

This is an electronic reprint of the original article. This reprint *may differ* from the original in pagination and typographic detail.

Author(s):	Bulatov, Evgeny;	Chulkova,	Tatiana;	Haukka,	Matt
Author(s):	bulatov, Evgelly,	Cituikova,	i atiaiia,	паикка,	IVIA

Title: 5-Imino-3,4-diphenyl-1H-pyrrol-2-one

Year: 2014

Version:

Please cite the original version:

Bulatov, E., Chulkova, T., & Haukka, M. (2014). 5-Imino-3,4-diphenyl-1H-pyrrol-2-one. Acta Crystallographica Section E: Structure Reports Online, 70(2), o162. https://doi.org/10.1107/S1600536814001032

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

5-Imino-3,4-diphenyl-1*H*-pyrrol-2-one

Evgeny Bulatov, a,b Tatiana Chulkova a* and Matti Haukkab

^aDepartment of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, and ^bDepartment of Chemistry, University of Jyvaskyla, PO Box 35 FI-40014 Jyväskylä, Finland Correspondence e-mail: t.chulkova@spbu.ru

Received 7 January 2014; accepted 15 January 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean $\sigma(C-C) = 0.003 \text{ Å}$; R factor = 0.043; wR factor = 0.097; data-to-parameter ratio = 12.1.

The title compound, $C_{16}H_{12}N_2O$, exists in the crystalline state as the 5-imino-3,4-diphenyl-1*H*-pyrrol-2-one tautomer. The dihedral angles between the pyrrole and phenyl rings are 35.3 (2) and 55.3 (2)°. In the crystal, inversion dimers linked by pairs of $N-H\cdots N$ hydrogen bonds generate a graph-set motif of $R_2^2(8)$ via $N-H\cdots N$ hydrogen bonds.

Related literature

For general background to 5-iminopyrrol-2-ones, see: Alves *et al.* (2009). For crystal structures of related compounds, see: Zhang *et al.* (2004).

Experimental

Crystal data

 $C_{16}H_{12}N_2O$ a = 19.687 (3) Å $<math>M_r = 248.28$ b = 6.3064 (10) ÅMonoclinic, <math>C2/n c = 20.611 (3) Å $β = 97.850 (3)^{\circ}$ $μ = 0.08 \text{ mm}^{-1}$ $V = 2534.8 (7) \text{ Å}^3$ T = 100 K Z = 8 $0.12 \times 0.10 \times 0.07 \text{ mm}$ Mo Kα radiation

Data collection

 $\begin{array}{ll} \mbox{Bruker KappaAPEXII} & 8351 \mbox{ measured reflections} \\ \mbox{diffractometer} & 2178 \mbox{ independent reflections} \\ \mbox{Absorption correction: multi-scan} & 1360 \mbox{ reflections with } I > 2\sigma(I) \\ \mbox{} (SADABS; \mbox{Sheldrick}, 2008b) & R_{\rm int} = 0.050 \\ \mbox{} T_{\rm min} = 0.990, \ T_{\rm max} = 0.994 \\ \end{array}$

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.043 & \text{H atoms treated by a mixture of} \\ wR(F^2)=0.097 & \text{independent and constrained} \\ S=1.00 & \text{refinement} \\ 2178 \text{ reflections} & \Delta\rho_{\max}=0.17 \text{ e Å}^{-3} \\ 80 \text{ parameters} & \Delta\rho_{\min}=-0.18 \text{ e Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
N1-H1···N2i	0.93 (2)	1.96 (2)	2.882 (3)	172 (2)

Symmetry code: (i) -x + 1, -y + 3, -z + 1.

Data collection: *APEX2* (Bruker, 2010); cell refinement: *APEX2*; data reduction: *APEX2*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008a); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008a) and *SHELXLE* (Hübschle *et al.*, 2011); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009); software used to prepare material for publication: *SHELXL97*.

The authors are obliged to the Ministry of Education and Science of the Russian Federation for the Scholarship of the President of the Russian Federation for Students and PhD Students Training Abroad (2013–2014).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2181).

References

Alves, M. J., Carvalho, M. A., Proença, M. F. J. R. P. & Booth, B. L. (2009). J. Heterocycl. Chem. 37, 1041–1048.

Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.

Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.

Sheldrick, G. M. (2008b). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Zhang, Z.-Q., Uth, S., Sandman, D. J. & Foxman, B. M. (2004). J. Phys. Org. Chem. 17, 769–776.

Acta Cryst. (2014). E70, o162 [doi:10.1107/S1600536814001032]

5-Imino-3,4-diphenyl-1*H*-pyrrol-2-one

Evgeny Bulatov, Tatiana Chulkova and Matti Haukka

S1. Comment

The goal of this work was to determine which of the possible tautomers, *viz.* 5-Imino-3,4-diphenyl-1*H*-pyrrol-2-one or 5-amino-3,4-diphenyl-2H-pyrrol-2-one, is stabilized in the solid state.

In the title compound, the C1–N1 and C4–N1 bonds have the same length (1.380 (3) Å), which is longer than the C4–N2 bond length (1.271 (2) Å). In combination with the features of the difference Fourier map, this allows the unambiguous location of the hydrogen atom at the N1 atom. Thus, the title compound exists as 5-Imino-3,4-diphenyl-1H-pyrrol-2-one in the crystalline state. Two monomeric title compounds are linked together by hydrogen bonds N–H•••N making a graph-set motif of $R^2_2(8)$ (Table 1, Fig. 2).

S2. Experimental

3,4-Diphenyl-1*H*-pyrrol-2,5-diimine (0.121 mmol, 0.030 g) was hydrolyzed in undried chloroform (1 mL) for 1 week at room temperature. The yellow crystals of 5-Imino-3,4-diphenyl-1*H*-pyrrol-2-one were obtained from the reaction mixture.

S3. Refinement

The crystal of the title compound was immersed in cryo-oil, mounted in a Nylon loop, and measured at a temperature of 100 K. The X-ray diffraction data was collected on a Bruker Kappa Apex II diffractometer using MoK α radiation (λ = 0.71073 Å). The *APEX2* (Bruker AXS, 2010) program package was used for cell refinements and data reductions. The structure was solved by direct methods using the *SHELXS-97* (Sheldrick, 2008*a*) program. A multi-scan absorption correction based on equivalent reflections (*SADABS*, Sheldrick, 2008*b*) was applied to the data. Structural refinement was carried out using *SHELXL-97* (Sheldrick, 2008*a*) with the *Olex2* (Dolomanov *et al.*, 2009) and *SHELXLE* (Hübschle *et al.*, 2011) graphical user interfaces.

The NH hydrogen atoms were located from a difference Fourier map and refined isotropically. Other hydrogen atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C-H=0.95 Å and $U_{iso}=1.2$ U_{eq} (parent atom). The highest peak is located 1.08 Å from atom H6 and the deepest hole is located 0.98 Å from atom N1.

Acta Cryst. (2014). E70, o162 sup-1

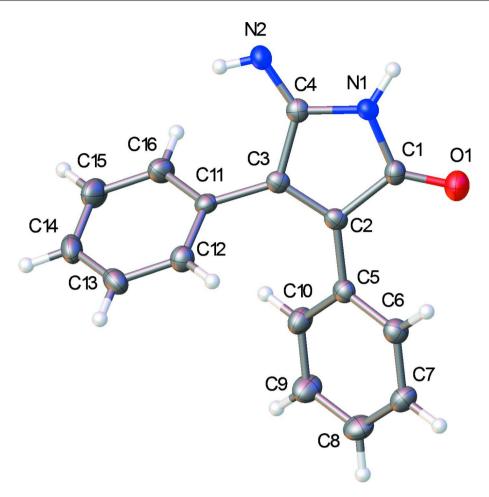


Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

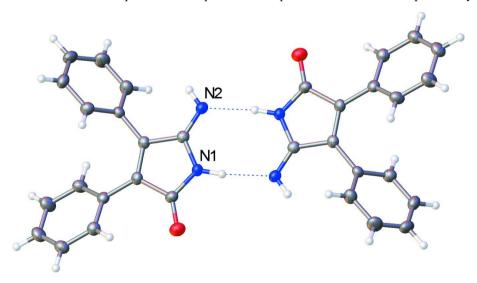


Figure 2 The structure of the $R^2_2(8)$ dimeric graph-set motif of the title compound.

Acta Cryst. (2014). E70, o162 sup-2

5-Imino-3,4-diphenyl-1*H*-pyrrol-2-one

Crystal data

C₁₆H₁₂N₂O $M_r = 248.28$ Monoclinic, C2/nHall symbol: -C 2ybc a = 19.687 (3) Åb = 6.3064 (10) Åc = 20.611 (3) Å $\beta = 97.850 (3)^{\circ}$ $V = 2534.8 (7) \text{ Å}^3$ Z = 8

Data collection

Bruker KappaAPEXII diffractometer Radiation source: fine-focus sealed tube Horizontally mounted graphite crystal monochromator Detector resolution: 9 pixels mm⁻¹ φ scans and ω scans with κ offset Absorption correction: multi-scan (SADABS; Sheldrick, 2008b)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.097$ S = 1.002178 reflections 180 parameters 0 restraints Primary atom site location: structure-invariant

direct methods

F(000) = 1040 $D_{\rm x} = 1.301 \; {\rm Mg \; m^{-3}}$

Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1492 reflections

 $\theta = 3.1-22.6^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 100 KPlate, vellow

 $0.12 \times 0.10 \times 0.07 \text{ mm}$

 $T_{\min} = 0.990, T_{\max} = 0.994$ 8351 measured reflections 2178 independent reflections 1360 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.050$ $\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$ $h = -23 \rightarrow 20$

 $k = -7 \rightarrow 7$ $l = -24 \rightarrow 24$

Secondary atom site location: difference Fourier

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.045P)^2 + 0.1005P]$ where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta \rho_{\rm max} = 0.17 \text{ e Å}^{-3}$ $\Delta \rho_{\min} = -0.18 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
O1	0.57199 (8)	1.0248 (2)	0.40578 (7)	0.0350 (4)	
N1	0.50193 (9)	1.2453 (3)	0.45727 (8)	0.0223 (4)	
H1	0.5344 (12)	1.344 (4)	0.4747 (11)	0.051 (8)*	

Acta Cryst. (2014). E70, o162 sup-3

N2	0.40778 (11)	1.4207 (3)	0.48842 (8)	0.0247 (5)
H2	0.3658 (11)	1.411 (3)	0.4860 (10)	0.024 (7)*
C1	0.51464 (11)	1.0785 (3)	0.41730 (9)	0.0222 (5)
C2	0.44609 (10)	0.9837 (3)	0.39176 (9)	0.0205 (5)
C3	0.39760 (10)	1.0984 (3)	0.41626 (9)	0.0202 (5)
C4	0.43240 (11)	1.2715 (3)	0.45738 (9)	0.0208 (5)
C5	0.43756 (10)	0.8056 (3)	0.34521 (9)	0.0219 (5)
C6	0.48541 (11)	0.6423 (3)	0.34911 (10)	0.0257 (5)
H6	0.5242	0.6466	0.3820	0.031*
C7	0.47724 (11)	0.4730 (3)	0.30569 (10)	0.0290(6)
H7	0.5105	0.3631	0.3086	0.035*
C8	0.42056 (12)	0.4650 (4)	0.25831 (10)	0.0331 (6)
H8	0.4143	0.3477	0.2292	0.040*
C9	0.37286 (12)	0.6268 (4)	0.25302 (10)	0.0358 (6)
H9	0.3341	0.6215	0.2200	0.043*
C10	0.38148 (11)	0.7966 (3)	0.29575 (10)	0.0289 (6)
H10	0.3489	0.9086	0.2914	0.035*
C11	0.32263 (10)	1.0668 (3)	0.40864 (9)	0.0203 (5)
C12	0.29601 (11)	0.8701 (4)	0.42262 (9)	0.0266 (5)
H12	0.3263	0.7584	0.4383	0.032*
C13	0.22600 (11)	0.8354 (4)	0.41389 (10)	0.0310(6)
H13	0.2084	0.7004	0.4235	0.037*
C14	0.18171 (11)	0.9967 (4)	0.39126 (10)	0.0337 (6)
H14	0.1337	0.9719	0.3842	0.040*
C15	0.20730 (12)	1.1938 (4)	0.37900 (11)	0.0381 (6)
H15	0.1766	1.3061	0.3649	0.046*
C16	0.27750 (11)	1.2298 (4)	0.38699 (10)	0.0303 (6)
H16	0.2947	1.3656	0.3777	0.036*

Atomic displacement parameters (\mathring{A}^2)

	<i>U</i> ¹¹	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0264 (10)	0.0386 (10)	0.0404 (9)	0.0027 (8)	0.0056 (7)	-0.0014(8)
N1	0.0190 (11)	0.0212 (11)	0.0262 (10)	-0.0010(9)	0.0010(8)	-0.0029(9)
N2	0.0183 (12)	0.0277 (12)	0.0279 (10)	-0.0014(10)	0.0024 (9)	-0.0032(9)
C1	0.0191 (13)	0.0234 (13)	0.0240 (11)	0.0016 (10)	0.0029 (10)	0.0030 (10)
C2	0.0218 (12)	0.0175 (12)	0.0214 (10)	-0.0006 (10)	0.0000 (9)	0.0029 (9)
C3	0.0224 (13)	0.0185 (12)	0.0192 (10)	0.0001 (10)	0.0005 (9)	0.0034 (9)
C4	0.0217 (13)	0.0224 (13)	0.0181 (11)	0.0010 (10)	0.0023 (9)	0.0039 (10)
C5	0.0219 (12)	0.0232 (13)	0.0212 (11)	-0.0012 (10)	0.0046 (10)	0.0008 (9)
C6	0.0254 (13)	0.0268 (13)	0.0242 (11)	0.0004 (11)	0.0006 (10)	0.0012 (10)
C7	0.0319 (14)	0.0263 (14)	0.0292 (11)	0.0058 (11)	0.0058 (11)	-0.0002 (10)
C8	0.0404 (15)	0.0331 (15)	0.0260 (12)	0.0016 (12)	0.0054 (12)	-0.0078(11)
C9	0.0346 (15)	0.0417 (15)	0.0288 (12)	0.0064 (13)	-0.0043(11)	-0.0087 (12)
C10	0.0267 (13)	0.0318 (14)	0.0278 (12)	0.0069 (11)	0.0017 (11)	-0.0029 (11)
C11	0.0225 (12)	0.0191 (13)	0.0193 (11)	0.0016 (10)	0.0026 (9)	-0.0031(9)
C12	0.0249 (14)	0.0271 (14)	0.0278 (12)	0.0023 (11)	0.0034 (10)	0.0020 (10)
C13	0.0255 (14)	0.0345 (15)	0.0333 (13)	-0.0083(12)	0.0045 (11)	-0.0052(11)

Acta Cryst. (2014). E**70**, o162

120.0

120.1

120.1

119.7

119.7

119.8 (2)

120.6(2)

119.9 (2)

C14 C15	0.0186 (13) 0.0264 (15)	0.0455 (17) 0.0378 (16)	0.0366 (13) 0.0474 (15)	-0.0004 (13) 0.0089 (12)	0.0020 (10) -0.0050 (12)	-0.0098 (12) -0.0044 (12)
C16	0.0277 (14)	0.0243 (14)	0.0373 (13)	0.0023 (11)	-0.0014 (11)	-0.0002 (11)
Geomet	tric parameters (A	Å, °)				
O1—C	1	1.233	(2)	C8—C9	1	.381 (3)
N1—C	4	1.379	(3)	C8—H8	C	0.9500
N1—C	1	1.380	(3)	C9—C10	1	.382 (3)
N1—H	1	0.93 (2	2)	С9—Н9	C	0.9500
N2—C	4	1.271	(2)	C10—H10	C	0.9500
N2—H	2	0.82 (2	2)	C11—C16	1	.392 (3)
C1—C2	2	1.504	(3)	C11—C12	1	.392 (3)
C2—C3	3	1.350	(3)	C12—C13	1	.383 (3)
C2—C:	5	1.472	(3)	C12—H12	C	0.9500
C3—C	11	1.476	(3)	C13—C14	1	.378 (3)
C3—C4	4	1.490	(3)	C13—H13	C	0.9500
C5—C	6	1.391	(3)	C14—C15	1	.378 (3)
C5—C	10	1.398	(3)	C14—H14	C	0.9500
C6—C	7	1.388	(3)	C15—C16	1	.388 (3)
C6—H	6	0.9500)	C15—H15	C	0.9500
C7—C8	8	1.380	(3)	C16—H16	C	0.9500
C7—H	7	0.9500)			
C4—N	1—C1	110.67	(19)	C7—C8—H8	1	19.9
C4—N	1—H1	123.5	(14)	C9—C8—H8	1	19.9
C1—N	1—H1	124.7	(14)	C8—C9—C10	1	20.0 (2)
C4—N2		111.4 (` '	C8—C9—H9		20.0
O1—C		124.8	• •	C10—C9—H9		20.0
O1—C		128.67	` '	C9—C10—C5		20.8 (2)
N1—C		106.56		C9—C10—H10		19.6
C3—C2		129.01	` '	C5—C10—H10		19.6
C3—C2		107.61		C16—C11—C12		18.9 (2)
C5—C2		123.28	` ′	C16—C11—C3		21.32 (19)
C2—C3		129.49	* *	C12—C11—C3		19.81 (19)
C2—C3		108.16	` '	C13—C12—C11		20.7 (2)
C11—C		122.32	` ′	C13—C12—H12		19.7
N2—C		122.4	* *	C11—C12—H12		19.7
N2—C		130.6		C14—C13—C12		20.0 (2)
N1—C	4—C3	106.92	(18)	C14—C13—H13	1	20.0

Acta Cryst. (2014). E70, o162 sup-5

118.24 (19)

120.76 (19)

120.99 (19)

120.96 (19)

119.5

119.5

120.1

119.7 (2)

C12—C13—H13

C15—C14—C13

C15—C14—H14

C13—C14—H14

C14—C15—C16

C14—C15—H15

C16—C15—H15

C15—C16—C11

C6---C5---C10

C6—C5—C2

C10—C5—C2

C7—C6—C5

C7—C6—H6

C5—C6—H6

C8—C7—C6

C8—C7—H7

C6—C7—H7	120.1	C15—C16—H16	120.0
C7—C8—C9	120.3 (2)	C11—C16—H16	120.0

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A
N1—H1···N2 ⁱ	0.93 (2)	1.96 (2)	2.882 (3)	172 (2)

Symmetry code: (i) -x+1, -y+3, -z+1.

Acta Cryst. (2014). E70, o162 sup-6