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Thomas Blasi,!> Mario F. Borunda,>"* Esa Risénen,"* and Eric J. Heller!®
' Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Physik Department, Technische Universitdit Miinchen, James-Franck-Str., 85747 Garching, Germany
3Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
4Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland
SNanoscience Center, Department of Physics, University of Jyviskyld, FI-40014 Jyviskyld, Finland
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 1 March 2013; published 13 June 2013)

We apply quantum optimal control theory to establish a local voltage-control scheme that operates in
conjunction with the numerically exact solution of the time-dependent Schrodinger equation. The scheme is
demonstrated for high-fidelity coherent control of electronic charge in semiconductor double quantum dots. We
find tailored gate voltages in the viable gigahertz regime that drive the system to a desired charge configuration
with >99% yield. The results could be immediately verified in experiments and would play an important role in

applications towards solid-state quantum computing.
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During the past decade, advances in the fabrication of
custom-made nanostructures have allowed the observation
and coherent control of single-electron dynamics in low-
dimensional semiconductor systems improving the prospects
and feasibility of quantum information processing."? In this
context, electron transport through double quantum dots
(DQDs) has been an active field of research® and opened access
to controlling electron dynamics on the single-particle level*
as demonstrated by several ground-breaking experiments.>~!!
Fast and accurate control of electronic states is a key require-
ment for solid-state quantum information processing. Here,
we apply a local optimal control theory (OCT), a powerful
approach to find optimized gate voltages that induce coherent
transitions between electronic states in solid-state devices.
The proposed schemes achieve (i) faster operation time and
(i1) limits the frequencies used in the voltage profile to the
experimentally accessible range, while maximizing the fidelity
of the process.

The behavior of electric charge in DQDs has recently been
the subject of several theoretical studies proposing schemes
to coherently control the dynamics of the electrons.!>"!
Theoretical strategies based on global gate voltages'*!> and
optimized laser pulses'®!” have shown that it is possible to
control the electronic states in DQD models. However, the
fabrication of working devices would be easier if coupling
to terahertz optical fields'” or the use of strong gate voltages
modulated in picosecond time scales'*!> was avoided. In this
Rapid Communication, we demonstrate an optimized method
to control the single-electron dynamics in DQDs by applying
local gate voltages. We employ OCT'®!? to find optimized
and realistic gigahertz voltage profiles enabling coherent
single-electron transfer with extremely high fidelities. We
apply OCT towards the optimization of local potentials to drive
transitions from a delocalized to a localized electronic state. To
the best of our knowledge, OCT has not been applied to obtain
local time-dependent potentials is solid-state devices before.
We demonstrate the general applicability of our approach in
one- and two-dimensional DQD systems.

As illustrated in Fig. 1(a), we consider a DQD system
consisting of two quantum wells separated by a tunnel barrier
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with an additional time-dependent local potential U (x,¢). The
local time-varying potential could be realized by using local
gate voltages® that affect only one of the dots or the charged
tip of a scanning probe microscope (SPM) acting as a local
gate.”>> A voltage difference Vi, between the tip and the
system would induce a charge g = CV;, in the dot located
underneath the SPM, where C is the capacitance between the
tip and the dot. For the systems studied here, we consider GaAs
material parameters within the effective-mass approximation,
i.e.,m* = 0.067m, and € = 12.4¢.

The time-dependent Hamiltonian is given by H(x,t) =
pz/(Zm*) + V.(x) 4+ U(x,t), where V.(x) is the DQD confine-
ment potential (see below) and U (x,?) is described above [see
Fig. 1(b)]. For gates that do not change position, the poten-
tial is separable and can be expressed as the product of the
spatial and temporal parts, U(x,?) = g(x) f(¢). We model the
spatial part as g(x) = (B/o~/27) exp(—x2/20%) with g =
1.0 nm and o = 34.3 nm.

Our goal is to find the optimal time-dependent function
f(¢) such that the electron wave function |\W(¢)) is driven from
its initial state |V (r = 0)) = |Py) into a predefined target state
|®Pg). The process concludes at a fixed target time 7', when the
overlap | (¥(T)|®g)|? is maximal. In contrast to conventional
applications of OCT, where the controlling field is the dipole
interaction resulting from applying a laser field (cf. Ref. 21),
we use a local potential Hjo. = U(x,t) as the control field. The
control equations now become

10,W(r) = HOW(), W)= Py, (1)
10, x (1) =HOx (@), x(T)=Pp(Pe|¥(T)),  (2)

1
f) = —&Im(x(t)lg(X)l‘I’(t)% 3

Equation (1) represents the Schrodinger equation and the initial
conditions used, while Eq. (2) is the time evolution of the
system while the overlap x(7) is maximized. We set the
fluence, a measure of the total irradiated energy presented here
in units of [voltage?x time], to a fixed value fOT dr f2(t) =
F*. In Eq. (3) for the field, the Lagrange multiplier «
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FIG. 1. (Color online) Schematic of the double quantum dot system. (a) Two quantum dots are embedded in a semiconductor heterostructure.
A back gate voltage V, applied to the substrate can tune the global potential in the system. A local gate, such as the charged tip of a scanning
probe microscope (SPM) capacitively coupled to the system, can change the potential locally. When the SPM tip is located above one of the
quantum dots, applying a time-dependent voltage V;;p(7) induces a local time-dependent potential U(x,?) affecting mainly one of the dots.
(b) Confinement potential V,(x) for a one-dimensional double quantum dot system and the potential U (x,¢) induced by the local gate.

is calculated through the fixed fluence F* as explained in
detail in Ref. 21. To solve the control equations (1)—(3), we
use the iterative method of Werschnik and Gross®* and the
split-operator method?® for the time propagation implemented
in the OCTOPUS code package.?®

In principle, arbitrary charge states can be chosen for the
initial and final states.2! In the scenarios tested here, the chosen
initial state is the ground state |®;) = |1) and the target state
is a left localized electronic configuration |®r) = |L). Each of
those two states has a measurable signature, which can be ex-
perimentally distinguished using charge sensing techniques.?’
Moreover, by setting f(t) =0 at ¢t = 0 and T, the local gate
voltage U(x,t) is zero at the initial and final times, and the
time evolution of the system after the control scheme has been
applied remains unaltered. We note that in the framework of
quantum OCT (QOCT), it is also possible to require different
envelope constraints on the envelope of f(t).?!

The states localized in a quantum well can be expressed
as superpositions of the two lowest (symmetric and antisym-
metric) states |1) and |2) by |[L) = 1/+/2(]1) — |2)) and |R) =
1/ﬁ(| 1) + 12)). Att = T, once the system has reached either
one of the superpositions, oscillations of frequency w;; =
E, — E; are induced between the occupation probabilities of
|L) and | R). Experimentally, due to the presence of impurities,
a local gate voltage would have to be applied to one of the
wells of the DQD to render the left and right dots energetically
degenerate.

We first consider a 1D system with confinement V!P(x) =
w}/2min{(x — d/2)*,(x + d/2)*} [see Fig. 1(b)], where d
is the interdot distance and wy is the confinement strength.
The general challenges in the control of such a harmonic
system have been considered in Ref. 12. We investigate the
localization of the electron when a monochromatic time-
dependent gate voltage f(¢) = A sin(wt) is applied to one of
the wells. Figure 2 presents the degree of localization of the
electron in the left (right) well as functions of time # and field
frequency w for three sets of amplitudes for the gate voltage
A and confinement strength of the wells wq. Dashed lines
indicate when the gate voltage is zero f(¢) = 0, corresponding
to wt =nmw (n=1,2,...). For clarity, only the lines for
n < 5 are depicted. The complex behavior seen in Fig. 2,
especially at low frequencies, is a result of the combination
of inherent system dynamics (oscillation of the superposition)

and the system-field interaction. Overall, Fig. 2 demonstrates
that electron localization is very sensitive to the amplitude
and frequency. High-fidelity control thus calls for optimized
schemes applied as follows. As will be shown, such a scheme
does not necessarily lead to a complicated control gate voltage.
In contrast, control schemes applied to optical fields have led
to rather complicated pulses.!'>!6!7

For concreteness, we consider two optimized voltage pro-
files for local gates acting on the right quantum well that drive
the system from the ground state to the left-localized config-
uration achieving maximum fidelity. We analyze the obtained
fields by fitting them with a sum f(t) = ), A; sin(w;? + ¢;)
and show that in spite of this simplification, the yield is not
notably altered. This technique is both useful for experimental
applicability and interesting in terms of robustness of the
optimized fields calculated with QOCT.?®

In Fig. 3, we present the optimization of a local gate
voltage where the involved frequencies are limited to the low-
gigahertz regime. The parameters used for the optimization
of the gate voltage of the 1D system with d = 58.7 nm and
wp = 21 x 2.03 GHz is limited to the region highlighted in
the inset of Fig. 2(b). The maximum allowed frequency is
Wmax = 27 X 2.87 GHz and the field duration is T = 222 ps.
The energy difference between the left- and right-localized
states, determined by the width of the tunneling barrier, is
w1y = 21 x 10.0 GHz. By iterating the control equations,
we find a field that achieves an extremely high overlap of
99.5%. The time dependence of the gate potential as well as
the occupations of the states |1), |2), and their superposition
|L) are presented in Fig. 3. Due to the large energy difference
between the second and third state (E3 — E, = 1.96 THz), the
occupation of states n > 2 remains zero during the process.
Strikingly, the optimal field contains only one frequency
w = 2w x 2.25 GHz. Thus the optimal field can be well
represented by the simple expression f(¢) = A sin(wt), with
A = 3.55 mV. We point out, however, that due to the complex-
ity of the low-frequency dynamics (see Fig. 2), it would be a
cumbersome task to determine the correct frequency and the
amplitude without optimization. Yet, OCT provides a simple
and experimentally feasible frequency/amplitude combination
in a single computation.

To establish a faster delocalized-localized transition rate,
we consider the parameter range in the inset of Fig. 2(c)
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FIG. 2. (Color online) Probability of the electron occupying the
left or right well as a function of time and frequency of the time-
dependent local gate voltage f(¢) = A sin(wt) acting only on the right
well. Dashed lines correspond to f(¢) = 0. Interdot distance is fixed
atd = 58.7nmin all three plots. The confinement strength wy, energy
spacing w1, and the field amplitude A are as follows: (a) wy = 27w X
2.03 THz, w1, = 27 x 10.0 GHz,and A = 11.9 mV, (b) wy = 27 %
2.03 THz, wy; = 27 x 10.0 GHz, and A = 5.9 mV, and (c) wy =
2w x 1.43 THz, w» = 27 x 38.7 GHz, and A = 5.9 mV. The insets
highlight the optimization regimes used when limiting the parameters
to (b) low frequencies (T = 222 ps and a filter frequency wp.x =
2 x 2.87 GHz) and (c) shorter local gate voltage interactions (T =
22.2 ps and a filter frequency wm. = 27w x 71.7 GHz).

and set wy = 27 x 1.43 THz, wm.x = 27 x 71.7 GHz, and
T = 22.2 ps. The energy difference between the first two states
is wyp = 2w x 38.7 GHz. OCT produces the field presented
in Fig. 4(a) resulting in 99.9% overlap. The optimal field can
be reconstructed with two frequencies f(r) = A; sin(wt +
¥1) + Az sin(wyt + ¢2) where wy = 2x x 22.5 GHz, w, =
27 x 677 GHz, A; =936 mV, A, =3.64 mV, ¢ =
—0.0713, and ¢, = —3.32. As before, the reconstructed field
keeps the yield unaltered.

Finally, we demonstrate that OCT applies also
to 2D DQDs modeled here by a confining poten-
tial V?P(x,y) = max{G(x — d,) + G(x) + G(x + d,),G(y —
dy)+ Gy +d,)}, where G(x)= (a/cv/2m)exp(—x?/2c?)
are Gaussian-shaped barriers that set the DQD size to
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FIG. 3. (Color online) Low-frequency optimization of the delo-
calized electron state to a left-localized state transition. The target
state is reached while minimizing the frequencies of the local
gate voltage to the few GHz frequency regime. (a) Shape of the
optimal field obtained by applying OCT to the local gates for a
pulse limited by a filter frequency to wm. = 27 x 2.87 GHz and of
duration 7' = 222 ps. This pulse can be fit by the sinusoidal function
f(t) =3.55sin(2r x 2.25GHz x t) mV. (b) Overlap of the wave
function during the time evolution with the states |1) (red) and |2)
(blue) as well as for the left-localized superposition |L) (black). The
target state is reached with a yield of 99.5%.

2d, = 68.5 nm in the x direction and 2d, = 34.3 nm in
the y direction. The constants a and ¢ control the height
and width of the barriers: the full width at half maximum
of the barrier is FWHM = 2+2In2¢c =4.90 nm and its
maximal height is /e = a/cy/27 = 178 mV. The energy
difference between the symmetric and antisymmetric state
is Ey — Ey =21 x 26.5 GHz. The use of OCT finds an
optimized local gate voltage that contains frequencies below
Wmax = 2w X 115 GHz, as presented in Fig. 5(a). The local
gate acts in the 2D DQDs system for 7 = 34.9 ps and drives
the system into the left-localized state with a probability of
99.6% [see Fig. 5(b)]. Again, the pulse can be analyzed
and successfully reconstructed without reducing the yield.
The probability amplitude of the electron wave function is
illustrated for several time steps in Fig. 5(c).?’ Comparing our
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FIG. 4. (Color online) Fast optimization of the delocalized elec-
tron state to a left-localized state transition. The target state is reached
while minimizing the interaction time of the local gate voltage to a
few picoseconds. (a) Shape of the optimal field obtained by applying
OCT to the local gates for a pulse of duration 7" = 22.2 ps and limited
by a filter frequency to wy,x = 2w x 71.7 GHz. This pulse can be
fit by a sum of two sinusoidal functions. (b) Overlap of the wave
function during the time evolution with the states |1) (red) and |2)
(blue) as well as for the left-localized superposition |L) (black). The
target state is reached with a yield of 99.9%.
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FIG. 5. (Color online) Local gate OCT optimization of a two-
dimensional system. The transition from a delocalized electron state
to a left-localized state transition is achieved by minimizing the
interaction time. (a) Shape of the optimal field obtained by applying
OCT. The best fit for the pulse is given by f(¢) = Z?:1 A; sin(w;t +
@;) with the parameters w; = 2w x 15.0 GHz, w, = 27 x 45.0 GHz,
w3 = 2w x 75.1 GHz, ws = 27 x 105 GHz, A; =8.96 mV, A, =
4.64 mV, A; =2.89 mV, Ay = 1.91 mV, ¢, = 0.234, ¢, = —2.71,
@3 = —0.443, and ¢4 = —3.77. (b) Overlap of the wave function
during the time evolution with the states |1) (red) and |2) (blue) as
well as for the left-localized superposition |L) (black). (¢) Snapshots
of the probability density of the electron for several times. Initially
the probability density is higher for the right dot, while after 23 ps,
it is more likely to find the electron on the left dot. Finally, when the
local gate interaction is complete at 7 = 34.9 ps, the target state is
reached with a yield of 99.6%.
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results to an approach, where the gate voltage is simply tuned
up in an unoptimized way to an amplitude A (see Fig. 2),
shows that the yields obtained with our method are at least
10% higher for the given target times.

This work shows that OCT can be used to pursue the
goals of accelerating the target time 7' and/or minimizing the
applied frequency range without compromising the fidelity of
the process. To establish the practicality of the experimental
realization of the proposed control scheme, we discuss the
robustness of our result in the presence of disorder and
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sensitivity to dephasing. First, the actual potential (including
the contribution from impurities) of a particular quantum well
can be obtained by inverting the Schrodinger equation for
the measured single-electron spectrum.*” Optimizing with the
actual potential could then be done with OCT. The robustness
of the control strategy should be assessed in the context of the
Hamiltonian identification proposed above, where the accurate
identification of the disorder potential is of great significance.
We point out that the gigahertz regime is experimentally acces-
sible and thus the obtained fields [see Figs. 3(a), 4(a), and 5(a)]
are realizable, in contrast to an instantaneous switching of the
electric field.!> The pulse sequence necessary for the control
schemes is accomplished in a time scale that ranges from 22 to
222 ps. These times are below the inhomogeneous dephasing
time of 250 ps measured by different techniques in GaAs
DQDs at temperatures ~90 mK.!'!*132 Therefore we believe
that the time scales presented here are reachable.

In conclusion, we have shown through numerically exact
calculations that electron localization in a single-electron
semiconductor DQD system can be coherently controlled with
simple but optimized local gate voltages up to extremely
high fidelities. To this end, we have extended the application
of quantum optimal control theory to the domain of local
potentials. Our analysis has shown that the optimized local
fields can be easily reconstructed in the gigahertz regime. The
general applicability of our approach has been demonstrated
by considering both one- and two-dimensional systems and
different confining potentials. The demonstrated optimizations
are obtained using physical constraints that are within reach
of present experimental setups, resulting in an opportunity
for a clean test of OCT. The coherent high-fidelity control of
electronic charge via surface or back gates, or via the tip of a
scanning probe microscope, represents a clear advancement in
solid-state quantum information.
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