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for public examination in Auditorium YAA303 of the
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Abstract

This thesis contains two articles, in the following denoted by I and II, and an introduction to
them. In Chapter 1, I present the theoretical models of nuclear structure. In Chapter 2, I intro-
duce the basic ideas about the density functional theory (DFT) and self-consistent mean-field
(SCMF) calculations. In Chapter 3, I give the formulae for the uncertainty propagation, which
is the error analysis method used in article I. As a proper tool to survey the predictive power
of theoretical models, the error analysis now has become more and more widely used. By ana-
lyzing the propagation of uncertainties, one tries to find out the effectiveness of the calculation
with a given parameter set obtained from optimization. In Chapter 4, I present the theoretical
framework of the Lipkin method used in article II. This method can be considered as an ap-
proximation of the variation-after-projection method. In Chapter 6, I briefly review the main
results of articles I and II. In the Appendices, I give some useful details and derivations.
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Chapter 1

Introduction

The efforts towards modeling the nuclear structure with high precision and sound physical
meaning have been carried out for several decades. A large part of the representative results in
this domain can be roughly divided into three types of methods [3, 4]:

1. The ab initio approaches that aim at building the wave function that describes the con-
sidered system from first principles. Examples of these approaches include the no-core
shell model (NCSM) [5], coupled-cluster (CC) expansion method [6], and lattice effective
field theory(LEFT) [7].

2. The macroscopic approaches such as the liquid drop model [8], in which the quantal effects
are, at most, only partially described.

3. The configuration interaction model (CI) [9] and DFT [3, 10] that are quantal and micro-
scopic but effective approaches.

The ab initio approaches, in principle, contain the least approximations. They are suitable for
calculations of light nuclei. For example, the LEFT has been used to describe the Hoyle state in
12C [7]. However, they are not tractable for heavier systems because of their large computational
cost. The macroscopic approaches can only describe the bulk properties of nuclei, such as the
binding energies on average. Compared with the macroscopic models, the CI and DFT are
microscopic. Compared with the ab initio approaches, the approximations they use make them
less computationally expensive. Typical CI approaches, such as the Shell Model (SM), can
be used for calculations in nuclei up to the region around 132Sn, while the DFT, which is the
theoretical tool I use in this thesis, is currently the only branch of microscopic models that can
be used to describe both medium-mass and heavy nuclei [11, 12].

The basic ingredient and degree of freedom used in the DFT is the 1-body density ρ of a system
[13]. In this method, the energy E of a system is viewed as a functional of the 1-body density.
The ground-state energy is obtained by minimizing this functional. In principle, as claimed by
the Hohenberg-Kohn (HK) theorem, the energy density functional (EDF) for systems in different
external fields but with the same kind of interaction between their constituents has a universal
form. Thus, searching for this universal form is a natural goal in this method. Theoretically,
one can determine the functional by exploring the whole E ∼ ρ plane using all kinds of external
fields as Lagrange multipliers [14]. Since this is not doable, in practice, one builds a model EDF
with the help of some approximations and phenomenology. The differences between the true
universal density functional and the model EDFs indicate the necessity to improve results given

11



12 CHAPTER 1. INTRODUCTION

by the latter with the guidance of experimental data. For example, one can construct a simple
EDF with particle-number and rotational symmetries by calculating the mean-field average of
an EDF generator [15, 16]. Such simple EDFs can give overall satisfying descriptions for most
of the nuclei, but improvements are certainly very much needed [4, 15, 17, 18].

To improve the calculated results obtained from the simple EDFs mentioned above, one can use
two strategies:

1. Improving the EDF generator. One can develop new forms based on some mathematical
and physical principles [19–21]. One can also optimize the parameters that appear in
the EDF with the help of increasingly rich experimental data and growing computational
power [22].

2. Generalizing the states that are used to calculate the averages of the EDF generator.

An example of the first strategy is to introduce higher-order terms into the EDF [23–26]. Meth-
ods based on symmetry breaking and symmetry restoration [27–29] belong to the second strategy
[19]. Strategies of improving the results given by the EDF calculations are the main topic of
this thesis.



Chapter 2

Density functional theory and
mean-field method

In this chapter, I introduce the general concepts of the DFT and the framework of the SCMF
method. I also discuss the EDF generators that are needed for meaningful SCMF calculations
as well as possible improvements of mean-field results. DFT claims that the ground-state
energy of an N -particle system corresponds to the minimum of a functional of its 1-body
density. It can be used as the theoretical guideline for ground-state energy calculations. To
find the practical form of this functional, one can build a model EDF from the so-called EDF
generators [16] by calculating their mean-field averages. As this is an approximation, there are
differences between the results given by the model EDF and experimental data [4, 15, 17, 18].
To improve the results, one can introduce the spontaneous-symmetry-breaking mechanism. A
further improvement leads to the so-called beyond-mean-field methods.

2.1 General concepts of DFT

Eρ

Uext

|Φ〉

Figure 2.1: There are one-to-one mappings between the density ρ, ground state |Φ〉, external
potential Uext, and ground-state energy E, provided the ground state of the considered system
is non-degenerate.

One of the foundations of DFT is the Hohenberg-Kohn (HK) theorem [30]. Consider a system
of N interacting fermions with a non-degenerate ground state. Its Hamiltonian can be written
as

Ĥ = T̂ + V̂ + Ûext, (2.1)

where T̂ is the kinetic energy term, V̂ is the two-body interaction term and Ûext is the local
external field. The 3-body and higher-order terms are ignored for simplicity. One can construct

13



14 CHAPTER 2. DFT AND MF

a set U of different Ûext in which each Ûext gives a non-degenerate ground state [31]:

U =
{
Ûext|Give non-degenerate ground state Û

′
ext 6= Ûext + const

}
. (2.2)

Here two U that differ only by a constant are considered as the same. Keeping V̂ fixed, for each
element in U , one can determine a ground state |Ψ〉 of the system and construct two sets:

G = {|Ψ〉 |Ground states corresponding to elements in U} , (2.3)

N = {ρ0|1-body ground-states density corresponding to elements in G} . (2.4)

The 1-body ground-state density is defined as

ρ0 (r) =
∑

α1···αN

∫
dr2 · · · drN |(rα1r2α2 · · · rNαN |Ψ〉|2 (2.5)

with α the quantum numbers used to label the single-particle states.

As illustrated in Fig. 2.1, and according to the HK theorem, there are one-to-one mappings
fnu : N → U from set N to set U and fng : N → G to set G. Therefore, a ground state |Ψi〉 in
G can be viewed as the value of a functional |Ψ [ρ]〉 at the corresponding 1-body ground-state
density ρ = ρ0,i, where ρ0,i is the counter image of |Ψi〉 under fng. Here i is used as a label of
the group elements in sets N , G or U . A similar statement holds for the external field Ûext,i in
U . This means that the energy of ground state |Ψi〉 can be written as

E0,i = E [ρ0,i]

= FHK [ρ0,i] +

∫
drUext,i (r) ρ0,i (r) , (2.6)

FHK [ρ0,i] ≡ 〈Ψi| T̂ + V̂ |Ψi〉 ,

where FHK is a universal functional. By definition, if Ûext is fixed to Ûext,i, by solving the
equation

δE [ρ (r)]

δρ (r)
= µ, (2.7)

one can find that the minimum is located at ρ = ρ0,i with E [ρ0,i (r)] the exact ground state
energy. In Eq. (2.7), µ is a Lagrange multiplier coming from the constraint µ

[∫
drρ (r)−N

]
=

0 on particle number.

Another important tool for the DFT is the Khon-Sham (KS) scheme [32]. It states that for
an N -particle interacting system, there exists a non-interacting KS system that has the same
1-body ground-state density as the original system. Let us write the Hamiltonian of the KS
system as

Ĥks = T̂ + Ûks. (2.8)

By solving the single-particle equation

(
− ~2

2m
∇2 + Uks (r)

)
φk (r) = εkφk (r) , (2.9)

one can obtain the single-particle orbits. Since the KS system is non-interacting, the ground
state can be built by filling these orbits from the lowest to the highest so as to respect the
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anti-symmetry requirement. Thus, it can be represented by a single Slater determinant. The
1-body ground-state density can be expressed as:

ρ0 =
N∑

i=1

|φk|2 . (2.10)

Ûks can be determined from the variational principle. Let the ground state of the KS system
be |Φ〉. Since the HK theorem also holds for a non-interacting system, there is |Φ〉 = |Φ [ρ0]〉.
The ground-state energy of the original interacting system can be expressed as

E0 [ρ0] = T [ρ0] + Ṽ [ρ0] + Ṽc [ρ0] , (2.11)

where

T [ρ0] ≡ 〈Φ [ρ0]| T̂ |Φ [ρ0]〉 ,
Ṽ [ρ0] ≡ 〈Φ [ρ0]| V̂ + Ûext |Φ [ρ0]〉 ,
Ṽc [ρ0] ≡ 〈Ψ [ρ0]| Ĥ |Ψ [ρ0]〉 − 〈Φ [ρ0]| Ĥ |Φ [ρ0]〉 ,

and Ĥ and |Ψ〉 are the Hamiltonian and ground-state wave function of the interacting system.
E [ρ0] can also be expressed as [31]

E0 [ρ0] = T [ρ0] + EH [ρ0] + Eext [ρ0] + Exc [ρ0] , (2.12)

EH [ρ0] ≡
∫
drdr′V

(
r, r′

)
ρ
(
r′
)
ρ (r)

Eext [ρ0] ≡
∫
drUext (r) ρ (r)

Exc [ρ0] ≡ 〈Ψ| T̂ + V̂ |Ψ〉 − EH [ρ0]− T [ρ0] .

Eq. (2.12) is the common expression in electronic DFT. By applying the variational principle
[15], one gets

δE0|ρ=ρ0
=

[
〈δΦ| T̂ |Φ〉+ 〈Φ| T̂ |δΦ〉+ δṼ + δṼc

]
ρ=ρ0

=

[
δṼ + δṼc −

∑

i

~2

2m

∫
drδφ∗i∇2φi + φ∗i∇2δφi

]

ρ=ρ0

=

[
δṼ + δṼc +

∑

i

εiδ

(∫
dr (φ∗iφi)

)
−
∫

drUksδ

(∑

i

(φ∗iφi)

)]

ρ=ρ0

(2.13)

=

[
δṼ + δṼc −

∫
drUksδρ

]

ρ=ρ0

= 0

In Eq. (2.13), the single-particle equation (2.9) and orthonormality of the single-particle orbits
are used. The Lagrange multiplier is dropped since it only shifts the results by a constant.
Because Eq. (2.13) should hold for any δρ, one has

Uks =
δṼ

δρ
+
δṼc
δρ

. (2.14)
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In principle, if the form of the energy density functional E0 [ρ] is known, one can construct
the proper KS system to calculate the 1-body ground-state density and thus the ground-state
energy. However, in practical, this form is difficult to obtain and approximations are needed.
The self-consistent mean-field method can be viewed as one of the possible approximations
[19].

2.2 SCMF method in nuclear system

(a) (b) (c) (d)

Figure 2.2: By using the Wick theorem and variational principle, the two-body interaction is
transformed into a sum of one-body density-dependent potentials: (a) and (b) represent self-
consistent mean fields at the Hartree-Fock level; (c) appears when pairing is activated and pairs
are allowed to be created (upper part of (c)) and annihilated (lower part of (c)).

2.2.1 The EDF from the Hartree-Fock average

For an interacting many-nucleon system, ignoring for simplicity the 3-body and higher-order
interactions, one can write the Hamiltonian as

Ĥ = T̂ + V̂ =
∑

ij

tijc
†
icj +

1

4

∑

ij

v̄ijklc
†
ic
†
jclck (2.15)

with c†, c being the creation and annihilation operators of a complete set of basis states and
v̄ijkl the anti-symmetrized matrix elements of the interaction. In the self-consistent mean-field
(SCMF) treatment of nuclei, a nucleus with N nucleons is approximated by a non-interacting
system with the same number of independent fermions moving in the field built by nucleons
themselves. This assumption is supported by experimental evidence such as the existence of
magic numbers [15].

As the eigenstates of the Hamiltonian of the non-interacting system, all single-particle orbits
of the non-interacting system form a complete orthogonal set. The creation operator a†l corre-
sponding to the single-particle state |l〉 can always be obtained by applying a unitary transfor-
mation on an arbitrary complete orthogonal set c†

a†l =
∑

k

Dlkc
†
k, (2.16)
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where D is a matrix representing the transformation. As what one has done in the KS system,
the ground state of the non-interacting system |Φ〉 can be constructed by filling particles from
the lowest to highest orbit so as to respect the Pauli principle:

|Φ〉 = |MF〉 =

N∏

i=1

a†i |−〉 . (2.17)

In the above, |−〉 is the bare vacuum. It is clear that the state |MF〉 here has good particle
number and has the form of a product state. From the Wick theorem [33], one gets

〈MF| c†ic
†
jclck |MF〉 = ρkiρlj − ρliρkj , (2.18)

ρki ≡ 〈MF| c†ick |MF〉

=

N∑

j=1

DkjD
†
ij .

In Eq. (2.18), ρij is the density matrix. Since D is a unitary matrix, the density matrix satisfies
the condition ρ2 = ρ and is a projection operator. The average (Hartree-Fock average) value
of the Hamiltonian defined in Eq. (2.15) under the mean-field ground state can be expressed
as

E0,MF = 〈MF| Ĥ |MF〉 =
∑

ij

tijρji +
1

2

∑

ijkl

v̄ijklρkiρlj . (2.19)

The fact that v̄ijkl is antisymmetric is used to obtain this expression.

One immediately sees that the EDF E0,MF is expressed as a functional of the matrix ρ. From
the HK theorem, one knows that this matrix should also be a functional of the 1-body den-
sity. On the other hand, because of the form of the ground state, the 2-body density matrix
〈Φ| c†ic

†
jclck |Φ〉, which is another functional of the 1-body density, is replaced by simple prod-

ucts of 1-body density matrices. Since in general case this replacement doesn’t always hold, the
dependence of this EDF on the 1-body density is restricted to some degree.

2.2.2 SCMF equation

The minimum of E0,MF can be found by using the variational principle. The variational equation
is

∑

ij

δ

ρij

{
E0,MF − Tr

[
Λ
(
ρ2 − ρ

)]}
δρij = 0. (2.20)

where Λ is a parameter matrix. The term

Tr
[
Λ
(
ρ2 − ρ

)]
=

∑

ij

Λij

(∑

k

ρjkρki − ρji
)

(2.21)

is introduced to keep ρ a projection operator. This is necessary if one wants to keep the
correspondence between the state described in Eq. (2.17) and density matrix [15]. After some
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calculations, one can get rid of Λ and obtain the SCMF equation:

[h, ρ] = 0, (2.22)

hij ≡
δE0,MF

δρji
= tij + Γij ,

Γij =
∑

kl

v̄ikjlρlk.

In the above equation, Γij corresponds to (a) and (b) in Fig. 2.2. It is just the mean field
created by the particles themselves. This equation shows that h and ρ can be diagonalized
simultaneously when the matrix D in Eq. (2.18) corresponds to the set of single-particle orbits
that minimizes the energy. Because D must always diagonalize ρ, one should try to find the
transformation that can diagonalize h. Thus, the SCMF equation can also be written as

∑

k

hikDkj = Dijεj , (2.23)

where εj is the jth eigenvalue of h.

2.2.3 The EDF Generator

The bare nucleon-nucleon (NN) force can be extracted from NN scattering data and has a strong
repulsive core at short range [34]. This means that its matrix elements can be very large. In
order to get a finite expectation value for the Hamiltonian in Eq. (2.15), the amplitude of the
wave function of the system should become small enough when two particles become close to
each other. For example, one can consider a bare NN force with a hard core. The force goes
to infinity when the distance r between any two particles is smaller than the radius of the hard
core rc ≈ 0.4 fm [15]. Thus the wave function must be 0 when r is smaller than rc. This
indicates that the wave function is correlated and, therefore, it is difficult, if not impossible, to
express it as a product state. In other words, in nuclear physics, the correction term Ṽc in Eq.
(2.11) is too large to be ignored. But if one uses the bare nuclear force in Eq. (2.15), this term
is completely missing in the obtained E0,MF.

To overcome this problem, one can replace the interaction part of the nuclear Hamiltonian by
the so-called EDF generator Ĝ [16]. This replacement is reasonable since the Hamiltonian is
only used to generate the EDF. It is the density and EDF that are used to solve the ground-
state-energy problem. By this replacement, one hopes that at least the major part of Ṽc can
be included in the generated EDF. A phenomenological way to determine Ĝ is to formulate it
as

Ĝ =
∑

i

CiÔi, (2.24)

where Ôi are some two-body, three-body, etc., operators and Ci are coupling constants that
should be adjusted to minimize the difference between theoretical results and experimental
data. Operators appearing in Eq. (2.24) are usually restricted by symmetries that exist in
the nuclear force. For example, they need to be invariant under rotation in coordinate space,
under Galilean transformation, etc [15]. The EDF created from Ĝ in Eq. (2.24) is a modeli-
sation/approximation of the exact EDF. One can call it a model EDF. Examples of the EDF
generators are the Skyrme interaction [35–38] and Gogny interaction [39].
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The Skyrme force that is used in article I and II is an important EDF generator. It has the
following form:

v̂ = t0

(
1 + x0P̂σ

)
δ (r12)

+
1

2
t1

(
1 + x1P̂σ

) [
k̂†2δ (r12) + δ (r12) k̂2

]

+ t2

(
1 + x2P̂σ

)
k̂† · δ (r12) k̂ (2.25)

+
1

6
t3

(
1 + x3P̂σ

)
δ (r12) ρα (R)

+ iW0 (σ̂1 + σ̂2) · k̂† × δ (r12) k̂.

In Eq (2.25), P̂σ = 1
2 (1 + σ̂1 · σ̂2) is the spin-exchange operator, r12 is the distance between

two particles, and k̂ = − i
2 (∇1 −∇2) is the relative momentum operator. The first three terms

can be viewed as the leading-order and next-to-leading-order terms of the Taylor expansion of
a nuclear force in the momentum space. The fourth term is the density-dependent term. The
last term represents a spin-orbit interaction. In each term, there are two (ti, xi, i = 1, 2, 3) or
one (W0) coefficients. They are corresponding to the coupling constants Ci in Eq. (2.24). Until
now, there are already many sets of Skyrme parameterizations available in the literature, see
Ref [40].

Since the Skyrme force is a zero-range interaction, the resulting Skyrme EDF [41] contains only
the local and quasi-local terms. Local terms are terms constructed from the diagonal elements
of the density matrix in the coordinate space. They come from the first and fourth terms of the
Skyrme force. Quasi-local terms are constructed by acting with the gradient operator on the
density matrix in the coordinate space before taking its diagonal elements. They come from the
second, third, and last terms of the Skyrme force. Because the Skyrme EDF has only the local
and quasi-local terms, the mean field derived from it also has only the local and quasi-local
terms.

2.2.4 S-SC-MF-EDF calculation

By using the product state, EDF generator, and some symmetry constraints, one can build a
standard symmetry-conserving mean-field EDF (S-SC-MF-EDF). By the standard, I mean that
the standard EDF generator, such as the Skyrme interaction, is used to generate the EDF. By
the symmetry-conserving mean field, I mean that the used product state carries all possible
symmetries that come from the Hamiltonian. Examples of these symmetries are the particle-
number symmetry and rotational symmetry. The reason of adding the symmetry constraints
is that one may want to obtain the ground-state energy and real 1-body ground-state density
which has all possible symmetries at the same time. This is, at least in principle, possible
because of the HK theorem.

After the EDF is generated, with the help of the SCMF equation, the ground-state energy as
well as the density matrix can be calculated. The whole process is summarized in Fig. 2.3.
As demonstrated in the figure, the SCMF equation is solved iteratively. This is because the
equation is non-linear. The non-linear property comes from the fact that the matrix h depends
on the transformation matrix D, which is in turn the solution of this equation.

Once the results are obtained, one can compare them to experimental data. Because the S-
SC-MF-EDF is only a modelisation/approximation to the exact EDF, one should expect some
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EDF V̂|Φ〉

Symmetry

h
h (numeric

matrix)
E0 and ρ

stop

Initialization

Not converged

Converged

Figure 2.3: The process of a S-SC-MF-EDF calculation

differences between its results and exact ones. In fact, in most case, the comparisons show that
the S-SC-MF-EDF calculation is not good enough. For example, for 240Pu, the binding energy
difference between the experiment and calculation can be around 20 MeV [4] (2 percent of the
total binding energy). Also, some observed facts, such as the energy gap in even-even nuclei
and odd-even effect in odd-even nuclei cannot be described by this EDF. To overcomes these
problems, one should search for methods to improve it.

2.3 Possible improvements

Since one important source (if not the only source) of the difference between the S-SC-MF-EDF
results and experimental data is the imperfection of the model EDF, and the model EDF is
generated by the EDF generator, one natural way to improve the calculated results is to improve
the EDF generators. Besides modifying the generator, generalizing the state |MF〉 is also one
way for improvement.

2.3.1 Improving the EDF generator

In order to construct an EDF generator, one first constructs a function of operators that contains
some unknown parameters and then adjusts these parameters to experimental data. From this
process, one can see that the form of the function and its parameters are two basic elements of
the EDF generators. Thus, to improve them, one can use two methods:

1. Optimizing the parameters to experimental data and improving the fitting procedure
[22]. By doing this, one can constrain the parameters better and absorb more corrections
corresponding to the missing part in the model EDF into the parameters.

2. Adding/Changing terms in the EDF generator with the guidance of physical and mathe-
matical principles so that one can create a better approximation of the exact EDF [19].
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Of course, one can also combine these two aspects together, that is, to optimize the parameters
of a modified EDF generator.

2.3.2 Generalizing the state

From subsection 2.2.4, one sees that the state |MF〉 used in S-SC-MF-EDF is constrained
by the symmetry-conserving requirement and by the single Slater determinant form of the
wave function. By removing these constraints, one can enlarge the subset used to search for
the minimum of Eq. (2.20) in the Hilbert space, which may lower the calculated ground-
state energy. If the symmetry-conserving requirement is removed, the spontaneous symmetry
breaking (SSB) [42] is introduced into the calculation. This strategy is widely used in the mean-
field calculations nowadays. If one turns to the superposition of Slater determinants [4], the
calculation goes towards including the so-called beyond-mean-field effects. Examples are the
generator coordinate method (GCM) and projection method, where the latter is a special case
of the former, and it is used to restore broken symmetries. Since the Lipkin method discussed
in article II is related to the symmetry restoration, here I only give a brief introduction to the
SSB mechanism and projection method.

DS

∈ MPAV

∈ MVAP

β

θ

Figure 2.4: A schematic diagram of the SSB in the rotational symmetry and angular momentum
projection. β denotes the deformation; θ is the orientation of the wave function. The green dot
is the subset S of Hilbert space containing spherical product states. The red line is the subset
D that includes both spherical and deformed product states. The blue circle represents the set
of basis on which the subspace used in the PAV method is expanded. Each circle in the yellow
region is a set of basis used to expand a subspace. The union of these subspaces is the subset
used in the VAP method.

Spontaneous Symmetry Breaking

Consider a Hamiltonian that has a given symmetry S. One can minimize the energy in a subset
S of the Hilbert space that only contains product states having the symmetry S so that the
solution always has this symmetry. But because of possible SSB, a product state without the
symmetry S may give a lower energy. In order to get a better ground state, one often needs to
extend the subset S to a subset D that contains at least part of the product states that break
the symmetry S.

Take the rotational symmetry of nuclei as an example. One can search for the ground state
in the subset which only contains product states that are invariant under arbitrary rotations.
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This would give a spherical ground state that preserves the rotational symmetry. But if one
also includes deformed product states in the subset, it is common that the ground state of a
nucleus having non-magic neutron and proton numbers is among these deformed states. This
is because when the symmetry restriction is removed, the contributions from the quadrupole
part and possibly from other higher-order parts of the interaction are no longer zero. They can
lower the ground-state energy and drive the nucleus towards deformation. For more detailed
explanations, see Ref [15].

Besides the rotational symmetry, particle-number symmetry is another symmetry that is often
broken. The method used to break the particle-number symmetry is the Bogoliubov transfor-
mation [15, 43]. By breaking this symmetry, a non-interacting quasiparticle system without
good particle number is used to approximate the N -particle interacting system.

The SCMF calculation without particle-number symmetry is summarized in Table 2.1 and
compared with the situation where this symmetry is conserved. As demonstrated in the
table, in the case without particle-number symmetry, the creation and annihilation operators
of the non-interacting quasiparticle system (β† and β) are linked with those of a complete
single-particle basis (c† and c) by the unitary Bogoliubov transformation W. The ground state
is constructed by annihilating all quasiparticles in the bare vacuum. It is then a product
state. Since the transformation can lead to mixing between particle creation and annihilation
operators, the ground state now does not always have good particle number. As a consequence
of breaking this symmetry, new terms containing the pairing tensor κ are introduced into the
EDF.

Because W is unitary, the general density matrix R instead of ρ is now a projection operator.
By replacing ρ explicitly appearing in Eq. (2.20) by R and adding the term λTrρ, one gets
the variational equation for the EDF in the particle-number-symmetry-breaking case. The
additional term is used to constrain the particle number so that it is equal to N . Similar to Eq.
(2.22), the mean-field equation now shows that by diagonalizing the matrix H, one can find the
transformation W that minimizes the ground-state energy.

Usually, the symmetry breaking can contribute up to 2% of the total binding energy [4]. What’s
more, by breaking the particle-number symmetry, one can include the effect of pairing correla-
tions (the short-range correlations between two particles coupled to J = 0 pairs). This leads to
a generally successful description of the phenomena such as the energy gap in even-even nuclei,
the odd-even effect, etc.

Although the symmetry breaking can improve the results of the calculations, it also has some
disadvantages. First, as a finite self-bound system, the real ground state should carry all pos-
sible symmetries of the Hamiltonian [15]. For example, the axial deformation of a nucleus is
smeared out by the fact that its symmetry axis can point to any direction with equal probability.
This indicates that one can lower the calculated ground-state energy by restoring the symme-
try. In addition, because of the symmetry breaking, the 1-body ground-state density given by
symmetry-unrestricted mean-field EDF calculation is not the true density. Thus this kind of
calculation does not actually stay in the frame of the HK theorem [4]. In nuclear physics, there
are already some efforts to link the symmetry-broken density to the density in the intrinsic
frame of the nucleon and to build a HK-like theorem and a KS scheme inside this frame [44, 45].
Moreover, some quantities can only be calculated with states that have good quantum numbers.
For example, the transition probabilities [18] are defined between states with good total angular
momentum. It is meaningless to calculate them between states without rotational symmetries.
To solve these problems, one should restore the symmetries.
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Restoring symmetries by Projection

By saying “Restoring the symmetry S”, one means that one wants to build eigenstates that
belong to irreducible representations of the symmetry group. To restore the symmetry, one can
move from D to some subsetM where superpositions of product states are also included. IfM
is invariant under the elements of the symmetry group, it can be shown that in this subset the
energy minimization can be achieved while requiring the states to have the proper symmetry
[15].

Let us take the particle-number restoration as an example. The generator of the symmetry
group is the particle-number operator N̂ . The eigenstates of this operator are what one wants

to build by projection. The element of the symmetry group is R̂ (θ) = exp
[
−iN̂θ

]
, where θ is

a parameter called the gauge angle.

Now consider an N -fermion system. Assume Emodel is used to approximate the exact EDF
of the system. It is generated by some model Hamiltonian Ĥmodel that commutes with the
particle-number operator. By performing the SCMF calculation with particle-number symmetry
breaking, one can obtain a particle-number-symmetry-breaking ground state |Φ〉 at the mean-
field level. With the help of the symmetry group elements, one can build a state

|K〉 =

∫ 2π

0
dθ exp (−iKθ) R̂ (θ) |Φ〉 (2.26)

≡ P̂K |Φ〉 ,

where K is an integer. By writing |Φ〉 as a superposition of states with good particle numbers, it
is easy to show that |K〉 is the eigenstate of the particle-number operator and has the eigenvalue
K. Thus one can say that the operator P̂K projects out the eigenstate |K〉 from |Φ〉. Since here
the projection is done after the ground state is obtained by the variational principle, one refers
to this strategy as “Projection After Variation” (PAV). Obviously, |K〉 is a state in the space
expanded by the basis R̂ (θ) |Φ〉. One can write this space as MPAV. Since Ĥmodel commutes
with particle-number operator, state |K = N〉 is the eigenstate of Ĥmodel inMPAV with correct
particle number.

Another strategy of projection is the so-called “Variation After Projection ” (VAP) method. In
this method, one needs to solve the variational equation

δ
〈Φ| P̂NĤmodelP̂

N |Φ〉
〈Φ| P̂N P̂N |Φ〉

= 0, (2.27)

where |Φ〉 is an arbitrary product state without good particle number. From Eq.(2.27), one
sees that in VAP, one builds states with particle number N from many mean-field states, then
selects the one with the lowest energy. On the other hand, in PAV, only the mean-field ground
state is used to construct a particle-number-conserving state. Thus, VAP is superior to VAP in
the sense that it searches for the minimum in a larger subset of the whole Hilbert space.

A more complicated example is the rotational-symmetry restoration . Assume one has at one’s
disposal a triaxially deformed mean-field ground state. It is a mixture of components with
good total-angular-momentum quantum number J and good magnetic quantum number M . In
the frame of the PAV method, a state with good J and M values can be constructed from a
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deformed mean-field ground state |Φ〉 in the following way:

|JM〉 =
∑

K

gK P̂
J
MK |Φ〉 =

∑

K

gK
∑

α

|JMα〉 〈JKα| Φ〉 (2.28)

=
∑

K

gK
2J + 1

8π2

∫
dΩDJ∗

MK (Ω) R̂ (Ω) |Φ〉 .

In the above equation, α represents quantum numbers used to label states with same J and
M . DJ∗

MK is the Wigner function. R̂ (Ω) is the rotational symmetry group element and gK is

a parameter. gK appears because now by using P̂ JMK operators with different K values one
can build multiple states with the same J and M values from |Φ〉. Since the matrix of the
model Hamiltonian between them is not diagonal, the eigenstate of Hmodel inMPAV must be a
mixture of them. To determine gK , one can solve the generalized eigenvalue problem

∑

K′

hJKK′gK′ = EJ
∑

K′

nJKK′gK′ , (2.29)

hJKK′ = 〈Φ| P̂ J†MKĤmodelP̂
J
MK′ |Φ〉 = 〈Φ| ĤmodelP̂

J
KK′ |Φ〉 ,

nJKK′ = 〈Φ| P̂ JKK′ |Φ〉 .

Obviously, by using operator P̂ JMK with different J values and by solving Eq. (2.29), one
can obtain not only the ground state but also excited states in MPAV. This means that the
projection method can be used as a tool of studying spectra of nuclei.

Since the wave functions used in the projection method become more complicated than those
used in SCMF calculations, the projection method can be very time-consuming.



26 CHAPTER 2. DFT AND MF



Chapter 3

Propagation of uncertainties

An effective model, such as the Skyrme EDF, basically contains some simplifying assumptions
and a set of parameters which are adjusted to experimental data. As fitted to experimental
data, these parameters must have uncertainties. These uncertainties propagate into the observ-
ables calculated by the model and become one part of the uncertainties of the latter, namely,
the statistical errors. Another component of the uncertainty of a calculated observable is the
systematic error. It comes from the fact that there are unknown missing elements in the used
model. If the exact model is unknown, which is true in most cases in nuclear physics, it is dif-
ficult to calculate this type of errors. Compared with the systematic error, the statistical error
is relatively easier to study with the help of the statistical analysis. By analyzing the statistical
errors in the calculated results, one can explore the quality and predictive power of the used
parameters. For example, the statistical errors of the calculated observables can be used to ex-
amine whether the results are accurate enough or not. By comparing the uncertainties with fit
residuals (the differences between experimental data and theoretical results), one can estimate
the effectiveness of changing the parameters within their uncertainties on improving theoretical
results. By exploring how sensitively the value of a calculated observable reacts to a change of
a given parameter, it is possible to determine whether the experimental data for this observable
can help us to refine this parameter or not. Due to the reasons listed above, recently there
have been numerous studies of theoretical uncertainties related to modeling nuclear phenomena
[46–50]. Article I is among them. In this chapter, I recall the method used in article I. Some
useful details that are not included in that article are also given.

3.1 The equations of propagation of uncertainties

As discussed in Sec. II of article I and in the above, the statistical errors of the theoretical results
of observables are caused by the uncertainties in the model parameters. For an observable y
which is a nonlinear function of a set of n parameters x = (x1, · · · , xn)T , the square of its

27
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dx1

dx2

dr

∆f = dr · ∇f

σ2
f ≡ 〈∆f2〉 − 〈∆f〉2

=
∑

ij

∂f

∂xi
Cov (xi, xj)

∂f

∂xj

Figure 3.1: This figure demonstrates the equation of uncertainty propagation. If the function f
can be approximated by the first-order Taylor polynomial at a point, the square of its standard
error at this point can be expressed by the partial derivatives and covariant matrix of its
parameters.

statistical error at x = x0 can be calculated with the help of linearization:

σ2
y |x=x0 = E [y − E (y)]2 |x=x0

≈ E

[
y (x)− y (x0) +

∂y

∂x
· (x− x0)− ∂y

∂x
· E (x− x0)

]2

|x=x0

=
n∑

i,j=1

∂y

∂xi

∂y

∂xj
E ([xi − E (xi)] [xj − E (xj)]) |x=x0 (3.1)

=
n∑

i,j=1

∂y

∂xi
Cov (xi, xj)

∂y

∂xj
|x=x0 .

In the above, Cov (xi, xj) is the covariance matrix of the parameters. It can be obtained in
several approximate ways when doing the fitting [51]. For example, one can estimate the
parameters by minimizing the sum of squared errors

χ2 (x) =
1

m− n
m∑

i=1

[yi (x)− zi]2 , (3.2)

where zi=1,··· ,m are m measured values and yi=1,··· ,m are the corresponding calculated values
depending on parameters x. With the help of the Taylor expansion up to linear terms, and
by assuming that the statistical errors of all zis are independent from each other and obey the
normal distribution N

(
0, σ2

)
, one can show that after the minimization is finished at x = x̂,

the covariance matrix of the parameters can be approximated by:

Cov (x̂, x̂) ≈ χ2 (x̂)
(
JTJ

)−1
, Jij =

∂yi (x)

∂xj
|x=x̂. (3.3)

The derivatives of y are also needed in the uncertainty propagation formula. Since the de-
pendence of the observables on the parameters can be quite complex, numerical methods are



3.2. TRANSFORMATION BETWEEN PARAMETER SETS 29

needed. In our work, the Richardson extrapolation method [52] is used. For a function f (a)
and a finite step length h, f ′ (a) can be approximated by a function Gm (a, h). Its definition
is

G0 (a, h) =
f (a+ h)− f (a− h)

2h
,

Gm (a, h) =
4mGm−1 (h/2)−Gm−1 (h)

4m − 1
, (3.4)

where m = 1, 2, · · · . By using induction, one can prove the relation between Gm and f ′:

f ′ (a)−Gm (a, h) = O
(
h2(m+1)

)
. (3.5)

3.2 Transformation between parameter sets

In article I, we used time-even Skyrme EDF and UNEDF0 parametrization for all calculations.
The form of this EDF is [22]:

E (r) =
∑

t=0,1

χt (r) + χ̃ (r) ,

χt (r) =
∑

t=0,1

[
Cρρt ρ

2
t (r) + Cρτt ρt (r) τt (r) + CJ

2

t J2
t (r) (3.6)

+Cρ∆ρ
t ρt (r) ∆ρt (r) + Cρ∇Jt ρt (r)∇ · Jt (r)

]
,

χ̃ (r) =
∑

q= 1
2
,− 1

2

V q
0

2

[
1− ρ0 (r)

2ρ00

]
ρ̃qρ̃
∗
q (r) ,

Cρρt = Cρρt0 + CρρtDρ
γ
0 , (3.7)

where q = 1
2(−1

2) represents neutron(proton). Index t = 0 (1) denotes isoscalor(isovector)

terms, ρ00 is a fixed number. Cρρt0 , CρρtD, Cρ∆ρ
t , Cρτt , CJ

2

t , Cρ∇Jt , γ, V n
0 , and V p

0 are parameters.
Definitions of densities appearing in Eq. (3.6) are listed in Table 3.1 [3].

In Table 3.1, q = ±1
2 is the same as that in Eq. (3.6). σ = ±1

2 is the spin projection. σ is the
spin Pauli matrix. ρ (rσq; rσq) and κ (rσq; r− σq) are the density matrix and pairing tensor,
respectively, as defined in Table 2.3.2 in coordinate space. The relation between the parameters
in Eq. (3.6) and those in Skyrme force defined by (2.25) can be found in Ref. [53].

Because for the UNEDF0 parametrization CJ
2

t=0,1 are set to 0 [22], in our case the set of param-
eters that is used for calculating the observables is

A =
{
Cρρt0 , C

ρρ
tD, C

ρ∆ρ
t , Cρτt , Cρ∇Jt

}
t=0,1

∪ {γ, V n
0 , V

p
0 } . (3.8)

However, in the fitting process of UNEDF0, the parameter set in use is chosen as

B =
{
Cρ∆ρ
t , Cρ∇Jt

}
t=0,1

∪
{
ρc, E

NM/A,M∗−1
s , aNM

sym, L
NM
sym,K

NM, V n
0 , V

p
0

}
, (3.9)

where ρc is the equilibrium density, ENM

A is the total energy per nucleon at equilibrium, Ms

is the isovector effective mass, aNM
sym is the symmetry energy coefficient, LNM

sym is the density
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Symbol Name Defination

ρ0 (r) iso-scalar density ρ0 (r, r) =
∑

σ,q ρ (rσq; rσq)

ρ1 (r) iso-vector density ρ1 (r, r) = 2
∑

σ,q qρ (rσq; rσq)

ρ̃q (r) abnormal density ρ̃q (r) = −2
∑

σ σκ (rσq; r− σq)

τt (r) kinetic density ∇ · ∇′
ρ(r, r′)|r=r′

Jt (r) spin-orbit tensor i
2

(
∇′ −∇

)
⊗ st(r, r

′)|r=r′

Jt (r) spin-orbit current
∑

ijk εijkJjkei

s0 (r) iso-scalar spin density s (r, r) =
∑

σ,q ρ (rσq; rσ′q)σσ′σ

s1 (r) iso-vector spin density s1 (r, r) = 2
∑

σ,q qρ (rσq; rσ′q)σσ′σ

Table 3.1: Densities used in Even Skyme EDF

dependence of the symmetry energy, and KNM is the nuclear-matter incompressibility [3]. This
means the covariance matrix obtained after the fitting process is built on set B. Therefore, in
order to carry on the calculations about uncertainty propagation, one needs to know how to
construct set

A′ =
{
Cρρt0 , C

ρρ
tD, C

ρτ
t ,
}
t=0,1

∪ {γ} (3.10)

from set

B′ =
{
ρc, E

NM/A,M∗−1
s , aNM

sym, L
NM
sym,K

NM
}
. (3.11)

The expressions of parameters in set B′ through those in set A′ are given in Ref. [22], and read
as

Cρρ00 =
1

3γρc

{
~2

2m

[
(2− 3γ)M∗−1

s − 3
]
τc + 3 (1 + γ)

ENM

A

}
,

Cρρ0D =
1

3γρ1+γ
c

{
~2

2m

(
3− 2M∗−1

s

)
τc − 3

ENM

A

}
,

Cρτ0 =
~2

2m

(
M∗−1
s − 1

) 1

ρc
,

Cρτ1 = Cρτ0 −
~2

2m

(
M∗−1
v − 1

) 1

ρc
(3.12)

Cρρ10 =
1

27γρc

[
27 (1 + γ) aNM

sym − 9LNM
sym + 5τc (2− 3γ) (Cρτ0 + 3Cρτ1 ) ρc − 5τc (1 + 3γ)

~2

2m

]
,

Cρρ1D =
1

27γρ1+γ
c

{
−27aNM

sym + 9LNM
sym + 5

[
~2

2m
− 2ρc (Cρτ0 + 3Cρτ1 )

]
τc

}
,

γ =
~2
2m

(
4M∗−1

s − 3
)
τc −KNM − 9E

NM

A
~2
2m

(
6M∗−1

s − 9
)
τc + 9E

NM

A

.

In the formula above, τc = 3
5

(
3π2

2

)2/3
ρ

2/3
c , and M∗−1

v is the isovector effective mass, which is

fixed to a constant in the case of UNEDF0.



Chapter 4

The Lipkin method

From the description in Chapter 2, one sees that the projection methods can improve the
mean-field results. By using these methods, one can restore the symmetries in the symmetry-
unrestricted wave functions and thus include part of the dynamic correlations. However, the
projection methods, especially the VAP method, is highly computationally expensive. To over-
come this problem, one can develop approximate methods. The Lipkin method discussed in
article II, as I shall show in this chapter, is an approximate method of obtaining the VAP
results. In this chapter, I review the general idea of the Lipkin method represented in Sec. II
of article II. Supplementary materials that are useful in practical calculations are also given in
this chapter.

4.1 General concepts of the Lipkin method

Figure 4.1: A schematic diagram of the Lipkin method. Each sector represents a good-quantum-
number component in the ground state corresponding to the symmetry one wants to restore.
Its radius is the average energy of the component. Its angle is the weight of the component
in the ground state. In the left panel, different components have different energies and the
ground-state energy depends on how they are mixed. In the right panel, the energy differences
between different components are flattened by the Lipkin method. The ground-state energy
becomes independent of how the components are mixed.

As pointed out in Sec. I of article II, the Lipkin method (LM) can be viewed as an approximation
of the VAP method. To restore a given quantum number with this method, one tries to add

31



32 CHAPTER 4. THE LIPKIN METHOD

suitable terms to the Hamiltonian to form a Routhian so that all components with different
target quantum numbers in the symmetry-broken ground state give the same expectation value
of this Routhian [54, 55]. In this way, the projected energy can be calculated without any
projection.

To demonstrate this, as shown in Sec. II of article II, one can consider a symmetry operator Ô
which commutes with Ĥ. For simplicity, I assume Ô is a one-body operator. The mean-field
state |Φ〉 can be written as a superposition of orthonormalized eigenstates of Ô:

|Φ〉 =
∑

i

ai |Oi〉 . (4.1)

The projected energy of the state |Oi〉 is

Ei = 〈Oi| Ĥ |Oi〉 . (4.2)

If Ei is an analytic function of Oi , one can decompose it into

Ei = E0 + f (Oi) , (4.3)

E0 = Ei (Oi = 0) , f (Oi = 0) = 0,

where Ô is assumed to be defined in such a way that it has 0 eigenvalue, and Ei is supposed to
reach its minimum at i = 0. By using this decomposition, the energy of the ground state |Φ〉
becomes

E =
〈Φ| Ĥ |Φ〉
〈Φ|Φ〉 =

∑
i |ai|2Ei∑
i |ai|2

(4.4)

= E0 +

∑
i |ai|2 f (Oi)∑

i |ai|2
= E0 +

〈Φ| f(Ô) |Φ〉
〈Φ|Φ〉 .

Thus, E0 is given by

E0 =
〈Φ| Ĥ − f

(
Ô
)
|Φ〉

〈Φ|Φ〉 . (4.5)

This means that the mean-field ground state, which is obtained by applying the variational

principle to the Routhian Ĥ − f
(
Ô
)

can give us the projected energy of the ground state

|Oi = 0〉. Thus, the Lipkin method can be viewed as an approximation of the VAP method. Of
course, the mean-field ground states obtained in this way are not eigenstates of the symmetry
operator. One still need to use projection methods to restore their symmetries.

4.2 Determination of f(Ô)

4.2.1 The Taylor expansion

In order to use the Lipkin method, one should determine the Lipkin operator f(Ô) first. A
practical way to do this is to expand f(Oi) up to order N :

f (Oi) =

N∑

n=1

knO
n
i . (4.6)
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Then the problem becomes how to determine the coefficients in Eq. (4.6). To calculate kn, one
can define a state

|Φ (r)〉 = Ŝ (r) |Φ〉 , Ŝ (r) = exp
[
−iQ̂r

]
. (4.7)

where r is a real parameter and Q̂ is a Hermitian generator of the symmetry Ô, which commutes
with both Ĥ and Ô. The expectation value of Ĥ between |Φ〉 and |Φ (r)〉 is

〈Φ| Ĥ |Φ (r)〉 =
∑

ij

aia
∗
j 〈Oi|Ĥe−iQ̂r|Oj〉

=
∑

i

|ai|2Ei〈Oi|e−iQ̂r|Oi〉. (4.8)

In the last line, 1 =
∑

k |Ok〉〈Ok| is used.

Inserting Eqs. (4.3) and (4.6) into (4.8), one gets

〈Φ| Ĥ |Φ (r)〉 = E0

∑

i

|ai|2〈Oi|e−iQ̂r|Oi〉+
∑

n

kn
∑

i

|ai|2Oni 〈Oi|e−iQ̂r|Oi〉

= E0 〈Φ |Φ (r)〉+
N∑

n=1

kn 〈Φ| Ôn |Φ (r)〉 , (4.9)

where the fact that Q̂ and Ô commute is used.

From Eq. (4.9), one can construct linear equations of kn by taking n+ 1 different r values r0,
r1, ... rn provided the dependence of the kernel 〈Φ| Ôn |Φ (r)〉 on r is known, that is,

Ak = h, (4.10)

Aij =
〈Φ| Ôj |Φ (ri)〉
〈Φ |Φ (ri)〉

,

hi =
〈Φ| Ĥ |Φ (ri)〉
〈Φ |Φ (ri)〉

,

k0 = E0.

In the above, one actually assumes that Ô is a scalar. If Ô =
(
O(1), · · · , O(l)

)
is a vector, and

the eigenstate can be labeled as |Oi〉 =
∣∣∣O(1)

i · · ·O
(l)
i

〉
, Eq. (4.6) becomes

f (Oi) =

l∑

m=1

k(1)
m O

(m)
i +

l∑

m,n=1

k(2)
mnO

(m)
i O

(n)
i + · · · . (4.11)

One may still use Eq. (4.10) to determine coefficients in the expansion. But now terms like

A(mn)j =
〈Φ| Ô(m)Ô(n) |Φ (ri)〉

〈Φ |Φ (ri)〉
(4.12)

appear.
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4.2.2 The expression for A

One sees that to calculate the matrix element of A is the same as to calculate the reduced kernel
of a product of n one-body operators between two states |Φ〉 and |Φ(r)〉. The product can be
written as

Sn = ÂnÂn−1 · · · Â2Â1, (4.13)

Âl =
∑

ij

Al;mnc
†
icj , l = 1, 2, · · · , n.

If |Φ(r)〉 has the same number parity [18] as |Φ〉 (they both only have even particle-number

components, or both only have odd particle-number components), then Sn ≡ 〈Φ|Sn|Φ(r)〉
〈Φ |Φ(r)〉 can be

calculated from the following recurrence relation:

Sl+1 = Tr [Al+1ρr]Sl

+Tr
[
Al+1 (1− ρr)Sρl ρr

]
− Tr

[(
Al+1κ

′
r

)∗
Sρl κr

]
(4.14)

−Tr [Al+1κrS
κ
l ρr] + Tr

[
Al+1 (1− ρr)Sκcl κ

′
r

]
,

S1 = Tr [A1ρr] , l = 0, 1, · · · , n− 1,

Sρl;ij ≡
∂Sl
∂ρr;ji

, Sκl;ij ≡
∂Sl
∂κr;ji

, Sκcl;ij ≡
∂Sl

∂κ
′
r;ji

,

where ρr is the transition density matrix, and κr and κ
′
r are the transition pairing tensors

defined as

ρr,ij =
〈Φ| c†jci |Φ(r)〉
〈Φ|Φ(r)〉 , (4.15)

κr,ij =
〈Φ| cjci |Φ(r)〉
〈Φ|Φ(r)〉 , κ

′∗
r,ij =

〈Φ| c†ic
†
j |Φ(r)〉

〈Φ|Φ(r)〉 .

When calculating Sρl;ij , S
κ
l;ij , and Sκcl;ij , ρr;ji, κr;j>i, and κ

′
r;j>i should be treated as independent

variables. The derivation of Eq. (4.14) is given in the appendix. See also the analogous
derivation presented for the particle-number symmetry in Ref. [56].

4.2.3 Transition density

From Eq. (4.14), one sees that the expressions for the transition density and transition pairing
tensor are needed to finish the calculation of A. They are also needed when calculating hi. If
|Φ〉 and |Φ(r)〉 are treated as the vacua with respect to quasiparticle operators β and γ, then
the corresponding Bogoliulov transformations can be written as


 β

β†


 =


 A†0 B†0

BT
0 AT0




 ĉ

ĉ†


 ,


 γ̂

γ̂†


 =


 A†1 B†1

BT
1 AT1




 ĉ

ĉ†


 . (4.16)
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By using the Thouless theorem [57], one can show that

ρr = B∗1
(
AT0 A

∗
1 +BT

0 B
∗
1

)−1
BT

0 ≡ B̃∗1BT
0 ,

κr = B∗1
(
AT0 A

∗
1 +BT

0 B
∗
1

)−1
AT0 ≡ B̃∗1AT0 ,

κ
′
r = B∗0

(
AT1 A

∗
0 +BT

1 B
∗
0

)−1
AT1 ≡ B∗0ÃT1 ,

B̃1 = B1

(
A†0A1 +B†0B1

)−1
,

Ã1 = A1

(
A†0A1 +B†0B1

)−1
,

where A∗0 and B∗0 can be found by solving the mean-field equations.

For A∗1 and B∗1 , because |Φ(r)〉 is defined through Eq. (4.7), there should be

 γ

γ†


 =


 A†0 B†0

BT
0 AT0


 R̂


 ĉ

ĉ†


 R̂†, (4.17)

R̂ ≡ exp
[
−iQ̂r

]
.

The transformation behavior of the creation and annihilation operators under R̂ are

ĉ†i → R̂ĉ†i R̂
† = RTij ĉ

†
j

ĉi =
(
ĉ†i

)†
→

(
R̂ĉiR̂

†
)†

= R†ij ĉj .

This leads to

 γ

γ†


 =


 A†0 B†0

BT
0 AT0




 R† 0

0 RT




 ĉ

ĉ†


 . (4.18)

Thus there should be:

A∗1 = R∗A∗0 , B∗1 = RB∗0 .

If one wants to calculate the abnormal density defined in Table 3.1, it is convenient to build A†0
and A†1 on the time-reversed basis. This is because a single-fermion state |−σ〉 can be viewed,
up to a phase factor, as the time reversal of the state |σ〉, where σ is the spin value. If the
operator R̂ has the property

R̂ = T̂−1R̂T̂ , (4.19)

the transformation matrix built on time-reversed basis satisfies the relation

Rāb̄ = 〈a| T̂ †R̂T̂ |b〉
= 〈a| T̂ †T̂

(
T̂−1R̂T̂

)
|b〉 = 〈b| T̂ † |a〉 (4.20)

= R∗ab.

Therefore, assuming the A∗ matrices built on time-reversed basis are A∗t,0 and A∗t,1, there should
be

A∗t,1 = RA∗t,0, (4.21)

which is the same as the relation between B∗0 and B∗1 .
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4.2.4 The Gaussian overlap approximation

The Gaussian overlap approximation (GOA) provides us with a fast way to calculate Aij(Eq.
(4.10)) [2, 15]. In Eq. (4.7), in the case of Q̂ = Ô, one obtains

〈Φ| Ôn |Φ (r)〉
〈Φ |Φ (r)〉 = (−i)nN−1 (r)

∂

∂rn
N (r) , (4.22)

N (r) ≡ 〈Φ |Φ (r)〉 .
The GOA assumes that the kernel N (r) can be approximated (up to a phase factor) by

N (r) ≈ NGOA (r) = eir〈O〉 exp

[
−r

2

2

(〈
O2
〉
− 〈O〉2

)]
. (4.23)

If there is 〈O〉 = 0 (this is true when the wave function has time-reversal symmetry and Ô is
among those that will be given in Sec. 4.3.1), Eq. (4.23) can be simplified to

NGOA (r) = e−
1
2
ar2 , a ≡

〈
Ô2
〉
. (4.24)

Inserting Eq. (4.24) into Eq. (4.22) gives:

〈Φ| ÔneiÔr |Φ〉
〈Φ| eiÔr |Φ〉

≈ (−i)ne 1
2
ar2 ∂

n

∂rn
e−

1
2
ar2

= (−i
√
a

2
)nHn(

√
a

2
r), (4.25)

where Hn is the Hermite polynomial of order n.

To use Eq. (4.25), one needs to know the value of a. Eq. (4.24) shows that a can be obtained
from the kernel N (r):

a = −2 lnNGOA (r)

r2
≈ −2 lnN (r)

r2
. (4.26)

Eq. (4.26) becomes exact at the limit r → 0. To calculate the kernel, one can use the Onishi
formula [58]:

N (r) =

√
det
(
A†1A0 +B†1B0

)
= exp

{
1

2
Tr
[
ln
(
A†1A0 +B†1B0

)]}
. (4.27)

But it can’t always give the correct phase factor when the pairing is non-zero. An alternative
formula that can give the correct phase factor is [59]:

N (r) =

Pf


 BT

0 A0 BT
0 B
∗
1

−B†1B0 A†0B
∗
0




Pf


 BT

0 A0 BT
0 B
∗
0

−B†0B0 A†0B
∗
0



, (4.28)

where Pf is the Pfaffian of a skew matrix. To use Eq. (4.28), all columns corresponding to
pure hole orbits in B0 and A0 should be dropped to remove the 0 factor appeared both in the
numerator and denominator. Although Eq. (4.28) is only suitable for the kernels defined in
Eq. (4.22) with |Φ〉 being a ground state of an even-even nucleus, it can be easily generalized
to kernels between arbitrary states. See Ref. [59].
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4.3 The Lipkin method for the translational- and rotational-
symmetry restoration

4.3.1 Ô, Q̂ and the Lipkin operator

The choice of Ô and Q̂ depends on the specific symmetry one wants to restore. So does the
choice of terms included in the Lipkin operator f(Ô). As explained in Sec. II of article II, for
the translational-symmetry restoration, our choice is

f
(
P̂
)

=
∑

i=x,y,z

kiP̂
2
i , Q̂i = P̂i, r = rx, ry, rz, (4.29)

where P̂i is the total momentum operator in the x-, y- or z-direction. Since now the operator Ŝ
defined in Eq. (4.7) is just the space-shift operator, rx, ry and rz are the corresponding shifting
distances. For calculations in article II, the reduced kernel of the square of the total momentum

in j direction between the original state |Φ〉 and shifted state exp
[
−iP̂iri

]
|Φ〉,

p2,j (ri) =
〈Φ| P̂ 2

j exp
[
−iP̂iri

]
|Φ〉

〈Φ| exp
[
−iP̂iri

]
|Φ〉

, (4.30)

is almost a constant function of ri when i 6= j. A simple proof based on the GOA and symmetry
requirements on the mean-field state is given in the appendix. Thus, if only a single P̂i is used
as Q̂, the term p2,j 6=i (ri) is absorbed into the constant k0 in Eq. (4.10), which means that one
can not determine kj 6=i. To guarantee that one can construct enough amount of linear equations

that determine ki, three different Q̂s instead of one should be used. In addition, it is easy to
show that this property reduces Eq. (4.10) into three independent equations


 h (0)

h (ri)


 =


 1 p2 (0)

1 p2 (ri)




 k0,i

ki


 , i = x, y, z, (4.31)

where

p2 (ri) =
∑

j=x,y,z

p2,j (ri) ,

k0,i = E0 +
∑

j 6=i
(kj − ki) p2,j (0) ,

and E0 is defined in Eq.(4.3).

For the rotational symmetry restoration, we choose

f
(
Ĵ2
)

= kĴ2, Q̂ = Ĵy, r = β, (4.32)

where Ĵ2 is the square of the total angular momentum operator, Ĵy is the angular momentum
operator in the y direction, and β is the rotation angle around the y-axis. Since in article II we

focus on the ground states of axially deformed nuclei, the condition
〈
Ĵ2
z

〉
= 0 can be satisfied

during the variational process. Therefore, Ĵ2 can be replaced by Ĵ2
x + Ĵ2

y .
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4.3.2 Symmetries in f(Ô)

Consider the time reversal first. From Sec. 4.3.1, one sees that for the translational-symmetry

restoration, the Lipkin operator has the form f
(
P̂
)

=
∑

i=x,y,z kiP̂
2
i . Since P̂i is the total

momentum operator in the i-direction, we have

T̂−1P̂iT̂ = −P̂i. (4.33)

This means that P̂ 2
i and thus f

(
P̂
)

are invariant under the time-reversal transformation. From

a similar discussion, one finds that the Lipkin operator f
(
Ĵ2
)

used in the rotational-symmetry

restoration is also invariant under the time-reversal transformation.

Then consider an arbitrary unitary symmetry group element Ŝ. Ŝ transforms P̂ 2
i into

Ŝ†P̂ 2
i Ŝ =

(
Ŝ†P̂iŜ

)2
=

[∑

ab

pi,abŜ
†c†aŜŜ

†cbŜ

]2

=

[∑

ab

pi,ab

(∑

m

S†mac
†
m

)(∑

n

STnbcn

)]2

(4.34)

=

[∑

mn

〈m| Ŝ†p̂iŜ |n〉 c†mcn
]2

.

One sees that if

Ŝ†p̂iŜ = ±p̂i, (4.35)

then there is Ŝ†f
(
P̂
)
Ŝ = f

(
P̂
)

. The same conclusion also holds for f
(
Ĵ2
)

.

4.3.3 Matrix elements of f(Ô)

To implement the LM calculation, besides determining the coefficients appearing in the Lipkin
operator, one also needs to calculate the matrix elements introduced into the mean-field equa-
tion by this operator. In the cases considered in article II, this question can be simplified by
calculating the matrix element of kÔ2, where Ô2 is the square of a one-body operator. By using
Eq. (4.14), the expectation value of Ô2 is

〈Φ| Ô2 |Φ〉
〈Φ|Φ〉 = [Tr (Oρ)]2 + Tr

(
O2ρ

)
− Tr (OρOρ)− Tr [Oκ (Oκ)∗] . (4.36)

From the variational principle, one gets the following matrix elements:

∂

∂ρji
[Tr (Oρ)]2 = 2Tr (Oρ)Oij = 2〈Ô〉Oij ,

∂

∂ρji
Tr
(
O2ρ

)
= O2

ij , (4.37)

∂

∂ρji
Tr (OρOρ) =

∑

kl

OljOikρkl + (OρO)ij = 2 (OρO)ij ,

∂

∂κ∗ij
Tr (OκO∗κ∗) =

(
OκOT

)
ji
−
(
OκOT

)
ij

= −2
(
OκOT

)
ij
.
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From these matrix elements, one can build the matrix which should be added to the H in Table
2.3.2 after being multiplied with the coefficient −k:

O2 =


 Oh O∆

−O∗∆ −O∗h


 , (4.38)

Oh = 2〈Ô〉O +O2 − 2OρO,

O∆ = 2OκOT .

Since the operator Ô that we use in article II does not mix protons and neutrons wave functions,
and neither we allow proton-neutron mixing during the calculation, the O, ρ and κ matrices
only have diagonal blocks:

O =


 On 0

0 Op


 , ρ =


 ρn 0

0 ρp


 , κ =


 κn 0

0 κp


 . (4.39)

In order to treat protons and neutrons separately, in Eq. (4.37), one can make the following
replacement:

ij → q, ij, q = n, p. (4.40)

This is equivalent to replacing O by Oq, ρ by ρq, and κ by κq, except for the first line in Eq.
(4.37). In this term, Oij needs to be replaced by Oq,ij , but Tr (Oρ) should be replaced by
Tr (Opρp) + Tr (Onρn), since it is a coefficient rather than a matrix element. The matrix O2

now becomes

O2 =


 O2,n 0

0 O2,p


 ,

O2,q =


 Oq,h Oq,∆

−O∗q,∆ −O∗q,h


 , (4.41)

Oqh = 2〈Ôn + Ôp〉Oq +O2
q − 2OqρqOq,

Oq∆ = 2OqκqO
T
q , q = n, p.

4.3.4 Other approximate projection methods

Some of the most widely used methods in the rotational-symmetry, translational-symmetry and
particle-number restoration are listed in Table 4.1 [60–62].

In Table 4.1, Ĵ is the total angular momentum operator. I is the moment of inertial (MOI). It
can be chosen as a mixture of the rigid body and cranking MOIs. P̂ is the total momentum oper-
ator, m is the nucleon mass, and A is the particle number. The kinetic term is the term

∑
ij tijρji

in Eq. (2.19). The second method for the translational-symmetry restoration is commonly used

in the Skyrme-EDF calculation. It is a result of adding the term − ~2
2mA〈

∑
k p̂k

2〉, which is the

diagonal part of ~2
2mA〈P̂2〉, to the EDF. p̂k is the momentum of the kth nucleon.
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Symmetry Method

Rotation E → E − ~2
2I 〈Ĵ2〉 after variation [60].

Translation 1. E → E − ~2
2mA〈P̂2〉 before or after variation.

2. 1/m→ (1−m) [1− (1/A)] in the kinetic term before variation [61].

Particle Num-
ber

The Lipkin-Nogami method: E → E − k2〈N̂ − 〈N̂〉〉2 before variation [62].

Table 4.1: Several approximate methods to restore symmetries

The Lipkin-Nogami method can be viewed as an example of the Lipkin method for the particle-
number restoration. In this method, one uses k2〈N̂ − 〈N̂〉〉2 to flatten the particle-number
dependence of the projected energy of particle-number-conserving components in the particle-
number-symmetry-breaking mean-field state. However, in the Lipkin-Nogami method, to de-
termine the coefficient k2 one uses diagonal and not transition matrix elements of the particle-
number operator.



Chapter 5

Results

In this chapter, I review the main results of articles I and II.

5.1 Uncertainty propagation

In article II, we calculated the uncertainties of several observables in semi-magic nuclei. A more
detailed analysis was done for 208Pb.

In Fig. 5.1, the binding energies, two neutron (proton) separation energies, and neutron (proton)
rms radii are plotted. A common feature is that all the uncertainties are small in experimentally
known region, whereas they increase when moving towards unknown neutron-rich region. This
is a result of poorly constrained isovector parameters in the EDF. For the binding energies, in
general, the residues with respect to experimental data are lager than the standard errors for
many nuclei. This indicate that there are missing pieces in our model. For two neutron (proton)
separation energies, the cancellation between uncertainties makes their statical uncertainties
much smaller than those in binding energies. In the last two rows of Fig. 5.1, one can see
that because experimental data of proton radii were used in the parameter optimization, the
standard errors for proton radii are smaller compared with those of neutron radii. For proton
radii, the standard errors also increase when approaching the proton drip line. This can be
interpreted by the weak binding of protons in these light nuclei.

In Fig. 5.2, we show the calculated proton and neutron densities in 208Pb. Obviously, the
uncertainties of proton densities are much smaller than those of neutrons. For the neutron
densities, by comparing with the sum of experimental and model uncertainties, we found that
our standard errors are already much smaller. Therefore, any inclusion of small corrections
should not change our results significantly.

In Fig. 5.3, we illustrate the contributions of different terms in Eq. (3.1). One can see that
although some diagonal terms may give quite large positive contributions, it is canceled by the
negative contributions of the same order from their neighboring off-diagonal terms.

Besides these quantities, the theoretical uncertainties of the single-particle energies, which are
not strictly speaking observables are also surveyed. The fact that we obtained small uncertain-
ties shows that the single-particle energies are already tightly constrained by the model. It is
unlikely to improve them merely by refitting the parameters of the standard Skyrme EDF.
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Figure 5.1: Propagated uncertainties of binding energies, two neutron(proton) separation en-
ergies, neutron rms radii, and proton rms radii for (a), (c), (e), (g) isotonic chains with magic
neutron numbers and (b), (d), (f), (h) isotopic chains with magic proton numbers. For the
binding energies of Pb and N = 126 nuclei, fit residuals with respect to experimental data are
also shown. Replotted from Fig. 1 to Fig. 4 in article I.
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5.2 Symmetry restoration with the Lipkin method

In article II, we applied the Lipkin method to the translational-symmetry restoration to the
isotopes of elements between proton number Z = 50 and Z = 82 (the rare-earth-element region)
and rotational-symmetry restoration to deformed Er isotopes. For the translational-symmetry
restoration , in Fig. 5.4, we plot the ratios between the averaged Lipkin masses (MLM) in the
x and y-directions and the exact masses, the differences between the mass ratios in the x- and
y-directions, and the differences between the averaged mass ratios in the x- and y-directions
and those in the z-direction. It turns out that the mass ratios in all three directions are near
but not equal to 1 ((a) in Fig. 5.4). This is because the Lipkin mass and exact mass are
two different things. The exact mass describes the dynamic behavior of a nucleus. It reflects
how the nucleus reacts under a shift. The Lipkin mass, on the other hand, is the same as the
Peierls-Yoccoz mass [55]. It describes some aspects of the stationary property of a nucleus. The
quantity 1/2MLM in the i-direction is nothing but the coefficient of P 2

i (the total momentum
in the i-direction) term in the expansion of the energy of each component in the ground state
with good total momentum .

To demonstrate this difference, one can consider, in the coordinate space, a model Hamiltonian
ĤM of an A-particle nucleus that can be decomposed into a center-of-mass term and intrinsic
term:

ĤM = − ∇
2
R

2mA
+ Ĥintr, (5.1)

where −∇2
R is the total momentum operator and m is the nucleon mass. Let |P〉 be a proper

normalized component with good total momentum in |Φ〉, which is the mean-field ground state
of ĤM . the wave function of |P〉 in the coordinate space can be written as

〈X |P〉 → e−iP·Rφ
(P)
intrisic (ξ) . (5.2)

where X represents the space, spin, and isospin coordinates of all nucleons in the laboratory
frame, ξ represents all these coordinates in the intrinsic frame, R is the space coordinate of

the center of mass, and φ
(P)
intrisic is the intrinsic wave function. In general different |P〉 can have

different intrinsic wave functions.

From Eqs. (5.1) and (5.2), one finds that the energy of state |P〉 is

EP =
P2

2mA
+

∫
dξφ

(P)∗
intrisicĤintrφ

(P)
intrisic. (5.3)

Because of the second term in Eq. (5.3), when EP is expanded as a Taylor series of P, the
coefficients of the second-order terms do not need to be the same as the exact mass.

One can also see that there is almost no difference between the Lipkin masses in the y- and
x-directions for most of the nuclei ((b) in Fig. 5.4). This is reasonable because most of the
calculated nuclei have axial symmetry with z-axis the symmetry axis. Thus the x- and y-
directions are symmetric.

What’s more, in some nuclei, there are differences between the Lipkin masses in the x/y-direction
and those in the z-direction ((c) in Fig. 5.4). This is caused by the deformation ((d) and (e) in
Fig. 5.4). If a nucleus has prolate deformation, its density distribution expands more along the
z-axis while shrinking along the x- and y-axes. The momentum distribution, to the contrary,
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Figure 5.4: (a)R(x+y)/2: The ratio between the average of the Lipkin masses in the x and y-
directions and the exact mass. (b)Ry − Rx: The difference between the mass ratios in the y-
and x-directions. (c)R(x+y)/2 −Rz: The difference between R(x+y)/2 and the mass ratio in the
z-direction. (d) Gamma deformations. (e) Beta deformations. Replotted from Figs. 2 ∼ 4 in
article II.
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expands more along the x- and y-axes and shrinks along the z-axis. This means that there are
relatively more components with relatively large Px and Py than components with relatively
large Pz. Thus, flatter energy curves and larger Lipkin masses in the x- and y-direction when
compared with those in the z-direction become energy preferred.
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Figure 5.5: Energy corrections from the AMP, Lipkin method and AMP after Lipkin method
for Er isotopes with pairing interaction (a) turned off or (b) activated. Replotted from Fig. 6
in article II.

For the rotational-symmetry restoration , in Fig. 5.5, we show the energy corrections for
well deformed Er isotopes, namely, 86−118Er, that are obtained from the angular momentum
projection (AMP) method, Lipkin method and AMP after Lipkin method. Although the SCMF
calculations in our case are not the same as Hartree-Fock (HF) or Hartree-Fock-Bogoliubov
(HFB) calculations [15] because of the use of the EDF generator, here I still use the term HF
(HFB) to represent calculations without (with) pairing. One can see that in general, both for
the case with and without pairing, the results given by the Lipkin method are similar with
those given by projection either before or after the convergence of the Lipkin method. For
182−186Er, the correction energy obtained from AMP are quite different from those in LM or
AMP after LM. This is due to the change in nuclei shape after the convergence of the Lipkin
method. Despite of these differences, the results indicate that one can use the Lipkin method
as an approximation of the VAP method in these Er isotopes.

The moment of inertial (MOI) for well deformed Er isotopes are also calculated with both the
cranking and Lipkin method. In Fig. 5.6 one can see that MOIs from these two methods are
quite different when the pairing interaction is turned off. If one activates the pairing, the LM
MOIs do not change much while the cranking MOIs significantly decrease, so that the values of
the latter become much closer to those of the former.
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Figure 5.6: MOIs obtained from HF or HFB calculations with the cranking or Lipkin method
for Er isotopes. From Fig. 9 in article II.
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Chapter 6

Summary

In this thesis, I presented both the theoretical frameworks and numeric results pertaining to
the error analysis and Lipkin method. These are the main topics of articles I and II. In addi-
tion, I also briefly introduced the DFT theory and SCMF method that provide the theoretical
background of the two methods mentioned above.

For the error analysis, I described the formulas describing the uncertainty propagation. Ways
to obtain the quantities appearing in these formulas are also given. This analysis is applied to
a survey of the effectiveness of the UNEDF0 parameterization in describing semi-magic nuclei.
The results show that, because of the poorly constrained isovector parameters, the statistical
errors increase towards neutron-rich region. Therefore, the predictive power of the model in this
region may be improved if the uncertainties of these parameters are reduced by experimental
data. On the other hand, in some cases, the theoretical uncertainties are significantly smaller
than the residues between the experimental data and calculated results. This indicates missing
terms in the used model, which cannot be absorbed merely by parameter fitting.

For the Lipkin method, I first discussed general procedures to determine the Lipkin operator.
Then I focused on using this method to restore the translational and rotational symmetries.
The Lipkin operators used in these two cases were determined. I also presented their symmetry
properties as well as matrix elements that are introduced into the mean-field equation in this
thesis. Numerical calculations related to the translational-symmetry restoration were performed
for all even-even isotope chains from proton number Z = 50 to Z = 82. From the results,
one can see that for the translational-symmetry-restoration case, the Lipkin masses and exact
masses have similar but nevertheless different values. In deformed nuclei, the Lipkin masses in
different directions are different. Calculations concerning the rotational-symmetry restoration
were performed for axially deformed erbium isotopes. It was found that the Lipkin method can
give similar energy corrections as the AMP of states obtained by applying the Lipkin method.
This indicates that the Lipkin method can be treated as a good approximation of the VAP
method.
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Appendix A

Derivation of the relation (4.14)

Consider a product of n one-body hermitian operators

Sn = ÂnÂn−1 · · · Â2Â1

=
∑

knln

· · ·
∑

k1l1

An;knln · · ·An;k1l1c
†
kn
cln · · · c†k1cl1

≡
∑

KL(n)

AKL(n)CKL(n), (A.1)

where
∑

KL(n) ≡
∑

knln
· · ·∑k1l1

, AKL(n) ≡ An;knln · · ·An;k1l1 , CKL(n) ≡ c†kncln · · · c
†
k1
cl1 . From

the Wick theorem, the reduced kernel of Sn with respect to state |Φ〉 can be written as:

Sn ≡ 〈Φ|Sn |Φ〉
〈Φ|Φ〉 =

∑

KL(n)

AKL(n)WKL(n)

=
∑

KL(n)

AKL(n)

(∑

all F

FKL(n)

)
, (A.2)

where FKL(n) is a fully contracted term, and WKL(n) =
∑

all F FKL(n) is the sum of all different
fully-contracted terms of CKL(n). The possible contractions between two operators in FKL(n)

are

ρij ≡
〈Φ| c†jci |Φ〉
〈Φ|Φ〉 , ρiv

ij ≡
〈Φ| cic†j |Φ〉
〈Φ|Φ〉 ,

κij ≡
〈Φ| cjci |Φ〉
〈Φ|Φ〉 , κ∗ij ≡

〈Φ| c†ic
†
j |Φ〉

〈Φ|Φ〉 . (A.3)

This means that FKL(n) can be expressed as a product of matrix elements ρij , ρ
iv
ij , κij and/or

κ∗ij .

Since CKL(n) = c†knclnCKL(n−1), the fully contracted terms can be divided into two types:

1. Contract c†kn with cln ; Fully contract the remaining operator product CKL(n−1):

c†knclnCKL(n). (A.4)
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2. Contract CKL(n−1) until only two operators left; Contract one of the remaining two oper-

ators with c†kn and the other one with cln :

c†kncln CKL(n). (A.5)

For the first type, it is easy to show that its total contribution to Sn is

Sn;1 = Tr [Anρ]Sn−1. (A.6)

To calculate the total contribution from the second type, we first consider how to find a fully-
but-two contracted term with the form

T ijKL(n−1) ≡ · · · c†i · · · cj · · · . (A.7)

Eq. (A.7) means that T ijKL(n−1) is a fully-but-two contracted term with only c†i and cj left, and

c†i is at the left of cj . Since this term will finally contract with c†kncln , according to the Wick

theorem, one can move c†i and cj to the leftmost position and rewrite this term as

T ijKL(n−1) = (−)nc†icj · · · , (A.8)

where n is the total number of creation and annihilation operators between c†i and cj . On the

other hand, one can build a fully contracted term by contracting c†i and cj :

FKL(n−1) ≡ T ijKL(n−1) = · · · c†i · · · cj · · · . (A.9)

The contraction line between c†i and cj contributes a factor (−1)nρji. Thus, by replacing the

factor ρji in FKL(n−1) with c†i cj , one actually obtains

FKL(n−1)

ρji
c†icj = (−)nc†icj · · · = T ijKL(n−1). (A.10)

Since FKL(n) has the form of a product, from the Libniz formula, if one treats all ρji and ρiv
ji as

independent variables, the following expression

F̂ρKL(n−1);ij =
∂FKL(n−1)

∂ρji
c†icj +

∂FKL(n−1)

∂ρiv
ji

cjc
†
i , (A.11)

gives the summation of all different T ijKL(n−1) and T ij,ivKL(n−1) that can be contracted into FKL(n−1).
Here

T ij,ivKL(n−1) ≡ · · · cj · · · c†i · · · . (A.12)

It is also a fully-but-two contracted term as T ijKL(n−1) except that the order of c†i and cj is

inverted. To verify Eq.(A.11) , one just needs to notice that here the effect of the operator ∂/∂ρji
(∂/∂ρiv

ji) is summing up all different terms obtained by removing one ρji (ρiv
ji) in FKL(n−1). Once

again, because F̂ρKL(n−1);ij will contract with c†kncln , one can do the replacement cjc
†
i → −cjc

†
i
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in Eq. (A.11). Therefore, if one only takes all ρji as independent variables, by using the relation
∂ρji/∂ρ

iv
ji = −1, Eq. (A.11) becomes

F̂ρKL(n−1);ij =
∂FKL(n−1)

∂ρji
c†icj . (A.13)

Similarly, by treating all κi>j and κ∗i>j as independent variables, the expressions

F̂κKL(n−1);ij =
1

2

∂FKL(n−1)

∂κji
cicj (A.14)

and

F̂κcKL(n;ij) =
1

2

∂FKL(n−1)

∂κ∗ji
c†jc
†
i (A.15)

give the summation of all different terms obtained by removing one contraction line in FKL(n−1)

between ci and cj (c†i and c†j).

Since F̂ρKL(n−1);ij (F̂κKL(n−1);ij , F̂κcKL(n−1);ij) would be 0 if there is no contraction between c†i and

cj (ci and cj , c
†
i and c†j) inside F̂KL(n−1);ij , by summing up Eqs. (A.13) ∼ (A.15) and summing

over indexes i and j, one can get the sum of all terms that can be obtained by removing one
contraction line in FKL(n):

F̂KL(n−1) =
∑

ij

(
F̂ρKL(n−1);ij + F̂κKL(n−1);ij + F̂κcKL(n−1);ij

)
. (A.16)

Because any fully-but-two contracted term can always be obtained by removing one contraction
line in a certain fully contracted term, by summing over all different FKL(n−1), one gets the
sum of all fully-but-two contracted terms of CKL(n−1):

ŴKL(n−1) ≡
∑

all F

F̂KL(n−1)

=
∑

ij

(
∂WKL(n−1)

∂ρji
c†icj +

1

2

∂WKL(n−1)

∂κji
cicj +

1

2

∂WKL(n−1)

∂κji
c†jc
†
i

)
. (A.17)

On the other hand, since two different fully contracted terms are still different after removing one
contraction line in each, every fully-but-two contracted term only appears once in Eq. (A.17).
In another word, Eq. (A.17) gives the sum of all different fully-but-two contracted terms of
CKL(n−1).

One can then define an effective one-body operator

Ŝn−1 ≡
∑

KL(n−1)

AKL(n−1)ŴKL(n−1)

=
∑

ij

(
Sρn−1;ijc

†
icj +

1

2
Sκn−1;ijcicj +

1

2
Sκcn−1;ijc

†
jc
†
i

)
, (A.18)

Sρn−1;ij ≡
∂Sn−1

∂ρji
, Sκn−1;ij ≡

∂Sn−1

∂κji
, Sκcn−1;ij ≡

∂Sn−1

∂κ∗ji
.
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In the above equation, Sκn−1 is a skew matrix:

Sκn−1;ji =
∂Sn−1

∂κij
= −∂Sn−1

∂κji

= −Sκn−1;ij . (A.19)

Similarly, Sκcn−1 is also a skew matrix. With the help of this effective operator, the total contri-
bution from the second type to Sn can be written as

Sn;2 =
∑

ijkl

[
Sρn−1;ijAn;kl

(
ρjkρ

iv
li − κ∗kiκjl

)

+
1

2
Sκn−1;ijAn;kl (ρjkκil − ρikκjl)

+
1

2
Sκcn−1;ijAn;kl

(
κ∗kiρ

iv
lj − κ∗kjρiv

li

)]

= Tr
[
An (1− ρ)Sρn−1ρ

]
− Tr

[
A∗nκ

∗Sρn−1κ
]

−Tr
[
AnκSκn−1ρ

]
+ Tr

[
An (1− ρ)Sκcn−1κ

∗] . (A.20)

By combining Eqs. (A.6) and (A.20), one gets

Sn = Tr [Anρ]Sn−1 + Tr
[
An (1− ρ)Sρn−1ρ

]
− Tr

[
A∗nκ

∗Sρn−1κ
]
,

−Tr
[
AnκSκn−1ρ

]
+ Tr

[
An (1− ρ)Sκcn−1κ

∗] (A.21)

S1 = Tr [A1ρ] .

One should note that because all ρji, κi>j and κ∗i>j are treated as independent variables when
calculating the partial derivatives of Sn−1, one cannot use the fact that the general density ma-
trix is a projection operator to simplify the expression before the whole recursion is done.

The expression of Sn also holds for

S(r)
n ≡

〈Φ|Sn |Φ (r)〉
〈Φ|Φ (r)〉 , (A.22)

which is the reduced kernel of Sn between two different states |Φ〉 and |Φ (r)〉 with the same
number parity. This is because in this situation, the fully contracted term FKL(n) would still
be a product of contractions between two operators. However, the density and pairing tensor
appearing in Eq. (A.21) should be replaced by the transition density and transition pairing
tensor:

ρ→ ρr, κ→ κr κ∗ → κ
′∗
r . (A.23)

This replacement leads to the relation (4.14).



Appendix B

Properties of kernels used in
subsection 4.3.1

The simplex operator along i = x, y, z axis is defined as

Ŝi = P̂e−iĴiπ, (B.1)

where P̂ is the parity operator and Ĵi is the total angular momentum operator in the i-direction.
If the mean-field state |Φ〉 is invariant (up to a phase factor) under Ŝi=x,y,z, it is easy to show
that

〈
P̂i

〉
≡ 〈Φ| P̂i |Φ〉 = 0, i = x, y, z, (B.2)

〈
P̂iP̂j

〉
= 0, if i 6= j,

where P̂i is the total momentum operator in the i-direction.

If the kernel N can be calculated by using the GOA, there is:

N (r) ≡
〈
e−iP̂i·r

〉
=
〈
e−i(P̂i·nr)r

〉
≈ exp


−1

2

∑

i,j=x,y,z

〈
P̂iP̂j

〉
rirj


 (B.3)

= exp


−1

2

∑

i=x,y,z

〈
P̂ 2
i

〉
r2
i


 .

In Eq. (B.3), the condition (B.2) is used. One thus obtains,

p2,j 6=i (ri) = −N (r)−1 ∂
2N (r)

∂r2
j

∣∣∣∣∣
rk=0 for all k 6=i

≈
〈
P̂ 2
j

〉
−
[
rj

〈
P̂ 2
j

〉]2

rj=0
(B.4)

=
〈
P̂ 2
j

〉
= p2,j 6=i (0) .

This shows that p2,j 6=i (ri) is a constant function of ri in the frame of the GOA. Deviations from
a constant value can thus appear only beyond GOA order and thus are ignored.
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