRγµ ∀µ ∈ {0,1,2,3} . (3d)

Calculations in Sections 3 and 6 can be done using relations presented in
this section and anti-commutation rules for Dirac γ-matrices.

Notations in Feynman diagrams In Sections 3 and 6 there are sev-
eral Feynman diagrams needed. Here I list the notations I have used when
drawing those diagrams.

A fermion is always drawn with a directed solid line and a gluon with
a curly line. A wavy line is for a photon, Z- and W -boson and is specified
with labels γ, Z and W if needed. Thet Higgs boson, Goldstone bosons
and ghosts are all drawn with a dashed line. For ghosts the dashed line is
directed. Goldstone bosons are labelled with χ and ghosts with c. If there is
no label, or label h, a dashed line marks the Higgs boson.

When there is a loop in a diagram, one diagram includes all possible
combinations of that kind of particles. For example in Figure 11 diagram (3)
includes both Z- and W -boson loops.
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2 Counter term Lagrangian
In the SM Lagrangian the mass of a particle is given by some combination of
the SM parameters, involving coupling constants and the vacuum expectation
value (vev for short) v of the Higgs field. For example, the Higgs mass in the
SM is defined to be mh =

√
2λv2, where λ is the Higgs self-coupling. Thus

if one somehow gets information about the behaviour of coupling constants
of the model, one could get information about the behaviour of the masses.

Running of coupling and β-function Despite their name, coupling con-
stants in a Lagrangian are not constant but change as a function of energy
scale. One describes this dependence on the scale with the notion of run-
ning of the coupling. Formally the running is determined via the so called
β-function, defined as [7]

βg = µ
dg

dµ
. (4)

Hence, β-function is the derivative of coupling with respect to the scale mul-
tiplied with the scale. The running of the coupling is found by solving the
differential equation (4) given the precise form of this β-function. If a theory
contains more than one coupling constant, their running may depend on each
other. In that case the β-functions form a system of differential equations:

µ
dgi
dµ

= βi({g1}) .

The SM and Higgs mass The leading idea in this thesis is to derive the
running for the Higgs self-coupling at one-loop level. Here the term one-
loop level stands for the first non-trivial order of perturbation theory used
to compute the β-function. In practice, n-point functions are formed as a
sum of all those diagrams that contain one loop at the most. Examining
the behaviour of the self-coupling, one can rule out values of self-coupling
that lead to unwanted behaviour at large energy scales. What is the role of
other SM couplings here? In principle, all particles that interact with the
Higgs field may affect the running of Higgs self-coupling. In the SM Higgs
interacts with all particles of non-zero mass: withW - and Z-bosons via U(1)
and SU(2) gauge couplings and with fermions via Yukawa couplings. Thus,
besides of the running of Higgs self-coupling, also the running of U(1), SU(2)
and Yukawa couplings has to be derived. Furthermore, although gluons do
not interact with Higgs, the running of SU(3) gauge coupling is needed for
the running of Yukawa couplings for quarks.
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In the SM Lagrangian there is a different Yukawa coupling for each mas-
sive fermion and the strength of the coupling depends on the mass of the
fermion. Since all other fermions are very light and much lighter than the
top quark, I may neglect their contribution to the Higgs β-function with a
very good accuracy.

For one-loop level calculations the SM Lagrangian must be renormalised.
In this section I go through the renormalisation procedure for those parts
of the SM Lagrangian which give the counter term Lagrangian for each of
the couplings whose running I am considering. The gauge sector of the SM
is formed by three gauge symmetries, namely by U(1), SU(2) and SU(3).
The two last are special cases of a general Yang-Mills theory. Thus it is
worth considering first a general SU(N) Yang-Mills theory, and then use its
properties in the cases N = 2,3. U(1) gauge theory differs from the other
two by being an Abelian theory and that U(1) hypercharge field couples
differently with different fermions. However, the running of U(1) coupling
can be derived from the general SU(N) results with small modifications.

Next I go through renormalisation of certain parts of the SM Lagrangian.
The task is to find out the counter term Lagrangian of each part. I start with
a general Yang-Mills theory. After that I will consider the Higgs Lagrangian
and top Yukawa interaction term.

2.1 Yang–Mills Lagrangian

The Yang–Mills Lagrangian describes a theory with a fermion ψ and a non-
Abelian gauge field Aµ and their interaction. The general form of the La-
grangian is [6]

LYM = ψ̄(i /D −m)ψ − 1

4
(F a

µν)
2 + c̄a(−∂µDac

µ )cc − 1

2ξ
(∂µAaµ)2 , (5)

where the covariant derivative is Dµ = ∂µ − igtaAaµ and F a
µν = ∂µA

a
ν −

∂νA
a
µ + gεabcAbµA

c
ν is the field strength tensor of the Yang–Mills gauge field.

Matrices ta are the generators of the symmetry group, i.e. the group under
which the Lagrangian is symmetric. There are N2 − 1 different generators
for an N -dimensional group. The fermion is in a representation r of the
symmetry group. The Faddeev-Popov gauge fixing induces to the Yang–
Mills Lagrangian the ghost field c for which the covariant derivative is Dac

µ =
∂µδ

ac + gfabcAbµ. The third term in the Lagrangian gives the kinetic term
of the ghost field and interaction between ghost and gauge field whereas the
fourth gives an additional gauge depending kinetic term for the gauge field.

It is worth recalling some of the properties of the generators ta.1 The
1For further reading, see [6].
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commutation relation of the generators, the Lie algebra, is usually written
as

[ta, tb] = ifabctc ,

where the structure constants fabc are fully antisymmetric in all indices. Each
generator is traceless. A product of two generators obeys

Tr
[
tatb
]

= (tatb)ii = C(r)δab , (6)

were C(r) is a constant depending on a representation r for the generators.
It can also be shown that a generator squared is proportional to the unit
matrix

tata = 1d(r)C2(r) . (7)

The unit matrix 1 has dimension d(r), where d(r) is the dimension of the
(irreducible) representation r, and C2(r) is a quadratic Casimir operator
whose value depends on the representation.

For the group SU(N) one of the most common representation is the N-
dimensional complex vector, called fundamental representation, for which

C(N) =
1

2
and C2(N) =

N2 − 1

2N
.

Fermions are usually, as well as in the SM, put into fundamental represen-
tation. Another common representation is the one to which generators of
the algebra belong, called adjoint representation. The gauge field of the
symmetry group is usually in this representation and

C(G) = C2(G) = N .

Renormalisation of Yang–Mills theory Start from the Yang–Mills La-
grangian (5). First interpret all fields and parameters in the Lagrangian as
bare quantities. Then rescale the bare fields to the renormalised ones by

Aa0µ → Z
1/2
A Aaµ

ca0 → Z
1/2
c ca

ψ0 → Z
1/2
ψ ψ

after which the Lagrangian becomes

LYM = ψ̄(iZψ /∂ + g0ZψZ
1/2
A ta /Aa − Zψm0)ψ

− 1

4
ZA(∂µA

a
ν − ∂νAaµ)2 − ZA

2ξ0

(∂µAaµ)2 + . . . ,
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∼ i(γµpµδψ − δm)
µ, a ν, b∼ −iδab(p2gµν − pµpν)δA

µ, a ∼ igtaγµδg

Figure 1: Counter term Feynman rules for fermion, gauge field and their
interaction.

where three dots stand for three- and four-field interaction terms of the gauge
field and ghost terms. Redefine mass and coupling by Zψm0 = m + δm,
g0ZψZ

1/2
A = gZg and define counter terms δi = Zi − 1 for i = ψ,A, g. Fur-

thermore one may redefine ξ0Z
−1
A = ξ since ξ is just an arbitrary constant to

choose the gauge. After these redefinitions the Lagrangian is

LYM = ψ̄(i /D −m)ψ − 1

4
(F a

µν)
2 − 1

2ξ
(∂µAaµ)2 + iψ̄(δψ /∂ − δm)ψ

+ gδgt
aψ̄ /Aaψ − 1

4
δA(∂µA

a
ν − ∂νAaµ)2 + . . . .

Similarly as before, three dots are for three and four self-interaction terms
of the gauge field and ghost terms. The three last terms shown are counter
terms for the fermion propagator, fermion-gauge-interaction and gauge field
propagator. Feynman rules for these terms can be calculated as usually (see
Appendix A) and they are written down in Figure 1.

2.2 Higgs Lagrangian

Next I will renormalise the Lagrangian of a real Higgs field. For the Higgs field
the Lagrangian is similar to the Lagrangian of the φ4-theory and coupling is
the Higgs self-coupling λ. Essential terms in the bare Lagrangian are

LH 3
1

2
(∂µφ0)2 − 1

2
m2
h,0φ

2
0 −

1

4
λ0φ

4
0 .

Surely the Higgs Lagrangian includes similar terms for Goldstone bosons.
However, those terms are ignored since I was looking for counter terms only
for the physical Higgs field.
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∼ i(δφp
2 − δmh) ∼ − i

4
δλ

Figure 2: Counter term Feynman rules for Higgs propagator and four-point
interaction.

Rescale the Higgs field by φ0 → Z
1/2
φ φ similarly as the fields were rescaled

in the case of a Yang-Mills theory. Redefining coupling by λ0Z
2
φ = λZλ and

mass by Zφmh,0 = mh + δmh and defining counter terms by δφ = Zφ− 1 and
λZλ = λ+ δλ yields

LH 3
1

2
(∂µφ)2 − 1

2
m2
hφ

2 − 1

4
λφ4 +

1

2
δη(∂µφ)2 − 1

2
δmhφ

2 − 1

4
δλφ

4 .

The last three terms are the Higgs propagator, mass and four-point counter
terms. Feynman rules for these terms are in Figure 2. Notice here the
difference in the definition of the Higgs self-coupling counter term δλ to for
example the coupling constant counter term in the case of the Yang–Mills
theory. Counter term for the self-coupling λ is δλ = λ(Zλ − 1) i.e. there is
an additional λ on the right hand side. Due to this difference there is no λ
in the Feynman rule for the Higgs four-point counter term.

2.3 Top Yukawa counter term

For the top Yukawa coupling there is an interaction term between the top
quark and the Higgs boson. As a difference to what is done before is the
change of handedness of the quark field in interaction with Higgs; the left- and
right-handed components of the quark field have to be rescaled separately,
and they will have different counter terms. With bare fields and couplings,
the top Yukawa interaction term is

LY 3
yt,0√

2
t̄0,Rt0,Lφ0 ,

where tL (tR) is the left-handed (right-handed) component of the top field
and φ0 is the neutral component of the Higgs doublet. Handling left- and
right-handed components of the top quark as two different fields, rescaling of
fields φ0 → Z

1/2
φ φ and t0,L/R → Z

1/2
t,L/RtL/R with a redefinition of top Yukawa

8



∼ i yt√
2
δyt

Figure 3: Feynman rule for Top Yukawa counter term.

coupling yt,0(Zt,LZt,RZφ)1/2 ≡ ytZyt yields

LY 3 (1 + δyt)
yt√

2
t̄RtLφ ,

where the top Yukawa counter term is defined as δyt = Zyt − 1. Feynman
rule for the top Yukawa counter term one can easily see from the equation
above, and it is written down in Figure 3.
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3 β-functions from the SM
As I discussed in the previous section, the running of the SM couplings is
needed for the prediction of the Higgs mass. In this section I will derive
β-functions of five SM coupling constants g1, g2, g3, yt and λ corresponding
to the U(1), SU(2), SU(3), top Yukawa and Higgs self-interaction couplings
respectively.

I start with deriving an expression of the β-function in the general case at
one-loop level. I will then apply this expression to the special cases of SU(N),
top Yukawa and Higgs self-interaction. After I have derived the β-function
for a general SU(N) coupling, I get the β-functions for the SU(2) and SU(3)
cases just by setting N = 2,3. The β-function for the U(1) coupling needs to
be computed separately because all fermions couple differently to it.

For one-loop level calculations I have to choose a renormalisation scheme
and fix the gauge. I choose to do calculations in the modified minimal sub-
traction renormalisation scheme, MS for short, in which counter terms are
defined to ’eat’ not only divergences of integrals but also finite terms pro-
portional to −γE + log(4π), and I define 2

ε
− γE + log(4π) ≡ 2

εMS
. In this

scheme calculations, especially those of three point functions, are easier since
all masses can be ignored, as they only affect the finite parts of integrals. I
also choose to do calculations in the Feynman gauge (ξ = 1). In this gauge
there are more diagrams than in the Landau gauge (ξ = 0) since also ghosts
contribute, but the diagrams with gauge boson self-couplings are easier to
handle.

3.1 General form of β-function

Take a theory with a set of bare coupling constants gj,0. In a d-dimensional
spacetime (here it is defined d ≡ 4 − ε) the bare couplings may not be
dimensionless. Denote by αj the mass dimension of a coupling gj,0 in the d-
dimensional spacetime. That is, [gj,0] = Mαj such that the product gj,0µ−αj is
dimensionless. An interaction term with a coupling gj in the bare Lagrangian
is of the form µ−αjgj,0ψ

n
i,0, where the fields ψi may be either scalar, fermion

or gauge fields. Rescaling the fields ψi, as it was done in the previous section,
yields

µ−αjgj,0Z
n/2
ψi
ψni .

Now redefining the coupling by gjZgj = µ−αjg0Z
n/2
i gives

gj = µ−αjgj,0Z
n/2
ψi
Z−1
gj
≡ µ−αgj,0Zj .
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The coupling gj is now the renormalised coupling.
Recall that the β-function was defined to be the derivative of a coupling

with respect to scale. Thus for coupling gj

βgj = µ
dgj
dµ

= −αjgj + µ−αjgj,0µ
dZj
dµ

.

How does Zj depend on the scale? The answer is that Zj does not depend
explicitly on the scale but only implicitly via couplings. In general Zj may
depend on all couplings in the theory, and the dependence in the bare ex-
pansion is Zj = Zj({gi,0µ−αi}). Using the chain rule, one then finds

βgj ≈ −αjgj − gj
∑
l

αlgl
∂

∂gl
Zj . (8)

This result is an approximation at one-loop level because I replaced gl,0µ
αl

by gl in the sum on the right hand side. Recall that counter terms were
defined to be δi = Zi − 1. Thus a β-function can always be expressed with
derivatives of counter terms with respect to coupling constants of the theory.
Indeed, this is how I derive the β-functions for the SM couplings. After I
have calculated the mass dimensions of SU(N), top Yukawa and Higgs self-
interaction couplings, Equation (8) gives immediately the β-functions for
them.

Remembering the fact that every term in the Lagrangian must have a
dimension Md in the d-dimensional spacetime, the mass dimensions of the
SM couplings, consistent with d = 4− ε, are

[λ] = M ε

[yf ] = M ε/2

[gi] = M ε/2, ∀i = 1,2,3 .

(9)

Since I now have a general expression for a β-function and know the mass
dimensions of the SM couplings, I can start deriving β-functions for them.
For each coupling I find out an expression for the function Z with counter
terms and then determine those counter terms in the MS renormalisation
scheme. I start with the SU(N) gauge coupling.

3.2 SU(N) gauge theory

To calculate the β-function for the SU(N) coupling constant g I have to
decide which term in the Lagrangian I use. Due to the different combination
of fields, Z-functions are not the same for different terms in the Lagrangian.
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This leads to different combinations of counter terms. I choose to use the
interaction term between a gauge boson and fermion2.

After rescaling of fields this term is

g0ZψZ
1/2
A taψ̄ /A

a
ψ .

Function Z defined in the previous section is now

Z = ZψZ
1/2
A Z−1

g = (1 + δψ)(1 + δA)
1/2(1 + δg)

−1

≈ 1 + δψ +
1

2
δA − δg . (10)

Furthermore, there is only one coupling with the mass dimension [g] = M ε/2.
Using the general form (8), the β-function for coupling g is

βg = − ε
2
g

(
1 + g

∂

∂g

(
δψ +

1

2
δA − δg

))
. (11)

Thus to get the running of coupling g I have to calculate three counter terms:
fermion and gauge boson wave function counter terms δψ and δA and counter
term for the coupling g itself. The wave function counter terms one obtains
by renormalising the fermion and the gauge boson propagators at one-loop
level and the counter term for g by renormalising the three-point function
between the fermion and the gauge boson. Feynman rules for these counter
terms I already derived in Section 2.1, see Figure 1.

3.2.1 Counter terms

In the general Yang–Mills theory there is only one gauge field that couples to
fermions. The situation needed in this thesis is however more complicated,
because in the SM there are three different gauge fields, several different
fermions and one scalar. To handle this I divide the problem in different
parts. I start with just one gauge field coupled to fermions and later on
discuss how adding a new gauge field or scalar affects these results.

Let us start with fermion propagator. Since there is only one gauge field
that interacts with the fermion, there is only one one-loop diagram, shown in
Figure 4. Using the labels written in the figure this diagram is (for Feynman

2The β-function is the same despite of which term in the Lagrangian and which set of
counter terms one uses. I chose the vertex between fermions and gauge field just for that
counter terms needed in that case are much easier compared to for example the gauge
boson three-vertex.
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i
p

l

k

j
p

k − p

a, µ b, ν

(1)

Figure 4: One-loop correction to fermion propagator given by a gauge field.

rules see Appendix A)

−iΣ
(1)
ψ =

∫
d4k

(2π)4
(−igtbjlγ

ν)
i/k

k2 + iεF
(−igtaliγ

µ)
−igµνδ

ab

(p− k)2 + iεF
.

In a d-dimensional spacetime

−iΣ
(1)
ψ = −g2tajlt

a
liµ

4−d
∫

ddk

(2π)d
γν/kγν

(k2 + iεF)((p− k)2 + iεF)

= −g2C2(r)δijµ
4−d
∫

ddk

(2π)d
−(d− 2)/k

(k2 + iεF)((p− k)2 + iεF)
,

where in the last step I used identity (1b) for γ-matrices and (7) for the
product of two generators. Notice here that the indices i, j and l are fermion
indices. Thus r in C2(r) refers to the representation of group SU(N) in which
fermions are. Now Passarino–Veltman reduction integrals (see Appendix B)
yield

−iΣ
(1)
ψ = g2C2(r)δij(d− 2)γµBµ(p,0,0)

= g2C2(r)δij(2− ε)γµ
pµ
p2

1

2
q2B0(p,0,0)

= iδij/p

(
2g2C2(r)

16π2εMS

+ f.t.
)
, (12)

where ’f.t.’ refers to ’finite terms’, i.e. terms that are either constants or at
least linear in ε .

Recall that the Feynman rule for the fermion wave function counter term
is i/pδijδψ, and in the MS-scheme a counter term is defined to be such that it
cancels the 1/εMS-divergence. Thus one needs to define δψ to be exactly the
opposite of the factor multiplying iδij/p:

δψ = −2g2C2(r)

16π2εMS

. (13)

Consider next one-loop corrections to the vertex between a fermion and
a gauge field. There are two one-loop diagrams. One involves a virtual

13



(1) (2)

Figure 5: One-loop corrections to fermion-gauge-vertex in the case that there
is only one gauge field.

gauge boson between two outgoing fermions and the other virtual gauge
bosons between fermions and outgoing gauge boson, see Figure 5. A simple
calculation shows that these diagrams give contributions

−iΓ(1)
g = igtaijγ

µ

(
2g2

16π2εMS

(C2(r)− 1

2
C2(G)) + f.t.

)
and

−iΓ(2)
g = igtaijγ

µ

(
3g2C2(G)

16π2εMS

+ f.t.
)
.

Comparing the two previous equations to the counter term Feynman rule for
the fermion-gauge vertex in Figure 1, the counter term for the coupling g is

δg = − 2g2

16π2εMS

(C2(r) + C2(G)) . (14)

Here again r refers to the fermion representation and G to the adjoint rep-
resentation for the gauge field.

I have now calculated one-loop corrections to the fermion propagator and
vertex between fermions and gauge boson to get counter terms δψ and δg. The
one still missing is δA. To get that I have to calculate one-loop corrections
to the gauge boson propagator. Recall that in a Yang–Mills theory there
are also ghosts to take into account. Figure 6 shows all one-loop diagrams
which are formed by adding a fermion, a gauge boson or a ghost loop to the
tree-level propagator. The fermion loop is

−iΠ
abµν,(1)
A = −i(p2gµν − pµpν)δab

(
8

3

g2C(r)

16π2εMS

NF + f.t.
)
, (15)

where NF is the number of different fermions coupled to the gauge field.
Notice here that I have assumed that for all fermions the coupling to gauge

14



(1) (2)

c

(3)

Figure 6: One-loop corrections to gauge boson propagator given by fermions,
gauge field itself and ghosts.

bosons is the same. The gauge boson itself and ghosts turn out to give
contributions

−iΠ
abµν,(2)
A =

(
−11

3
pµpν +

19

6
p2gµν

)
δab
(

ig2C2(G)

16π2εMS

+ f.t.
)

and

−iΠ
abµν,(3)
A =

(
1

3
pµpν +

1

6
p2gµν

)
δab
(

ig2C2(G)

16π2εMS

+ f.t.
)
.

One can see that gauge boson and ghost diagrams themselves are not gauge
invariant since they are not proportional to the gauge invariant factor (p2gµν−
pµpν). However, adding these two diagrams up gives

− iΠ
abµν,(2+3)
A = −i(p2gµν − pµpν)δab

(
−10

3

g2C2(G)

16π2εMS

+ f.t.
)
, (16)

so that the sum is gauge invariant as it should be. From equations (15) and
(16) one obtains

δA =
10

3

g2C2(G)

16π2εMS

− 8

3

g2C(r)

16π2εMS

NF . (17)

Now I have derived the three counter terms needed for the β-function for the
coupling g.

3.2.2 β-function for the Yang-Mills theory

The β-function for the Yang-Mills theory can now be calculated from Equa-
tion (11). Substituting counter terms (13), (14) and (17) into (11) yields

βg = − ε
2
g
(

1 + g
(
− 4g

16π2εMS

C2(r) +
4g

16π2εMS

(C2(r) + C2(G))

− 8

3

gC(r)

16π2εMS

NF +
10

3

g

16π2εMS

C2(G)
))

=
g3

16π2

(
−11

3
C2(G) +

4

3
C(r)NF

)
+O(ε) (18)
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(2)

(3)

Figure 7: One-loop corrections given by the new gauge field.

where in the last step I used that ε
εMS

= 1 + O(ε). Equation (18) holds for
the pure Yang–Mills theory. In the next section it is discussed how adding a
new gauge or scalar field to theory affects the Yang–Mills β-function.

3.3 SU(N) theory with additional scalar and gauge fields

So far I have assumed that there is only one gauge boson and not any scalars.
As I mentioned before, in the case of the SM I have to know how different
gauge fields affect each other, and there is one scalar field too. Next I will
discuss what kind of diagrams there are if there is a new gauge or scalar field,
and what kind of contributions these diagrams give to counter terms.

Adding a new gauge field Consider the case in which a new gauge field
is added to the theory I was considering before. This new field does interact
with fermions but not with the original gauge field. Since fermions interact
with the new gauge field, there is a new diagram for the fermion propagator
similar to that in Figure 4 involving the new gauge field. Considering fermion-
gauge-vertex, in diagram (1) in Figure 5 one may change the gauge field
between two fermions to the new one. At one-loop level the new field does
not change the gauge field propagator because gauge fields are not coupled
to each other. Thus corrections by the new gauge field are one diagram to
the fermion propagator and to the fermion-gauge-vertex shown in Figure 7.

The correction to the fermion propagator is obviously the same as (12)
since the calculation did not depend on which gauge field one was considering.
Thus

−iΣ
(2)
ψ = iδij/q

(
2g′2C2(r′)

16π2εMS

+ f.t.
)
, (19)

where g′ is a coupling between fermion and the new gauge field and r′ is the
representation of fermion in the new gauge group. To calculate the correction
to the fermion-gauge-vertex, note that a fermion carries an index related to

16



both of the two gauge fields. Fermion index related to an interaction with
one gauge field does not change in an interaction with the other. Keeping
this in mind the contribution of the diagram (3) in Figure 7 is

−iΓ(3)
g = igtajiγ

µ

(
2g′2C2(r′)

16π2εMS

+ f.t.
)
. (20)

One can see here that (19) gives exactly the same contribution to the fermion
wave function counter term δψ as (20) gives to coupling constant counter
term δg. In the formula of βg, Equation (11), these counter terms appear
with opposite signs, which means that corrections from (19) and (20) cancel
each other. Hence, adding a new gauge field to the theory does not change
the β-function of coupling g if two gauge fields do not interact with each
other.

Adding a scalar field Adding a scalar field to the theory is a little more
complicated compared to adding a gauge field. Difficulties arise from the
coupling between a fermion and a scalar, i.e. the Yukawa coupling. Also
corrections given by the scalar depend not only on the representation in
which the scalar is, but also on whether the scalar couples to the gauge field
or not.

There are two cases of interest in the SM. In the first one the original
gauge field corresponds to a gluon which does not interact with the Higgs
field. In this case there are only two one-loop diagrams similarly as in the
case of an additional gauge field: fermion propagator diagram and vertex
correction in which the scalar is added between two fermions. See Figure 8.

Using Feynman rules from the Appendix A, the fermion two-point dia-
gram in Figure 8 is

−iΣ
(3)
ψ = iδji/q

(
y2
f

16π2εMS

+ f.t.
)
. (21)

The vertex correction is

−iΓ(4)
g = igtajiγ

µ

(
y2
f

16π2εMS

+ f.t.
)

(22)

from which one again can see that fermion propagator and vertex contribu-
tion cancel each other as in the case of the additional gauge field. Hence,
there is no scalar contribution to the β-function of the coupling g if the scalar
does not interact with the gauge field.

In the second case, the original gauge field corresponds to SU(2) field in
the SM, and the new scalar, the Higgs field, interacts with it. In addition to
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(3)

(4)

Figure 8: One-loop corrections to fermion propagator and fermion-gauge-
vertex given by the new scalar field.

(4)

(5)

Figure 9: One-loop corrections to gauge field propagator and fermion-gauge-
vertex given by the new scalar field if the scalar is coupled to the original
gauge field.

corrections in Figure 8, there is a correction to the gauge field propagator and
a correction to the fermion-gauge-vertex for which in the loop there are two
scalar fields and one fermion. The two new diagrams are shown in Figure 9.
To calculate these diagrams, suppose that the scalar is in the fundamental
representation. Here the chirality of the fermion has to be taken into account.

The correction to the fermion propagator, diagram (3) in Figure 8, re-
mains the same. The gauge field diagram with a scalar loop, number (4) in
Figure 9, is

−iΠ
abµν,(4)
A = −i(q2gµν − qµqν)δab

(
2

3

g2C(r′)

16π2εMS

NS + f.t.
)
, (23)

where NS is the number of scalars coupled to the gauge field and r′ is the
representation of the gauge group in which scalars are3.

The two vertex corrections in Figure 8 and 9 are the most difficult ones.
Let us first consider the one in Figure 8, where in the loop there are two

3Here I chose the scalar to be in the fundamental representation but it turns out that
the result is the same if one chooses the adjoint representation. I do not prove this, but I
keep the representation general since the result is.
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fermion and one scalar propagator. The outgoing gauge field is now the
SU(2) field, which couples only to the left-handed fermion. Interaction with
the scalar changes the handedness of the fermion. Thus the two outgoing
fermions can not be left-handed. Indeed, if they were, in the loop fermions
should be right-handed, but they do not interact with the SU(2) field. Hence,
outgoing fermions are right-handed, and the two fermions in the loop are left-
handed. The coupling between fermions and gauge field is proportional to
the group generator taji, where j,i are fermion indices. Since right-handed
fermions do not carry the fermion index, the two vertices between the scalar
and fermion fields forces the fermion indices to be the same, and there is a
sum over fermion indices. Thus the diagram (4) in Figure 8 is proportional to
the trace of the group generator, which is zero. As a conclusion, this diagram
gives no contribution.

The only correction left to the fermion-gauge-vertex is the diagram (5) in
Figure 9 with two scalar and one fermion propagators in the loop and with
the SU(2) field as an external gauge field. By similar reasoning as before, if
the outgoing fermions are right-handed, this diagram gives no contribution
since it is proportional to the trace of the group generator. For left-handed
outgoing fermions diagram is

−iΓ(5)
g = igtajiγ

µPL

(
y2
f

16π2εMS

+ f.t.
)
. (24)

This is the only correction to the fermion-gauge-vertex in the case where the
original gauge field and the additional scalar are coupled. Comparing the
correction to the counter term δg given by (24) to the correction to counter
term δψ given by (21), one can see that again these corrections are exactly
the same. Hence, the only remaining contribution by the scalar field is to
the gauge field propagator from Equation (23).

3.3.1 β-function for SU(N) theory with additional scalar field

The previous calculations showed that if one adds a gauge or scalar field to
the general Yang–Mills theory, the only change to counter terms that affects
the β-function is a correction to the gauge field propagator given by the scalar
field. The corrected counter term is

δA =
10

3

g2C2(G)

16π2εMS

− 8

3

g2C(r)

16π2εMS

NF +
2

3

g2C(r′)

16π2εMS

NS (25)

from Equations (17) and (23). With this change, the β-function is

βg =
g3

16π2

(
−11

3
C2(G) +

4

3
C(r)NF +

1

3
C(r′)NS

)
+O(ε), (26)
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where NF (NS) is the number of fermions (scalars) coupled to the gauge
field, G is for the adjoint representation of the symmetry group and r and
r′ respectively the representations of the symmetry group in which fermions
and scalars are. In general one chooses both fermions and scalars to be in
the fundamental representation, which yields (see Section 2.1)

βg =
g3

16π2

(
−11

3
N +

2

3
NF +

1

6
NS

)
, (27)

where I dropped the terms proportional to ε, for the SU(N) gauge coupling
g.

3.4 SU(2) and SU(3) gauge theories

Now I am ready to write down β-functions for the two non-Abelian gauge
theories of SM using the general form of the SU(N) β-function (27).

In SU(2) isospin symmetry N = 2, NF = 6 (for 3 different lepton and 3
different quark families) and NS = 1 (for Higgs boson). Substituting these
into Equation (27) the β-function of the SU(2) coupling g2 is

βSMg2 = −19g3
2

96π2
. (28)

Correspondingly in SU(3) colour symmetry N = 3, NF = 6 (for different
flavours of quarks) and NS = 0 yielding

βSMg3 = − 7g3
3

16π2
. (29)

These were two of the three gauge theories in the SM. Next I turn to the
case of the U(1) theory which needs some extra discussion.

3.5 U(1) gauge theory

The β-function of the U(1) gauge coupling cannot be obtained from the
previous results because each fermion and scalar couples differently to the
U(1) field. Indeed, unlike in the SU(N) theory where the coupling between
the gauge field and any fermion was igtajiγ

µ, in the case of the U(1) theory
the coupling depends not only on the fermion type but also handedness of
fermion. The coupling is ig1

YL,f
2

for a left-handed and ig1
YR,f

2
for a right-

handed fermion, where YL,f and YR,f are hypercharges of the fermion (see
Table 1) defined by the so called Gell-Mann–Nishijima formula [8]

Y = 2(Q− T 3) ,
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where Q is the electric charge and T 3 is the third component of weak aisospin
of the particle. Making a replacement gtaji → g1

YL,f
2
δij, g1

YR,f
2
δij, the one-loop

correction to the fermion propagator similar to the diagram in Figure 4 is

− iΣψ = iδij/p

(
2g2

16π2εMS

1

2

((
YL,f

2

)2

+

(
YR,f

2

)2
)

+ f.t.

)
. (30)

The extra half on the right hand side came from the fact that left-handed and
right-handed components of one fermion are considered separately. Compar-
ing Equation (30) to (12), one can see that the only difference is that C2(r)
in (12) is replaced with sum

1

2

((
YL,f

2

)2

+

(
YR,f

2

)2
)
.

The same happens with all other fermion diagrams. Thus in the Yang–Mills
β-function (26) one can make a replacement

4

3
C(r)NF →

4

3

∑
f

1

2

((
YL,f

2

)2

+

(
YR,f

2

)2
)

=
1

6

∑
f

(
Y 2
L,f + Y 2

R,f

)
.

Note that int taking the sum over all fermions, one has to take into account
different families as well as different colours for quarks.

Similarly for scalars, he coupling igtaij is replaced by ig1
Yφ
2
, where Yφ is

the hypercharge of a scalar, yielding

1

3
C(r)NS →

1

3

∑
φ

(
Yφ
2

)2

=
1

12

∑
φ

Y 2
φ .

The term proportional to C2(G) in (26) is due to the ghost diagram and
diagrams with the gauge field self-interaction. Thus for the U(1) theory one
has to drop this term.

With these changes to (26), the β-function of the U(1) theory is

βSMg1 =
g3

1

16π2

(
1

6

∑
f

(
Y 2
L,f + Y 2

R,f

)
+

1

12

∑
φ

Y 2
φ

)
.

Substituting hypercharges from Table 1 one finds

βSMg1 =
41g3

1

96π2
. (31)
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particle charge Q isospin T 3 hypercharge Y

lL −1 −1/2 −1
lR −1 0 −2
νL 0 1/2 −1
uL 2/3 1/2 1/3

uR 2/3 0 4/3

dL −1/3 −1/2 1/3

dR −1/3 0 −2/3

φ0 0 −1/2 1
φ+ +1 1/2 1

Table 1: Charges, isospins and hypercharges of the SM particles. Here lL,R
denotes left- and right-handed leptons, uL,R upper quarks, dL,R lower quarks,
νL neutrinos, and φ0,+ neutral and charged scalar fields.

This was the last one of the gauge couplings in the SM. Notice here that
for every gauge coupling in the SM the running depends only on the coupling
itself. This fact was not obvious since fermions interact with all of them
and thus at one-loop level could have induced dependence on other gauge
couplings. But as I showed in Section 3.3, the correction by other gauge
fields to the fermion wave function counter term cancels out the correction
to counter term for the coupling itself, and thus there is no contribution to
the β-function.

3.6 Higgs self-coupling

The next β-function to calculate is the one for Higgs self-coupling λ. In this
section I start to use physical Higgs and gauge fields. Feynman rules for
those are found in Appendix A.2.

For the β-function of the self-coupling λ I use the Higgs four-point inter-
action term. With the renormalised Higgs field that term is

1

4
λ0Z

2
φφ

4 .

Recall that I defined the Higgs self-coupling counter term by λZλ ≡ λ + δλ,
which gives Zλ = 1+ 1

λ
δλ. Thus the Z-function in the case of the self-coupling
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(1)

χ

(2)

Figure 10: Diagrams contributing to Higgs wave function renormalisation at
one loop.

λ is

Z = Z2
φZ
−1
λ ≈ 1 + 2δφ −

1

λ
δλ

= 1 +
1

λ
(2λδφ − δλ) . (32)

Inserting this into the expression (8) for a general β-function gives

βλ = −ελ
(

1 +
(
λ
∂

∂λ
+

1

2

(
g1

∂

∂g1

+ g2
∂

∂g2

+ yt
∂

∂yt

))1

λ
(2λδφ − δλ)

)
. (33)

Here I have used Equation (9) for mass dimensions of the SM couplings.
Furthermore, Higgs propagator and four-point function cannot include gluons
at one-loop level because in all diagrams particle propagating in a loop must
be coupled to Higgs. Thus the counter terms δφ and δλ cannot depend on
the strong coupling constant g3, and I am allowed to drop the derivative with
respective to g3 in (33).

3.6.1 Higgs self-coupling and wave function counter terms

To get the counter terms δφ and δλ one has to calculate the Higgs propagator
and four-point function at one-loop level. I start with the wave function
renormalisation counter term δφ. There are quite many diagrams for the
Higgs propagator at one-loop level, but fortunately only two of them give
a contribution to δφ, see Figure 10. Diagrams contributing to δφ must be
proportional to Higgs momentum squared p2, and thus there has to be a
momentum variable in the numerator of the loop-integral. There are two
possibilities to get this: either there are fermions in the loop, or the vertex
Feynman rule is proportional to Higgs momentum.

The first case with fermions in the loop, shown by the first diagram in
Figure 10, gives a contribution

−iΠ
(1)
φ = ip2

(
6y2

f

16π2εMS

+ f.t.
)
. (34)
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The other relevant correction is given by a gauge boson and a Goldstone
boson in the loop because the three-vertex between Higgs, gauge boson and
Goldstone boson is the only vertex proportional to Higgs momentum, see
Feynman rules in Appendix A.2. There are two possibilities: either both the
gauge boson and Goldstone are neutral, or both of them are charged. These
two cases are included in the second diagram in Figure 10 and they give

−iΠ
(2)
φ = ip2

(
− g

2
2 + g2

1

16π2εMS

− 2g2
2

16π2εMS

+ f.t.
)

= ip2

(
−3g2

2 + g2
1

16π2εMS

+ f.t.
)
. (35)

Extracting divergent parts from Equations (34) and (35), the Higgs wave
function counter term is found to be

δφ =
1

16π2εMS

(
3g2

2 + g2
1 − 6y2

f

)
. (36)

Next in turn there is the Higgs self-coupling counter term δλ. In Section
2.2 I got the four-point counter term Feynman rule to be − i

4
δλ. Since there

are identical particles, this diagram has to be calculated as the others. The
symmetry factor of the diagram is S = 1

4!
so

−iΓδλφ =
1

S

(
− i

4
δλ

)
= −6iδλ . (37)

The six diagrams for the Higgs four-point function at one-loop are shown
in Figure 11. There are in fact more diagrams, but the rest are finite and
thus do not affect the counter terms in the MS-scheme. Note here that all
but the box diagrams, diagrams (4) and (5), must be permuted, i.e. take into
account s-, t- and u-channels. Furthermore, since diagrams include many
identical particles, symmetry factors are highly non-trivial.

The first correction is simply given by Higgs itself and is

−iΓ
(1)
λ = −6i

(
− 18λ2

16π2εMS

+ f.t.
)
. (38)

The next two diagrams are given by neutral and charged Goldstone and
gauge bosons. Their contributions are

−iΓ
(2)
λ = −6i

(
− 6λ2

16π2εMS

+ f.t.
)

(39)
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Figure 11: Higgs four-point self interaction at one-loop level. All but the
box diagrams, diagrams (4) and (5), one must permute, i.e. take s-, t- and
u-channels.

and

−iΓ
(3)
λ = −6i

(
−1

4

(g2
2 + g2

1)2

16π2εMS

− 1

2

g4
2

16π2εMS

+ f.t.
)
. (40)

Box diagrams are finite unless there is at least a factor k4 of the loop-
momentum in the numerator since the denominator is of the order (k2)4 = k8.
As I discussed before, only the fermion propagator and the gauge-Goldstone-
Higgs-vertex give k to the numerator. Hence, the only box diagrams which
are not finite are the fermion box and a box with two gauge fields and Gold-
stones in turn, i.e. diagrams (4) and (5) in Figure 11. Of course, in the
diagram with gauge fields and Goldstone bosons there are both neutral and
charged particles included. These boxes give

−iΓ
(4)
λ = −6i

(
−1

8

(g2
2 + g2

1)2

16π2εMS

− 1

4

g4
2

16π2εMS

+ f.t.
)

(41)

and

−iΓ
(5)
λ = −6i

(
6y4

t

16π2εMS

+ f.t.
)
. (42)

The last diagram, number (6) in Figure 11, is a triangle diagram with two
Goldstones and one gauge field. It is also permuted in three channels for
both charged and neutral fields and gives

−iΓ
(6)
λ = −6i

(
λ(g2

2 + g2
1)

16π2εMS

+
2λg2

2

16π2εMS

+ f.t.
)
. (43)
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From Equations (38), (39), (40), (41), (42) and (43) the counter term δλ
for self-coupling can be read remembering the factor −6i in Equation (37)
and that δλ must cancel all divergences in one-loop diagrams. Thus

δλ =
1

16π2εMS

(
24λ2 − 6y4

f +
3

8

(
2g4

2 +
(
g2

2 + g2
1

)2
)
− λ

(
3g2

2 + g2
1

))
. (44)

When I derived the δφ and δλ counter terms I just calculated diagrams
for any fermions with a Yukawa coupling yf . However, in the beginning of
Section 2 I explained that I am allowed to forget all Yukawa couplings but
that of top quark. Thus whenever there is a coupling yf , it may be replaced
with the top Yukawa coupling yt.

3.6.2 β-function for Higgs self-coupling

Above I derived expressions for the Higgs wave function and self-coupling
counter terms. Substituting into (33) these counter terms from (36) and
(44), the β-function of the Higgs self-coupling is found to be

βSMλ =
1

16π2

(
24λ2 − 6y4

t +
3

8

(
2g4

2 +
(
g2

2 + g2
1

)2
)

+ 12λy2
t − 3λ

(
3g2

2 + g2
1

) )
. (45)

One can see here that to get running of the Higgs self-coupling, running of
the all other SM couplings is needed. I already have calculated the cases of
the SM gauge couplings. Thus the only one left is the running of the top
Yukawa coupling.

3.7 Top Yukawa coupling

As in the case of Higgs self-coupling, the calculations in this section are done
using physical gauge and Higgs fields. To calculate the running of the top
Yukawa coupling I use the top mass term which in the bare Lagrangian is

yt,0v0√
2
t̄R,0tL,0 .

Here the left- and right-handed top fields can be rescaled as before, tL,0 →
Z

1/2
L tL and tR,0 → Z

1/2
R tR. The Higgs vev is renormalised as the Higgs field,

i.e. v0 → Zφv. This yields

yt,0v0√
2
t̄R,0tL,0 →

yt,0v√
2

(Zt,LZt,RZφ)
1/2t̄RtL . (46)
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There is a novelty considering the Higgs vev. In Section 6 I will show that
the Higgs vacuum expectation value is a scale dependent quantity as well as
mass or coupling. Denoting by v̂ the scale independent, physical Higgs vev
which is known to have a value v̂ ≈ 246GeV, one-loop correction to the scale
dependent vev is

v = v̂(1 +
1

2
δv) , (47)

where, ignoring finite parts, I will find

δv =
1

16π2εMS

(3g2
2 + g2

1) . (48)

Equation (46) with (47) now defines the Z-function in the case of top Yukawa
to be

Z = (1 +
1

2
δv)(Zt,LZt,RZφ)

1/2Z−1
yt

≈ 1 +
1

2
(δv + δt,L + δt,R + δφ)− δyt . (49)

Here the counter terms δt,L/R are the wave function counter terms for left-
and right-handed parts of the top propagator, δφ is the Higgs wave function
counter term, already derived in the previous section, and δyt is the counter
term for the interaction between the top quark and Higgs. Equation (8) with
(49) yields

βyt = − ε
2
yt − εyt

(
λ
∂

∂λ
+

1

2

(
g1

∂

∂g1

+ g2
∂

∂g2

+ g3
∂

∂g3

+ yt
∂

∂yt

))
×
(

1

2
(δv + δt,L + δt,R + δφ)− δyt

)
. (50)

In the next section I will derive the remaining three counter terms, namely
δt,L/R and δyt . These counter terms are found by calculating the top propa-
gator and Yukawa vertex at one-loop level.

3.7.1 Top Yukawa and top wave function counter terms

Calculate the counter term δt at first. Possible one-loop diagrams of the top
propagator are the one with a Higgs loop, the one with a photon, Z-boson or
W-boson loop and the third with a gluon loop, see Figure 12. The diagram
with the Higgs boson is the easiest one and gives a contribution

−iΣ
(1)
t = i/p

(
y2
t

2

1

16π2εMS

+ f.t.
)

(PL + PR) . (51)

27



(1) (2) (3)

Figure 12: Diagrams forming top quark propagator at one-loop level. The
diagram (2) stands for photon, Z and W loops.

The correction is the same for both left- and right-handed components. The
photon diagram does not care about handedness as the Higgs diagram, but for
theW - and Z-boson loops the correction is different for different components.
The sum of Z, W and photon loops, collectively depicted by diagram (2) in
Figure 12, is given by

−iΣ
(2)
t = i/p

(
3

2

g2
2

16π2εMS

+
1

18

g2
1

16π2εMS

+ f.t.
)
PL (52)

+ i/p

(
8

9

g2
1

16π2εMS

+ f.t.
)
PR . (53)

For the gluon loop the calculation is very similar to the one with an SU(N)
gauge boson in Section 3.2. Diagram (3) in Figure 12 is given by

−iΣ
(3)
t = i/p

(
8g2

3

3

1

16π2εMS

+ f.t.
)

(PL + PR) . (54)

Defining the left- and right-handed top wave function counter terms such
that they cancel the 1

εMS
-divergences in Equations (51), (53) and (54) yields

δt,L =
−1

16π2εMS

(
1

2
y2
t +

8

3
g2

3 +
3

2
g2

2 +
1

18
g2

1

)
(55)

and

δt,R =
−1

16π2εMS

(
1

2
y2
t +

8

3
g2

3 +
8

9
g2

1

)
. (56)

The top Yukawa counter term is defined from one-loop corrections to the
top Yukawa interaction. For the vertex between the top quark and Higgs
there are three non-finite diagrams, see Figure 13. Diagrams are formed
similarly as for the propagator. The first of the diagrams in Figure 13 is
obtained by adding a Higgs boson between the external top quarks. Another
diagram with additional Higgs between external Higgs and fermions, similar
to (4) in Figure 9, is finite. Thus the Higgs contribution is

−iΓ(1)
yt = − iyt√

2

(
− y2

t

16π2εMS

+ f.t.
)
. (57)
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(1) (2) (3)

Figure 13: Non-finite top Yukawa vertex diagrams at one-loop level. In
diagram (2) there are only photon or Z-boson as an additional gauge field.

Adding a photon, Z- orW -boson to the top Yukawa vertex is very similar
as adding Higgs boson. There are two kinds of diagrams: one with a boson
between top quarks and one with a boson between top quarks and Higgs.
The latter of them is possible only with an additional Z- or W -boson since
photons do not interact with Higgs, but for Z and W it is finite. The former
one, diagram (2) in Figure 13, cannot include a W -boson, since then thea
fermion in the loop would be a bottom quark for whose interaction with
Higgs was neglected. Thus the diagram (2) is the sum of diagrams with an
additional photon or Z-boson and is

−iΓ(2)
yt = − iyt√

2

(
8g2

1

9

1

16π2εMS

+ f.t.
)
. (58)

When one is adding a gluon to the top Yukawa vertex, the only possibility,
since Higgs and gluon do not interact with each other, is to add it between
the top quarks, see diagram (3) in Figure 13. This diagram gives

−iΓ(3)
yt = − iyt√

2

(
32g2

3

3

1

16π2εMS

+ f.t.
)
. (59)

The final top Yukawa counter term

δyt =
1

16π2εMS

(
y2
t −

32

3
g2

3 −
8

9
g2

1

)
(60)

is obtained collecting divergences from Equations (57), (58) and (59).

3.7.2 Top Yukawa β-function

Inserting the Higgs wave function counter term (36) and vev the counter
term (48) in addition to the top counter terms (55), (56) and (60) in the
expression (50), the β-function of the top Yukawa coupling is

βSMyt =
1

16π2

(
9

2
y3
t − 8g2

3yt −
9

4
g2

3yt −
17

12
g2

1yt

)
. (61)
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Here one can see that apart from top Yukawa itself, the β-function of top
Yukawa depends on the SM gauge couplings g1, g2 and g3. The fact that βyt
does not depend on the Higgs self-coupling is not obvious, since the correction
to the top Yukawa vertex with an additional Higgs between the top quarks
and Higgs is proportional to λ. However, this diagram is finite. Hence in the
MS-scheme λ does not affect running of the top Yukawa coupling.

With the top Yukawa β-function I conclude this section. I have now
derived at one-loop level the β-functions for the SM gauge couplings, Higgs
self-interaction and top Yukawa assuming that no other particles are included
in the SM. In [5] these SM results were corrected by taking into account
gravitation as an asymptotically safe theory. In the next section asymptotic
safety and corrections to the SM β-functions are considered.
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4 Asymptotic safety
So far I have considered pure SM, which is known to be a renormalisable
and consistent theory. The problem occurs when one would like to describe
gravity with a quantum theory. Quantising the gravity is not a problem as
such, but the fact that quantum gravity one obtains is not a renormalisable
theory. In Einstein’s theory of gravity the coupling constant is Newton’s
gravitational constant GN which has a mass dimension −2, that is [GN] =
M−2. For such a theory every Green’s function is divergent at sufficiently
high order, and an infinite number of redefinitions are needed to cancel those
divergences. [6, 8]

Despite all the effort that has been put into the subject, no solution for
non-renormalisability of quantum gravity has been found yet. Several frame-
works have been suggested, such as loop quantum gravity or supergravity,
but none of them has yet solved the problem [8,9]. A slightly different type of
solution involves a notion called asymptotic safety (AS), proposed by Steven
Weinberg in late 70’s [10].

4.1 What it is to be asympotically safe?

According to Weinberg [10]: "A theory is said to be asymptotically safe if
the ’essential’ coupling parameters approach a fixed point as the momentum
scale of their renormalisation point goes to infinity." What does this mean?

Consider a QFT with some set of coupling constants that determine the
theory. Define the essential coupling constants to be those which cannot be
eliminated by rescaling of the fields4. The set of essential couplings is denoted
by {gi(µ)}. Despite that gi are called constants, they may depend on the
energy scale µ and evolve when the scale changes. Similarly as it was done
in the beginning of Section 3.1, one denotes by αi the mass dimension of the
coupling. One can form a set of dimensionless couplings {ḡi(µ)} such that
gi = µαi ḡi(µ) and use the set {ḡi(µ)} to span a space called theory space.

In Section 2 the β-function of a coupling ḡi was defined to be

βi(ḡ(µ)) = µ
∂

∂µ
ḡi(µ) .

Notice that βi does depend explicitly only on couplings ḡi. The scale depen-
dence is implicit via couplings. This is justified by fact that β cannot have
an explicit scale dependence since β is a dimensionless quantity and the only
dimensional parameter is the scale µ [10]. With a given set of initial con-
ditions the functions βi determine an unique trajectory in the theory space.

4For example, the field renormalisation constant Zφ is not an essential constant.
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Since a QFT is fully determined by the evolution of its coupling constants,
each trajectory in the theory space, and thus each set of initial conditions
and βi’s, corresponds to one theory.

Assume that there is a point g∗ in the theory space for which gi(µ)→ gi∗
when µ→∞ and

βi(g∗) = 0 ∀i .

The point g∗ is said to be a ultraviolet (UV) fixed point of theory. If g∗ = 0,
the point is called Gaussian, otherwise non-Gaussian, or interacting, fixed
point [6, 10–12].

Recall that a set of initial conditions of β-functions determined one trajec-
tory in the theory space. The set of all trajectories which hit the fixed point
g∗ form the UV critical surface. A theory is said to be asymptotically safe if
its coupling constants lie on a finite dimensional UV critical surface of some
fixed point [10–12]. The finiteness of the dimension of the UV critical surface
is crucial since the dimension defines the number of undetermined parame-
ters. If the dimension is finite, there is only a finite number of parameters to
be fixed, which corresponds to a generalised condition of renormalisability.

What is special about AS theories is that even though they are not renor-
malisable they have a well defined UV limit. A special case of AS theories
are all theories which lie on a critical surface of a fixed point g∗ = 0. These
are eventually renormalisable and asymptotically free. There are cases too,
where an AS theory is renormalisable even if g∗ 6= 0 [10].

4.2 Quantum theory of gravity and asymptotic safety

The next question is whether the quantum gravity is asymptotically safe.
It has been proven that in a 2-dimensional spacetime the quantum gravity
indeed is an AS theory. Let us see how this happens. In two dimensional
spacetime the theory of pure gravity with Lagrangian − 1

16πGN

√
gR has a

dimensionless coupling constant GN. In 2+ ε dimensions the mass dimension
of GN is [GN] = M−ε. At the limit ε→ 0 the Laurent expansion of the bare
coupling is [10]

GN,0µ
ε = GN(µ) +

∞∑
ν=1

ε−νbν(GN(µ)) ,

where bν are coefficients of the poles of order ν at two dimensions. This leads
to a β-function [10]

βGN = εGN + b1(GN)−GNb
′

1(GN) . (62)

32



Expanding b1 in GN yields

b1(GN) = bG2
N +O(G3

N) ,

and substituting this back to (62) gives

βGN = εGN − bG2
N +O(G3

N) .

Thus one can see that if the coefficient b is positive, there is a fixed point
at G∗N = ε/b + O(ε2). The precise values of b depends of the number of
fermion, gauge and scalar fields in different models. Examples of b computed
for various models are found in [10]. The conclusion is that gravitation in
two-dimensional spacetime may indeed be considered as an asymptotically
safe theory.

Continuation of the previous result to four dimensions has turned out to
be not so easy. Hard work with functional renormalisation group methods
has given some evidence of existence of a non-Gaussian fixed point in four
dimensions, but there is no actual proof that quantum gravity in four dimen-
sions is an AS theory [13–18]. Furthermore, there is research done about AS
with different models and those models coupled to gravity [19–21].

4.3 Gravitational contribution to beta-functions

In this section I discuss gravitational corrections to the SM β-function for
each SM coupling. Deriving these results would be beyond the scope of this
thesis. A lot of new methods would be needed to do that, so I just collect
the results published elsewhere. In [5] a general form of the gravitational
correction to the SM coupling gj is given to be

βgravgj
=
aj
8π

µ2

M2
P(µ)

gj , (63)

where aj is a constant which depends on which coupling one is considering
and µ is the energy scale. In the denominator M2

P(µ) is a scale dependent
Planck mass defined as M2

P(µ) = M2
P + ξµ2, where ξ ≈ 0.024 is a constant.

According to [22] the gravitational correction at one-loop level for a gen-
eral Yang-Mills theory minimally coupled to gravity is negative and ag ≈ −1.
This result has been criticised because of its possible gauge dependence
[23,24]. However, work done in [25,26] supports the results in [22].

In [5] the gravitational correction for the Higgs self-coupling is positive
and aλ ≈ 3 based on [27–29] and for top Yukawa ayt ≈ −0.5 based on [30].
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5 The running of the SM couplings
I start this section by collecting the β-functions of the five SM couplings.
The SM parts are derived in Section 3 and gravitational corrections are from
the previous section.

βg1 =
41

96π2
g3

1 −
1

8π

µ2

M2
P (µ)

g1

βg2 = − 19

96π2
g3

2 −
1

8π

µ2

M2
P (µ)

g2

βg3 = − 7

16π2
g3

3 −
1

8π

µ2

M2
P (µ)

g3

βyt =
1

16π2

(
9

2
y3
t − 8ytg

2
3 −

9

4
ytg

2
2 −

17

12
ytg

2
1

)
− 1

16π

µ2

M2
P (µ)

yt

βλ =
1

16π2

(
24λ2 − 6y4

t +
3

8

(
2g4

2 +
(
g2

2 + g2
1

)2
)

+ 12λy2
t

− 3λ
(
3g2

2 + g2
1

) )
+

3

8π

µ2

M2
P (µ)

λ

For a cross-check of the SM parts, see for example [4, 5, 31–33]. The task
of this section is to solve the set of differential equations represented by the
β-functions. The idea is to solve the β-functions for a range of initial values
of λ using the measured values as initial conditions for all other couplings.

It is worth mentioning that since the SM calculations are done in the MS-
scheme, I have to have my initial conditions in that scheme too. Furthermore,
the initial value for λ that is obtained as a result is in the MS-scheme at a
certain scale. Certainly it is important to specify the scale since, this is
the whole point of β-functions, the value of the coupling in the MS-scheme
depends on the energy scale.

5.1 Initial conditions

To solve differential equations numerically I need to give initial values for
the four SM couplings g1, g2, g3 and yt. Note that since their β-functions
were calculated at one-loop level, also the initial values of couplings have
to be one-loop results. The numerical values of the two electroweak gauge
couplings and top Yukawa coupling in the MS-scheme calculated at one-loop
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at the top quark pole mass m̂t = 173.34GeV are [34]
g1(m̂t) = 0.35940

g2(m̂t) = 0.64754

yt(m̂t) = 0.95113 .

(64)

The third gauge coupling g3 can be expressed in terms of the strong fine
structure constant αS:

αS ≡
g2

3

4π
⇒ g3 =

√
4παS . (65)

The strong fine structure constant in the MS-scheme at the Z-boson mass
scale at one-loop level is [36]

αS(m̂Z) = 0.1172 , (66)

where m̂Z = 91.1876GeV. This yields a value

g3 = 1.2136 (67)

for the strong coupling constant. However, this is not the desired initial
condition yet since the scale at which it is defined is different to the top
pole mass scale at which the other three couplings were given. The strong
coupling constant can be defined at the top pole mass by running it from the
mZ-scale using its β-function. At small scales, much less than the Planck
scale, the gravitational corrections can be neglected, and thus the β-function
of g3 can be solved analytically at one-loop level. The solution is

g3(µ) =

 g2
3(m̂Z)

1 + 7
16π2 g2

3(m̂Z) log
(
µ2

m̂2
Z

)
1/2

.

Substituting here µ = m̂t = 173.34GeV, the strong coupling is

g3(m̂t) = 1.1888 . (68)

I will use this value with (64) as the initial conditions for the β-functions.

5.2 Solution for β-functions

Above I derived the initial values at the top quark pole mass scale for the
three SM gauge couplings and the top Yukawa coupling at one-loop level.
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Figure 14: The running of the SM gauge and top Yukawa couplings with
ξ = 0.024.

With these initial conditions the running of the gauge and top Yukawa cou-
plings can be solved.

I start by solving the running of the gauge coupling constants, since the
β-function of each gauge coupling depends only on the coupling itself and
thus it can be solved independently of the other couplings at one-loop level.
After that, running of the top Yukawa coupling can be calculated, since its β-
function depends on the gauge couplings but not on the Higgs self-coupling.
Solutions of these β-functions are shown in Figure 14. Very similar results
were found in [22]. The drop at log(µ) ≈ 45, i.e. at the Planck mass scale,
is due to gravitational corrections. From Equation (63) one can see that
gravitational corrections are negligible until µ ≈ MP because of the large
denominator M2

P + ξµ2. At the Planck mass scale gravitational corrections
became significant and being negative corrections they force the running
towards zero. This happens also for the hypercharge coupling g1 which in
the SM blows up at very large scales. As a conclusion, the gauge and top
Yukawa couplings are asymptotically free and the three gauge couplings are
unified at the Planck scale if gravitation is taken in as an asymptotically safe
theory.

Solution for the Higgs self-coupling is still missing however. For λ I do
not have an initial condition from measurements but the aim is to find it nu-
merically from the condition that it stays finite to arbitrarily high scales. To
this end I solve the differential equation group for λ ∈ {0, 0.05, 0.1, . . . , 1.2}
and find the correct λ by iterating.

From Figure 15a one can see that running of the Higgs self-coupling λ
is very unstable as the initial value changes, and that for the set of chosen
initial values the running either drops below zero or blows up at high scales.
However, iterating the initial value between 0.15 and 0.20, between the last
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Figure 15: The running of the Higgs self-coupling with ξ = 0.024. In (a) the
initial values of the Higgs self-coupling are λ ∈ {0, 0.05, 0.1, . . . , 1.2} and in
(b) λ ≈ 0.1538.

line that has negative values (purple line) and the first that blows up (green
line), for a single initial value λ ≈ 0.1538 the Higgs self-coupling remains
finite and positive up to Planck scale, see Figure 15b. This behaviour shows
that the Higgs self-coupling has an unstable UV fixed point. The conclusion
is that the Higgs self-coupling in the MS-scheme calculated at one-loop level
at the top pole mass is λ ≈ 0.1538.

5.2.1 Changing constant ξ

In [5] the constant ξ is chosen to be ξ ≈ 0.024 based on the results in
[28,29,35]. It is interesting to see how strongly this choice affects the running
of the SM couplings. To see this, I solve the running of the couplings for three
other values of ξ in addition to the value ξ = 0.024: cases ξ = 0.5,1 and 5.
What happens when one increases ξ is that the ratio µ2/M2

P(µ) is getting smaller
at all scales. Thus increasing ξ means switching the gravitational corrections
on only at larger scales. This can be seen in Equation (63).

In Figures 16, 17 and 18 there are shown the running of the Higgs self-
coupling λ with ξ = 0.5,1,5. One can see that bigger values of ξ smooth the
behaviour of λ at large scales for initial values around 0.155. Since running
is smoother for bigger ξ, there actually is a range of acceptable initial values,
not just a single point as for ξ = 0.024. This means that the method I have
used to predict the Higg self-coupling is more inaccurate for bigger values of
ξ since the prediction for λ is not just a single point but a range of initial
values. Furthermore, the coupling λ is not asymptotically free for all of those
initial values. However, the first initial value for which λ remains positive
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Figure 16: The running of the Higgs self-coupling with ξ = 0.5.
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Figure 17: The running of the Higgs self-coupling with ξ = 1.

at all scales up to the Planck mass is roughly the same as in the case of
ξ = 0.024.

In Figure 19 there are running of the three gauge couplings and top
Yukawa coupling with ξ = 0.5,1,5. One can see that for ξ = 0.5,1 the
gravitational corrections are still able to little affect the running of the gauge
and top Yukawa couplings. However, none of them is asymptotically free
already at the Planck scale as in the case of ξ = 0.024. For values ξ = 0.5,1
the trend of the running of the U(1) hyperchage coupling turns decreasing
from increasing at the Planck scale, so also g1 remains finite at all scales.
For the value ξ = 5 the gravitational corrections barely affect the running of
the gauge or top Yukawa couplings. Gravitational corrections cannot change
the behaviour of the running of g1 but it eventually blows up at very large
scales.
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Figure 18: The running of the Higgs self-coupling with ξ = 5.
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(a) ξ = 0.5
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(b) ξ = 1
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(c) ξ = 5

Figure 19: The running of the gauge and top Yukawa couplings with ξ =
0.5, 1,5.
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6 Higgs mass
In the previous section numerical solutions of β-functions gave to Higgs self-
coupling the value λ ≈ 0.1538 at the top pole mass scale. The next thing is
to calculate the Higgs mass corresponding to that value. If one used blindly
the tree-level relation between mass and coupling, mh =

√
2λv2, it would

give mh ≈ 136GeV. This is clearly much bigger than the physical mass
mh ≈ 125GeV.

The reason is that I chose to use the MS renormalisation scheme to define
the coupling. Thus λ ≈ 0.1538 is the value given in that scheme at the top
pole mass scale. That is why I got too big a mass using just tree-level relation
for mass and coupling. The goal in this section is to find the approximative
one-loop relation between the physical Higgs self-coupling and the one in the
MS-scheme.

6.1 Relation between self-coupling in MS- and physical
schemes

Here I first go through the idea of relating the self-coupling in a physical
scheme to the one defined in the MS-scheme. The argument is based on the
fact that the difference between the coupling in two renormalisation schemes
is always equal to the difference between the counter terms of that coupling
in those schemes. This fact is quite easy to derive using the definition of the
renormalised coupling in terms of the bare coupling. Thus the hard thing
is not to relate the MS-coupling to a physical coupling but to find out the
counter term in the physical scheme. The counter terms in MS I derived
already in Section 3.6.

I start with the Higgs potential renormalisation which I can use to get
the Higgs self-coupling and the mass counter terms at p2 = 0. Going through
mass renormalisation in the physical scheme I can obtain the self-coupling
λ at p2 = 0 as a function of physical mass. Since the physical mass and
physical coupling are easily related, I actually have λ in p2 = 0 -scheme as a
function of physical coupling. Here a problem arises however. The relation
includes the Higgs vev defined as the minimum of Higgs potential in the
renormalisation scheme I have used. How is this vev related to the physical
vev v̂ = 246GeV? It turns out that the Higgs vev has to be corrected at one-
loop level as well as masses and couplings. The relevant one-loop corrections
of the vev can be derived from muon decay. Given an equation for λ in the
p2 = 0 -scheme and another for the one-loop corrected Higgs vev, and yet
another for the physical self-coupling, I can easily get the difference between
the physical and p2 = 0 couplings from the difference between the counter
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terms in those schemes.
Define the physical self-coupling λ̂ such that

m̂2
h ≡ 2λ̂v̂2 , (69)

where m̂h is the physical pole mass and the physical Higgs vev is defined by

ĜF√
2
≡ 1

2v̂2
, (70)

were ĜF is the Fermi constant. In Section 5 I obtained the Higgs self-coupling
in the MS-scheme. The task is now to relate that result to the physical
coupling λ̂ and thus by (69) get a relation between physical mass and λMS.

The relation between the bare and the renormalised couplings, in an ar-
bitrary scheme R, is given by

λ0 ≡ λR + δλR . (71)

This relation I can use as a link between couplings in different renormalisation
schemes. The physical coupling is related to the one in MS by

λMS + δλMS = λ0 = λ̂+ δλ̂

⇒ λ̂ = λMS + δλMS − δλ̂ . (72)

The previous equation shows that in switching from one renormalisation
scheme to another, the difference between couplings arises from the difference
in their counter terms. The counter term in MS may be calculated from
Equation (71) and using Equations (36) and (44). In Section 2.2 I defined

λ0Z
2
φ = λMS + δMS

λ

⇒ λ0 ≈ λMS + δMS
λ − 2λMSδ

MS
φ

so Equation (71) yields at one-loop level

δλMS ≈ δMS
λ − 2λMSδ

MS
φ . (73)

The problem is to find out what is δλ̂, which is a nontrivial task. It requires
determining the Higgs wave function and self-coupling counter terms in the
p2 = 0 renormalisation scheme and the one-loop renormalisation of the muon
decay. I start with the derivation of the p2 = 0 counter terms.
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Higgs potential renormalisation The Higgs potential, written with the
bare field and coupling, is

V (Φ0) = µ2
0Φ†0Φ0 + λ0(Φ†0Φ0)2 .

Renormalising the field by writing Φ0 = Z
1/2
Φ Φ and redefining couplings

µ2
0ZΦ = µ2 + δµ2 and λ0Z

2
Φ = λ+ δλ yields

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2 + δµ2Φ†Φ + λδλ(Φ
†Φ)2 .

The last two terms form the counter term part of the potential. Expanding
the field around a minimum v, one defines the field Φ as

Φ =

(
χ+

1√
2
(v + φ+ iχ0)

)
,

where χ+ and χ0 are charged and neutral Goldstone bosons and φ is the
Higgs boson. The potential for the Higgs field φ now becomes

V = (µ2v + λv3 + δµ2v + δλv
3)φ+

1

2
(µ2 + 3λv2 + δµ2 + 3δλv

3)φ2

+ (λv + δλv)φ3 +
1

4
(λ+ δλ)φ

4 + . . . ,

where I have ignored all terms not proportional to the Higgs field φ.
I chose to renormalise the theory with the following renormalisation con-

ditions:

dV

dφ

∣∣∣∣
Φ=(0

v)
= 0 and

d2V

dφ2

∣∣∣∣
Φ=(0

v)
= m2

h,p2=0 . (74)

The first of these renormalisation conditions sets v to be the minimum of
the potential and the second defines the Higgs mass at that minimum. The
physical significance of the first of the renormalisation conditions (74) is
to keep the vev at place and kill the tadpole of the Higgs field. The first
derivative of the potential is the one-point function at p2 = 0 [6, 8]:

dV

dφ

∣∣∣∣
Φ=(0

v)
= −Γ1(p2 = 0) = i + i

= v(µ2 + λv2 + δµ2 + δλv
2 +D) ,

where I have denoted the sum of all one-loop Higgs tadpole diagrams at
p2 = 0 by −ivD. Using the first of renormalisation conditions (74)

µ2 + λv2 + δµ2 + δλv
2 +D = 0 . (75)
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The counter term δµ2 is now fixed in terms ofD and δλ. The second derivative
of the potential is related to the two-point function such that

d2V

dφ2

∣∣∣∣
Φ=(0

v)
= −Γ2(p2 = 0) = i + i

= µ2 + 3λv2 + δµ2 + 3δλv
2 + Πφ,1-loop(0) .

Inserting the counter term δµ2 from Equation (75) one finds

d2V

dφ2

∣∣∣∣
Φ=(0

v)
= 2λv2 + 2δλv

2 −D + Πφ,1-loop(0)

= m2
h,p2=0 , (76)

where I used the second renormalisation condition in (74). I have not yet
fixed the coupling constant counter term δλ. It can be chosen such that in the
previous equation the counter term cancels the one- and two-point functions,
that is

2δλv
2 −D + Πφ,1-loop(0) = 0

⇒ δλ =
D − Πφ,1-loop(0)

2v2
. (77)

Using this definition, Equation (76) now gives the familiar relation between
Higgs mass and self-coupling

m2
h,p2=0 = 2λv2 . (78)

In the potential V the terms proportional to φ2 form the mass and mass
counter terms of Higgs. Thus the Higgs mass counter term at p2 = 0 is

δm2
h,p2=0 = δµ2 + 3δλ

= −D − δλv2 − λv2 − µ2 + 3δλv
2

= −D + 2δλv
2 = −Πφ,1-loop(0) , (79)

where I used the two counter terms δµ and δλ from Equations (75) and (77)
and the fact that −µ2 ≡ 2λv2 .

In Equation (77) I have written a wave function counter term, but this is
not yet the physical counter term I need. The mass I have defined in (78) is
not physical either, but it can be related to the physical mass quite easily.
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Relation to physical mass The full inverse propagator for Higgs calcu-
lated at p2 = 0 is [8]

i∆−1(p2) = p2 − 2λv2 − Πφ,1-loop(p2) + p2δp
2=0
φ − δm2

h,p2=0 , (80)

where Πφ,1-loop is the sum of the Higgs two-point diagrams at one-loop level.
Expanding the two-point function Πφ,1-loop around p2 = 0 gives

Πφ,1-loop(p2) = Πφ,1-loop(0) + Π
′

φ,1-loop(0)p2 + Π̃φ,1-loop(p2) ,

where the function Π̃φ,1-loop(p2) and its derivative vanish at p2 = 0 5. Inserting
this result into Equation (80), the inverse propagator becomes

i∆−1(p2) = p2 − 2λv2 − Πφ,1-loop(0)− Π
′

φ,1-loop(0)p2 + p2δp
2=0
φ

− δm2
h,p2=0 + Π̃φ,1-loop(p2) .

Defining the counter terms such that all divergences are cancelled leads to
conditions

δm2
h,p2=0 = −Πφ,1-loop(0) (81)

and

δp
2=0
φ = Π

′

φ,1-loop(0) . (82)

I am then left with the inverse propagator

i∆−1(p2) = p2 − 2λv2 + Π̃φ,1-loop(p2)

which sets the p2 = 0 mass to bemh,p2=0 = 2λv2. These results are consistent
with my renormalisation conditions (74) and (75). Indeed, see Equations (78)
and (79), which were derived using renormalisation conditions (74). The only
new information here was that the wave function counter term at p2 = 0 is
the derivative of the two-point function.

Physical mass is defined to be the mass at which the inverse propagator
has a pole6. Thus at the physical pole at p2 = m̂2

h the inverse propagator is

i∆−1(p2) = p2 − 2λv2 − Πφ,1-loop(m̂2
h)− Π

′

φ,1-loop(m̂2
h)(p

2 − m̂2
h)

+ (p2 − m̂2
h)δ

p2=0
φ + m̂2

hδ̂φ − δm2
h,p2=0 + Π̃φ,1-loop(p2) , (83)

5In practise, Π̃φ,1-loop is higher order terms of Taylor expansion for Πφ,1-loop.
6and that’s why it is also called pole mass
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where I have expanded Πφ,1-loop around p2 = m̂2
h so function Π̃φ,1-loop satisfies

Π̃φ,1-looop(m̂2
h) = Π̃

′

φ,1-looop(m̂2
h) = 0. Notice here that mass counter term

is the one calculated at p2 = 0 because it is fixed by the renormalisation
conditions. On the other hand the inverse propagator is

i∆−1(p2) ≡ p2 − m̂2
h + Π̃φ,1-loop(p2)

which yields a wave function counter term

δ̂φ = Π
′

φ,1-loop(m̂2
h) (84)

and physical mass

m̂2
h = 2λp2=0v

2 + Πφ,1-loop(m̂2
h)− m̂2

hδ̂φ + δm2
h,p2=0 .

Substituting here counter terms from Equations (81) and (84)

2λp2=0v
2 = m̂2

h −
(

Πφ,1-loop(m̂2
h)− Πφ,1-loop(0)− m̂2

hΠ
′

φ,1-loop(m̂2
h)
)

≡ m̂2
h(1− δm̂h) , (85)

where

δm̂h =
Πφ,1-loop(m̂2

h)− Πφ,1-loop(0)− m̂2
hΠ
′

φ,1-loop(m̂2
h)

m̂2
h

. (86)

Now I have derived a relation between the self-coupling at p2 = 0 and physical
mass. But the question remains what is v in Equation (85)? The renormali-
sation conditions were chosen such that v is always the minimum of the Higgs
potential. How is it related to number 246GeV get from Equation (70)? At
tree-level they are the same, but at one-loop there is a correction. That
correction can be calculated renormalising muon decay at one-loop level.

Muon decay At tree level muon decays via a W -boson to an electron,
electron antineutrino and muon neutrino, see Figure 20. Effectively this
process is described by the Fermi four-point interaction Lagrangian

Γµ−→e−ν̄eνµ =
GF√

2

(
ūeγ

α(1− γ5)vν̄e
) (
ūνµγα(1− γ5)uµ

)
, (87)

where the measured effective coupling for the muon decay, Fermi constant,
is ĜF ≈ 1.1663787 · 10−5 GeV−2 [36]. A tree level calculation from the SM
gives

Γtree
µ−→e−ν̄eνµ =

g2
2

8m2
W

(
ūeγ

α(1− γ5)vν̄e
) (
ūνµγα(1− γ5)uµ

)
. (88)
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µ−

νµ

W− e−

ν̄e

Figure 20: Muon decay at tree level.

Figure 21: W propagator corrections at one loop to muon decay.

Comparing Equations (87) and (88) and using mW = gv
2
, one has a relation

ĜF√
2

=
1

2v2
(89)

which yields a familiar value for the Higgs vev v ≈ 246GeV. This holds
at tree level. Now I need to redo the calculation at one-loop level. Several
different classes of diagrams contribute to muon decay.

First, there are those diagrams with a loop in the W -propagator, called
oblique corrections to muon decay, see Figure 21. This diagram gives [37]

Γoblique
µ−→e−ν̄eνµ =

g2
2

8m2
W

(
ūeγ

α(1− γ5)vν̄e
) (

iΠW (p2)
−i

p2 −m2
W

)∣∣∣∣
p2=0

×
(
ūνµγα(1− γ5)uµ

)
≈ − 1

2v2

ΠW (0)

m2
W

(
ūeγ

α(1− γ5)vν̄e
) (
ūνµγα(1− γ5)uµ

)
.

Note here that I calculated the W self-energy ΠW at p2 = 0. This is not an
exact result, since in the muon rest frame the muon momentum squared is
m2
µ. However, since the muon mass is much smaller than the W mass, I may

approximate m2
µ ≈ 0 and thus take p2 = 0. Since ΠW (0) = ΠW,1-loop(0) +
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δm2
W , the full oblique correction is

Γoblique
µ−→e−ν̄eνµ = − 1

2v2

ΠW,1-loop(0) + δm2
W

m2
W

(
ūeγ

α(1− γ5)vν̄e
)

×
(
ūνµγα(1− γ5)uµ

)
. (90)

Here ΠW,1-loop(0) is the sum of the one-loop corrections to the gµν-part of
the W propagator calculated at p2 = 0. The mass counter term δm2

W can be
determined as follows. The W mass term in the bare Lagrangian is

g2
2,0v

2
0

4
W 2

0 .

Renormalising the W field and Higgs vev it becomes(
g2,0

g2

)2

ZφZW
g2

2v
2

4
W 2 ≡ (m2

W + δm2
W )W 2 . (91)

I can determine the ratio of the bare and renormalised couplings using some
interaction term includingW . The idea is to use a term for which the counter
terms are easy to calculate. From the three-vertex between leptons and W
one finds

g2,0l0νl,0W0 → g2,0(ZlZνlZW )
1/2lνlW ≡ g2Zg2lνlW

⇒ g2,0

g2

= Zg2(ZlZνlZW )−
1/2 .

Now remember that the measured value for g2, that I use, is given in the
MS-scheme. Therefore, I have to renormalise the vertex between a W and
leptons in that scheme too. Thus I find

g2,0

g2

= ZMS
g2

(ZMS
l ZMS

νl
ZMS
W )−

1/2 .

Substituting this to the left hand side of (91) yields

(m2
W + δm2

W ) =
g2

2v
2

4
(ZMS

g2
)2(ZMS

l ZMS
νl
ZMS
W )−1ẐφZ

MS
W

≈ m2
W (1 + 2δMS

g2
− δMS

l − δMS
νl

+ δ̂φ)

so the W mass counter term is fixed to

δm2
W = m2

W (2δMS
g2
− δMS

l − δMS
νl

+ δ̂φ) . (92)
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(a) Box with Z between neutri-
nos.

(b) Box with Z or γ between
muon and electron.

(c) Box with Z between muon
and electron neutrino.

(d) Box with Z between muon
neutrino and electron.

Figure 22: Muon decay box diagrams at one-loop.

Note here that theW wave function counter term cancelled in the expression
(92). Also note that the Higgs wave function counter term is calculated in
the physical scheme. With this mass counter term the oblique correction to
the muon decay is fully determined.

Another class of one-loop corrections contributing to the muon decay
are so-called box diagrams, in which there is an additional boson between
fermions, see Figure 22. I denote them by Γbox

µ . Although this is much less
evident than in the case of oblique corrections, it turns out that also box
diagrams reduce to the form of the tree-level Lagrangian with only some
additional factors in front.

The last class of muon decay diagrams at one-loop level are vertex cor-
rections for the interaction between fermions and W shown in Figure 23.
Similarly to the oblique corrections and the box diagrams, these diagrams
are also proportional to tree-level amplitude with just an additional multi-
plicative factor from the three-point function:

Γvertex
µ−→e−ν̄eνµ =

g2
2

8m2
w

(
ūeΓe(0)γα(1− γ5)vν̄e

) (
ūνµγα(1− γ5)uµ

)
+

g2
2

8m2
w

(
ūeγ

α(1− γ5)vν̄e
) (
ūνµΓµ(0)γα(1− γ5)uµ

)
,
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(a) Muon vertex correction. (b) Electron vertex correction.

Figure 23: Vertex corrections to muon decay.

where Γl(0) is a three-point function between the W and lepton and its
neutrino. Furthermore in the MS scheme Γl(0) = Γl,1-loop(0) + δMS

g2
, so the

sum of vertex corrections is

Γvertex
µ−→e−ν̄eνµ =

1

2v2

(
Γe,1-loop(0) + Γµ,1-loop(0) + 2δMS

g2

) (
ūeγ

α(1− γ5)vν̄e
)

×
(
ūνµγα(1− γ5)uµ

)
. (93)

All in all, comparing Equation (87) to (90), (93) and using Equation (92)
for the W mass counter term, the relation between Fermi constant ĜF and
Higgs vev at one-loop level becomes

ĜF√
2

=
1

2v2

(
1− ΠW,1-loop(0)

m2
W

− 2δMS
g2

+ δMS
l + δMS

νl
− δ̂φ

+ Γbox
µ + Γe,1-loop(0) + Γµ,1-loop(0) + 2δMS

g2

)
≡ 1

2v2
(1 + δv) , (94)

where

δv = −ΠW,1-loop(0)

m2
W

+ δMS
l + δMS

νl
− δ̂φ + Γbox

µ + Γe,1-loop(0) + Γµ,1-loop(0) .

(95)

Equation (94) implies that in one-loop level calculations the Higgs vev v has
to be corrected with respect to the tree-level expression.

Final result The reason to renormalise the muon decay was to find out
how the Higgs vev v changes at one-loop. Solving v from Equation (94) and
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inserting it in Equation (85) now leads to

λp2=0

√
2

ĜF
(1 + δv) = m̂2

h(1− δm̂h)

⇒ λp2=0 =
ĜF√

2
m̂2
h(1− δm̂h − δv) .

This equation is the one I wanted, namely the equation between Higgs self-
coupling defined at p2 = 0 and the physical scheme. Indeed, using definitions
of the physical Fermi constant (69) and physical mass (70), the previous
equation becomes

λp2=0 = λ̂(1− δm̂h − δv) . (96)

On the other hand, using equation (71), the difference between λ in these
two renormalisation schemes is λp2=0 = λ̂ + δλ̂− δλp2=0. Comparing this to
Equation (96) one gets

δλ̂ = δλp2=0 − λ̂(δm̂h + δv) . (97)

This counter term finally is the one I need to derive a relation between the
physical Higgs self-coupling and the numerical value in the MS-scheme.

Inserting counter term of physical coupling (97) in Equation (72)

λ̂ = λMS + δλMS − δλp2=0 + λ̂(δm̂h + δv)

= λMS + δMS
λ − 2λMSδ

MS
φ − δp

2=0
λ + 2λp2=0δ

p2=0
φ + λ̂(δm̂h + δv) .

On the right hand side I am allowed to replace λp2=0 and λ̂ with λMS since
they are multiplying counter terms, already the first order corrections. Thus

λ̂ = λMS + δMS
λ − δp

2=0
λ + λMS

(
2δp

2=0
φ − 2δMS

φ + δm̂h + δv

)
. (98)

Substituting here counter terms (77), (82), (86) and (95) with (84), the
physical self-coupling as a function of self-coupling in the MS-scheme becomes

λ̂ = λMS + δMS
λ −

D − Πφ,1-loop(0)

2v2
+ λMS

(
2Π

′

φ,1-loop(0)− 2δMS
φ

+
Πφ,1-loop(m2

h,MS)− Πφ,1-loop(0)−m2
h,MSΠ

′

φ,1-loop(m2
h,MS)

m2
h,MS

− ΠW,1-loop(0)

m2
W

+ δMS
l + δMS

νl
− Π

′

φ,1-loop(m2
h,MS) + Γbox

µ + Γe,1-loop(0) + Γµ,1-loop(0)
)
.

(99)
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χ

c

Figure 24: Higgs tadpole at one-loop level. Corrections are by Higgs boson
itself, Goldstone bosons, fermions (top quark), Z- and W-bosons and ghosts.

On the right hand side of (99) I have replaced the physical mass m̂2
h with

the one in the MS-scheme. As I mentioned before, I am allowed to replace
these quantities with the MS ones in the first order corrections. Before I get
the numerical value for the physical self-coupling, or mass, some one-loop cal-
culations are still left to do to determine the Higgs tadpole and the two-point
function, the lepton and neutrino two-point functions, the muon decay box
diagrams and the W -electron-electron neutrino and W -muon-muon neutrino
three-point functions. This is done in the next section.

6.2 Some loop calculations once more

Higgs one- and two-point functions Calculate first a one-loop tadpole
of the Higgs boson. There are five different diagrams at one-loop level, shown
in Figure 24. Unlike with my calculations to obtain the β-functions, here also
the finite parts need to be evaluated. Due to that, it is much more reason-
able to write down the results using Passarino–Veltman integrals instead of
writing explicit integral expressions of diagrams. Recall that I denoted the
sum of tadpole diagrams with −ivD. The sum of diagrams in Figure 24 is
then found to be

− ivD = 3λvA0(mh) + λv(A0(mZ) + 2A0(mW ))− 3√
2
ytmtdA0(mt)

+
v

4
(g2

1 + g2
2)(dA0(mZ)− A0(mZ)) +

v

2
g2

2(dA0(mW )− A0(mW )) .
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χ

χ c

χ

Figure 25: Diagrams contributing to Higgs two-point function at one-loop
level.

In the previous equation d = 4 − ε is the dimension of spacetime in the
dimensional regularisation. The function A0 is defined in Appendix B. Using
the relation between the fermion mass and Yukawa coupling, mf =

yfv√
2
, I get

D = 3iλA0(mh) + iλ(A0(mZ) + 2A0(mW ))− 3i

2
y2
t dA0(mt)

+
i

4
(g2

1 + g2
2)(d− 1)A0(mZ) +

i

2
g2

2(d− 1)A0(mW ) . (100)

In Section 3.6.1 I calculated the two diagrams for the Higgs propagator
at one-loop level. There are many more diagrams that I need to calculate to
get the finite corrections. In fact, to get the full two-point function there are
nine diagrams at one loop level, shown in Figure 25. The combined result
from these diagrams to the Higgs self-energy is

Πh,1-loop(p2) = D + 9iλm2
hB0(p,m2

h,m
2
h)

+
1

2

(
2λm2

h + (g2
1 + g2

2)
(
(d− 1)m2

Z − p2
))

iB0(p,mZ ,mZ)

+
(
2λm2

h + g2
2

(
(d− 1)m2

W − p2
))

iB0(p,mW ,mW )

− 3

2
dy2

t

(
2m2

t −
1

2
p2

)
iB0(p,mt,mt) . (101)

For the wave function counter terms the derivative of the two-point function
was also needed including finite parts. I do not calculate it analytically, but
only numerically.

52



A,Z

W

t

b

h

W

χ−

A,Z h,χ0

χ− c−

cA,cZ

W ,Z,A h,χ0,χ
−

Figure 26: W two-point function at one-loop level. The outgoing boson is
always W -boson. To clarify which diagrams are possible, I have written all
labels explicitly.

W two-point function For the W two-point function there are 16 dia-
grams drawn in Figure 26. Since I have taken all fermions but top quark
massless, only top and bottom quarks contribute in the fermion loop. The
full W propagator at one loop level is

Πµν
W,1-loop(p) = (gµν − pµpν

p2
)ΠW,1-loop(p2) .

At p2 = 0 the terms proportional pµpν vanish. Thus the coefficient of gµν
directly gives the function ΠW,1-loop. The sum of one-loop diagrams shown in
Figure 26 yields

ΠW,1-loop(0) =

(
−6(d− 1)

d
+

2

d
sin2 θW + (d− 1) +

1

2

)
g2

2iA0(mW )

+

(
−1

d
+

2

d
cos2 θW + (d− 1) cos2 θW +

1

4

)
g2

2iA0(mZ)

−
(

1

d
− 1

4

)
g2

2iA0(mh)−
(

1

d
− 1

)
g2

2m
2
W iB0(0,mh,mW )

+

(
−6(d− 1)

d
− 1

d
+

2

d
cos2 θW

)
g2

2m
2
W iB0(0,mZ ,mW )

+ g2
1 sin2 θWm

2
W iB0(0,mZ ,mW ) + g2

2 sin2 θWm
2
W iB0(0,mW ,0)

− 3

2
(d− 2)m2

Wy
2
t iB0(0,mt,0) . (102)
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Lepton and neutrino two-point functions Start with a neutrino two-
point function. There are two diagrams, namely the W - and Z-boson loops.
Summing these diagrams the neutrino two-point function at one-loop level
gives

−iΣνl,1-loop(p2) = i/pPL

(
− i

g2
2

2

d− 2

2p2

(
A0(mW ) + (p2 −m2

W )B0(p,0,mW )
)

− i
g2

2

cos2 θW

d− 2

8p2

(
A0(mZ) + (p2 −m2

Z)B0(p,0,mZ)
))

.

(103)

The previous result is the full neutrino two-point function at one-loop level
containing both divergent and finite parts. To calculate the W mass counter
term, the neutrino and lepton wave function counter terms were needed in
the MS-scheme. Thus I am interested only in the finite parts of these counter
terms. Using the results shown in Appendix B, the divergent parts of A0 and
B0 in the MS-scheme are

div (A0(m)) =
2im2

16π2εMS

and
div (B0(p,m1,m2)) =

2i

16π2εMS

.

Using these results it is easy to extract the neutrino wave function counter
term in the MS-scheme from Equation (103):

δMS
νl

= −1

2
(3g2

2 + g2
1)

1

16π2εMS
. (104)

For lepton two-point function there is a photon loop in addition to theW -
and Z-boson loops. The W - and Z-boson diagrams I can calculate similarly
as for neutrino, ignoring lepton mass. In the photon diagram, since pho-
ton is massless, I have to keep the lepton mass non-zero7. The left-handed
component of the two-point function is

−iΣl,1-loop(p2) = i/pPL

(
− i

g2
2

2

d− 2

2p2

(
A0(mW ) + (p2 −m2

W )B0(p,0,mW )
)

− i
g2

2

cos2 θW

d− 2

8p2
(1− 2 sin2 θW )2

(
A0(mZ)

+ (p2 −m2
Z)B0(p,0,mZ)

)
− ig2

2 sin2 θW
d− 2

2p2

(
A0(ml) + (p2 −m2

l )
)
B0(p,0,ml)

)
7Another way to calculate this diagram is to give to photon small mass mp to regulate

the integral. However, the divergent part of this diagram would be the same.
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from which the wave function counter term in the MS-scheme is

δMS
l = −1

2
(3g2

2 + g2
1)

1

16π2εMS
. (105)

Thus the neutrino and lepton counter terms are the same in the MS-scheme,
as they should. Note also that these counter terms do not depend on which
lepton I am considering. This verifies that indeed in the MS-scheme the g2

counter terms in the muon decay are the same in the both ends of W -boson.

Muon decay box diagrams The task is to compute the muon decay box
diagrams shown in Figure 22. Due to four propagators in the loop, these
corrections are all finite. They are straightforward to calculate, when one
uses the fact (1d) for product of three gamma matrices and expression for
the C0-function in terms of the B0-functions given in Appendix B. However,
the box with a photon between muon and electron (diagram 22b in Figure
22) needs some extra discussion. In diagrams with an additional Z-boson the
large masses of Z and W ensure that neglecting muon momentum or muon
mass is a valid approximation. A box with an additional photon however,
is infrared sensitive at the limit where the muon mass is set to zero since
the photon is massless. I have shown however that one finds the leading log
result (in the log

(
mµ
mZ

)
) by setting the muon momentum to zero and keeping

the muon mass finite. The electron mass can be neglected as before. Thus
the sum of box diagrams is

Γbox
µ−→e−ν̄eνµ =

ig2
2

8m2
W

(
ūeγ

α(1− γ5)vν̄e
) (
ūνµγα(1− γ5)uµ

)
×
( g2

2

cos2θW

−1 + 4 sin2 θW
d(m2

W −m2
Z)

(
B0(0,0,mW )−B0(0,0,mZ)

)
+ g2 sin2 θW

4

m2
W −m2

µ

1

d

(
B0(0,0,mW )−B0(0,0,mµ)

))
.

In the previous equation the first line on the right hand side is the tree-level
result, so the box corrections are

Γbox
µ =

ig2
2

cos2θW

1

m2
W −m2

Z

−1 + 4 sin2 θW
d

(
B0(0,0,mW )−B0(0,0,mZ)

)
+ ig2 sin2 θW

4

m2
W −m2

µ

1

d

(
B0(0,0,mW )−B0(0,0,mµ)

)
. (106)
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Figure 27: One-loop corrections to three-point function between W , lepton
and its neutrino.

Three-point function between leptons and W The last set of one-loop
diagrams I need are the three-point function between W , muon and muon
neutrino and the same with electron and electron neutrino. These two I
can calculate considering W interacting just with a lepton and its neutrino.
There are two kinds of diagrams, see Figure 27. In the first diagram there
is an additional Z-boson between the lepton and neutrino. There is no such
a diagram with an additional W -boson because of charge conservation. In
the second diagram the external W decays to two gauge fields which then
interact with a charged lepton and neutrino. Those two gauge fields can be Z
andW orW and γ. The order ofW and Z matters, because Z interacts with
charged leptons differently with than neutrinos. Sum of these four diagrams
is

−iΓW,l,νl =
ig2

2√
2
γµPL

(
− ig2

2

cos2 θW

(d− 2)2

2d
(−1

2
+ sin2 θW )B0(0,0,mZ)

+ ig2
2

4(d− 1)

d
(−1 + sin2 θW )B0(0,mW ,mZ)

− ig2
2 sin2 θW

4(d− 1)

d
B0(0,0,mW )

)
.

Here one can see that the three-point functions do not depend on the lep-
ton type in the limit of massless leptons. Thus electron and muon vertex
corrections are the same and

Γe/µ,1-loop(0) = − ig2
2

cos2 θW

(d− 2)2

2d
(−1

2
+ sin2 θW )B0(0,0,mZ)

+ ig2
2

4(d− 1)

d
(−1 + sin2 θW )B0(0,mW ,mZ)

− ig2
2 sin2 θW

4(d− 1)

d
B0(0,0,mW ) . (107)

This was the last function that was needed in the Equation (99).
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6.3 Numerical results

Above I calculated the two- three- and four-point functions that were needed
in Equation (99). The last thing to do before I can calculate λ̂ is to check
that there are no divergences left on the right hand side of Equation (99).
The difference between a coupling in two different renormalisation schemes
is always finite. Hence, if there are divergences left in the Equation (99), or
in (98), something has gone wrong. First, comparing divergences of δλ in
p2 = 0 and MS schemes

div
(
δMS
λ −

D − Πφ,1-loop(0)

2v2

)
= − λMS

16π2εMS

(
3g2

2 + g2
1

)
.

Second, the divergences between the Higgs wave function counter terms are
cancelled. Indeed,

div
(

Π
′

φ,1-loop(0)− δMS
φ

)
= 0 .

Thus to make the right hand side of (99) or (98) finite, the mass cor-
rection δm̂ and vev correction δv together have to give a divergence propor-
tional to (3g2

2 + g2
1). The mass correction itself is finite however. Subtracting

Πφ,1-loop(0) from Πφ,1-loop(m2
h,MS) one is left with terms proportional to p2.

Divergence of those terms at p2 = m2
h,MS is just the same as the divergence of

Π
′

φ,1-loop(m2
h,MS) multiplied with m2

h,MS, and thus δm̂ is finite. This is consis-
tent with the fact that the difference between masses in two renormalisation
schemes cannot be divergent. Due to the finiteness of δm̂, the missing diver-
gence has to be given by δv. Indeed, recalling that box-corrections are finite
and W -lepton tree-vertices the same, the divergence of δv is

∆v ≡ div
(
−ΠW,1-loop(0)

m2
W

+ δMS
l + δMS

νl
− Π

′

φ,1-loop(m̂2
h) + 2Γl,1-loop(0)

)
.

After somewhat lengthy calculation one finds that

∆v = (3g2
2 + g2

1)
1

16π2εMS

,

which indeed proves that difference between λ̂ and λMS is finite. Hence, when
I solve Equation (99), I can deal with only finite parts of functions.

Numerical values of coupling constants in the MS-scheme were given in
Section 5. The values for masses are found by using tree-level relations and
those MS-values for couplings, and the Weinberg angle θW is defined via the
tree-level relation [6]

sin θW =
g1√
g2

1 + g2
2

.
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The scale is set to be µ = m̂t. Certainly (99) can not depend on scale since
equations with physical quantities are always scale independent and finite.
The scale has to be set to the top pole mass simply because the values of the
coupling constants were given at that scale. If the scale was changed, then
also the values of the coupling constants would change.

Inserting one-loop results from the previous section with numerical values
of couplings and masses in Equation (99), the physical values of the Higgs
self-coupling and mass are {

λ̂ ≈ 0.131

m̂h ≈ 126GeV .
(108)
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7 Discussion
In this thesis I have predicted the Higgs boson mass from the SM with gravi-
tation as an asymptotically safe theory. The prediction is found by requiring
that all couplings remain finite to very high energies using the running of
the five standard model couplings. I started with renormalisation of the
Yang-Mills Lagrangian, Higgs Lagrangian and top Yukawa interaction term
in Section 2. In Section 3 I derived one-loop β-functions needed for the dif-
ferential equations that give the running of couplings for the three gauge
couplings of the SM, top Yukawa coupling and Higgs self-coupling from the
SM. Corrections to the SM results given by asymptotically safe gravity were
discussed in Section 4. Numerical solution of the group of β-functions in Sec-
tion 5 gave the value λ ≈ 0.1538 for the Higgs self-coupling in the MS-scheme
at the top quark pole mass scale. In Section 6 that value was related to the
physical parameters. It turned out that to get the relation between the MS
and physical self-couplings requires among other things one-loop renormali-
sation of the muon decay. The one-loop level relation leads to the values{

λ̂ ≈ 0.131

m̂h ≈ 126GeV

for the physical Higgs self-coupling and mass.
The measured value for Higgs mass wasmh ≈ 125GeV which corresponds

to the self-coupling λ ≈ 0.13. Remembering the fact that calculations in this
thesis were done at first non-trivial order, this result is very good. This
result actually is approximately the same than given in [5], although their
calculations were done at two-loop level. This may be because in [5] the value
of the top pole mass is smaller than the one I used. Even small changes in the
top Yukawa coupling strongly affects the running of the Higgs self-coupling.
Furthermore, uncertainties in the value of strong fine structure constant cause
uncertainty to the Higgs self-coupling via top Yukawa since of the three
SM gauge couplings the strong coupling has the largest contribution to the
running of the top Yukawa coupling. For example for the top Yukawa and
Higgs self-coupling β-functions two-loop corrections are significant [33]. To
get a more accurate prediction, one thus should do calculations at two-loop
level. Two-loop results for the SM β-functions are well-known. At higher
orders there are only dozens of diagrams more to be calculate, but the idea
remains the same. Careful error analysis with relation to uncertainties in the
strong fine structure constant and top mass would also lead to more accurate
predictions. Obviously, uncertainties in the U(1) and SU(2) couplings as well
as neglecting almost all fermion masses cause some error to final results, but
their role is much less significant.
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When considering final results, also gravitational corrections are to be
discussed. First of all, the absence of the proof for asymptotic safety of grav-
ity in four dimensions is a thing to be taken into account. In four dimensions
there are only ’strong hints’ for an existence of A non-trivial fixed point.
The second thing is the form of gravitational corrections. As I mentioned in
Section 4.3 there has been discussion about a possible gauge dependence of
results I have used. These two issues would need more careful research.
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A Feynman rules
In this appendix I briefly go through the method I have used for deriving
Feynman rules. First I’ll describe the general idea and after that I derive one
rule step by step in the case of an SU(N) theory as an example. In the end
of this appendix there is a complete list of Feynman rules that are needed in
this thesis.

Assume that there is a term φ1φ
2
2, where φ1 and φ2 are some quantum

fields, in the Lagrangian. I would like to derive the Feynman rule for the
vertex between these two fields. The idea is to derive the T -matrix element
between an incoming state of one φ1 and two φ2 fields and an outgoing
vacuum state8. In practice, I replace the fields φ1 and φ2 with their field
operators and then calculate the matrix element of that operator between the
incoming state |φ1(p1)φ2(p2)φ2(p3)〉 with those fields and outgoing vacuum
state 〈Ω|. In my example the corresponding operator is

φ1φ
2
2 → φ̂1(x)φ̂2(x)φ̂2(x)

and the matrix element to be calculated is∫
d4x 〈Ω| φ̂1(x)φ̂2(x)φ̂2(x) |φ1(p1)φ2(p2)φ2(p3)〉 .

Extracting the factor (2π)4δ4(p1 + p2 + p3) for four-momentum conservation
and (if there is) spinors and polarization vectors for external legs, the rest is
the Feynman rule for φ1φ

2
2-vertex. When there are identical particles taking

part in the interaction, I divide the result with a symmetry factor of the
vertex to get a rule without them and to save myself from many difficulties
with higher order diagrams.

Field operators Just as a reminder, I list here the field operators for real
and complex scalar, gauge and fermion fields.

• Real scalar field:

φ̂(x) =

∫
d3k

(2π)3
√

2Ek

(
ake−ik·x + a†keik·x

)
8I could as well take one φ1 field to form the incoming and two φ2 fields to form the

outgoing state or all fields in the outgoing state. Just for simplicity I keep all fields in the
incoming state to get all momenta flowing in.
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• Complex scalar field:

φ̂(x) =

∫
d3k

(2π)3
√

2Ek

(
ake−ik·x + b†keik·x

)
φ̂∗(x) =

∫
d3k

(2π)3
√

2Ek

(
a†keik·x + bke−ik·x

)
• Gauge field:

Âaµ(x) =

∫
d3k

(2π)3
√

2Ek

(
aaµkε

a
µ(k)e−ik·x + aa †µkε

a ∗
µ (k)eik·x

)
• Fermion field:

ψ̂i(x) =

∫
d3k

(2π)3
√

2Ek

(
aikui(k)e−ik·x + b†ikvi(k)eik·x

)
ˆ̄ψi(x) =

∫
d3k

(2π)3
√

2Ek

(
a†ikūi(k)eik·x + bikv̄i(k)e−ik·x

)
As a shorthand notation one often writes

d̃3k
.
=

d3k

(2π)3
√

2Ek

.

One-particle states are normalised such that

|k〉 =
√

2Eka
†
k |Ω〉 . (109)

With this normalisation, the inner product of two one-particle states is
Lorentz invariant [6].

A.1 Feynman rules for Yang–Mills theory

In this section I derive step by step the Feynman rule for the vertex between
fermions and a gauge field starting from the Yang-Mills Lagrangian. After
that I just list all other Feynman rules in SU(N) theory needed in this thesis.

The Lagrangian describing a general SU(N) Yang–Mills theory is (see
Section 2.1)

L = ψ̄j(i /Dji −mψδij)ψi −
1

4
F a
µνF

aµν − 1

2
(∂µAaµ)2 + c̄a(−∂µDab

µ )cb ,
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where the covariant derivative and field strength tensor are

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν

Dab
µ = δab∂µ + gfabcAcµ.

The fermion part, apart from fermion’s mass term, is ψ̄ji( /D)jiψi = iψ̄i/∂ψi +
gtajiγ

µψ̄jA
a
µψi. Here the first term is the kinetic term of fermion. The second

term is the one giving the interaction between a fermion and an SU(N) gauge
field. Let us find the Feynman rule for that vertex. The T -matrix element is∫

d4x 〈Ω| gtblmγα ˆ̄ψlÂ
b
αψ̂m |k,µ,a;p1, i;p2, j〉 ,

where in the initial state the momentum k is for the gauge field, p1 for the
fermion and p2 for the antifermion. Inserting field operators and writing the
initial state with creation operators using (109) yields∫

d4x d̃3q1d̃3q2d̃3q3 gt
b
lm 〈Ω|

(
a†lq1

ūl(q1)eiq1·x + blq1 v̄l(q1)e−iq1·x
)
γα

×
(
abαq2

εbα(q2)e−iq2·x + ab †αq2
εb ∗α (q2)eiq2·x

)
×
(
amq3um(q3)e−iq3·x + b†mq3

vm(q3)eiq3·x
)

×
√

2Eka
a †
µk

√
2Ep1a

†
ip1

√
2Ep2b

†
jp2
|Ω〉 .

Using the fact that a creation operator destroys an outgoing and an annihi-
lation operator an incoming vacuum and that the vacuum expectation value
of the product of annihilation and creation operators is

〈Ω| aµka†νq |Ω〉 = (2π)3δµνδ
(3)(k− q) ,

leads to the next expression for T -matrix element:∫
d4x

d3q1

(2π)3

d3q2

(2π)3

d3q3

(2π)3
gtblme−i(q1+q2+q3)·x(2π)3δljδ

(3)(q1 − p2)v̄l(q1)γα

× (2π)3δαµδ
abδ(3)(q2 − k)εbα(q2)(2π)3δmiδ

(3)(q3 − p1)um(q3)

=

∫
d4x gtajie

−i(p2+k+p1)·xv̄j(p2)γµui(p1)εaµ(k)

=(2π)4δ(4)(k + p1 + p2)gtajiv̄j(p2)γµui(p1)εaµ(k) .

In the last step I used the following expression of the delta-function:∫
d4x e−ik·x = (2π)4δ(4)(k) ,
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By extracting factors (2π)4δ(4)(k+p1 +p2) for four-momentum conservation,
spinors of fermions and polarization vector of gauge field, one is left with the
factor gtajiγµ. Furthermore, one has to multiply the result with the imaginary
unit i because there is an additional i in the action S = exp(i

∫
d4xL) in the

Green’s function. Finally, the Feynman rule for the vertex between fermions
and a gauge field is igtajiγ

µ. Here the index j labels the outgoing and index
i the incoming fermion.

Notice here that Feynman rule was just the constants of the interaction
term in the Lagrangian multiplied with complex unit i. If there was a deriva-
tive of the field in the interaction term, there would be an additional factor
(±ipµ). This can be seen from the fact that taking a derivative of field op-
erator, the derivative acts on the exponential function dropping (±ipµ) in
front. Keeping this in mind the Feynman rules can be seen straight from the
Lagrangian without any trouble of calculating vacuum expectation values.

A.1.1 List of SU(N) Feynman rules

The rest of the SU(N) Feynman rules can be derived similarly as I derived
the rule for vertex between fermions and gauge field. Here I list all those
rules.

• Propagators

k
i j ∼ i(kµγµ+mf)

k2−m2
f+iǫF

δij
k

µ, a ν, b ∼ −igµν

k2+iǫF
δab

k

c
∼ i

k2+iǫF

• Three-point vertices between gauge field and fermions or ghosts:

Aa,µ

ψi

ψ̄j

∼ igtajiγ
µ

Ac,µ

ca

cb p

∼ if abcpµ
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• Three-point vertex of gauge fields

Aa,µ

p1

Ab,ν

p2

Ac,ρ

p3 ∼ gf abcV µνρ(p1, p2, p3)

Vµνρ(p1,p2,p3) = (p3 − p1)νgµρ + (p1 − p2)ρgνµ + (p2 − p3)µgρν

Feynman rules for an additional scalar, for which the interaction with a
gauge field is |(Dµ)jiφi|2 and with a fermion is yψ̄L,iφjψR + h.c., are

• Propagator

k
i j

φ
∼ i

k2+iǫF
δij

• Three-point vertices between scalar and gauge field or fermions

Aa,µ

φi p1

φ∗
j p2

∼ −igtaji(p
µ
2 − pµ1) φj

ψ̄L,i

ψR

∼ iyfδijPL
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A.2 SM Feynman rules

In this Appendix I list all SM Feynman rules that are needed in this thesis.
These rules do not include symmetry factors if there are identical particles
interacting, but one has to compute them when calculating a diagram. For a
cross-check, see for example [38] (notice differences due to symmetry factors).

• Propagators

k
∼ i(kµγµ+mf )

k2−m2
f+iǫF

k

h
∼ i

k2−m2
h+iǫF

k
µ ν

W
∼ −igµν

k2−m2
W+iǫF

k
µ ν

Z
∼ −igµν

k2−m2
Z+iǫF

k
µ ν

γ
∼ −igµν

k2+iǫF

k
µ, a ν, b

g
∼ −igµν

k2+iǫF
δab

k

χ±
∼ i

k2−m2
W+iǫF

k

χ
∼ i

k2−m2
Z+iǫF

k

c±
∼ i

k2−m2
W+iǫF

k

cZ
∼ i

k2−m2
Z+iǫF

k

cA
∼ i

k2+iǫF
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• Three-point vertices with Higgs boson

∼ −iλv

χ

χ

∼ −iλv

χ+

χ−

∼ −2iλv ∼ − iyf√
2

W+µ

W− ν

∼ ig22v
2 gµν

Zµ

Zν

∼ ig22v
4 cos2 θW

gµν

p1
W±µ

p2 χ∓

∼ ± ig2
2
(pµ1 − pµ2)

p1
Zµ

p2
χ

∼ g2
2 cos θW

(pµ1 − pµ2)
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• Three-point vertices between fermions and gauge bosons

γµ ∼ ieQfγ
µ

W µ ∼ ig2√
2
γµPL

ga,µ

j

i

∼ ig3t
a
jiγ

µ

Zµ ∼ ig2
cos θW

γµ(CL,fPL + CR,fPR)

{
CL,f = T 3

f −Qf sin2 θW

CR,f = −Qf sin2 θW

T 3
f Qf

lL −1/2 −1
lR 0 −1
νL 1/2 0
uL 1/2 2/3

dL −1/2 −1/3

uR 0 2/3

dR 0 −1/3
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• Three-point vertices with W -boson

W±,µ

p2 χ±

p2
χ

∼ g2
2 (p

µ
1 − pµ2) W±,µ

p
c±

cZ

∼ ±ig2 cos θW

W±,µ

p
c±

cA

∼ ∓ig2 sin θW W±,µ

c±

Zν

∼ −ig1mWgµν

W±,µ

c±

Aν

∼ iemWgµν

p1
W±,µ

p2
W±,ν

p3 Zρ

∼ ig2 cos θWV µνρ(p1, p2, p3)

p1
W±,µ

p2
W±,ν

p3 Aρ

∼ ig2 sin θWV µνρ(p1, p2, p3)
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• Four-point vertices

∼ −iλ
4

χ

χ

∼ −iλ
2

χ+

χ−

∼ −iλ

Zµ

Zν

∼ i g22
8 cos2 θW

gµν

W+µ

W−ν

∼ ig
2
2

4 g
µν

χ+ W+µ

χ− W−ν

∼ ig
2
2

2 g
µν

χ W+µ

χ W−ν

∼ ig
2
2

4 g
µν
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W+µ W+ρ

W−ν W−σ

∼ ig22(2g
µρgνσ − gµνgρσ − gµσgνρ)

Zµ W+ρ

Zν W−σ

∼ −ig
2
2

2 cos2 θW (2gµνgρσ − gµρgνσ − gµσgνρ)

Aµ W+ρ

Aν W−σ

∼ −ig
2
2

2 sin2 θW (2gµνgρσ − gµρgνσ − gµσgνρ)
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B Passarino–Veltman reduction integrals
In this section I list a set of integral forms known as Passarino–Veltman
reduction integrals [37, 39,40].

When calculating Feynman diagrams, one quite soon after few integrals
finds out that every time in dimensional regularization it is about the same
tricks one after another, namely going to the d-dimensions, doing the Wick
rotation, using the Feynman parametrization and using a certain representa-
tion of the beta function and the properties of the gamma function. So why
not to do all this once for some basic integrals and then write all diagrams as
a sum of those integrals? The results of Section 6.2 also show the usefulness of
these functions when one writes down loop-calculations. The sum of several
diagrams can be written in a very elegant form using the Passarino–Veltman
integrals. From those expressions also the divergent parts of functions can
be seen quite easily.

Here I write down those Passarino–Veltman integrals that are used in this
thesis. The scalar one-point function is defined as

A0(m) = µ4−d
∫

ddk

(2π)d
1

k2 −m2 + iεF

=
im2

16π2

[
2

ε
− γE + log(4π) + 1− log(

m2

µ2
) +O(ε)

]
,

where we assumed that m 6= 0, we have ε = 4−d and γE is Euler–Mascheroni
constant (γE ≈ 0.577). Another scalar function is the two-point function

B0(p,m1,m2) = µ4−d
∫

ddk

(2π)d
1

(k2 −m2
1 + iεF)((k − p)2 −m2

2 + iεF)

=
i

16π2

[2

ε
− γE + log(4π)− log

(p2 + iεF
µ2

)
+ 2

−
∑
±

(
(1− x±) log(1− x±) + x± log(−x±)

)]
,

where

x± =
p2 +m2

1 −m2
2

2p2
±
√

(p2 +m2
1 −m2

2)2 − 4p2m2
1 + 4iεFp2

2p2
.

Notice here that the divergence ofA0(m) is the same as that ofmB0(p,m1,m2).
Furthermore, it is a small exercise to prove that B0 is symmetric under an
exchange of masses, i.e.

B0(p,m1,m2) = B0(p,m2,m1) .
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It turns out that all diagrams in my thesis can be written as a sum of
these two scalar functions. A clever reader notices that A0 function is ob-
tained when a diagram has only one internal propagator, and diagrams with
two internal propagators are proportional to B0. Of course, if the Feynman
rules for vertices in a diagram give an integration momentum in the numer-
ator, then some of the propagators in the denominator may be cancelled
and thus diagrams with more than one or two internal propagators may be
proportional to A0 and B0. This just proves the usefulness of these functions.

There are two a bit more complicated functions, vector and tensor func-
tions, which are also needed. Luckily, they both reduce to a sum of functions
A0 and B0. The two-point vector function is

Bµ(p,m1,m2) = µ4−d
∫

ddk

(2π)d
kµ

(k2 −m2
1 + iεF)((k − p)2 −m2

2 + iεF)

=
pµ
p2
B1(p,m1,m2) ,

where

B1(p,m1,m2) =
1

2

(
A0(m2)− A0(m1) +

(
p2 +m1 −m2

)
B0(p,m1,m2)

)
and the tensor function is

Bµν(p,m1,m2) = µ4−d
∫

ddk

(2π)d
kµkν

(k2 −m2
1 + iεF)((k − p)2 −m2

2 + iεF)

= pµpνB21(p,m1,m2) + gµνB22(p,m1,m2) ,

where

B21(p,m1,m2) =
−1

p2(d− 1)

[(
1− d

2
− d

4p2
(p2 +m2

1 −m2
2)
)
A0(m2)

+
d

4p2
(p2 +m2

1 −m2
2)A0(m1)

+
(
m2

1 −
d

4p2
(p2 +m2

1 −m2
2)2
)
B0(p,m1,m2)

]
and

B22(p,m1,m2) =
1

d− 1

[(1

2
− 1

4p2
(p2 +m2

1 −m2
2)
)
A0(m2)

+
1

4p2
(p2 +m2

1 −m2
2)A0(m1)

+
(
m2

1 −
1

4p2
(p2 +m2

1 −m2
2)2
)
B0(p,m1,m2)

]
.
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The third scalar integral is the one with three propagators in denominator,
called C0-integral. In this thesis it is needed only in a special case with all
external momenta zero and two non-zero masses where it can be reduced to
a sum of two B0-functions

C0(m1,m2) ≡ µ4−d
∫

ddk

(2π)d
1

(k2 + iεF)(k2 −m2
1 + iεF)(k2 −m2

2 + iεF)

=
1

m2
2 −m2

1

(B0(0,0,m2)−B0(0,0,m1)) .

This function is finite in four dimensions since divergences are the same in
the two B0-functions.
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