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We present a continuum model for spontaneous twisting of graphene nanoribbons driven by

compressive edge stresses. Based on a geometrically nonlinear theory of plates, we identify scaling

laws for the dependence of twist angles on ribbon width. Strikingly, we find the existence of a critical

width below which a ribbon will not undergo spontaneous twisting, preferring an in-plane stretching

mode instead. The model predictions are shown to be in excellent qualitative and quantitative

agreement with density-functional tight-binding simulations. More generally, our model provides a

unifying picture of twisting in graphene nanoribbons with different edge orientations and chemical

functionalizations that have been reported recently in the literature. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.3689814]

I. INTRODUCTION

Graphene—a two-dimensional atomically thin layer of

sp2 bonded carbon atoms—has been the focus of extensive

research in recent years in part due to its extraordinary elec-

tronic properties, which make it a promising candidate for

next-generation electronic devices.1,2 While large-area gra-

phene does not present a usable bandgap for digital electron-

ics, quantum confinement of charge carriers in 1 D graphene

nanoribbons (GNRs) or 0 D quantum dots provides reasona-

ble band gaps for applications. For 1 D nanoribbons, in

particular, theoretical and experimental studies demonstrate

that band gaps scale inversely with ribbon width,3–6 provid-

ing an avenue for band-gap engineering in graphene.

While the width of a GNR establishes the essential

inverse scaling relationship of band gaps, the nature of the

ribbon edge is critical in establishing the quantitative details.

Zigzag GNRs (ZGNRs) display small band gaps arising from

a staggered sublattice potential due to spin-ordered states at

the edges.3 Intermediate orientations (chiral GNRs) also

show the presence of magnetic edge states.7 Armchair GNRs

(AGNRs) do not display such spin-ordered edge-states but

nevertheless understanding the trends and scaling in their

band gaps requires the incorporation of changes in C-C bond

lengths along the edges.3 GNR edges have also been shown

to undergo reconstructions (5-6 and 5-7 reconstructed edges),

which alter the electronic properties of the ribbon.8–10 Addi-

tionally, edges are more chemically reactive due to the pres-

ence of dangling bonds and chemical functionalization/

contamination can further alter the edge electronic properties

and thence the overall behavior of the GNR.11–15

From a macroscopic thermodynamics perspective, the

edge of a GNR is associated with a scalar edge stress in

analogy with a tensorial surface stress for 3 D crystals.16,17

The underlying physical cause for this edge stress is the

change in the bonding environment of edge atoms (which

are missing neighbors) from their ideal bulk state. Computa-

tional studies show that the edges of pristine ZGNRs and

AGNRs are both under a state of compressive edge stress,

whereas 5-6 and 5-7 reconstructed edges display tensile edge

stresses.17–20 The edge stress is sensitive to chemical func-

tionalization as this can significantly alter the local environ-

ment of edge atoms. Thus, hydrogen termination of edges

can lead to a precipitous drop in the compressive edge stress

for AGNRs and ZGNRs.17–19 Fluorination, on the other

hand, appears to lead to enhanced compressive edge stresses

due to ionic repulsion between fluorine atoms.24 In general,

edge stresses lead to an excess elastic edge energy, which

can typically be relieved efficiently by non-planar de-

formations, such as buckling, warping, scrolling, and

twisting.16,20–23 Of course, relieving the edge energy through

such deformations comes at a cost since some energy must

now be stored in the “bulk” of the GNR. Therefore, the pre-

ferred deformation modes for a GNR are set by this competi-

tion between surface and bulk energy and as such are

dependent upon its physical dimensions.

Among several possible deformation modes, GNRs are

susceptible to a particularly interesting edge-stress driven

twisting mode.24,25 These twisting modes couple strongly to

the electronic structure of the GNR and can effectively tune

its electronic bandgap over a wide range;24,26 this electrome-

chanical response could lead to applications in switches or

sensors. While previous studies24,26 have considered the role

of twisting on electronic structure quite thoroughly, there is

as yet no simple theory that elucidates the mechanics of

GNR twisting. Bets and Yakobson25 have partially addressed

this issue through empirical potential calculations and shown

the existence of a bifurcation from edge-stress driven twist-

ing modes to localized edge-rippling modes with increasing

ribbon width. In this paper, we develop a comprehensive

continuum model for edge-stress driven buckling of GNRs.

The key results of our model are as follows. First,

a)Electronic mail: ashwin@engin.umass.edu.
b)Electronic mail: pekka.koskinen@iki.fi.
c)Electronic mail: vivek_shenoy@brown.edu.
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compressive edge stresses induce energy minima at non-zero

twist angles, which provide the driving force for spontaneous

twisting (as seen in unterminated and F-terminated GNRs).

Second, there exists a critical width below which GNRs

will preferentially undergo in-plane stretching rather than

(out-of-plane) twisting. Intuitively, these ultra-thin GNRs are

“all edge” and the energy cost for planar stretching of the

entire structure is lesser than for out-of-plane twisting. Third,

with increasing width w, the twist of a GNR scales as 1/w3/2

(rather than 1/w as deduced computationally in Ref. 25). Our

theoretical predictions are shown to be in good qualitative

and reasonable quantitative agreement with tight-binding

simulations of twisting of unterminated AGNRs. While we

restrict attention in this work to unterminated AGNRs, our

model is more generally applicable to other situations where

GNRs experience compressive edge stresses (e.g., untermi-

nated ZGNRs, F-terminated GNRs, etc.). Since the electronic

properties of GNRs can be modulated by twisting, our work

provides a route for engineering electromechanical coupling

in GNRs by controlling edge structure and/or chemical func-

tionalization of edges.

II. RESULTS AND DISCUSSION

A. Analytical model for twisting

The graphene nanoribbon is treated as a 2 D elastic strip

of length k0 and width w, with w/k0 � 1 (see Fig. 1). The

strip is taken to be periodic along its length. First, suppose

the ribbon is twisted into a helical strip while keeping the

translational periodic length k0 constant. With reference to

the kinematics of twisting illustrated in Fig. 2, it is readily

shown that a material fiber parallel to the axis will experi-

ence an extensional strain �yy¼ x2H2
0/2 in the limit w/k0 �

1, where H0¼ 2p/k0 is the twist. In the absence of axial con-

straints on the ribbon, it is clear that the ribbon must contract

to some optimal length k< k0 in order to accommodate the

non-uniform stretching of axial fibers. Thus, the actual axial

strain in the ribbon is given by

�yyðxÞ ¼ �0 þ
1

2
H2x2 � �0 þ

2p2x2

k2
; (1)

where H¼ 2p/k is now the twist with respect to the opti-

mized length k, and �0¼ (k/k0� 1)< 0, which we will calcu-

late explicitly later, is the (compressive) strain experienced

by an axial fiber situated along the symmetry axis of the

ribbon (x¼ 0). The energy cost per unit length associated

with this in-plane stretching of the sheet is given by

Estretch ¼
1

2

ðw=2

�w=2

Y�2
yydx

¼ Yw

2
�2

0 þ
1

12
w2�0H

2 þ w4H4

320

� �
;

(2)

where Y is the 2 D Young’s modulus of graphene.

Next, with reference to the kinematics illustrated in

Fig. 2, it is straightforward to show that the second deriva-

tives of the out of plane displacement f(x,y) are @2f/@x2

¼ @2f/@y2¼ 0 and @2f/@x@y¼H, from which it follows that

the bending energy cost per unit length27 is

Ebend ¼
1

2
B

ðw=2

�w=2

@2f
@x2
þ @

2f
@y2

� �2
"

þ2ð1� vÞ @2f
@x@y

� �2

� @
2f
@x2

@2f
@y2

( )#
dx;

¼ Bwð1� vÞH2;

(3)

B and � being the 2 D bending modulus and Poisson’s ratio

of the sheet, respectively. Unlike a plate, Y and B are inde-

pendent for a 2 D sheet, although they can be artificially

related to each other if need be (e.g., for finite element simu-

lations) by assuming an effective thickness h for the sheet

such that the standard plate-theory relation B¼ Yh3/

12(1� �2) is satisfied.16,17

The final contribution to the energy stored in the twisted

ribbon comes from (a) the presence of an edge stress and (b)

stretching and bending energies for the edge, whose elastic

properties can differ from those in the bulk due to the differ-

ence in the bonding environment.16,17 The energy per unit

length arising from these two factors is

Eedge ¼ 2 s�yy þ
1

2
Ye�yy þ

1

2
BeH

2

� �
x¼w=2

; (4)

where Ye is the 1 D Young’s modulus of the edge, Be is an

edge bending modulus, and s is the edge stress; the prefactor

FIG. 1. (Color online) Schematic of a graphene nanoribbon of width w and

translational periodic length k undergoing twisting. Upon twisting, and in

the absence of axial constraints, the axial length of the ribbon decreases to

an optimal value k< k0.

FIG. 2. (Color online) Strip of width 2 x and length Dy undergoing a twist

through an angle H�Dy. If the length of the ribbon is held fixed during

twisting, the axial strain in the fiber at distance x from the ribbon axis is

�yy¼ limDy!0 [(Ds/Dy)�1] � x2H2/2 for x/k � 1. The mean curvature of

the strip is zero while the Gaussian curvature is H2.
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of 2 accounts for both edges. As noted in our previous

work,16 the edge is essentially treated as a 1 D fiber that is

either stretched or compressed (effectively generating an

edge stress) and “glued” to a bulk with different elastic prop-

erties. In principle, such a 1 D fiber can display a resistance

to both stretching and bending.

The total energy per unit length of the twisted ribbon is

given by

Eð�0;H; wÞ ¼E0 þ Estretch þ Ebend þ Eedge

¼E0 þ
Yw

2
�2

0 þ
1

12
w2�0H

2 þ w4H4

320

� �
þH2Bwð1� vÞ

þ 2 s�yy þ
1

2
Ye�

2
yy þ

1

2
BeH

2

� �
x¼w=2

; (5)

where E0 is the energy per unit length of the ribbon in its

undeformed state. The optimal strain ��0 for a given twist H is

readily obtained as

��0 ¼ �
w2H2

24

6Ye þ Yw

2Ye þ Yw
� 2s

2Ye þ Yw
: (6)

An additional optimization of the energy with respect to H
gives us the following solutions for the optimal twist

H�¼0 and H�

¼62
ffiffiffiffiffi
30
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�6Beð2YeþYwÞ�6Bwð2YeþYwÞð1�vÞ�Yw3s
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yw5ð12YeþYwÞ

p
(7)

from which it is apparent that the edge stress s must be nega-

tive (compressive) for non-zero values of H* to exist (B, Be,

Ye, Y, w, � being positive). If such non-zero solutions exist, it

is readily shown that these correspond to the two minima of

a double-well potential symmetric about a local maximum at

H¼ 0. Thus, ribbons with unterminated zigzag/armchair

edges, which experience compressive edge stresses,16–18 can

be expected to twist spontaneously, whereas ribbons with

5-6 and 5-7 reconstructed edges,17,19 which experience ten-

sile edge stresses will not twist spontaneously but simply

stretch in plane (within the kinematics allowed for here).

Furthermore, Eq. (7) also shows that there is a critical width

w* below which real-valued solutions for H* will cease to

exist even for negative s [i.e., when Yw3jsj< 6Be(2Yeþ Yw)

þ 6Bw(2YeþYw)(1��)]. In other words, a compressive

edge stress is in of itself insufficient to cause spontaneous

twisting; it is necessary that the ribbon width also exceed a

critical value w* for this to occur. Below this critical width

w*, ribbons will cease to twist spontaneously and undergo

only in-plane stretching. Physically, this result reflects the

interplay between bulk and edge energy. For ribbon widths

lesser than w*, the tendency for the edge to spontaneously

elongate can be accommodated by stretching the ribbon

bulk without an excessive energy cost. Beyond this critical

width, simply stretching the bulk carries too high an energy

penalty; twisting, which is another mode of accommodating

edge-stretching with lesser in-plane stretching, becomes

energetically favorable. These features will be illustrated

later in Sec. II B in conjunction with actual computational

studies. Finally, we also see that as the ribbon starts to

become very wide (sheet-like) the optimal twist decreases to

leading order as 1/w3/2.

B. Comparison of theory and simulations of ribbon
twisting

To demonstrate the validity of our analytical model we

now compare the analytical results presented above with

tight-binding simulations of twisting of graphene nanoribbons

that use the revised Bloch approach developed by Koskinen

and Kit28 (see Methods). For concreteness, we focus on unter-

minated AGNRs, which have been shown to spontaneously

undergo edge-stress induced twisting in previous work.28 The

same behavior should also be observed in zigzag graphene

nanoribbons or, more generally, for any edge orientation that

is associated with compressive edge stresses.

The material parameters for the analytical model, as

determined from tight-binding simulations, are B¼ 1.61 eV,

Y¼ 25.47 eV/Å2, s¼� 1.7 eV/Å, and �¼ 0.28. The edge

moduli Ye and Be are treated as fitting parameters to the tight-

binding data for AGNRs of different widths, displayed by

symbols in Fig. 3. A two-parameter fit to these data via

Eq. (5) gives values of Ye¼ 18.69 eV/Å and Be¼ 15.01 eV�Å.

The strain energy relieved by twisting DE[��0(H),H;w]

¼E[��0(H),H;w]�E[��0(0),0;w] can now be obtained from

Eq. (5) as a function of twist H for various ribbon widths,

which we display in Fig. 3. The presence of a minimum in

the energy curve at non-zero values of H*, indicating the

tendency to twist spontaneously, is apparent for the three

FIG. 3. (Color online) Change in energy per unit length DE¼E[��0(H),H;w]

�E[��0(0),0;w] of the nanoribbon as a function of twist H (in deg/Å). A

minimum away from H¼ 0, when present, indicates an energetic preference

for spontaneous twisting of the ribbon driven by edge stresses. The inset

shows the optimum twist H* (minimum in the DE vs. H curve) as a function

of ribbon width. As seen, the optimal twist is maximum for ribbons in the

range of 14-16 Å, reflecting a compromise between energy stored due to

bending and stretching. It is also apparent that the thinnest ribbon

(w¼ 7.1 Å) is below the critical width for spontaneous twisting and has an

energy minimum at h¼ 0. The symbols are data from tight-binding simula-

tions while like-colored lines are the corresponding predictions from elastic-

ity theory.
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widest ribbons. With increasing ribbon width the energy min-

ima become shallower and shift toward smaller values of H.

The dependence of the optimal twist H* on ribbon width is

shown more clearly in the inset of Fig. 3. It is readily

observed that the optimal twist goes to zero below a critical

width w* as alluded to before in Sec. II A. The analytical esti-

mate for this width is 10.5 Å while the computational esti-

mate is 10.8 Å. The thinnest ribbon (w¼ 7.1 Å) considered

here falls below this critical width and thus does not show a

tendency for spontaneous twisting; this is clearly evidenced

from the energy versus twist data for the ribbon, which has a

minimum at H¼ 0. The inset of Fig. 3 also shows that there

is an optimal ribbon width (set by material parameters and

edge orientation) which gives the maximum possible sponta-

neous twist for a GNR; this width is estimated to be about

14.0 Å and 15.7 Å from the analytical and computational

data, respectively. Finally, the asymptotic decay of the twist

with increasing width is also clearly observed in these data.

Overall, the analytical model clearly captures all the qualita-

tive features of the simulations, with reasonable quantitative

agreement as well. Most strikingly, the analytical model

clearly captures the existence of a critical width for spontane-

ous twisting to within 4% accuracy (analytical model

	10.4 Å, computed 	10.8 Å). Figure 4 shows the variation

in the optimal axial strain ��0(H) as a function of twist H
(Eq. (6)). The tight-binding data and analytical estimates are

in fair overall agreement. The quantitative discrepancies at

small twists likely arise from the a combination of the inevi-

table residual forces acting on the unit cell at the end of

geometry optimization as well as other details at the atomic

scale that are not described by the continuum model; devia-

tions at large twists are to be expected, of course, due to

nonlinearities in the constitutive response of the material

(strains are a few percent). Note also that the widths w in con-

tinuum and atomistic pictures cannot be compared directly;

the connection is inherently ambiguous. Previous simulations

by Zhang and Dumitrică26 have also reported similar results

of axial contraction of graphene nanoribbons due to twisting.

In concluding this discussion, we note that the analytical

model developed here can be applied without any essential

modification (except for appropriate edge stresses and edge

moduli) to twisting of AGNRs with fluorinated edges studied

recently by Gunlycke et al.24 In that work, the authors

showed the tendency for F-terminated AGNRs to twist spon-

taneously due to an “ionic repulsion between neighboring F

atoms,” which in essence amounts to a compressive edge

stress within the continuum picture. They also showed that

H-terminated AGNRs, in contrast, do not show this tendency

to twist spontaneously, displaying only a minimum at zero

twist angle. This result is also readily explained within the

continuum picture by recognizing that H-termination of

AGNRs causes the edge stress to become extremely

small17–19 thereby causing the optimal twist angle (Eq. (7))

to go to zero.

III. CONCLUDING REMARKS

In summary, we have presented a continuum model for

edge-stress induced spontaneous twisting of GNRs and vali-

dated this against tight-binding simulations. The driving

force for twisting arises from compressive edge stresses,

which are a manifestation of the tendency for the edge to

expand. We have shown that there is a critical ribbon width

below which in-plane stretching of the entire ribbon is

favored over out-of-plane twisting. At the other extreme, the

optimal twist scales as 1/w3/2 for large ribbon widths, essen-

tially giving way to more favorable deformation modes, such

as localized edge-rippling. While our numerical validation

was performed in the context of twisting of unterminated

AGNRs, the continuum model is of much broader applicabil-

ity and can be used to predict optimal twists and axial strains

for any edge orientation or chemical functionalization as

long as the edge stress is compressive. In essence, all that is

needed from an atomic scale calculation (quantum mechani-

cal or otherwise) are the elastic moduli and the edge stress.

Since the electronic properties of GNRs can be controlled by

twisting, our work provides a route for engineering electro-

mechanical coupling in GNRs by controlling edge structure

and/or chemical functionalization of edges. This electrome-

chanical coupling in GNRs might be exploited in graphene-

based switches or sensors in the future.

A. Methods

We simulated the ribbons using the spin-unpolarized

density-functional tight-binding (DFTB) method, which is

an established and computationally efficient method able to

capture the elastic properties of honeycomb carbon with fair

accuracy.29,30 Efficient simulation of the twisting itself was

enabled by revised periodic boundary conditions (RPBC),

where the conventional translational symmetry had been

replaced by more general symmetry operations.28 Here we

used the minimal RPBC simulation cell compatible with

symmetry (short piece of the ribbon’s other half), accompa-

nied by two chiral symmetry operations, one counting for

the ribbon’s infinite extent, one for the ribbon’s other half;

these two chiral operations are described in more detail in

FIG. 4. (Color online) Optimal axial strain ��0 of the nanoribbon as a func-

tion of twist angle H (in deg/Å). Larger angles of twist H lead to larger dif-

ferential stretching of axial fibers leading to smaller optimal axial lengths

(more negative ��0). The symbols (matched by color with the lines) are data

from tight-binding simulations while the lines are theoretical predictions.
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Ref. 28. In particular, RPBC enables us to change the twist

continuously.
Simulations were done by performing a full structural

optimization (maximum force criterion fmax
 10�2 eV/Å)

with fixed simulation cell parameters (axial length and

twist); there were no constraints within the cell. The symme-

try operation-related j-points were sampled with a regular

20� 2-point mesh. Young’s modulus and Poisson’s ratio

were determined by straining graphene (two-atom unit cell

and conventional PBC with 20� 20 k-point mesh) in one

direction while minimizing the energy with respect to the

strain in the perpendicular direction. We conclude by

remarking that the sole approximation in our atomistic twist-

ing simulations is the DFTB method itself.
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