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The two-neutrino (2ν2β) and neutrinoless (0ν2β) double-β decays of 96Ru are investigated for the transitions to
the ground state, 0+

gs, and 0+ and 2+ excited states in 96Mo by using the quasiparticle random-phase approximation
combined with the multiple-commutator model. G-matrix-based nuclear forces are used in realistic single-particle
model spaces. All the possible channels, β+β+, β+EC, and ECEC, are discussed for both the 2ν2β and 0ν2β

decays. The associated half-lives are computed, in particular the one corresponding to the resonant neutrinoless
double electron capture (R0νECEC) transition to the 2.712.68-MeV nuclear state in 96Mo. This work represents
the most complete theoretical investigation of the double-β-decay properties of 96Ru thus far.
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I. INTRODUCTION

Modern neutrino-oscillation experiments have brought the
study of neutrino properties to the era of precision measure-
ments. At the same time the fundamental character (Majorana
or Dirac) of the neutrino is still unknown, as is also its absolute
mass scale. To gain information on these two unknowns,
atomic nuclei can be engaged as the mediators of Majorana-
neutrino triggered neutrinoless double-β (0ν2β) decays. The
key issue here is how to cope with the involved nuclear-
structure issues of the decays, crystallized in the form of the
nuclear matrix elements (NMEs) [1–3]. To be able to exploit
the potential data extracted from the 0ν2β-decay experiments
one needs to evaluate the NMEs in a reliable enough way. It
has become customary to employ the neutrino-emitting cor-
respondent of 0ν2β decay, the two-neutrino double-β (2ν2β)
decay, to confine the nuclear-model degrees of freedom in the
NME calculations. The 2ν2β decay is a second-order process
in the standard model of the electroweak interactions and the
associated half-lives have been measured for several nuclei [4].

Double-β− decays have been studied intensively over the
years [2,3] due to their favorable decay Q values. The positron-
emitting modes of decays, β+β+, β+EC, and ECEC are
much less studied. The general, nuclear-model-independent
frameworks of theory for these decays have been investigated
in Ref. [5] for the 2ν2β-decay channels β+β+, β+EC, and
ECEC and in Ref. [6] for the 0ν2β-decay channels β+β+ and
β+EC. The formalism for the resonant neutrinoless double
electron capture (R0νECEC) was first developed in Ref. [7]
and later discussed and extended to its radiative variant
(0νγ ECEC) in Ref. [8]. At present the resonant mode of
0νECEC decays is considered to have great potential for
discovery of the Majorana mass of the neutrino. That is why
much experimental effort is being invested in observing this
mode of decay.

The various 2ν2β and 0ν2β decay channels of 96Ru
were discussed in the early works of [9–11]. In all of these
calculations only transitions to the final ground states were
considered. Later the two-neutrino β+β+, β+EC, and ECEC
decays of 96Ru were examined in Ref. [12] for both the ground
states and first excited 0+ states. In Ref. [13] a systematic
study of the neutrinoless β+β+ and β+EC decays to excited
0+ states in, e.g., 96Ru was performed. In these calculations the

computational scheme was based on the relativistic harmonic
confinement model (RHCM) of quarks and the resulting
nucleon form factors [14–16]. In this framework a folding
of the free nucleon current with the confined quark degrees of
freedom was done, resulting in a nucleonic current that differed
from that of the standard formulation [1,17]. In addition, no
short-range correlations were taken into account beyond the
RHCM-predicted nucleon form factors.

Nuclear-structure calculations associated with the
R0νECEC processes were performed for 112Sn in Refs. [7,18],
for 74Se in Ref. [19], for 136Ce in Ref. [20], and for
106Cd in Ref. [21]. General formalism of the associated
nuclear-structure calculations were reviewed in Ref. [22].
No previous nuclear-structure calculations for the R0νECEC
decay of 96Ru have been done. It should be noted that also
simple estimates of such NMEs have been used in the review
presented in Ref. [23], where a global analysis of the possible
resonant decays was performed.

In the present article the two-neutrino β+β+, β+EC,
and ECEC transitions and neutrinoless β+β+ and β+EC
transitions in 96Ru are discussed. Considered are the transitions
to the ground state, 0+

gs, and to the first and second excited 0+

states, 0+
1 and 0+

2 , as well as to the first, second, and third 2+

states, 2+
1 , 2+

2 , and 2+
3 . The 0ν2β decays to only the 0+ states

are considered since large suppression of the mass mode for
the 0ν2β decays to 2+ states is expected [24]. Furthermore,
the R0νECEC transition to the possible resonant state at an
excitation energy of 2718.41 keV is considered. Here the
energy of the two electron L1 holes in the molybdenum atom
has been added to the state’s nuclear excitation energy of
2712.68 keV.

In Ref. [23] it was analyzed that the resonant state at a
nuclear excitation of 2712.68 keV γ decays to a state with
spin-parity assignment 5+ or 6+. This would exclude the
0+ assignment for the resonant state. In the present work,
however, the analysis of the R0νECEC half-life is performed
by assuming a 0+ assignment for the resonant state. This
assignment leads to a very likely enhancement in the decay
rate and thus the calculated half-life should be taken as an
optimistic estimate or a lower limit for the half-life. A similar
situation is realized in the case of the R0νECEC decay of 106Cd
to the 2717.56-keV nuclear state in 106Pd. In Ref. [21] this state
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FIG. 1. (Color online) Experimental low-energy spectrum of
96Mo and the resonant state at 2712.68 keV of excitation, assumed
here to be a 0+ state (for which the atomic two-L1-hole energy has
been added). The spin-parity of the resonant state is uncertain. All
the double-β transition modes under consideration in this article are
indicated by horizontal arrows. The Q value (difference of the atomic
masses) has been taken from [35] and the level energies from [36].

was assigned to a 0+ state while in fact a closer analysis [23]
would point to a higher value of the angular momentum. In
this case, as in the present one, the computed half-life could
be considered as a rough estimate with optimistic inclination.

All the discussed decay transitions are displayed in Fig. 1.
For all the 0ν2β transitions the NMEs are computed by the
use of both the Jastrow short-range correlations [25] and
the unitary correlation operator method (UCOM) correlations
[26,27]. Both short-range correlators have been recently used
in many 0νβ−β− calculations [28–33] and in some 0νβ+/EC
calculations [21]. In addition, the contributions arising from
the induced currents and the finite nucleon size [34] have been
taken into account. As is evident from above, the calculations
of the present paper constitute the thus-far most complete and
up-to-date treatment of the double-β-decay properties of 96Ru.

In this work the wave functions of the nuclear states
involved in double-β-decay transitions are calculated by
the use of the quasiparticle random-phase approximation
(QRPA) in a realistically large single-particle model space.
(An exhaustive discussion on the model-space effects is given
in Refs. [37–39].) In particular, the 2+

1 and 2+
3 states, as

well as the resonant 0+ state in 96Ru, are assumed to be
basic excitations (one-phonon states) of the charge-conserving
QRPA (ccQRPA) [40], whereas the 0+

2 state and 2+
2 state are

assumed to consist of two 2+
1 ccQRPA phonons, as discussed in

Refs. [38,39]. The Jπ states of the intermediate nucleus 96Tc
of the ββ decays are generated by the usual proton-neutron
QRPA (pnQRPA) [2,40]. The one- and two-phonon states in
96Ru are then connected to the Jπ states of 96Tc by transition
amplitudes obtained from a higher-QRPA framework called

the multiple-commutator model (MCM), first introduced in
Ref. [41] and further extended in Ref. [42].

II. OUTLINE OF THE THEORETICAL FRAMEWORK

In this section a rather detailed account of the basic
theoretical ingredients of the calculations is given. In this way
the reader can have a unified picture of the formalisms used
for various types of double-β transitions.

A. Two-neutrino double-β decays

Two-neutrino double-β decay, 2ν2β, on the positron-
emitting side can proceed through three different channels,
namely, β+β+, β+EC, and ECEC. The associated half-lives
can be expressed as [1,5][

T α
2ν(I+)

]−1 = (GgA)4m9
e

32π7 ln 2

∫
dE(α)Mα(I+),

(1)
α = β+β+, β+EC, ECEC,

where I = 0, 2 is the final-state angular momentum, G is
the weak-interaction constant, gA is the axial-vector coupling
constant, me is the electron rest mass, and

∫
dE(α) denotes

the integration over the lepton phase space. The integration is
different for the three decay channels α = β+β+, α = β+EC,
and α = ECEC [5]. The combined nuclear and leptonic matrix
element Mα(I+) can be written as [1,5]

Mα(0+) = 1

4

∣∣∣∣∣∑
a

Mα
GTa(0+)

(
Kα

a + Lα
a

)∣∣∣∣∣
2

+ 1

12

∣∣∣∣∣∑
a

Mα
GTa(0+)

(
Kα

a − Lα
a

)∣∣∣∣∣
2

, (2)

Mα(2+) =
∣∣∣∣∣∑

a

Mα
GTa(2+)

(
Kα

a − Lα
a

)∣∣∣∣∣
2

, (3)

for the decays to the I+ = 0+, 2+ final states. Here the
index a denotes the summation over the virtual states of the
intermediate nucleus of the 2ν2β decay and Kα

a and Lα
a are

the energy denominators [1] that can be cast in the form

Kα
a = 1

�a + Eα
1

+ 1

�a + Eα
2

; Lα
a = Kα

a (ν1 ↔ ν2), (4)

where

�a = (Ea − Mic
2)/mec

2, (5)

with Ea being the energy of the intermediate state a and Mi

being the mass of the initial nucleus. The quantities Eα
1 and

Eα
2 denote the total energies of the leptons active in the first

and second decay vertex, respectively. The denominator Lα
a is

obtained from Kα
a by the exchange of the emitted neutrinos.

We can separate the nuclear and leptonic degrees of freedom
in Eqs. (2) and (3) by replacing in the denominators (4)
the lepton energies Eα

1 and Eα
2 by their averages 〈Eα

1 〉 and
〈Eα

2 〉 obtained by assuming that the emitted leptons share
democratically the decay energy Wα

0 of each decay mode.
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It is also obvious that the latter term in the 0+ matrix element
(2) is negligible in comparison with the first term, because
it has (a) a small prefactor, (b) a higher-order denominator
in the nuclear matrix element, and (c) a suppressed lepton
phase-space integral.

After the above-described maneuvers we end up with the
following final expressions for the decay half-lives of the
various modes:[
T

β+β+
2ν (I+)

]−1 = G
β+β+
2ν (I+)

[
M

β+β+
2ν (I+)

]2
, (6)[

T
β+EC

2ν (I+)
]−1 = G

β+EC(K)
2ν (I+)

[
M

β+EC(K)
2ν (I+)

]2

+G
β+EC(L)
2ν (I+)

[
M

β+EC(L)
2ν (I+)

]2
, (7)[

T ECEC
2ν (I+)

]−1 = G
EC(K)EC(K)
2ν (I+)

[
M

EC(K)EC(K)
2ν (I+)

]2

+G
EC(K)EC(L)
2ν (I+)

[
M

EC(K)EC(L)
2ν (I+)

]2
, (8)

where the expressions for the lepton phase-space integrals
Gα

2ν(I+), α = β+β+, β+EC, ECEC, are given in Ref. [5]
and the NMEs Mα

2ν(I+) include the nuclear part of the
denominators (4) and a summation over all the 1+ states of the
intermediate nucleus 96Tc (see below). Above, the symbols
EC(K) and EC(L) denote electron captures from the atomic K
and L1 shells, respectively.

The NMEs involved in the above half-life expressions can
be cast in the form

Mα
2ν(I+) =

∑
k1

Mk1 (I+)Fα
k1

(I+);

(9)
α = β+β+, β+EC, ECEC,

where in the QRPA framework one writes

Mk1 (I+) = 1√
1 + 2δI2

∑
k2

∑
pp′nn′

m(nn′, pp′)
(
I+
f ‖[c†n′ c̃p′ ]1

×‖1+
k1

)〈
1+

k1

∣∣1+
k2

〉(
1+

k2

∥∥[c†nc̃p]1‖0+
i

)
, (10)

and the single-particle part is written as

m(nn′, pp′) = 1
3 (n′‖σ‖p′)(n‖σ‖p), (11)

the operator σ being the three components of the Pauli spin
matrices. The label p = np, lp, jp (n = nn, ln, jn) denotes
the quantum numbers of the proton (neutron) single-particle
states. The one-body transition densities (I+

f ‖[c†n′ c̃p′ ]1‖1+
k1

)

and (1+
k2

‖[c†nc̃p]1‖0+
i ), involved in Eq. (10), are given sepa-

rately for the different types of I+ final states f in Sec. II C.
Furthermore, the overlap between the two sets of pnQRPA
states used in the calculations is given by〈

Jπ
k1

∣∣Jπ
k2

〉 =
∑
pn

[
X

Jπ
k2

pn X̄
Jπ

k1
pn − Y

Jπ
k2

pn Ȳ
Jπ

k1
pn

]
(12)

and it takes care of the matching of the corresponding states in
the two sets of states based on the initial and final even-even
reference nuclei. The amplitudes X and Y (X̄ and Ȳ ) come
from the pnQRPA calculation starting from the initial (final)
nucleus of the double-β decay.

The quantities Fα
k1

(I+) in Eq. (9) are the various denomina-
tors that derive from (4) upon the lepton averaging procedure

and they assume the following forms:

F
β+β+
k (0+) = (

�k + 1
2W0

)−1
, (13)

F
β+β+
k (2+) = (

�k + 1
2W0

)−3
, (14)

F
β+EC
k (0+) = 1

�k − εb1 + 1
3W

β+EC
0

+ 1

�k + 2
3W

β+EC
0

, (15)

F
β+EC
k (2+) = �k + 1

2W0(
�k − εb1 + 1

3W
β+EC
0

)2(
�k + 2

3W
β+EC
0

)2 ,

(16)

F ECEC
k (0+) = 1

�k − εb1 + 1
2WECEC

0

+ 1

�k − εb2 + 1
2WECEC

0

,

(17)

F ECEC
k (2+) = �k + 1

2W0(
�k − εb1 + 1

2WECEC
0

)2(
�k − εb2 + 1

2WECEC
0

)2,

(18)

where the normalized (by the electron rest-mass energy)
intermediate energy is given by (5) and the decay energies are

W0 = (Mic
2 − Ef )/mec

2, W
β+EC
0 = W0 + εb1,

WECEC
0 = W0 + εb1 + εb2. (19)

Here the quantity Ef is the final-state (ground-state or
excited-state) energy and

εbi = (mec
2 − Bi)/mec

2, i = 1, 2, (20)

where Bi is the binding energy of electron i in an atomic K
or L1 orbital [5]. In �k [see Eq. (5)] Ek is the energy of the
kth 1+ state in 96Tc. In the pnQRPA calculations the energy
Ek is taken to be the average of the kth energy eigenvalues
based on the two pnQRPA calculations, one for the initial
and one for the final nucleus of the ββ decay. Furthermore,
the energy difference E1 − Mic

2 is taken from experiment if
the excitation energy of the first 1+ state of the intermediate
nucleus is known experimentally. At this point it is worth
noting that in the present case the 1+

1 energy in 96Tc is not
known experimentally, thus introducing an additional source
of uncertainty. This problem is dealt with in Sec. IV.

B. Neutrinoless double-β decays

In this work it is assumed that the 0ν2β decays proceed
exclusively via the exchange of a massive Majorana neutrino.
The inverse half-lives for the neutrinoless β+β+, β+EC, and
R0νECEC decays can be cast in the form[

T α
0ν(0+)

]−1 = Gα
0ν(0+)|M (0ν)′|2(|〈mν〉|[eV])2,

α = β+β+, β+EC, (21)[
T ECEC

0ν (0+)
]−1 = GECEC

0ν (0+)
∣∣MECEC

0ν

∣∣2

× |〈mν〉|2

(Q − E)2 + 
2/4

, (22)

024301-3



JOUNI SUHONEN PHYSICAL REVIEW C 86, 024301 (2012)

where 〈mν〉 is the effective neutrino mass [2] that should be
given in Eq. (21) in units of electron volts. Furthermore, we
define

MECEC
0ν = 1

RA

M (0ν)′, RA = 1.2A1/3 fm, (23)

and the phase-space integrals G
β+β+
0ν (0+) and G

β+EC
0ν (0+) are

defined in Ref. [6]. The phase-space integral for the R0νECEC
mode can be written as

GECEC
0ν (0+) =

(
GF cos θC√

2

)4
g4

A

4π2 ln 2
m6

eN 2
0,−1, (24)

where N0,−1 is the normalization of the relativistic L1-shell
(2s1/2) Dirac wave function for a uniformly charged spherical
nucleus [6]. For the presently discussed R0νECEC decay of
96Ru the spin-parity assignment as 0+ of the final state at
2712.68 keV of nuclear excitation is uncertain. For the decay

width 
 the value 
 = 0.082 eV was adopted [43] and the Q

value measurement of [35] gives for the degeneracy parameter
|Q − E| = 3.90 keV.

The 0ν2b NMEs are defined in the standard way (see, e.g.,
[37–39]) in terms of the Gamow-Teller (GT), Fermi (F), and
tensor (T) matrix elements

M (0ν)′ =
(

gA

1.25

)2[
M

(0ν)
GT −

(
gV

gA

)2

M
(0ν)
F + M

(0ν)
T

]
, (25)

where gA = 1.25 corresponds to the bare-nucleon value of
the axial-vector coupling constant and gV = 1.00 is the vector
coupling constant. The tensor matrix element is neglected in
the present calculations since its contribution is very small
[28,32].

The Gamow-Teller and Fermi NMEs appearing in
the half-life expressions can be written explicitly in the
form

M
(0ν)
K =

∑
Jπ

∑
J ′

∑
k1k2

∑
pp′nn′

(−1)jp+jn′ +J+J ′√
2J ′ + 1

{
jn jp J

jp′ jn′ J ′

}
mK (nn′, pp′; J ′; k1, k2)

(
0+

f ‖[c†n′ c̃p′ ]J ‖Jπ
k1

)
× 〈

Jπ
k1

∣∣Jπ
k2

〉(
Jπ

k2

∥∥[c†nc̃p]J ‖0+
i

)
, K = F, GT, (26)

where k1 and k2 label the different nuclear-model solutions for a given multipole Jπ , the set k1 stemming from the calculation
based on the final nucleus and the set k2 stemming from the calculation based on the initial nucleus. Here the one-body transition
densities are (0+

f ‖[c†n′ c̃p′ ]J ‖Jπ
k1

) and (Jπ
k2

‖[c†nc̃p]J ‖0+
i ), and they are given separately for the different types of 0+ final states f in

Sec. II C.
The two-particle matrix element of (26) can be written as

mK (nn′, pp′; J ′; k1, k2) = Ĵ ′ĵpĵp′ ĵnĵn′
∑
λS

(2λ + 1)(2S + 1)FK

⎧⎪⎨⎪⎩
lp lp′ λ

1
2

1
2 S

jp jp′ J ′

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

ln ln′ λ

1
2

1
2 S

jn jn′ J ′

⎫⎪⎬⎪⎭
∑

n1n2lNL

Mλ(n1lNL; nnlnnn′ ln′)

×Mλ(n2lNL; nplpnp′ lp′ )
∫

d3rφn1l(r)hK

(
r12,

1

2

[
Ek1 + Ek2

])
φn2l(r), (27)

where ĵ = √
2j + 1 and r12 = |r1 − r2| is the relative distance

between the two decaying protons. The following auxiliary
quantities have been defined:

FF = 1, FGT = 6(−1)S+1

{
1
2

1
2 S

1
2

1
2 1

}
. (28)

The quantities Mλ are the Moshinsky brackets that mediate
the transformation from the laboratory coordinates r1 and
r2 to the center-of-mass coordinate R = 1√

2
(r1 + r2) and the

relative coordinate r = 1√
2
(r1 − r2). In this way the short-

range correlations of the two decaying protons are easily
incorporated in the theory. The wave functions φnl(r) are
taken to be the eigenfunctions of the isotropic harmonic
oscillator.

The neutrino potential hK (r12, E), K = F, GT, in the
integral of (27) is defined as

hK (r12, E) = 2

π
RA

∫
dq

qhK (q2)

q + E − (Ei + Ef )/2
j0(qr12),

(29)

where j0 is the spherical Bessel function and the integration is
performed over the exchanged momentum q. Here Ei = Mic

2

is the ground-state mass energy of the initial nucleus and Ef

is the (ground-state or excited-state) mass energy of the final
nucleus. In practice the lowest pnQRPA energies of the two
sets k1 and k2 are normalized such that the energy difference
of these energies and the mass energy of the initial nucleus
matches the corresponding experimental energy difference.
The term hK (q2) in Eq. (29) includes the contributions arising
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from the short-range correlations, nucleon form factors, and
higher-order terms of the nucleonic weak current [28,29].

C. Transition densities

The various transition densities are addressed in this
section. The initial-branch transition density remains always
the same, namely,(
Jπ

k2
‖[c†nc̃p]J ‖0+

i

) = Ĵ (−1)jp+jn+J+1
[
vpunX

Jπ
k2

pn + upvnY
Jπ

k2
pn

]
.

(30)

The transition density corresponding to the final ground state
reads(

0+
gs‖[c†n′ c̃p′ ]J ‖Jπ

k1

)
= Ĵ (−1)jp′+jn′+J+1

[
ūp′ v̄n′X̄

Jπ
k1

p′n′ + v̄p′ ūn′ Ȳ
J π

k1
p′n′

]
, (31)

where v (v̄) and u (ū) correspond to the BCS occupation
and unoccupation amplitudes of the initial (final) even-even
nucleus. The amplitudes X and Y (X̄ and Ȳ ) come from the
pnQRPA calculation starting from the initial (final) nucleus of
the 0ν2β decay.

For the excited states the MCM [41,42] is used. It
is designed to connect excited states of an even-even
reference nucleus to states of the neighboring odd-odd

nucleus. The states of the odd-odd nucleus are given by
the pnQRPA and the excited states of the even-even nu-
cleus are generated by the (charge-conserving) quasipar-
ticle random-phase approximation described in detail in
Ref. [40]. Here, in contrast to Ref. [40], the symmetrized
form of the phonon amplitudes is adopted so that the
kth Jπ state can be written as a QRPA phonon in the
form∣∣Iπ

k M
〉 = Q†(Iπ

k ,M
)|QRPA〉

=
∑
ab

(
Z

Iπ
k

ab [a†
aa

†
b]IM − W

Iπ
k

ab [a†
aa

†
b]†IM

)|QRPA〉. (32)

The symmetrized amplitudes Z and W are obtained from the
usual ccQRPA amplitudes X and Y [40] through the following
transformation:

Z
Iπ
k

ab =

⎧⎪⎪⎨⎪⎪⎩
X

Iπ
k

ab if a = b,

1
2X

Iπ
k

ab if a < b,

1
2X

Iπ
k

ba if a > b,

(33)

and similarly for W in terms of Y .
The ccQRPA phonon defines a state in the final nucleus of

the double-β decay. In particular, if this final state is the kth I+
state the related transition density, to be inserted in Eqs. (10)
and (26), becomes

(
I+
k ‖[c†n′ c̃p′ ]L‖Jπ

k1

) = 2Î L̂Ĵ (−1)L+I+J

(∑
p1

[
v̄p′ v̄n′X̄

Jπ
k1

p1n′Z̄
I+
k

p′p1
− ūp′ ūn′ Ȳ

J π
k1

p1n′W̄
I+
k

p′p1

] {
J I L

jp′ jn′ jp1

}

+
∑
n1

(−1)I+jn′+jn1

[
ūp′ ūn′X̄

Jπ
k1

p′n1
Z̄

I+
k

n′n1
− v̄p′ v̄n′ Ȳ

J π
k1

p′n1
W̄

I+
k

n′n1

] {
J I L

jn′ jp′ jn1

})
(34)

instead of the expression (31) for the ground-state transition.
Again v (v̄) and u (ū) correspond to the BCS occupation
and unoccupation amplitudes of the initial (final) even-even
nucleus. The amplitudes X and Y (X̄ and Ȳ ) come from the
pnQRPA calculation starting from the initial (final) nucleus of
the ββ decay. The amplitudes Z̄ and W̄ are the amplitudes of
the kth I+ state in the final nucleus.

One can take a Iπ
k = 2+

1 phonon of (32) and build an ideal
two-phonon I+ state of the form

|I+
2-ph〉 = 1√

2
[Q†(2+

1 )Q†(2+
1 )]I |QRPA〉. (35)

An ideal two-phonon state consists of partner states Iπ = 0+,

2+, 4+ that are degenerate in energy and are exactly at twice the
excitation energy of the 2+

1 state. In practice this degeneracy
is always lifted by the residual interaction between the one-
and two-phonon states [44]. The related transition density
of the MCM, which can be inserted in Eqs. (10) and (26),

attains the form(
I+

2-ph‖[c†n′ c̃p′ ]L‖Jπ
k1

)
= 40√

2
Î L̂Ĵ (−1)I+J+jp′ +jn′

∑
p1n1

[
v̄p′ ūn′X̄

Jπ
k1

p1n1Z̄
2+

1
p′p1

Z̄
2+

1
n′n1

+ ūp′ v̄n′ Ȳ
J π

k1
p1n1W̄

2+
1

p′p1
W̄

2+
1

n′n1

] ⎧⎨⎩
jp′ jp1 2
jn′ jn1 2
L J I

⎫⎬⎭ , (36)

where, as usual, the barred quantities denote amplitudes
obtained for the ββ daughter nucleus.

III. MODEL PARAMETERS

The calculations were done in a single-particle space
consisting of the 1p-0f -2s-1d-0g-0h shells for both protons
and neutrons. The single-particle energies were generated by
the use of a spherical Coulomb-corrected Woods–Saxon (WS)
potential with a standard parametrization [45], optimized for
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nuclei near the line of β stability. The WS bases reproduce
satisfactorily the low-energy spectra of the neighboring odd-A
nuclei. The Bonn-A G matrix has been used as the two-body
interaction and is has been renormalized in the standard way
[41,46]. The quasiparticles are treated in the BCS formalism
and the pairing matrix elements are scaled by a common factor,
separately for protons and neutrons. In practice these factors
are fitted such that the lowest quasiparticle energies obtained
from the BCS formalism match the experimental pairing gaps
for protons and neutrons, respectively.

As explained in detail in Ref. [37] the particle-hole
and particle-particle parts of the proton-neutron two-body
interaction are separately scaled by the particle-hole parameter
gph and particle-particle parameter gpp. The value of the
particle-hole parameter, gph = 1.50, was fixed by the available
systematics [40] on the location of the Gamow-Teller giant res-
onance (GTGR) state. The value of the gpp parameter regulates
the β−-decay amplitude of the first 1+ state in the intermediate
nucleus [47] and hence also the decay rates of the ββ decays.
This value can be fixed by either the data on β− decays [47] or
by the data on 2νβ−β−-decay rates within the interval gA =
1.00–1.25 of the axial-vector coupling constant [27–29,31].
The experimental error and the uncertainty in the value of gA

then induce an interval of physically acceptable values of gpp,
the minimum value of gpp = 0.80 being related to gA = 1.00
and the maximum value gpp = 1.15 being related to gA =
1.25. This particular assignment of a certain gpp to a certain gA

is natural because the magnitude of the calculated 2νββ NME,
M (2ν), decreases with increasing value of gpp in a pnQRPA
calculation [46,48,49] and this magnitude is compared with the
magnitude of the experimental NME, M (2ν)(exp) ∝ (gA)−2,
deduced from the experimental 2νββ half-life. The lower
limit of gpp is a reasonable choice used, e.g., in the analysis
of [21,33]. The upper limit gives the minimum magnitude of
the 2νββ NME for the ground-state-to-ground-state transition.
In this case, thus, the value of the 2νββ NME does not degrease
monotonically up to the collapse point of the pnQRPA but
only up to gpp = 1.15, after which it starts to rise again.
This same behavior of the 2νββ NME was registered in
the studies of Refs. [10,21]. The wide range of the chosen
values of gpp, gpp = 0.80–1.15 guarantees that all the phys-
ically meaningful values of the 2ν2β and 0ν2β NMEs are
covered.

For the ccQRPA the gph and gpp parameters were fixed to
the values gph = 0.739 and gpp = 1.00 for the 2+ channel. For
the given value of gph the experimental location of the 2+

1 state
in 96Mo is reproduced by the calculations. For the 0+ channel
the values gph = 0.378 and gpp = 0.975 push the energy of the
lowest ccQRPA root (which is a spurious state [50]) to zero
and make the second root roughly reproduce the experimental
excitation energy of the 0+

1 state.

IV. TWO-NEUTRINO DOUBLE-β DECAYS

In Table I are shown the values of the 2ν2β half-lives for
different modes of decay, as deduced from Eqs. (6)–(8). The
first column gives the final state and the second column its
interpretation as the QRPA ground state (gs) or a one-phonon
state (1-ph) [see (32)] or a two-phonon state (2-ph) [see (35)].
The computed half-life ranges for the different 2ν2β decay
modes have been quoted in the last three columns.

The rather wide ranges of half-lives quoted in the table stem
from two sources of uncertainty. One source of uncertainty is
the range gpp = 0.80–1.15 of the values of the particle-particle
strength parameter discussed in Sec. III. The other source of
uncertainty is the unknown experimental excitation energy
of the first 1+ state in the intermediate nucleus 96Tc. This
is needed in defining the exact value of �k in Eq. (5). In
the present calculations a wide range of excitation energies,
Eexc(1+

1 ) = 0.0–2.0 MeV, was chosen. The lower (upper)
limit of this range corresponds to the lower (upper) limit
of the half-life in Table I since then the value of �k is the
minimum (maximum) and thus the NME attains its maximum
(minimum) value.

The value of the axial-vector coupling constant gA strongly
affects the magnitudes of the phase-space factors Gα

2ν(I+)
in Eqs. (6)–(8). This dependence of the phase-space factors
is stronger than the dependence of the NME on gpp and is
in the opposite direction. This means that the lower (upper)
limits of the half-lives in Table I correspond to gA = 1.25
(gA = 1.00). The only exception to this pattern is the behavior
of the transition to the final 2+

1 state, where the opposite is
true, and hence the words “upper” and “lower” of the previous
sentence should be exchanged.

It is well visible in Table I that the half-lives correspond-
ing to the 2+ final states are much longer than the ones

TABLE I. Values of half-lives for the various 2ν2β processes in 96Ru. The first column gives the final state, the second the interpretation in
terms of one-phonon (1-ph) and two-phonon (2-ph) ccQRPA structures, and the last three columns the half-lives in units of years for different
modes of the decay.

Final state Structure Mode

ECEC (yr) β+EC (yr) β+β+ (yr)

0+
gs gs (4.7–39) × 1020 (2.0–23) × 1021 (1.2–10) × 1026

2+
1 1-ph 4.2 × 1028–2.2 × 1032 1.3 × 1027–1.2 × 1031 Q forbidden

0+
1 1-ph (4.2–92) × 1021 (6.1–190) × 1024 Q forbidden

0+
2 2-ph (3.6–54) × 1023 (7.5–150) × 1027 Q forbidden

2+
2 2-ph (1.8–6500) × 1029 2.1 × 1033–1.6 × 1037 Q forbidden

2+
3 1-ph >1.6 × 1029 >3.4 × 1038 Q forbidden
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TABLE II. Absolute values of NMEs for the various 2ν2β processes in 96Ru. The first column gives the final state and the next columns
the absolute values of the NMEs Mα

2ν of (9).

Final state |Mα
2ν |

β+β+ β+EC(K) β+EC(L) EC(K)EC(K) EC(K)EC(L)

0+
gs 0.2075–0.7185 0.4321–1.6885 0.4329–1.7017 0.4150–1.4370 0.4150–1.4371

2+
1 0.0001–0.0064 0.0001–0.0117 0.0001–0.0120 0.0001–0.0084 0.0001–0.0084

0+
1 0.2460–0.7771 0.5024–1.8564 0.5031–1.8802 0.4920–1.5542 0.4920–1.5544

0+
2 0.0406–0.1410 0.0824–0.3363 0.0824–0.3410 0.0812–0.2820 0.0812–0.2821

2+
2 0.0002–0.0101 0.0003–0.0273 0.0003–0.0282 0.0003–0.0188 0.0003–0.0188

2+
3 <0.0107 <0.0318 <0.0329 <0.0216 <0.0216

corresponding to the 0+ final states. This stems from the fact
that the related NMEs are much smaller for the 2+ final states.
This feature was discussed already in the early work of [12].
The magnitudes of such small NMEs are very sensitive to
the adopted value of excitation energy of the first 1+ state in
the intermediate nucleus. That is why the ranges of half-lives
are much wider for the decays to the 2+ final states than for
the decays to the 0+ final states. The situation is clarified
by Table II, where the ranges of absolute values of the NMEs
involved in Eqs. (6)–(8) have been summarized. It is interesting
to note that the NME for the 2+

3 final state crosses zero in the
investigated interval and thus the lower limit zero is reached
for the absolute value of the NME (see the last line of Table II).

Concerning the detection possibilities of the 2ν2β pro-
cesses in 96Ru, the best chances of detection in the near
future are offered by the ECEC and β+EC decays to the
ground state with the computed half-lives in the range of
(5–230) × 1020 yr. Also the ECEC decay to the first excited
0+ state at 1148.13 keV of excitation is within reach of
future experiments with the computed half-lives in the range
of (4.2–92) × 1021 yr. The best experimental limits thus far
have been set by using the ultra-low background HPGe
γ spectrometry in Ref. [51]. Sensitivities in the range of
1018–1019 yr have been achieved. At present these experiments
are expected to come close to the sensitivity limit of 1020 yr.
It seems that in general the detection of the decays to the 2+
final states is hopeless in the near future.

V. NEUTRINOLESS DOUBLE-β DECAYS

We now turn to the calculations of the observables related
to 0ν2β decays. As discussed in Sec. III the increasing value
of gA can be related to the increasing value of gpp. In the
present calculations the value gpp = 0.80 is associated with
gA = 1.00 and the value gpp = 1.15 is associated with gA =
1.25. The value gpp = 1.15 was chosen because it produces
the minimum value of the 2ν2β NME for the ground-state
transition. This value is not very far from the collapse point of
the pnQRPA but is chosen to have a wide range of gpp values
to see how the magnitudes of the 0ν2β NMEs vary in this
range. The smaller value gpp = 0.80 was chosen such that the
available range of gpp values would be wide enough to confine
the possible values of the 0ν2β NMEs. The Jastrow- and

UCOM-correlated NMEs calculated in this way are shown in
Table III.

In Table III the first column lists the NMEs for different final
states in 96Mo, namely, the ground state, the first excited 0+
state, 0+

1 at 1148.13 keV of excitation, the second excited 0+
state, presumed to be a two-phonon state, 0+

2-ph, at 1330 keV of
excitation, and the resonant state at 2712.68 keV of excitation.
Here we assume the spin-parity 0+ for the resonant state,
denoted by 0+

res. The values of the Gamow-Teller, Fermi, and
total NMEs have been given for both Jastrow and UCOM
short-range correlations and the two extreme values of the
axial-vector coupling constant.

From Table III one observes interesting details: typically
the UCOM-correlated NMEs are larger than the Jastrow-
correlated ones due to the less sharp cut of the relative
two-nucleon wave function at short distances [27,31]. This
same pattern can be observed in the present calculations
for the ground-state NME and the NMEs corresponding to
the one-phonon states 0+

1 and 0+
res. This occurs because the

TABLE III. The computed Jastrow and UCOM correlated NMEs
for the ground-state and excited-state decays of 96Ru. The 0+

2 state is
described as a coupling of two 2+

1 ccQRPA phonons and the 0+
1 and

0+
res states are described by one ccQRPA phonon.

NME Jastrow UCOM

gA = 1.00 gA = 1.25 gA = 1.00 gA = 1.25

M
(0ν)
GT (0+

gs) 4.272 2.589 5.279 3.467

M
(0ν)
F (0+

gs) −1.560 −0.988 −1.877 −1.279

M (0ν) ′(0+
gs) 3.733 3.222 4.580 4.285

M
(0ν)
GT (0+

1 ) 1.046 2.004 1.087 2.045

M
(0ν)
F (0+

1 ) −0.237 −0.396 −0.249 −0.409

M (0ν) ′(0+
1 ) 0.821 2.258 0.855 2.307

M
(0ν)
GT (0+

2-ph) 0.353 0.394 0.329 0.371

M
(0ν)
F (0+

2-ph) −0.211 −0.204 −0.212 −0.205

M (0ν) ′(0+
2-ph) 0.360 0.524 0.346 0.502

M
(0ν)
GT (0+

res) 3.259 4.846 3.507 5.097

M
(0ν)
F (0+

res) −0.526 −0.650 −0.610 −0.734

M (0ν) ′(0+
res) 2.423 5.262 2.635 5.567
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decomposition of these NMEs in terms of multipoles looks
qualitatively similar (see below). Quite the contrary is true
for the two-phonon (0+

1 ) state: the UCOM NME is smaller
than the Jastrow NME. This strange behavior is explained
by the very different qualitative behavior of the multipole
decomposition—as shown below, the J ′ decomposition [see
Eq. (37)] in this case consists of contributions of wildly
alternating signs.

It is interesting to note that the one-phonon NMEs have
quite big magnitudes, of the same order as the ground-state
NME. The same feature of the 0+

1 state was observed in
Ref. [52] for the 0ν2β− decay of 96Zr, thus making it an
interesting state with respect to experimental observation of
double-β decay to an excited state.

As already indicated above, the 0νββ NMEs M (0ν)′ can
be decomposed into contributions of different intermediate
multipoles. This decomposition can be made in two ways,
either through the different multipole states Jπ of the inter-
mediate nucleus (in this case the states of 96Tc) or through
different couplings J ′ of the two decaying nucleons [31,53].
For the Gamow-Teller NME these decompositions can be
schematically written as

M
(0ν)
GT =

∑
Jπ

∑
J ′

M
(0ν)
GT (Jπ , J ′), (37)

where M
(0ν)
GT (Jπ, J ′) is given explicitly in Eq. (26). The

decompositions (37) are shown for the Gamow-Teller NMEs
of the decays of 96Ru in Figs. 2–5. All the figures re-
fer to calculations using the Jastrow short-range correla-
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FIG. 2. Decompositions of (37) in J π (upper panel) and J ′ (lower
panel) for the ground-state Gamow-Teller M

(0ν)
GT (0+

gs) NME of 96Ru.
Results for the Jastrow short-range correlations are shown with
gA = 1.25.

0

0.5

1

M
(0

ν
)

G
T

(J
)

0
1 2 3

4 5 6 7 8
J

96Ru(0+
gs → 0+

1−ph)

0

1

2

M
(0

ν
)

G
T

(J
π
)

+−
0

+−
1

+−
2

+−
3

+−
4

+−
5

+−
6

+−
7

+−
8

π
J

96Ru(0+
gs → 0+

1−ph)

FIG. 3. The same as in Fig. 2 for the one-phonon NME
M

(0ν)
GT (0+

1-ph) corresponding to the 0+
1 state at 1148.13 keV in 96Mo.

tions and the value gA = 1.25 for the axial-vector coupling
constant.

From the decomposition figures one can make the fol-
lowing general observations: For the ground-state NME the
decomposition in terms of Jπ is the typical one of the
pnQRPA calculations [31,37] and the decomposition in terms
of J ′ is typical of the shell-model [53] and pnQRPA [21,31]
calculations. Here typical for the Jπ decomposition are
the strong contributions of the high-multipole components
2−, 3+, 4−, and 5+ and the relatively strong 1+ contribution
(which depends strongly on the value of the strength parameter
gpp). For the J ′ decomposition typical is the large positive
monopole contribution and the much smaller, mostly negative,
higher-multipole contributions.

For the lowest one-phonon 0+ state, 0+
1 = 0+

1-ph, the pattern
is qualitatively different for the Jπ decomposition since the
multipole components other than 1+ are strongly suppressed.
In the case of the J ′ decomposition the majority of the
higher-multipole contributions are positive instead of negative.
The multipole decompositions of the 0+ resonant state, 0+

res,
which is also a one-phonon ccQRPA state, follow pretty much
the same pattern. The behavior of the two-phonon (0+

2-ph)
NME is qualitatively totally different: The J ′ decomposition
has both large positive and large negative contributions and
the monopole component is no longer the dominant one.
The alternating structure of this decomposition conspires
to produce larger Jastrow than UCOM NMEs. For the Jπ

decomposition the 1+ contribution is the predominant one.
The NMEs of Table III can be combined with the ap-

propriate phase-space factors to produce predicted half-lives
for a given value of the effective neutrino mass 〈mν〉. The
half-lives of the different 0ν2β modes can be compactly
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FIG. 4. The same as in Fig. 2 for the two-phonon NME
M

(0ν)
GT (0+

2-ph) corresponding to the 0+
2 state at 1330 keV in 96Mo.

written as

T
β+β+

1/2 = T
β+β+

0 (〈mν〉 [eV])−2, (38)

T
β+EC

1/2 = T
β+EC

0 (〈mν〉 [eV])−2, (39)

T ECEC
1/2 = T ECEC

0 (〈mν〉 [eV])−2, (40)

where the effective neutrino mass should be inserted in units
of electron volts. In Table IV the auxiliary factors of the above
equations are given for both the Jastrow and UCOM short-
range correlations.

From Table IV one observes that for the decay to the ground
state the range of half-lives is rather narrow in spite of the wide
range of values of gpp used in the calculations. In contrast to
this, for the other decays the range of half-lives is wide. The gpp

dependence of the corresponding transition amplitudes arises
mainly from the gpp dependence of the 1+ multipole. In the
present case Table III tells us that in fact the Gamow-Teller and
Fermi NMEs change quite a bit for the ground-state transition
but this change is compensated by the change in the value of gA

in the definition of the total NME M (0ν)′. For the excited-state
transitions the changes in the individual NMEs are in directions
that are generally opposite to the ones of the ground-state NME
and this conspires to produce large variations for the total
NME. The absolute variation of the two-phonon NME with
varying gA is, in fact, quite small when compared to the varia-
tion of the NMEs corresponding to the other decay transitions.
The weak dependence on gpp of the two-phonon NMEs is well
known from the earlier works [12,54] for 0ν2β− decays.

Table IV indicates that the best detection possibilities are
for the β+EC decay to the ground state with the half-lives being
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FIG. 5. The same as in Fig. 2 for the resonance NME M
(0ν)
GT (0+

res)
corresponding to the 0+ state at 2712.68 keV in 96Mo.

in the range of (6–10) × 1028 yr for an effective neutrino mass
of 0.1 eV. For the β+β+ mode the half-lives are one order of
magnitude longer. Decays to the excited states will be very
hard to detect. Also the resonant 0νECEC decay is extremely
hard to detect, with the predicted half-lives exceeding 1033 yr
for effective neutrino masses of tenths of an electron volt. The
reason for this long half-life of this decay mode is the badly
fulfilled resonance condition in the half-life expression (22).
In this case the degeneracy parameter has the value |Q − E| =
3.90 keV and thus is, unfortunately, in the keV range instead
of the desired eV range of energies. One should also point
out that the 0+ assignment for the spin-parity of the resonant
state is unlikely [23] and the angular momentum of the state
is likely to be higher. This would lead to an increase of the
estimated half-life and would render the R0νECEC transition
even harder to detect.

TABLE IV. The auxiliary factors of Eqs. (38)–(40) for the decays
of 96Ru.

State s.r.c. T0

β+β+ β+EC R0νECEC
(1027 yr) (1026 yr) (1031 yr)

0+
gs UCOM 5.89–6.72 4.97–5.68

Jastrow 8.86–11.9 7.48–10.0

0+
1 UCOM 104–756

Jastrow 108–819

0+
2-ph UCOM 3400–7300

Jastrow 3200–6700

0+
res UCOM 4.37–19.5

Jastrow 4.89–23.0
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VI. SUMMARY AND CONCLUSIONS

The various modes of two-neutrino and neutrinoless
double-β decays of 96Ru have been investigated for the
associated nuclear matrix elements and decay half-lives. A
QRPA-based theory framework with G-matrix-based two-
body interactions and realistically large single-particle bases
has been used in the calculations. The computed values of
the nuclear matrix elements have been tabulated by taking
into account their theoretical error limits. The half-lives
corresponding to these matrix elements have been tabulated
for two different short-range correlations.

The two-neutrino ECEC and β+EC double-β decays to
the ground state and the ECEC decay to the first excited 0+
state at 1148.13 keV of excitation have computed half-lives
in the range of (5–920) × 1020 yr and thus are potentially

detectable in (near) future experiments. The range of half-
lives for the neutrinoless double-β decays starts from 1028 yr
for effective neutrino masses of a few tenths of an electron
volt.

The computed half-life for the experimentally interesting
resonant neutrinoless double electron capture turns out to be
more than 1033 yr for a neutrino mass of 0.1 eV. Hence, this
decay mode seems to be extremely hard to measure in future
experiments.
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