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Neutrinos from supernovae constitute important probes of both the currently unknown supernova
mechanisms and of neutrino properties. Reliable information about the nuclear responses to
supernova neutrinos is therefore crucial. In this work, we compute the cross sections for the
charged-current neutrino-nucleus scattering off the even-even molybdenum isotopes. The nuclear
responses to supernova neutrinos are subsequently calculated by folding the cross sections with a
Fermi-Dirac distribution.

1. Introduction

Studies of neutrino-nucleus interactions with neutrinos of low and intermediate incoming
energies (i.e., neutrino energies in the range up to a few hundred MeV) are of great
importance for the disentanglement of various unresolved questions in astrophysics, particle
physics, and nuclear physics [1, 2]. Supernovae (type II) constitute the inevitable deaths of
very massive stars initiated by the collapse of their iron cores. For the details of supernova
physics, see for example, [3–5]. In a supernova event, about 99% of the explosion energy is
emitted as neutrinos of all flavors. A future detection of neutrinos from a coming supernova
would therefore provide a wealth of valuable information both on the currently unknown
supernova mechanisms and the associated nucleosynthesis of heavy elements. A high-
statistics observation of the neutrino signal from the next nearby supernova could in addition
provide important information on unknown neutrino properties (see e.g., [6]). It has for
example, been shown by simulations [7] that the signal produced by supernova neutrinos
in a large-scale detector such as the IceCube [8] probably could be used to disentangle the
important question of normal-or-inverted neutrino-mass hierarchy. As has been proposed by
Volpe [9, 10], charged-current neutrino-nucleus scattering with neutrinos from low-energy
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neutrino beams could in the future be exploited for spectroscopy of the virtual states involved
in neutrinoless double-beta decay (see e.g., [11]) and consequently constrain theoretical
predictions for the associated nuclear matrix elements.

Neutrinos from astrophysical sources can be detected by Earth-bound detectors by
using charged-current and/or neutral-current interactions in nuclei [12]. For a recent review
on experimental methods for detection of supernova neutrinos, see [13]. One planned
possibility for measurements of astrophysical neutrinos (solar and supernova neutrinos) is
the MOON (Mo Observatory Of Neutrinos) experiment [14].

In this paper, we perform theoretical calculations of the cross sections for the charged-
current neutrino-nucleus scattering off the stable even-even molybdenum isotopes for
neutrino energies, which are relevant for supernova neutrinos. We also present results for the
averaged cross sections obtained by folding the cross sectionswith a Fermi-Dirac distribution.
The calculations are based on the general theory for the treatment of semileptonic processes
in nuclei, which was first introduced by O’Connell et al. [15]. This theory is discussed
comprehensively in [16]. In the present calculations, the initial and final nuclear states
are constructed by using the proton-neutron quasiparticle random-phase approximation
(pnQRPA, see e.g., [17]).

The nuclear-structure dependence of the ν-nucleus cross sections is contained in
the reduced nuclear matrix elements of various one-body operators, which depend on the
momentum transfer. With an increasing number of nuclear final states, the calculations of
these matrix elements are obviously increasingly time consuming. Therefore, in [18] we
introduced a fast method for the calculation of the involved matrix elements, which is based
on the barycentric Lagrange interpolation [19]. This method is adopted in this work and it is
shown that the obtained results are in very good agreement with exact calculations.

This paper is organized as follows. In Section 2 we outline the theoretical framework
for calculations of charged-current neutrino-nucleus cross sections. First the pnQRPA is
introduced. We then briefly summarize the formalism for computations of charged-current
neutrino-nucleus scattering off nuclei. Then, in Section 3 we present our results. Finally, in
Section 4 we draw the conclusions.

2. Theory

2.1. pnQRPA

In this work, the proton-neutron quasiparticle random-phase approximation (pnQRPA) is
adopted to construct the nuclear final and initial states. In this section, we therefore briefly
summarize the formalism of the pnQRPA. For a more detailed treatment, the reader is refer-
red to [17, 20].

The nuclear Hamiltonian for a general two-body residual interaction V can be
expressed in the form

H =
∑

α

εac
†
αcα +

1
4

∑

αβγδ

vαβγβc
†
αc

†
β
cδcγ , (2.1)

where the index a contains the single-particle quantum numbers na, la, and ja and α holds in
addition the magnetic quantum number mα. Here c†α is the particle creation operator and
cα denotes the corresponding particle annihilation operator. In (2.1) εa are single-particle
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energies and the antisymmetric two-body matrix elements are defined as vαβγβ = 〈αβ|V |γδ〉−
〈αβ|V |δγ〉.

The pairing correlations in this work are taken into account by adopting the BCS
(Bardeen-Cooper-Schrieffer) theory. The starting point in the BCS approach is the variational
ansatz for the BCS vacuum

|BCS〉 =
∏

α>0

(
ua − vac

†
αc̃

†
α

)
|HF〉, (2.2)

where |HF〉 is the Hartree-Fock vacuum and c̃α denotes the time-reversed particle anni-
hilation operator, which is defined as c̃α = (−1)ja+mαc−α where −α = (a,−mα). The variational
parameters ua and va in (2.2) are obtained by solving the BCS equations [17].

The quasiparticles subsequently are defined via the Bogoliubov-Valatin transforma-
tion

a†
α = uac

†
α + vac̃α,

ãα = uac̃α − uac
†
α.

(2.3)

By using this transformation the nuclear Hamiltonian (2.1) can be cast into the form

H = H11 +H02 +H20 +H13 +H31 +H04 +H40, (2.4)

where the term Hij is proportional to a normal ordered product of i quasiparticle creation
operators and j quasiparticle annihilation operators.

In practice, the parameters of the BCS calculation are adjusted to reproduce the
experimental pairing gaps for the reference even-even nucleus under consideration. In this
work, the empirical pairing gaps have been deduced from the three-point formulae (see e.g.,
[17])

Δp =
1
4
(−1)Z+1[Sp(A + 1, Z + 1) − 2Sp(A,Z) + Sp(A − 1, Z − 1)

]
,

Δn =
1
4
(−1)A−Z+1[Sn(A + 1, Z) − 2Sn(A,Z) + Sn(A − 1, Z)],

(2.5)

where Sp(A,Z) (Sn(A,Z)) is the proton (neutron) separation energy for the nucleus (A,Z)
having mass number A and proton number Z.

In the pnQRPA, the states of the odd-odd nucleus subsequently are constructed by
coupling two-quasiparticle operators to good angular momentum Jω and parity πω. The state
vector corresponding to the excitation ω = (Jω, πω, kω) then is defined by

|ω〉 = Q†
ω

∣∣pnQRPA
〉
, (2.6)
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where |pnQRPA〉 denotes the pnQRPA vacuum and the additional quantum number kω
enumerates the states with the same angular momentum and parity. Here the pnQRPA
creation operator Q†

ω is given by

Q†
ω =
∑

pn

(
Xω

pn

[
a†
pa

†
n

]

JωMω

+ Yω
pn

[
ãpãn

]
JωMω

)
, (2.7)

where the sum runs over all possible proton-neutron configurations in the adopted valence
space. The pnQRPA equations can then be written in the matrix form [17]

(
A B
−B∗ −A∗

)(
Xω

Yω

)
= Eω

(
Xω

Yω

)
, (2.8)

where Eω denotes the pnQRPA energy of the phonon ω. In (2.8) A is the well-known
pnQTDAmatrix and the matrix B contains the induced ground-state correlations. MatricesA
and B contain both a particle-particle and a particle-hole channel of the proton-neutron two-
body interaction. As is customary [11] also in this work the particle-particle and particle-hole
channels are scaled by phenomenological constants gpp and gph, respectively. This is done for
eachmultipole Jπ separately. For more details on the scaling of the pnQRPAHamiltonian, see
[20, 21]. In the present computations, these parameters are tuned for the 1+ multipole only
by using experimental observables such as beta-decay rates, the energy of the giant Gamow-
Teller resonance, and experimental energies of the low-lying states in the odd-odd nucleus
under consideration.

2.2. Charged-Current Neutrino-Nucleus Scattering

In this work, we consider charged-current neutrino and antineutrino scatterings off a nucleus
(A,Z) with mass number A and proton number Z, that is, neutrino-induced reactions of
either the form

νl + (A,Z) −→ (A,Z + 1) + l−, (2.9)

or

νl + (A,Z) −→ (A,Z − 1) + l+, (2.10)

for the lepton flavors l = e, μ, τ . The Feynman diagram for the ν-nucleus scattering that
proceed, via an exchange of aW+ boson is shown in Figure 1. In the figure kμ, (k′

μ) represents
the four-momentum of the incoming (outgoing), lepton and pμ and p′μ are the four-momenta
of the initial and final nuclei. The antineutrino reaction (2.10), which is mediated by a W−

boson, can be obtained via charge-conjugation operation on Figure 1 and therefore is not
displayed here.

In this work, we employ conventions that are similar to the ones used in [22]. We
consequently define the covariant and contravariant four-vectors as aμ = (a0,−a) and aμ =
gμνaν = (a0, a), respectively, with the metric gμν = gμν = diag(1,−1,−1,−1). We thus write
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Lepton current j lept
μ

l−

k′
μ

kμ
νl

pμ

(A,Z)

p′
μ

(A,Z + 1)
qμ

W+ Hadron current Jμ

Figure 1: Charged-current neutrino scattering off a nucleus (A,Z) via the exchange of a W+ boson. The
transferred four momentum is qμ = k′

μ − kμ = pμ − p′μ.

kμ = (Ek,−k) and k′
μ = (Ek′ ,−k′), where Ek and Ek′ are the energies and k and k′ denote the

three-momenta of the incoming and outgoing leptons. The four-momenta of the initial and
final nuclear states take similarly the forms pμ = (Ep,−p) and p′μ = (Ep′ ,−p′), respectively.

For low-energy neutrinos, such as the supernova neutrinos that are considered in this
work, the transferred four momentum is small compared to the mass of the gauge boson
(W+ and W− resp.), that is, Q2 = −qμqμ � M2

W . The process in Figure 1 can consequently
be treated in lowest order in the coupling constant G. The effective Hamiltonian density can
then be written for the neutrino-induced reaction (2.9) in the current-current form

Hν
eff(r) =

G√
2
j
(−),lept
μ (r)J(+),μ(r), r =

(
x, y, z

)
, (2.11)

where j
(−),lept
μ (r) represents the charged-current lepton current and J(+),μ(r) is the hadron

current. For charge-changing interactions, the coupling constant G is given by G = GF cos θC
where GF = 1.1644× 10−5, GeV denotes the Fermi constant, and θC ≈ 13◦ is the Cabibbo angle.
For the antineutrino scattering, the effective Hamiltonian density similarly is given by

Hν
eff(r) =

G√
2
j
(+),lept
μ (r)J(−),μ(r), (2.12)

where j(+),lept(r) = (j(−)(r),lept(r))† and J(−),μ(r) = (J(+),μ(r))†. The nuclear matrix elements for
both the considered processes then take the form

〈
f
∣∣∣Hν/ν

eff

∣∣∣i
〉
=

G√
2

∫
d3r
〈
fl
∣∣∣j leptμ (r)

∣∣∣fνl
〉〈

f |Jμ(r)|i
〉

=
G√
2

∫
d3re−iq·rlμ

〈
f |Jμ(r)|i

〉

=
G√
2

∫
d3re−iq·r

[
l0
〈
f |J0|i

〉
− l ·
〈
f |J(r)|i

〉]
,

(2.13)

where fl = l− (l+) and fνl = νl (νl) for neutrino (antineutrino) scattering. We have here
defined Jμ(r) = (J0(r), J(r)) = J(±),μ(r), and j

lept
μ (r) = j(±),μ(r). This should be understood

such that the appropriate hadron and lepton currents for the process under consideration are
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combined according to (2.11) and (2.12), respectively. In (2.13)we have moreover introduced
the lepton matrix element

lμ = eiq·r
〈
fl
∣∣∣j leptμ (r)

∣∣∣fν
〉
. (2.14)

Here the hadron currents J(±),μ(r) can be decomposed into vector (V) and axial-vector (A)
pieces according to

J(±),μ(r) = J(±),V,μ(r) − J(±),A,μ(r). (2.15)

At the origin (r = 0), the single-nucleon matrix elements of the currents J(+),V,μ and J(+),A,μ

are given by

p

〈
p′σ ′
∣∣∣J(+),v,μ(0)

∣∣∣pσ
〉

n
=

u(p′, σ ′)
V

[
FCC
1

(
Q2
)
γμ − i

FCC
2

(
Q2)

2mN
σμνqν

]
u(p, σ),

p

〈
p′σ ′
∣∣∣J(+),A,μ(0)

∣∣∣pσ
〉

n
=

u(p′, σ ′)
V

[
FCC
A

(
Q2
)
γ5γ

μ − FCC
P

(
Q2
)
γ5q

ν
]
u(p, σ),

(2.16)

where |pσ〉p(n) denotes the state vector of a proton (neutron) having the three momentum
p and spin projection σ and mN is the nucleon mass. The corresponding one-nucleon matrix
elements for the nuclear currentJ(−),μ(r) are related to the ones ofJ(+),μ(r) through the charge
symmetries [23]

n

〈
p′σ ′
∣∣∣J(−),v,μ(0)

∣∣∣pσ
〉

p = p

〈
p′σ ′
∣∣∣J(+),v,μ(0)

∣∣∣pσ
〉

n
,

n

〈
p′σ ′
∣∣∣J(−),A,μ(0)

∣∣∣pσ
〉

p = p

〈
p′σ ′
∣∣∣J(+),A,μ(0)

∣∣∣pσ
〉

n
.

(2.17)

By the conservation of the vector current (CVC), the vector form factors FCC
1,2 (Q

2)
in (2.16) can be written in terms of the proton and neutron electromagnetic form factors
F
EM;p
1,2 (Q2) and FEM;n

1,2 (Q2) as (see e.g., [23])

FCC
1,2

(
Q2
)
= F

EM;p
1,2

(
Q2
)
− FEM;n

1,2

(
Q2
)
. (2.18)

In the present work, we use the electromagnetic form factors of [22]. The axial-vector form
factor FCC

A (Q2) in (2.16) is assumed to be of dipole form with the quenched static value
FCC
A (0) = −1.0. Moreover, the pseudoscalar form factor FCC

P (Q2) in (2.16) is obtained from
the Goldberger-Treiman relation (see e.g., [16])

FCC
P

(
Q2
)
≈ 2mN

m2
π +Q2

FCC
A

(
Q2
)
, (2.19)

where mπ = 139.57MeV [5] represents the mass of the charged pion.
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We assume in this work that the final and initial nuclear states have well-defined
angular momenta Jf and Ji and parities πf and πi, respectively. The double-differential cross
section for the charged-current neutrino-nucleus scattering with transition from an initial
nuclear state i to a final nuclear state f can then be written in the form (see e.g., [24])

(
d2σi→ f

dΩdEexc

)

ν/ν

=
G2F
(
±Zf , Ek′

)
|k′|Ek′

π(2Ji + 1)

(
∑

J

σ
J
CL +

∑

J≥1
σ
J
T

)
, (2.20)

where

σ
J
CL = (1 + a cos θ)

∣∣(Jf
∥∥MJ(q)

∥∥Ji)
∣∣2

+
(
1 + a cos θ − 2b sin2θ

)∣∣(Jf
∥∥LJ

(
q
)∥∥Ji
)∣∣2

+
Eexc

q
((1 + a cos θ) + c)2Re

[(
Jf
∥∥LJ

(
q
)∥∥Ji
)(
Jf
∥∥MJ

(
q
)∥∥Ji
)∗]

,

(2.21)

σ
J
T =
(
1 − a cos θ + b sin2θ

)[∣∣∣
(
Jf
∥∥∥Tmag

J

(
q
)∥∥∥Ji
)∣∣∣

2
+
∣∣∣
(
Jf
∥∥∥Tel

J

(
q
)∥∥∥Ji
)∣∣∣

2
]

∓ (Ek + Ek′)
q

[((1 − a cos θ) − c)]2Re
[(

Jf
∥∥∥Tmag

J

(
q
)∥∥∥Ji
)(

Jf
∥∥∥Tel

J (q)
∥∥∥Ji
)∗]

.

(2.22)

Here the excitation energy Eexc of the final nuclear state is defined with respect to the initial
nuclear state, that is, Eexc = Ep′ − Ep. In the above expressions, we have introduced

a =

√√√√1 −
m2

f

E2
k′

,

b =
a2EkEk′

q2
,

c =
m2

f

qEk′
,

(2.23)

where the magnitude of the three-momentum transfer q is given by

q = |q| =
√
a2E2

k′ + E2
k − a cos θ(2EkEk′) (2.24)

andmf denotes the rest mass of the outgoing lepton. In (2.20), the function F(±Zf, Ek′), where
Zf is the proton number of the final nucleus, takes into account the distortion of the outgoing
lepton wave function due to the interaction with the (final) nucleus and the + (−) sign is
used in the case of neutrinos (antineutrinos). Furthermore, in (2.22) the minus sign is used
for neutrinos and the plus sign for antineutrinos.
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For the treatment of final-state interactions, we use the method introduced by Engel
in [25]. Consequently, we define the effective momentum of the outgoing lepton within the
nucleus as

keff =
√
Eeff −m2

l , (2.25)

where the effective energy is given by

Eeff = Ek′ − VC(0). (2.26)

Here VC(0) is the value at the origin of the Coulomb potential produced by the final nucleus.
In this work, we approximate the Coulomb field with that of a uniformly charged sphere and
therefore VC(0) = −αZ(3/2R) where Z = Zf for leptons and Z = −Zf for antileptons and R
denotes the nuclear radius. In the region where keff is small, that is, keffR � 1, one can, just as
in beta-decay calculations, adopt a Fermi function of the form [26]

F(Z,Ek′) = 2
(
1 + γ0

)(
2|k′|R

)−2(1−γ0)eπν
∣∣Γ(γ0 + iν)

∣∣2

Γ
(
2γ0 + 1

)2 , (2.27)

where

γ0 =
√
1 − Z2α, ν =

ZαEk′

|k′| . (2.28)

For larger values of the energy Ek′ of the final lepton, we employ in the present work the
so-called modified effective momentum approximation (EMA) introduced in [25]. In this
approximation, the absolute value of the three momentum and the energy of the outgoing
lepton are replaced by the effective values given by (2.25) and (2.26), respectively. The effec-
tive energy and momentum are also used in the calculation of the three-momentum trans-
fer q defined by (2.24).

Guided by [10, 25], we adopt in the present calculations for the neutrino interaction
(2.9) the Coulomb treatment which, gives the smallest cross section. For the antineutrino
reaction (2.10), the final-state interactions decrease the cross section. Therefore, we choose in
this case the Coulomb treatment (Fermi function or modified EMA), which gives the largest
cross section.

3. Results and Discussion

In this section, we adopt the formalism presented in Section 2 to compute the cross sections
for the charged-current neutrino and antineutrino scatterings off the even-even molybdenum
isotopes.

The initial and final nuclear states are first constructed by using the pnQRPA
(proton-neutron quasiparticle random-phase approximation) discussed in Section 2.1. In the
calculations, the single-particle energies were generated by using the Coulomb-corrected
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Table 1: Cross sections for the charged-current neutrino-nucleus scattering off the even molybdenum
nuclei in units of 10−42 cm2. Exponents are shown in parenthesis. In the last column, we also show for
comparison the results for 100Mo calculated in [10].

Ek/MeV 92Mo 94Mo 96Mo 98Mo 100Mo 100Mo [10]
5.0 — 3.16 (−2) 4.00 (−1) 1.02 (0) 2.83 (0) —
10.0 9.43 (−2) 1.97 (0) 4.45 (0) 7.51 (0) 1.38 (1) 0.68 (1)
15.0 8.96 (0) 1.89 (1) 2.98 (1) 4.21 (1) 5.91 (1) 4.60 (1)
20.0 4.75 (1) 8.13 (1) 1.19 (2) 1.59 (2) 2.13 (2) 2.09 (2)
25.0 1.54 (2) 2.28 (2) 3.04 (2) 3.78 (2) 4.84 (2) 5.01 (2)
30.0 3.27 (2) 4.48 (2) 5.70 (2) 6.73 (2) 8.57 (2) 9.04 (2)
40.0 8.20 (2) 1.04 (3) 1.25 (3) 1.39 (3) 1.75 (3) 1.96 (3)
50.0 1.58 (3) 1.94 (3) 2.25 (3) 2.43 (3) 3.02 (3) 3.02 (3)
60.0 2.61 (3) 3.07 (3) 3.47 (3) 3.73 (3) 4.48 (3) 4.67 (3)
70.0 3.78 (3) 4.33 (3) 4.82 (3) 5.15 (3) 6.04 (3) 6.80 (3)
80.0 4.99 (3) 5.63 (4) 6.21 (4) 6.60 (3) 7.63 (3) 9.36 (3)

Table 2: Cross sections for the charged-current antineutrino scattering off the even molybdenum nuclei in
units of 10−42 cm2. Exponents are shown in parenthesis.

Ek/MeV 92Mo 94Mo 96Mo 98Mo 100Mo
5.0 2.57 (−1) 4.95 (−2) 1.30 (−2) — —
10.0 1.41 (0) 6.30 (−1) 3.33 (−1) 6.12 (−2) 9.88 (−3)
15.0 3.82 (0) 2.14 (0) 1.32 (0) 4.08 (−1) 1.33 (−1)
20.0 8.21 (0) 5.14 (0) 3.51 (0) 1.53 (0) 6.91 (−1)
25.0 1.56 (1) 1.05 (1) 7.73 (0) 4.18 (0) 2.22 (0)
30.0 2.68 (1) 1.92 (1) 1.49 (1) 9.22 (0) 5.43 (0)
40.0 6.52 (1) 4.97 (1) 4.14 (1) 2.97 (1) 2.01 (1)
50.0 1.33 (2) 1.05 (2) 9.04 (1) 6.94 (1) 5.10 (1)
60.0 2.44 (2) 1.97 (2) 1.75 (2) 1.39 (2) 1.07 (2)
70.0 4.00 (2) 3.34 (2) 3.02 (2) 2.50 (2) 2.00 (2)
80.0 5.95 (2) 5.09 (2) 4.67 (2) 3.99 (2) 3.33 (2)

Woods-Saxon potential with the parameters of [27]. For the 100Mo nucleus, some of the single-
particle energies close to the respective Fermi surfaces were then adjusted according to [28].

We employ the formalism discussed in Section 2.2 to calculate the double-differential
cross sections (2.20) for all the final nuclear states f separately. The total cross section σ(Ek)
as a function of the energy of the impinging neutrino Ek then is computed by integrating
over the scattering angle θ and adding up all the individual contributions coming from the
final states. For the calculations of the involved nuclear matrix elements, we use the efficient
method introduced in [18]. For more details, we refer to [29, 30].

In Table 1, we show our calculated cross sections σ(Ek) for the charged-current
neutrino-nucleus scattering off the even molybdenum isotopes as functions of the energy
Ek of the incoming neutrino. In the table, the cross sections are tabulated for a large set of
neutrino energies which, are relevant for supernova neutrinos, that is, Ek � 80MeV. The
results for the antineutrino-induced reactions are similarly shown in Table 2. As is seen in
the tables, both the neutrino and antineutrino cross sections increase strongly with increasing
neutrino energy. We can also conclude that the neutrino cross sections increase significantly
with increasing neutron number N. For low energies of the incoming neutrino, the ν cross
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sections are dominated by Gamow-Teller-like transitions mediated by the operator j0(qr)στ+

and Fermi-like ones, which proceed via the operator j0(qr)τ+. At zero momentum transfer
(q = 0), these operators reduce to the usual Gamow-Teller (στ+) and Fermi (τ+) operators. It
is well known that the Gamow-Teller operator obeys the Ikeda sum rule [31]

S1+
(
β−
)
− S1+

(
β+
)
= 3(N − Z), (3.1)

where S1+(β−) (S1+(β+)) is the total Gamow-Teller strength for the β− (β+) channel. The
nuclei in this work have large neutron excess and hence the β+ branch is small and therefore
S1+(β−) ≈ 3(N−Z). Similarly, for the transitions to 0+ final states one has that S0+(β−) ≈ N−Z.
Furthermore, the energy threshold, QEC, is decreasing from 7.870MeV (92Mo) to 0.168 MeV
(100Mo). This explains the increase of the neutrino cross sections with increasing neutron
number at low neutrino energies. Contrary to this, the antineutrino cross sections decrease
with increasingN. This is explained by the fact that theQβ− values are increasing significantly
with increasing neutron number.

In the last column of Table 1, we compare our results for 100Mo with those of [10]. It
is seen in the table that our results agree well with the ones published in the aforementioned
reference. Our computed neutrino cross sections for 100Mo are also in qualitative agreement
with the results displayed in Figure 1 of [14].

As already mentioned above, we use in the present calculations the method of
barycentric Lagrange interpolation for the computations of the required nuclear matrix
elements. Therefore, in Figure 2 we compare the cross sections computed with this method
with exact calculations in the case of the neutrino scattering off 100Mo. The results for the
antineutrino reaction are similarly shown in Figure 3. It is seen in the figures that the results
computed by the approximate method (based on numerical interpolation) are accurate to 4-5
significant digits. Consequently, the numerical errors are very small compared to the errors
coming from, for example, uncertainties in the nuclear wave functions. The results for the
other isotopes are similar and are thus not shown here.

From the experimental point-of-view, an interesting quantity is the flux-averaged cross
section 〈σ〉, which is obtained by folding the cross sections σ(Ek)with an appropriate energy
profile of the incoming neutrinos. In this work, we adopt a two-parameter Fermi-Dirac
distribution

nFD(Ek) =
1

T3
νF2(αν)

E2
k

exp(Ek/Tν − αν) + 1
, (3.2)

where Tν denotes the effective neutrino temperature and αν is the so-called pinching para-
meter. Here the constant F2(αν) normalizes the total flux to unity.

Because of interactions with the matter, the neutrinos undergo flavor conversions
when they propagate through the star (see e.g., [32]). Consequently, the energy profiles of
the neutrinos (or antineutrinos) which arrive at the Earth-bound detector are different from
the initial ones. For simplicity, we assume in this work that the oscillations occur in the
outer layers of the star. Furthermore, we neglect collective neutrino-neutrino interactions.
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Figure 2: Numerical errors in the cross section for the charged-current neutrino-nucleus scattering off
100Mo due to the use of barycentric Lagrange interpolation. The errors are shown for various energies
Eν of the incoming neutrino. In the figure, Δσ(Eν) = σapprox(Eν) − σexact(Eν).

The neutrino profiles for the neutrinos, which reach the detector can then be written in the
forms [32]

Fνe =

{
sin2θ13F

0
νe + cos2θ13F0

νx Normal hierarchy,
sin2θ12F

0
νe + cos2θ12F0

νx Inverted hierarchy,
(3.3)

Fνe =

{
cos2θ12F0

νe
+ sin2θ12F

0
νx

Normal hierarchy,

sin2θ13F
0
νe
+ cos2θ13F0

νx
Inverted hierarchy,

(3.4)

for neutrinos and antineutrinos, respectively. Here F0
νe (F

0
νx) is the energy profile of electron

neutrinos (non-electron neutrinos) and correspondingly for the antineutrinos. We also point
out that due to the large rest masses of the muon and tau (and their antiparticles), only
supernova νe and νe can be detected by charged-current neutrino-nucleus scattering.

In Table 3 are shown the computed averaged cross sections for the supernova ν
and ν induced scatterings off 100Mo. In the table, νe (νe) represents nonoscillating electron
neutrinos (electron antineutrinos). We moreover denote with νNH

ex (νNH
ex ) and νIHex (νIHex )

the oscillating electron neutrinos (electron antineutrinos) for the normal and inverted
hierarchies, respectively. According to (3.3) (see (3.4)), these neutrinos have energy profiles
that are altered with respect to the initial ones by the flavor conversions νx → νe. Here
results are shown for the two sets of neutrino parameters shown in Table 4. Averaged cross
sections for other energy profiles of the incoming neutrinos (antineutrinos) can be easily
computed by using the original cross sections tabulated in Table 1 (Table 2). We conclude
from Table 3 that the flavor transformations significantly increase the averaged cross sections
both for neutrinos and antineutrinos. The antineutrino cross sections are also much smaller
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Figure 3: Same as Figure 2 for the charged-current antineutrino scattering off 100Mo.

Table 3: Averaged cross sections for the charged-current neutrino and antineutrino scatterings off 100Mo
in units of 10−41 cm2 calculated for the two sets of neutrino parameters (I and II) displayed in Table 4. In
the table, we also show for comparison the results computed in [33].

νe νNH
ex νIHex νe νNH

ex νIHex
pnQRPA (I) 5.80 24.1 18.7 0.048 0.093 0.189
pnQRPA (II) 6.79 77.9 56.7 0.177 0.492 1.182
Ejiri et al. [33] 5.84 76.5

than the corresponding ones for neutrinos. This is explained by the large neutron excess for
100Mo (N − Z = 16) since then the antineutrino-induced reactions are suppressed because
of Pauli blocking. In the table, we also compare our results with the ones of [33] for the
parameter set II of Table 4. The numbers computed in the aforementioned reference have
here been transformed to take into account the oscillation effect (3.3)with the updated value
of sin2θ13 = 0.025 [34] adopted in the present calculations. The discrepancy between the two
calculations for νe is about 16% and for the flavor converted neutrinos in the normal hierarchy
the results are almost exactly the same. Here it should be noted that in the aforementioned
reference the measured 0−, 1+, and 2− strength distributions of [35] were adopted instead of
those calculated by the use of the pnQRPA. We therefore conclude that the results are in very
good agreement with each other despite the rather differentmethods used in the calculations.

The proposed MOON detector can be realized by either using enriched 100Mo or
natural molybdenum [33, 36]. Consequently, accurate estimates of the nuclear responses
for all the stable molybdenum isotopes are important. Therefore, we show in Table 5 our
calculated averaged cross sections for all the stable even-even (A = 92, 94, 96, 98, 100) Mo
nuclei. It is seen in the table that the values of the neutrino cross sections are increasing
significantly with increasing neutron number, while for the antineutrino reaction (2.10) the
trend is opposite. We also conclude again that the cross sections for the neutrino scattering are
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Table 4: Average neutrino energies and values of the parameter α for the two sets of neutrino parameters
adopted in the present calculations. In the table, x denotes the nonelectron flavors, that is, x = μ, τ .

Parameter set (〈Eνe〉, ανe) (〈Eνe〉, ανe) (〈Eνx〉, ανx ) (〈Eνx〉, ανx )
I (11.5, 3.0) (13.6, 3.0) (16.3, 0.0) (16.3, 0.0)
II (11.0, 0.0) (16.0, 0.0) (25.0, 0.0) (25.0, 0.0)

Table 5: Averaged cross sections for the charged-current neutrino-nucleus scattering from the even Mo
isotopes in units of 10−41 cm2 computed with the neutrino parameters corresponding to set I of Table 4.

Nucleus νe νNH
ex νIHex νe νNH

ex νIHex
92Mo 1.30 8.74 6.54 0.457 0.606 0.934
94Mo 2.19 12.2 9.18 0.283 0.396 0.645
96Mo 3.16 15.6 11.9 0.196 0.290 0.495
98Mo 4.20 18.6 14.8 0.094 0.160 0.304
100Mo 6.41 25.7 20.0 0.048 0.093 0.189

notably larger than the ones for the antineutrino channel. Computations of the cross sections
of the charged-current neutrino-nucleus scattering off the odd isotopes, 95Mo and 97Mo, are
still in progress and the results will be published elsewhere.

4. Conclusions

In this work, we have computed the cross sections for the charged-current neutrino and
antineutrino scatterings off the stable molybdenum isotopes for neutrino energies, which are
relevant for supernova neutrinos. In the calculations, the initial and final nuclear states have
been constructed by using the pnQRPA. We have tabulated the cross sections for an exten-
sive set of neutrino energies. The nuclear responses for the aforementioned nuclei have sub-
sequently been calculated by using a two-parameter Fermi-Dirac distribution. However,
averaged cross sections for other energy profiles of the incoming neutrino (or antineutrino)
can be easily computed by using the cross sections given in this paper.

Our results for the neutrino-nucleus scattering off 100Mo agree well with previously
published results. We have found for the studied chain of nuclei that the neutrino-scattering
cross sections increase significantly with the neutron number N. Contrary to this, the cross
sections for the antineutrino scattering decrease notably with increasing neutron number.
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