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A microscopic theoretical framework based on relativistic energy density functionals (REDFs) is applied to
studies of shape evolution, excitation spectra, and decay properties of transactinide nuclei. Axially symmetric and
triaxial relativistic Hartree-Bogoliubov (RHB) calculations, based on the functional DD-PC1 and with a separable
pairing interaction, are performed for the even-even isotopic chains between Fm and Fl. The occurrence of a
deformed shell gap at neutron number N = 162 and its role on the stability of nuclei in the region around Z = 108
is investigated. A quadrupole collective Hamiltonian, with parameters determined by self-consistent constrained
triaxial RHB calculations, is used to examine low-energy spectra of No, Rf, Sg, Hs, and Ds with neutron number
in the interval 158 � N � 170. In particular, we analyze the isotopic dependence of several observables that
characterize the transitions between axially symmetric rotors, γ -soft rotors, and spherical vibrators. An interesting
example of a possible occurrence of shape-phase transitions and critical-point phenomena in this mass region is
explored.
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I. INTRODUCTION

Enormous progress has been achieved in recent years in the
synthesis and structure studies of superheavy elements [1–6].
These experiments present one of the most active fields at the
forefront of nuclear physics research. While available data on
the heaviest elements are often restricted just to the existence of
a particular nuclide and its main decay modes, detailed spectro-
scopic properties have been investigated, both experimentally
and theoretically, for heavy actinides and transactinide nuclei
[7–9]. Two complementary classes of theoretical methods
are used in nuclear structure studies in this mass region:
the traditional macroscopic-microscopic approach [10–13],
and the framework of microscopic self-consistent mean-field
models, based on realistic effective internucleon interactions
or energy density functionals [14–16]. The latter have not
yet achieved the accuracy of the former in the description of
the evolution of shell structure, deformed gaps, K isomers,
α-decay energies and lifetimes, and fission barriers [13,15].
This is mostly because microscopic self-consistent mean-
field models employ global effective interactions or density
functionals that are used for the entire chart of nuclides, rather
than potentials parametrized specifically to the mass region of
interest. Nevertheless, a vast body of high-quality microscopic
self-consistent mean-field calculations of the structure of very
heavy and superheavy nuclei has been reported in the last
fifteen years or so (for an exhaustive list of references, we
refer the reader to [13,15,17]). In a large number of cases
excellent agreement with data and unique predictions have
been obtained.

The purpose of this work is to perform a microscopic
self-consistent mean-field study of the transactinides, from Fm
and Fl, with neutron number in the interval 154 � N � 172.
Except for a few two-neutron separation energies and slightly
more data on α-decay energies, spectroscopic data on these
nuclei are not available yet. For instance, the heaviest nucleus
for which the rotational band structure has been observed
to date is 256Rf [18] (up to spin 20h̄), and the experimental

kinematic and dynamic moments of inertia have accurately
been reproduced using a cranked shell model with pairing
correlations treated by a particle-number conserving method
[19], and the cranked relativistic Hartree-Bogoliubov model
[20]. Even though spectroscopic properties of the nuclides
considered in this study might not be experimentally accessible
in the near future, it is nevertheless interesting to analyze
microscopic predictions for the occurrence of deformed gaps,
two-neutron separation energies, Qα values, evolution of
shapes and characteristics of low-energy collective spectra of
these systems.

In Sec. II we briefly outline the theoretical framework of
deformation-constrained self-consistent mean-field methods
and the corresponding collective Hamiltonian, based on
relativistic energy density functionals. The occurrence of the
N = 162 deformed neutron gap is analyzed in Sec. III, and
the evolution of quadrupole shapes and low-energy collective
spectra are discussed in Sec. IV. Section V contains a brief
summary and an outlook for future studies.

II. THEORETICAL FRAMEWORK

The tool of choice for theoretical studies of the structure
of medium-heavy and heavy nuclei is the framework of
energy density functionals (EDFs) [14,16]. Self-consistent
mean-field models based on semi-empirical nuclear energy
density functionals provide an accurate and reliable mi-
croscopic description of nuclear structure phenomena over
the whole nuclide chart. EDF-based structure models have
also been developed that go beyond the static mean-field
approximation, and include collective correlations related to
the restoration of broken symmetries and to fluctuations of
collective variables. These models are employed in analyses
of structure phenomena related to shell evolution, including
detailed predictions of excitation spectra and electromagnetic
transition rates. Relativistic EDF-based methods [21–23], in
particular, have successfully been applied to nuclear structure
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studies in different mass regions including superheavy nuclei,
and have reached the level of accuracy of their nonrelativistic
counterparts, e.g., models derived from Skyrme functionals.

For a microscopic self-consistent study of the structure of
transactinide nuclei, in this work we employ the relativistic
functional DD-PC1 [24]. Starting from microscopic nucleon
self-energies in nuclear matter, and empirical global properties
of the nuclear matter equation of state, the coupling parameters
of DD-PC1 were fine-tuned to the experimental masses of a
set of 64 deformed nuclei in the mass regions A ≈ 150–180
and A ≈ 230–250. The functional has been further tested
in calculations of ground-state properties of medium-heavy
and heavy nuclei, including binding energies, charge radii,
deformation parameters, neutron skin thickness, and excitation
energies of giant multipole resonances. It has also successfully
been applied in a number of studies based on the quadrupole
collective Hamiltonian, that have analyzed the evolution of
shell structure and low-energy collective spectra in the N = 28
isotones [25], medium-heavy and heavy nuclei [23,26] and,
very recently, in superheavy systems [17,27,28].

For a quantitative description of open-shell nuclei it is
necessary to consider also pairing correlations. The relativistic
Hartree-Bogoliubov (RHB) framework [21,22] provides a
unified description of particle-hole (ph) and particle-particle
(pp) correlations on a mean-field level by combining two
average potentials: the self-consistent mean field that encloses
all the long range ph correlations, and a pairing field �̂
which sums up the pp correlations. In this study we will
carry out axially symmetric and triaxial RHB calculations
with the ph effective interaction determined by the DD-PC1
functional. A pairing force separable in momentum space:
〈k|V 1S0 |k′〉 = −Gp(k)p(k′) will be used in the pp channel
[29,30]. By assuming a simple Gaussian ansatz p(k) = e−a2k2

,
the two parameters G and a were adjusted to reproduce
the density dependence of the gap at the Fermi surface in
nuclear matter, calculated with a Gogny force. For the D1S
parametrization [31] of the Gogny force the following values
were determined: G = −728 MeV fm3 and a = 0.644 fm
[29]. When transformed from momentum to coordinate space,
the interaction takes the form:

V (r1, r2, r ′
1, r ′

2) = Gδ(R − R′)P (r)P (r ′) 1
2 (1 − P σ ),

(1)

where R = 1
2 (r1 + r2) and r = r1 − r2 denote the center-

of-mass and the relative coordinates, and P (r) is the Fourier
transform of p(k): P (r) = 1/(4πa2)3/2e−r 2/4a2

.
To describe nuclei with general quadrupole shapes, the

Dirac-Hartree-Bogoliubov equations are solved by expanding
the nucleon spinors in the basis of a 3D harmonic oscillator in
Cartesian coordinates. In the present study of transactinide
nuclei calculations have been performed in a basis with
Nmax

f = 16 oscillator shells for the upper component, and
Nmax

f = 17 shells for the lower component of the Dirac spinors
[32]. The map of the energy surface as a function of the
quadrupole deformation is obtained by imposing constraints
on the axial and triaxial quadrupole moments. The method
of quadratic constraint uses an unrestricted variation of the

function

〈Ĥ 〉 +
∑

μ=0,2

C2μ(〈Q̂2μ〉 − q2μ)2, (2)

where 〈Ĥ 〉 is the total energy, and 〈Q̂2μ〉 denotes the
expectation value of the mass quadrupole operators:

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2 . (3)

q2μ is the constrained value of the multipole moment, and C2μ

the corresponding stiffness constant.
The self-consistent solutions of the constrained triaxial

RHB equations, that is, the single-quasiparticle energies and
wave functions for the entire energy surface as functions of
the quadrupole deformation, provide the microscopic input
for the parameters of a collective Hamiltonian for vibrational
and rotational degrees of freedom [33]. The five quadrupole
collective coordinates are parametrized in terms of the two
deformation parameters β and γ , and three Euler angles
(φ, θ, ψ) ≡ �, which define the orientation of the intrinsic
principal axes in the laboratory frame. The dynamics of the
collective Hamiltonian is governed by the seven functions of
the intrinsic deformations β and γ : the collective potential,
the three mass parameters, and the three moments of inertia
Ik . These functions are determined by the microscopic nuclear
energy density functional and the effective interaction in the
pp channel. The moments of inertia and the mass parameters
are calculated in the cranking approximation, and the collective
potential is obtained by subtracting the zero-point energy
corrections from the total energy that corresponds to the
solution of constrained RHB equations.

The collective Hamiltonian describes quadrupole vibra-
tions, rotations, and the coupling of these collective modes.
The corresponding eigenvalue problem is solved using an
expansion of eigenfunctions in terms of a complete set of basis
functions that depend on the deformation variables β and γ ,
and the Euler angles φ, θ , and ψ [33]. The diagonalization of
the Hamiltonian yields the excitation energies and collective
wave functions, that can be used to calculate expectation values
of various observables and transition probabilities.

III. THE N = 162 NEUTRON GAP

Ground-state observables often display characteristic sig-
natures of the evolution of underlying single-nucleon shell
structure. In Fig. 1 we plot the two-neutron separation energies
of transactinide nuclei as functions of the neutron number. The
theoretical values are obtained in the self-consistent relativistic
Hartree-Bogoliubov formalism, using the functional DD-PC1
in the particle-hole channel and the separable pairing force
Eq. (1), as described in the previous section. The separation
energies S2n correspond to axially symmetric equilibrium
minima. A common feature is the decrease of S2n with
increasing neutron number. However, a more pronounced
reduction is found between N = 162 and N = 164 for several
isotopic chains, most notably Rf, Sg, and Hs. A sudden drop
in separation energies with nucleon number is associated with
pronounced shell gaps, and this effect is especially marked
at spherical magic nucleon numbers. The effect shown in
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FIG. 1. (Color online) Two-neutron separation energies of trans-
actinide nuclei as functions of the neutron number. Calculated values
are denoted by filled symbols, available data by striped ones. Lines
connect isotopes, the experimental values are from Ref. [37].

Fig. 1 indicates the occurrence of a neutron shell gap in
deformed transactinide nuclei at N = 162, in agreement with
results of previous studies performed using the macroscopic-
microscopic approach [13,34,35]. Very similar results for the
S2n values and, in particular for the discontinuity at N = 162,
have recently been obtained in the self-consistent Hartree-
Fock-Bogoliubov (HFB) calculation with the finite-range
Gogny force with D1S [36]. We have also verified the conver-
gence of the calculated separation energies with respect to the
dimension of the 3D harmonic oscillator basis. The difference
between separation energies calculated with Nmax

f = 16 and
Nmax

f = 18 oscillator shells does not exceed 100 keV.
Very few experimental results are available for S2n in this

region of relatively neutron-rich transactinides [37], and the
present calculation reproduces the data (cf. Fig. 1). To test the
agreement of our self-consistent approach with experiment
in more detail, in Fig. 2 we compare the predicted α-decay
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FIG. 2. (Color online) Qα values for transactinide nuclei: lines
connect theoretical values that correspond to isotopic chains, plotted
in comparison to available data (striped symbols) from [37].

energies Qα , that is, energies of α particles emitted by
even-even isotopes to available data [37]. These observables
are measured independently of the corresponding masses and,
therefore, can be used as an additional test of the accuracy of a
given theoretical method. In the present calculation, assuming
axial symmetry, the level of agreement is similar to that
obtained in the HFB calculation with the Gogny force [36]. For
α-decay energies the subshell closure at N = 162 manifests
itself by the increase of Qα values between N = 162 and
N = 164.

Figure 3 displays the energies of canonical single-particle
RHB neutron (left panel) and proton (right panel) states
of 270Hs as functions of the axial deformation parameter
β2. Continuous and dashed curves represent positive- and
negative-parity levels, respectively. This nucleus is central to
the region of transactinides considered in the present study, and
its single-particle spectrum has been analyzed in a number of
studies of the deformed N = 162 shell gap [13,35,36]. In the
present calculation with the DD-PC1 density functional, this
gap is clearly identified in the Nilsson diagram of neutron
single-particle levels at prolate deformation β2 ≈ 0.25. As no
particle number projection is performed, a pairing collapse
occurs at the equilibrium deformation characterized by the
large gap between neutron levels. In this case the position of
the Fermi level is conventionally defined as the average energy
between the last occupied and first unoccupied neutron levels.
The size of the gap 2.17 MeV at equilibrium deformation
is, of course, much smaller than typical shell gaps in spherical
magic nuclei but, nevertheless, it gives rise to the characteristic
features of neutron separation energies and Qα values shown
in Figs. 1 and 2, respectively. The corresponding proton gap
at equilibrium deformation (right panel of Fig. 3) is much less
pronounced, that is, the size of the gap is only slightly larger
than 1 MeV.

The central position of 270Hs in this region of transactinides,
that is, its role as a “deformed magic” nucleus, is also illustrated
by the evolution of the deformed neutron shell gap of the
N = 162 isotones as a function of proton number, and the
proton shell gap of Hs isotopes as a function of the number of
neutrons, shown in Fig. 4. The former displays a pronounced
peak at Z = 108, and the proton gaps are largest for N = 162
and N = 164.

Ground-state properties and the evolution of single-nucleon
shell structures, calculated assuming axially symmetric
quadrupole shapes, already indicate the presence of interesting
structural changes at and beyond Z = 108 and N = 162.
Therefore, in the following section we will explore the triaxial
shapes and collective excitation spectra of these heavy systems
in a calculation that includes constrained self-consistent RHB
deformation energy maps and the corresponding solutions
of a quadrupole collective Hamiltonian for vibrational and
rotational degrees of freedom.

IV. EVOLUTION OF SHAPES AND LOW-ENERGY
COLLECTIVE SPECTRA

The complex evolution of single-nucleon orbitals as
functions of nuclear deformation and of nucleon number,
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FIG. 3. (Color online) Neutron (left panel) and proton (right panel) single-particle energies of 270Hs as functions of the axial deformation
parameter β2. Continuous and dashed curves represent positive- and negative-parity levels, respectively. The position of the Fermi level is
denoted by the square symbols.

determines the transitions in equilibrium shapes. For the
isotopic chains of No, Rf, Sg, Hs, and Ds, this is illustrated
in Figs. 5, 6, 7, 8, and 9, respectively, where we plot the
results of constrained self-consistent triaxial RHB calculations
of energy surfaces in the β-γ plane (0 � γ � 60◦). For each
nucleus energies are normalized with respect to the binding

energy of the equilibrium deformation, and the color code
refers to the energy at each point on the surface relative
to the minimum. To analyze the structure of nuclei in
the vicinity of the gap at N = 162, for each isotopic chain the
energy maps of the even-even nuclei with N = 158–168
are shown.
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FIG. 4. The deformed neutron shell gap of N = 162 isotones as a function of proton number (left panel), and the proton shell gap of Hs
isotopes as a function of the number of neutrons (right panel).
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FIG. 5. (Color online) Self-consistent RHB triaxial energy maps
of even-even No isotopes in the β-γ plane (0◦ � γ � 60◦). For each
nucleus energies are normalized with respect to the binding energy
of the absolute minimum.

Even though we consider five chains of isotopes with
Z ranging from 102 to 110, the evolution of the energy
maps with neutron number is remarkably uniform. For each
element the three lightest isotopes with N = 158, 160, 162
are characterized by well-developed, deep mean-field minima
at prolate deformations β ≈ 0.25. Starting from N = 164 the
energy surfaces display a pronounced softness with respect to
triaxial deformations. The region around equilibrium minima
becomes extended both in the β and γ directions, and this
effect is especially marked at N = 168 for which the model
predicts γ -soft energy surfaces that extend from the spherical
configuration to β ≈ 0.3, and even larger for No, Rf, and Sg.

Heavier isotopes eventually become spherical but for the
present analysis and future experimental studies especially
interesting are nuclei close to N = 162. To model low-
energy excitation spectra, we start from the self-consistent
microscopic energy surfaces shown in Figs. 5–9. The neutron
and proton single-quasiparticle energies and wave functions,
generated by constrained self-consistent RHB calculations,
provide the microscopic input for the parameters of the
quadrupole collective Hamiltonian at each point on the energy
surface: the mass parameters, the moments of inertia, and
the collective potential, as functions of the deformations
β and γ . In the simplest approximation the moments of inertia
are calculated using the Inglis-Belyaev formula [38,39], the
mass parameters associated with the two quadrupole collective
coordinates are computed in the cranking approximation

FIG. 6. (Color online) Same as described in the caption to Fig. 5
but for the isotopic chain of Rf.

[40], and the collective potential is obtained by subtracting
the energy of the zero-point motion from the total-energy
surface [40]. The diagonalization of the Hamiltonian yields the
excitation spectra and collective wave functions that are used
in the calculation of various observables, e.g., electromagnetic
transition probabilities [23,33].

As an example, in Fig. 10 we display the low-energy
collective spectrum of 256Rf, in comparison to very recent data
on the yrast sequence of this nucleus [18]. In addition to the
yrast ground-state band, in deformed and transitional nuclei
excited states are also assigned to (quasi-)β and γ bands.
This is done according to the distribution of the projection K
of the angular momentum I on the z axis of the body-fixed
frame. Excited states with predominant K = 2 components
in the wave function are assigned to the γ band, whereas the
β band comprises the states above the yrast characterized
by dominant K = 0 components. The calculated excitation
energies have been rescaled to reproduce the adopted energy
of the state 2+

1 : 44 keV [18]. This scaling is necessary
because of the well-known fact that the Inglis-Belyaev (IB)
moments of inertia and cranking mass parameters are actually
smaller than the corresponding empirical values, due to
the omission of time-odd components of the mean-field
(the so-called Thouless-Valatin dynamical rearrangement
contributions).

The resulting excitation spectrum of the collective Hamil-
tonian, based on the functional DD-PC1, is in very good agree-
ment with available data for the ground-state band of 256Rf.
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FIG. 7. (Color online) Same as described in the caption to Fig. 5
but for the isotopic chain of Sg.

The scaling of excitation energies by a common factor does
not affect the wave functions and, therefore, the calculation of
transition probabilities. Fig. 10 includes the calculated B(E2)
values, in Weisskopf units (W.u.), for the transitions in the
ground-state band, and from the band heads of the β and γ
bands to the ground-state band. It should be emphasized that
besides the single scaling factor determined by the empirical
excitation energy of the state 2+

1 , the calculation is completely
parameter free, i.e., by using a structure model based on
self-consistent mean-field single-particle solutions, physical
observables, such as transition probabilities and spectroscopic
quadrupole moments, are calculated in the full configuration
space and there is no need for effective charges. Using the bare
value of the proton charge in the electric quadrupole operator
M̂(E2), transition probabilities between eigenstates of the
collective Hamiltonian can be directly compared to data.

In Figs. 11–14 we analyze the isotopic dependence of
several observables of low-energy spectra, calculated using the
collective Hamiltonian based on the functional DD-PC1, that
characterize the transitions between axially symmetric rotors,
γ -soft rotors, and, eventually, spherical vibrators. One of the
distinct characteristics of shape transitions is the evolution
of the ratio R4/2 of excitation energies of the yrast states 4+

1
and 2+

1 . For an axially symmetric rotor R4/2 = 3.33, values
between 2.5 and 2 are typical for a nucleus characterized
by a γ -unstable potential [41] and, finally, R4/2 = 2.0 for a
spherical vibrator. In Fig. 11 we plot the theoretical values of
R4/2 for No, Rf, Sg, Hs, and Ds, as functions of the neutron

FIG. 8. (Color online) Same as described in the caption to Fig. 5
but for the isotopic chain of Hs.

number. A remarkable result is that all five isotopic chains
display minimal variation of R4/2 from the axial rigid rotor
value 3.33 in the interval N = 158–166. For neutron numbers
N � 168 the values of R4/2 start decreasing, reflecting the
developing γ softness of the potentials (cf. Figs. 5–9). We
notice a regularity with respect to the proton number: the effect
is more pronounced for neutron-rich nuclei, that is, R4/2 ≈ 2.6
in No already at N = 170, whereas for this neutron number
the ratio only decreases to ≈3.2 in Ds.

The development of softness in the collective potential of
lighter neutron-rich transactinides, as shown by the energy
surfaces in the β-γ plane, is also reflected in another charac-
teristic observable: the ratio of reduced transition probabilities
R = B(E2; 4+

1 → 2+
1 )/B(E2; 2+

1 → 0+
1 ). Figure 12 displays

this ratio as a function of neutron number for the five isotopic
chains of No, Rf, Sg, Hs, and Ds. The minimal value R = 1.43
characterizes the rigid-rotor limit and the γ -independent
β-rigid Wilets-Jean limit [41] of the collective model. The ratio
increases for smaller and/or softer axial deformations, reaching
the value R = 2 in the spherical vibrator limit. One notices that
also for this observable the dependence on neutron number
is very weak in the interval N = 158–166, and the calculated
values of R are close to the rotational limit for all five isotopic
chains. For more neutron-rich nuclei R displays a rather steep
increase, especially for No and Rf, but it would only reach the
vibrational limit for much larger number of neutrons.

Another interesting feature is the departure from the rota-
tional limit as a function of angular momentum for yrast states,
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FIG. 9. (Color online) Same as described in the caption to Fig. 5
but for the isotopic chain of Ds.

as characterized by the B(E2) values for transitions within
the ground-state band. In Fig. 13 we plot the B(E2) values
for ground-state band transitions, normalized to B(E2; 2+

1 →
0+

1 ), in the N = 158, 160, 162, 164, 166, and 168 isotones of
No, Rf, Sg, Hs, and Ds. The dash-dotted and dashed lines
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FIG. 10. (Color online) The low-energy collective spectrum of
256Rf calculated with the DD-PC1 relativistic density functional
compared to the experimental yrast sequence [18].

denote the rotational and vibrational limits of the collective
model, respectively. Remarkably, all five isotopic chains
display B(E2) values that almost exactly coincide with the
rotational limit up to and above angular momentum 14+, for
neutron number N � 164. Only starting from N = 166 one
notices a slight deviation from the rotational limit, increasing
with angular momentum.

The evolution of γ softness, that is, the deviation from
the axial rigid-rotor limit, leads to the mixing between bands
with different values of the angular-momentum projection K
quantum number, e.g., between the K = 0 bands and the
γ band (K = 2). The level of K-mixing is reflected in the
staggering in the energy between odd- and even-spin states
in the (quasi-)γ bands. The staggering can be quantified by
considering the differential quantity [42]

S(J ) = {E[J+
γ ] − E[(J − 1)+γ ]} − {E[(J − 1)+γ ] − E[(J − 2)+γ ]}

E[2+
1 ]

, (4)

which measures the displacement of the (J − 1)+γ level relative
to the average of its neighbors, J+

γ and (J − 2)+γ , normalized
to the energy of the first excited state of the ground state band
2+

1 . Because of its differential form, S(J ) is very sensitive
to structural changes. For an axially symmetric rotor S(J )
is constant. In a nucleus with deformed γ -soft potential it
oscillates between negative values for even-spin states and
positive values for odd-spin states, with the magnitude slowly
increasing with spin. For a triaxial potential the level clustering
in the (quasi-)γ -band is opposite and S(J ) oscillates between
positive values for even-spin states and negative values for
odd-spin states. In this case the magnitude of S(J ) increases
more rapidly with spin, as compared with the γ -soft potential.
Figure 14 shows the quantity S(J ) in the γ bands of No, Rf,
Sg, Hs, and Ds with N = 158–168, as a function of angular
momentum. Again, S(J ) displays an almost constant value up
to relatively high angular momentum for all isotopic chains

with neutron number N � 164. A signature of staggering in
the γ band is observed starting from N = 166, at first only in
No and Rf, and a consistent staggering of S(J ) is predicted
for N = 168. For No and Rf, in particular, S(J ) changes sign
between even- and odd-spin states: negative for even spins
and positive for odd spins, consistent with the γ -soft energy
surfaces of these isotopes.

Finally, we briefly discuss an interesting possibility for
the occurrence of shape-phase transitions and critical-point
phenomena in the region of heavy and superheavy nuclei. The
transition between different shapes in most isotopic or isotonic
sequences is gradual but in some cases the addition/subtraction
of only a few nucleons leads to rather rapid changes in
equilibrium shapes. Ground-state phase transitions in nuclei
correspond to first- and second-order quantum phase transi-
tions (QPTs) between competing ground-state phases induced
by variation of a nonthermal control parameter (number of
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FIG. 11. (Color online) The ratio R4/2 of excitation energies of
the yrast states 4+

1 and 2+
1 as a function of the neutron number for the

isotopic chains of No, Rf, Sg, Hs, and Ds.

nucleons) at zero temperature. During the last decade nuclear
QPTs have been investigated extensively, both in experimental
studies and employing a variety of theoretical models (cf.
Ref. [43] for a recent review). A list of problems that have
not been completely solved includes the identification of
observables that can be related to order parameters, the degree
to which discontinuities at a phase transitional point are
smoothed out in finite nuclei, and the question of how precisely
can a point of phase transition be associated with a particular
isotope, considering that the physical control parameter, i.e.,
nucleon number, is not continuous but takes only discrete
integer values.

Since in systems with a finite number of particles phase tran-
sitions are actually smoothed out, one expects that signatures
of abrupt changes of structure properties would be observed
more clearly in heavy nuclei. In very heavy systems, however,
spectroscopic data are often limited to yrast sequences and
there is not enough information on observables that can
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FIG. 12. (Color online) The ratio of reduced transition probabili-
ties B(E2; 4+
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1 ) as a function of the neutron

number for the isotopic chains of No, Rf, Sg, Hs, and Ds.
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FIG. 13. (Color online) B(E2) values for transition be-
tween yrast states, normalized to B(E2; 2+

1 → 0+
1 ), in the N =

158, 160, 162, 164, 166, and 168 isotones of No, Rf, Sg, Hs,
and Ds.

be related to quantum order parameters. Nevertheless, it is
interesting to investigate such transitions theoretically. The
evolution of shapes in the No isotopic chain, in particular,
shows an interesting feature close to neutron number N = 168
(cf. Fig. 5). The deformation energy surface displays a rather
flat prolate minimum that extends in the axial deformation
parameter, and a parabolic dependence on γ in the region of the
minimum. The flat bottom of the potential has been considered
a signature of possible phase transition because it allows
for fluctuations of collective variables. The phase transition
between axially deformed and spherical nuclei involves two
degrees of freedom—the deformations β and γ . The critical
point of this phase transition, denoted X(5) [44], corresponds
to the particular case in which the β and γ degrees of freedom
are decoupled, and an approximate analytic solution at the
critical point of phase transition can be expressed in terms
of zeros of Bessel functions of irrational order. Evidence for
the empirical realization of X(5) phase transition was first
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FIG. 14. (Color online) Staggering S(J ) [Eq. (4)] in the γ bands
of No, Rf, Sg, Hs, and Ds with N = 158–168.
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1 → 0+
1 ) (b), and the excitation energy of the level 0+

2 (c), in No isotopes as functions of the number of
neutrons.

reported for 152Sm and other N = 90 isotones [45]. In a series
of studies [46–48] we have analyzed microscopic signatures
of nuclear ground-state shape phase transitions in Nd isotopes
using excitation spectra and collective wave functions obtained
by diagonalization of a five-dimensional Hamiltonian for
quadrupole vibrational and rotational degrees of freedom,
with parameters determined by constrained self-consistent
relativistic mean-field calculations for triaxial shapes. It has
been shown that a number of observables, e.g., energy gaps
between the ground state and the excited vibrational states
with zero angular momentum, isomer shifts, and monopole
transition strengths, exhibit sharp discontinuities at neutron
number N = 90, characteristic of a first-order quantum phase
transition.

For the sequence of No nuclei, in Fig. 15 we display
the isotopic dependence of three characteristic quantities,
calculated with the collective Hamiltonian based on the DD-
PC1 functional: the ratio R4/2 of excitation energies of the yrast
states 4+

1 and 2+
1 , the ratio of reduced transition probabilities

R = B(E2; 4+
1 → 2+

1 )/B(E2; 2+
1 → 0+

1 ), and the excitation
energy of the first-excited (second) 0+ state. It is interesting to
note that all three observables display a pronounced variation
between N = 166 and N = 170. For N = 168, in particular,
we can compare the calculated values with the predictions
of the X(5) analytical model for the critical point of shape
phase transition [44]: R4/2 = 2.94 for 270No compared to
2.91 in the X(5) model, and the calculated ratio of reduced
transition probabilities is R = 1.57 for 270No while the
X(5) value is 1.58. This is indeed a remarkable agreement
between the microscopic calculation based on a global energy
density functional and parameter-free X(5) predictions for

spectroscopic properties at the point of phase transition. In
addition, the pronounced dip in the excitation energy of the
band-head 0+

2 of the quasi-β band can be attributed to the
softness of the potential with respect to β deformation. This
example illustrates the richness of structure phenomena that
one can expect to find in very heavy nuclei with Z � 100,
including the possible occurrence of shape phase transitions.
We emphasize, however, that the physical control parameter—
the nucleon number—is not continuous and thus in general a
microscopic calculation cannot exactly reproduce the point of
phase transition.

V. SUMMARY AND OUTLOOK

The framework of relativistic nuclear energy density func-
tionals (EDFs) has been applied to a study of the structure
of transactinide nuclei. Based on the functional DD-PC1, that
has successfully been tested in various mass regions including
superheavy nuclei, and on a separable pairing interaction,
self-consistent relativistic Hartree-Bogoliubov calculations
have been performed for several isotopic chains from Fm
to Fl, with neutron number in the interval 154 � N � 172.
Assuming axially symmetric shapes, in particular, we have
analyzed the deformed shell gap for neutrons at N = 162
and how it affects the stability of nuclei around 270Hs.
Triaxial deformation energy surfaces have been computed
for the even-even isotopes of No, Rf, Sg, Hs, and Ds, with
N = 158–168. Although Z ranges from 102 to 110, all the
isotones with N = 158, 160, 162 display similar deformation
energy maps: well-developed, deep mean-field minima at
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V. PRASSA, T. NIKŠIĆ, AND D. VRETENAR PHYSICAL REVIEW C 88, 044324 (2013)

prolate deformations β ≈ 0.25. From N = 164 on, a marked
softness with respect to triaxial deformations develops, and
this effect is especially visible at N = 168 for which the model
predicts γ -soft energy surfaces that extend from the spherical
configuration to large axial deformations.

A quadrupole collective Hamiltonian, with parameters
determined by self-consistent constrained triaxial RHB cal-
culations, has been used to calculate low-energy spectra of
these isotopic chains. The isotopic dependence of several
observables that characterize the transition between axially
symmetric rotors and γ -soft rotors has been examined: the
ratio R4/2 of excitation energies of the yrast states 4+

1 and 2+
1 ,

the ratio of reduced transition probabilities R = B(E2; 4+
1 →

2+
1 )/B(E2; 2+

1 → 0+
1 ), B(E2) values for transitions within the

ground-state band, and the level of K-mixing as reflected in
the staggering in the energy between odd- and even-spin states
in the (quasi-)γ bands. We have also analyzed an interesting
example of a possible X(5) shape-phase transition in the
sequence of No isotopes.

The detailed predictions for spectroscopic properties of
transactinide nuclei, reported in this work, open a new
perspective for future theoretical studies in this mass region.
The self-consistent mean-field approach and “beyond mean-
field” models that take into account collective correlations,
will be applied to the analysis of high-K isomeric states [49],
calculation of triaxial and octupole fission barriers [50], and,
in particular, the evolution of deformed shell structures—
a common issue for all self-consistent mean-field models
[15].
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[47] Z. P. Li, T. Nikšić, D. Vretenar, J. Meng, G. A. Lalazissis, and
P. Ring, Phys. Rev. C 79, 054301 (2009).
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