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dard Model gauge interactions, and coupled with the Standard Model only via a Higgs

portal. We assume that the theory is classically conformal, with electroweak symmetry

breaking dynamically induced via the Coleman-Weinberg mechanism operating in the hid-

den sector. Due to the symmetry breaking pattern, the SU(N)D gauge group is completely

Higgsed and the resulting massive vectors of the hidden sector constitute a stable dark

matter candidate. We perform a thorough scan over the parameter space of the model

at different values of N = 2, 3, and 4, and investigate the phenomenological constraints.

We find that N = 2, 3 provide the most appealing model setting in light of present data

from colliders and dark matter direct search experiments. We expect a heavy Higgs to be

discovered at LHC by the end of Run II or the N = 3 model to be ruled out.
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1 Introduction

In addition to the Higgs boson [1, 2], LHC has so far not discovered any signals for new

physics at the terascale. This result has recently led to explore novel possible solutions

to the naturalness problem [3–6]. The essential assumptions of these approaches are the

absence of physical mass scales above the electroweak (EW) scale and that the boundary

conditions at the Planck scale lead to the vanishing of the quadratic divergence to the

Higgs boson mass.

Within a classically conformal theory, one sets all explicit mass terms to zero in the

tree level Lagrangian. One must then address the question of how the weak scale arises.

One possibility is that the weak scale is generated radiatively [7], but this does not work

quantitatively for the Standard Model (SM). On the other hand, motivated by the lack of

the SM to explain the observed dark matter abundance or matter-antimatter asymmetry,

one may introduce additional sectors very weakly coupled with the SM. Maintaining the

classical conformality also in the hidden sector, one can then generate a nontrivial scale

radiatively and this is transmitted to the SM sector via interactions between the two

sectors [8]. This is the mechanism which we consider in this paper.

More concretely, we extend the SM by a hidden sector consisting of a scalar transform-

ing nontrivially under a new non-abelian gauge symmetry. All SM fields are singlet under

– 1 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
8

this new gauge symmetry, and the radiatively generated vacuum expectation value of the

hidden sector scalar leads to a complete breaking of the hidden gauge symmetry. The re-

sulting massive gauge bosons are mass degenerate and due to a residual global symmetry,

they constitute a dark matter candidate [9]. We set up the theory for general hidden gauge

group SU(N)D, extending earlier work [10, 11] where the N = 2 case was considered. We

then investigate the phenomenological viability of the model numerically for N = 2, 3, and

4 by imposing the stability of the potential up to the Planck scale, requiring perturba-

tivity of all couplings, and imposing the constraints from the LHC data. Furthermore we

compute the dark matter relic density and impose constraints from the presently known

abundance [12], as well as from the direct searches for dark matter [13–15].

The paper is organised as follows: the model and computation of the EW symmetry

breaking as well as the dark matter relic density are presented in section 2. Various

phenomenological constraints are considered in section 3, and in section 5 we present the

conclusions and outlook.

2 SU(N) vector dark matter

2.1 Preliminary

Before the EW gauging, the global symmetry of the SM scalar sector is SU(2)L×SU(2)R,

which can be made explicit by assembling the Higgs fields into a matrix H transforming as

a bifundamental of this symmetry. We now generalise this as follows: consider extending

the matter content of the SM by a scalar fields assembled into a matrix Φ, singlet under

the SM gauge group and transforming as a bi-adjoint under the global SU(N)L×SU(N)R
symmetry. Then we gauge the SU(N)L symmetry and denote this new gauge group by

SU(N)D. Explicitly, we then have

Φ =
σ√

2 (N2 − 1)
I + i

φa√
2N

T a , Φ′ = exp [−igDαaT a] Φ , a = 1, . . . , N2 − 1 (2.1)

with real fields σ and φa, I the identity matrix in N2 − 1 dimensions, T a a generator

of the adjoint representation1 of SU(N)D, and their numerical factors chosen to preserve

canonical normalization for any N . On the other hand we assume the SM matter fields to

be singlets under SU(N)D, so that the Lagrangian includes all the SM kinetic, gauge and

Yukawa terms, together with

L ⊃ Tr [DµΦ]†DµΦ− V , Dµ = ∂µ − igDAµaT a . (2.2)

While mass terms for both scalar fields are allowed, we set them to zero at tree level to

make the model classically conformal:

V =
λh
2

(
H†H

)2
+
λφ
2

Tr
(

Φ†Φ
)2
− λpH†HTrΦ†Φ , H =

1√
2

(
π+

h+ iπ0

)
. (2.3)

1Note that this holds only for real or pseudoreal representations. If we consider Φ transforming as

bi-fundamental under the global symmetry, we would need to use complex fields σ and φa in eq. (2.1) for

N > 2. This would double the real degrees of freedom and since we have a minimal model in mind, we do

not pursue this further.
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The last term of the potential, generally referred to as the portal coupling [8, 16–18], gener-

ates mass terms for H and Φ, once both scalars develop a vacuum expectation value (vev).

2.2 Electroweak symmetry breaking

While the tree level potential in eq. (2.3) has its minimum at the origin of field space,

the scalar vevs acquire non-zero values via dimensional transmutation because of quantum

corrections [7]. The one loop contribution to the effective potential in the MS scheme [19]

can be written as

∆V =
∑

p∈{ϕ,ψ,A}

(−1)2sp 2sp + 1

64π2
m4
p

(
log

m2
p

Λ2
− kp

)
, kϕ = kψ =

3

2
, kA =

5

6
, (2.4)

where the sum over p includes scalars (ϕ), fermions (ψ), and vectors (A). The factor sp
denotes the spin of the particle in question, and mp its field dependent tree-level mass.

The resulting one loop effective potential,

V1L = V + ∆V , (2.5)

reaches a minimum at

〈H〉 =
1√
2

(
0

vh

)
, 〈Φ〉 =

vφ√
2 (N2 − 1)

I , (2.6)

provided that the values of the vevs, assumed to be real, satisfy the minimization conditions

for the tree level potential,

∂V

∂ϕi

∣∣∣∣
vev

= 0 ; ϕi = h, σ ⇒ λφ =
v2
w

v2
φ

λp , λh =
v2
φ

v2
w

λp . (2.7)

The scalar mass matrix at the minimum of the potential is then defined as (with no sum

over indices) (
M2

ϕ

)
ij

=
∂2V1L

∂ϕi∂ϕj

∣∣∣∣
vev

− δij
vi

∂∆V

∂ϕi

∣∣∣∣
vev

, (2.8)

where the last term represents the shift generated by the one loop correction on the other-

wise zero tree level mass terms [20].

The vevs in eq. (2.6) ensure the breaking of the SM gauge group following the usual

pattern, and of SU(N)D entirely. Consequently, all the dark gauge bosons Aa acquire the

same mass

mA =
gDvφ√
N −N−1

. (2.9)

This degeneracy is a consequence of the residual SO(N) global symmetry of the Lagrangian,

which guarantees the stability of the SU(N)D gauge boson multiplet. These massive gauge

bosons are therefore suitable dark matter candidates [9].

The pseudoscalars φa provide the longitudinal degree of freedom to Aa, while π0 and

π± are absorbed by EW gauge bosons Z and W±, respectively. In appendix A we provide

– 3 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
8

the analytical result for the one loop scalar mass matrix, eq. (2.8), in the (h, σ) basis. From

eqs. (A.1) the one loop masses and the corresponding mass eigenstates, h1 and h2, can be

easily derived analytically.

From the results above we see that viable EW symmetry breaking is possible without

the intervention of any mass term at the tree level. Under renormalisation then, the higher

order corrections to the scalar masses depend on the renormalization scale only logarithmi-

cally, and therefore are in principle natural [6, 8]. In this sense classical conformality trades

the SM fine tuning problem with finding justification for taking the mass terms equal to

zero to begin with.

2.3 Dark matter abundance

As we pointed out in the previous subsection, the residual SO(N) makes the massive Aa

vector bosons stable and therefore suitable dark matter candidates. Their annihilation and

semi-annihilation cross sections can be easily calculated in the limit of zero portal coupling

λp. This approximation for the dark matter analysis is consistent, as in the next section it

turns out that λp � gD in the viable region of parameter space.

For the thermally averaged annihilation (AA→ σσ) and semi-annihilation (AA→ σA)

cross section times relative velocity we find

〈σv〉ann =
11m2

A

144 (N2 − 1)πv4
φ

, 〈σv〉semi−ann =
3m2

A

8 (N2 − 1)πv4
φ

, (2.10)

which for N = 2 reproduce the results of [10, 11]. This approximation is sufficient when

working away from the resonance thresholds, where the full thermal average [21] should be

used; see e.g. [22].

The dark matter abundance is determined by

dY

dx
= Z(x)

(
〈σv〉ann(Y 2 − Y 2

eq) +
1

2
〈σv〉semi−annY (Y − Yeq)〉

)
, (2.11)

where Y = n/s, Yeq the corresponding equilibrium density, x = mA/T , and

Z(x) = −
√

π

45
MPlmA

√
g∗(mA/x)x−2 , (2.12)

with g∗ denoting the effective number of degrees of freedom and MPl the Planck mass.

Using the standard approximations, the dark matter abundance is determined by

Ωh2 = N
1.07× 109GeV−1xf√

g∗ (xf )MPl〈vσ〉
, 〈σv〉 = 〈σv〉ann +

1

2
〈σv〉semi−ann . (2.13)

The value of xf = mA/Tf is determined by solving

xf = ln

[
Z(xf )yeq(xf )2

y′eq(xf )− yeq(xf )

(
δ(δ + 2)

δ + 1
〈σv〉ann +

δ

2
〈σv〉semi−ann

)]
, (2.14)

where δ determines the deviation of the distribution from the equilibrium one, δ = Y/Yeq−
1, before the freeze out. The value of δ is expected to be O(1), and in the numerical analysis

we choose δ = 1.
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3 Constraints

3.1 The LHC data fit

To perform the quantitative analysis of the viability of the model, we start by scanning

the parameter space for data points producing a viable mass spectrum. Between the two

possible hierarchy choices, we focus on the case when the Higgs scalar is lighter than the

dark scalar; we comment on the viability of the alternative possiblity in the next section.

Given the tight experimental constraints on the masses of the SM particles, we set all the

SM couplings (except λh) as well as the Higgs vev to their standard values (vh = 246 GeV).

We fix λh and λφ via eqs. (2.7) and vφ by setting mh1 = 125 GeV. This leaves us with only

two free parameters: gD and λp. We then collect 105 data points for each value of N = 2,

3, 4 in the region

0 < gD < 1.4, 0 < λp < 0.12 . (3.1)

We will see in the next subsection that the scanned range of values of gD and λp is sufficient

to cover the phenomenologically viable region.

The off-diagonal terms in the scalar mass matrix, eq. (A.1), are proportional to the

portal coupling, λp, which therefore controls the amount of mixing between the SM Higgs

field h and the dark scalar σ in the mass eigenstate h1, parametrized by the angle α

according to (
h1

h2

)
=

(
cosα − sinα

sinα cosα

)(
h

σ

)
. (3.2)

Given that σ does not couple to SM particles, the physical Higgs h1 couplings turn out to

be suppressed as compared to their SM values by a factor of cosα. We constrain this factor,

and consequently λp, by determining for each data point the goodness of fit of the Higgs

coupling strengths to their corresponding measured values for the γγ, ZZ, WW , bb, ττ

inclusive processes [1, 2, 23]. To calculate χ2, we follow the procedure detailed in [24], and

here we present directly the results of the statistical analysis. Among the 105 scanned data

points about 39%, 40%, 39%, for N = 2, 3, 4, respectively, satisfy the 95%CL constraint

p
(
χ2 > χ2

j

)
> 0.05 , 1 6 j 6 105, (3.3)

with the index labeling the j-th data point for a given N . The average values of the mixing

coefficient, portal coupling, dark gauge coupling, and scalar vev among the viable data

points are

N =


2

3

4

, cosα =

0.95

0.95

0.95

, λp =

0.063

0.064

0.059

, gD =

0.58

0.64

0.66

, vφ/GeV =

1335

1310

1328

. (3.4)

As expected, given that the measured Higgs couplings are SM like, the portal coupling is

constrained by collider data to acquire small values. The quartic coupling λφ turns out to

be even smaller than λp, from eqs. (2.7), given that the dark vev vφ is much larger than vh.

In the next section we further constrain the viable data points by requiring perturba-

tivity of all the couplings and stability of the potential up to the Planck scale.

– 5 –
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Figure 1. Portal coupling as a function of the dark gauge coupling for N = 2 (left panel) and

N = 3 (right panel) in color for stable and perturbative data points, with color code function of

cα = cosα as given by the bar in the left panel. The data points that also produce an experimentally

viable dark matter abundance are shown in black, and the gray points represent the unstable and/or

non-perturbative data points which though feature a viable coupling coefficient cα.

3.2 Stabilization of the SM potential

The SM potential turns out to be metastable for the measured Higgs mass, since the

quartic Higgs self coupling turns to negative values at a scale smaller or equal to the

Planck scale. The beta function of this coupling, eq. (B.1), receives in the present model

an extra contribution from the portal coupling, which though small, is in principle enough

to keep λh positive up to the Planck scale [10]. Moreover the mixing of the scalar fields

allows for larger values of λh at the EW scale. Given that the beta function of λφ, eq. (B.2),

is numerically positive for viable data points, the value of λφ, greater than zero at the EW

scale because of eq. (2.7), stays positive at all scales. Only for 5% of the roughly 4 × 104

viable data points, selected in the previous section for each value of N = 2, 3, 4, all couplings

stay positive and perturbative (i.e. smaller than 2π) up to the Planck scale:

0 < λh, λφ, gD, yt < 2π at vw < Λ < MPl . (3.5)

The average values of the only two free parameters, λp and gD, with their respective

standard deviations for the viable data points featuring perturbativity and stability are

N =


2

3

4

, λp =

0.020± 0.011

0.019± 0.011

0.019± 0.010

, gD =

0.55± 0.11

0.60± 0.12

0.63± 0.12

. (3.6)

In figure 1 we plot the portal coupling as a function of the dark gauge coupling for N = 2

(left panel) and N = 3 (right panel). Stable and perturbative data points are in color, with

color code function of cα = cosα as given by the bar in the left panel. The black points

represent the data points that also produce an experimentally viable dark matter abun-

dance, as determined in the next subsection. Finally, the gray points represent the unstable

and/or non-perturbative data points which though feature a viable coupling coefficient cα.

From figure 1 one can see that for data points in color there is a strong correlation

among gD, λp, and cα, with gD constrained to larger values and λp to smaller ones by the

– 6 –
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Figure 2. Dark scalar and dark vector masses for all the data points satisfying the LHC constraint,

for N = 2 (left panel) and N = 3 (right panel), in color for those that also feature stability and

perturbativity, in black those that satisfy the dark matter abundance constraint as well, while the

data points that do not satisfy neither of the last two constraints are in gray.

perturbativity and stability requirements. As a result of this correlation the allowed values

of the mass of the dark Higgs h2 fall in a very narrow range:

N =


2

3

4

, mh2/GeV =

175± 10

175± 10

175± 9

, mA =

580± 99

480± 66

420± 63

. (3.7)

In figure 2 we plot the values of the dark scalar and dark vector masses for all the data

points satisfying the LHC constraint, for N = 2 (left panel) and N = 3 (right panel). The

color coding is the same as in figure 1.

From figure 2 one can see that the dark gauge boson mass is clearly correlated with the

mixing coefficient cα. Although the model makes a very definite prediction for the range

of the viable masses of the heavy physical Higgs h2, the couplings of h2 to SM particles are

very small making its discovery at present colliders likely impossible.

As a final comment we point out that no data point featuring a dark Higgs lighter than

125 GeV satisfies all the collider, stability, and perturbativity constraints simultaneously.

We therefore do not investigate further the possibility that h2 might be the Higgs boson

discovered at LHC.

In the next section we implement in our analysis the dark matter abundance, as deter-

mined for the present model in subsection (2.3), and direct detection constraints to further

test the model’s phenomenological viability.

3.3 Dark matter abundance and constraints

We compare the numerical result produced by eq. (2.13) at each viable data point with the

95% experimental interval [12]

Ωh2 = 0.1193± 0.0028 , (3.8)

and find 23 data points (or 1% of the total) for N = 2 (figures 1, 2, left panels) and 39 (or

2% of the total) for N = 3 (figures 1, 2, right panels) that satisfy the dark matter constraint

– 7 –
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Figure 3. Portal coupling vs dark gauge coupling (left panel) and dark scalar vs dark gauge

masses (right panel) for N = 4, in color for stable and perturbative data points, with a color code

function of cα as given by the bar in the left panel, in black for data points that instead produce an

experimentally viable dark matter abundance, and in gray for data points which satisfy only the

LHC constraint on cα.

above as well as those in eqs. (3.3, 3.5). Interestingly, as can be seen from figure 1, for

increasing N the dark matter constraints and the constraints from stability pull in different

directions in the (gD, λp)-plane. Consequently, already for N = 4 none of the data points

satisfy all constraints, as can be seen from figure 3.

Finally, we also impose the direct detection constraints. The spin independent cross

section for the elastic scattering off a nucleon N of the vector dark matter candidate, Aa,

mediated by either h1 or h2 is, in the limit mA � mN ,

σSI (NA→ NA) =
f2
Nm

4
Nm

2
A

4πv2
hv

2
φ

sin2 2α

(
1

m2
1

− 1

m2
2

)2

, (3.9)

where fN = 0.303 is the effective Higgs nucleon coupling [22],2 mN = 0.939 GeV is the

average nucleon mass. In the mass range of interest to us here, above mD ∼ O(100) GeV,

the most stringent bounds are provided by the LUX experiment [15]. We evaluate eq. (3.9)

at each data point producing the correct relic abundance and find that all of them sat-

isfy the experimental constraint in [15], as a function of the mass of the dark matter

candidate, mA. In more detail we obtain that for the universally viable data points the

spin independent cross section for N = 2 (3) is on average 70% (10%) smaller than the

experimental constraint:

N =

{
2

3
, σSI (NA→ NA) =

(1.9± 6.2)× 10−45 cm2

(4.5± 4.3)× 10−45 cm2 . (3.10)

Recently important indirect probes of dark matter interactions have been provided

through observations of cosmic ray protons and antiprotons or gamma rays by AMS [26, 27]

and Fermi-LAT [28] collaborations, respectively. These probe gamma rays from galactic

center and ratio of protons and antiprotons from cosmic rays, respectively. Interpreting the

possible observed anomalies in the context of annihilating dark matter provides constraints

2We thank K. Kainulainen for discussions on this and for providing an updated value.
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Figure 4. CMS constraint (shaded region ruled out at 95%CL) on s2α = sin2 α in function of the

heavy Higgs mass, together with the viable data points (in green those stable and with viable light

Higgs couplings, and in black those that satisfy also DM constraints), for N = 2 (left panel) and

N = 3 (right panel).

on the models of the type which also we have considered here. The constraints are most

effective for dark matter candidates with masses below O(100 GeV). In our case, as we

have shown above, the viable masses of the dark matter are in the range of 400-600 GeV.

We have explicitly checked that within this mass range, assuming annihilation solely to bb̄

final state, our model is safely below the upper bound from Fermi-LAT results.

To summarize the results of this section, the classically conformal SU(3) bi-adjoint

scalar extended SM turns out to be an even more appealing model than its SU(2) version,

given that the former features a larger region of parameter space that satisfies collider,

stability, perturbativity, and dark matter abundance constraints than the latter.

Vector DM in SU(3) gauge theory has been considered also in [25]. There SU(3) is

broken completely by a pair of scalar triplets, which introduce four new physical scalars,

compared to just one in the present minimal model.

4 Discoverability at LHC Run II

The bounds on additional Higgs-like resonances in the mass region defined by eq. (3.7) are

rather stringent [29], given that such a heavy Higgs can decay into a pair of EW bosons

almost at rest. The amplitude for production and decay of the heavy Higgs h2 is equal to

that of the SM Higgs suppressed by a factor s2
α = sin2 α, and there are no hidden decays to

new particles or to a pair of light Higgs bosons. In figure 4 we plot the CMS constraint on

s2
α (figure 8 in [29]), together with the viable data points (in green those stable and with

viable light Higgs couplings, and in black those that satisfy also DM constraints): of the

universally viable data points, about half for N = 3 (right panel) and all for N = 2 (left

panel) satisfy the CMS constraint. Notice that even assuming that not all the DM relic

density is generated by the dark vectors Aa, only in the region above the strip of black

data points the corresponding relic density satisfies the 95% CL upper bound in eq. (3.8),

while the region below is ruled out. To estimate the improvement of this upper bound at

LHC Run II, we assume the corresponding constraint on the cross section to be dominated

by data statistical uncertainty, and therefore to depend on the square root of the total

– 9 –



J
H
E
P
1
1
(
2
0
1
5
)
1
8
8

number N of events observed: √
N =

√
σh2εeffLtot (4.1)

where σh2 is the production rate of a SM-like Higgs boson of mass mh2 , εeff is the efficiency

of the trigger, and Ltot the total integrated luminosity. Assuming the efficiency at Run II

to be unchanged, and taking the total integrated luminosity at the end of Run II in 2019 to

be 150 fb−1, the upper bound on the production rate of h2 should be reduced by a factor of(√
2.497× 150

25
+ 1

)−1

= 1/4 , (4.2)

where the first coefficient under square root is equal to the ratio of production rates for a

175 GeV SM-like Higgs at 13 and 8 TeV, respectively. This result corresponds to a reduction

of 1/2 of the upper limit on s2
α, which changes like the h2 production amplitude. Assuming

the limits in figure 4 to be simply shifted down by a factor of 1/2, we expect a large portion

of viable parameter space of the SU(2) model to be tested at LHC Run II, and a heavy

Higgs to be discovered by the end of Run II or the SU(3) model to be ruled out.

5 Conclusions

In this paper we presented a novel extension of the SM, featuring a new scalar Φ in the

bi-adjoint representation of SU(N)L×SU(N)R, with only SU(N)L gauged. The vev of

such N2 − 1 dimensional matrix field is proportional to the identity matrix, and breaks

completely the new gauge group, providing the corresponding vector bosons Aa with the

same mass. All the N2 − 1 pseudoscalars in Φ are absorbed as longitudinal degrees of

freedom of Aa, and the only remaining physical field is an extra Higgs scalar. Because of

the residual SO(N) global symmetry, Aa is stable and a viable dark matter candidate. The

dark sector couples to the SM only via a Higgs portal term. We set the mass parameters to

zero, and let the EW symmetry be broken via dimensional transmutation due to quantum

corrections. This choice has two motivations: 1) Reducing the number of free parameters

to just two (the gauge coupling gD and the portal coupling λp), and 2) Allowing only

for logarithmic quantum corrections to the scalar mass, and as a consequence solving in

principle the SM hierarchy problem. In this extension of the SM indeed the fine tuning

problem is traded with that of finding an ultraviolet boundary condition that motivates

the choice of zero mass parameters.

The resulting model provides a general setup for SU(N) vector dark matter with

a minimal number of free parameters and matter fields. We studied quantitatively the

phenomenology of the model for N = 2, 3, 4 by scanning the two-dimensional parameter

space for data points producing a viable mass spectrum. We then selected the data points as

follows: first, we require them to match at 95% CL the LHC measured coupling coefficients

of the physical Higgs to SM particles. Second, we require perturbativity, and stability of

the scalar potential up to the Planck scale. Finally, we calculated the dark matter relic

abundance and selected the data points that satisfy the experimental 95% CL bound:

for N = 2, 3 we found that about 1% and 2%, respectively, of the LHC viable, stable

– 10 –
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data points produce also a viable relic abundance, while for N = 4 the otherwise viable

data points produce too large a relic abundance, and are therefore ruled out even as a

subdominant component of dark matter. We also find that the constraints from the dark

matter direct and indirect detection experiments (respectively LUX and Fermi-LAT) are

satisfied by all universally viable data points. To assess the discoverability of the predicted

heavy Higgs, we also imposed the CMS constraint on additional Higgs-like resonances and

found that of the universally viable data points about half are actually already ruled out

for N = 3, while none is ruled out for N = 2. All (most) of the allowed region of parameter

space of the N = 3 (2) model is likely going to be tested at LHC Run II.

To summarize, we have shown that the minimal vector dark matter extension of the

SM presented in this paper leads to EW symmetry breaking through radiative corrections,

stabilizes the scalar potential while providing an experimentally viable dark matter candi-

date and satisfying direct search and LHC Higgs coupling constraints. All this is achieved

within a two dimensional parameter space. As such, these models represent a valid and at-

tractive scenario beyond the SM. We find that N = 2, 3 provide the most appealing model

setting in light of present data from colliders and dark matter direct search experiments.

We expect a heavy Higgs to be discovered at LHC by the end of Run II or the N = 3

model to be ruled out.
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A Scalar mass matrix

The elements of the scalar mass matrix at one loop in the (h, σ) basis are(
M2

ϕ

)
11

= λpv
2
φ +

1

32π2

{
log

[(
1 +

v2
φ

v2
h

)
λp

](
v2
h +

9v4
φ

v2
h

)
λ2
p − 6λ2

pv
2
φ

+16

[
1 + 3 log

(
mW

vh

)]
m4
W

v2
h

+ 8

[
1 + 3 log

(
mZ

vh

)]
m4
Z

v2
h

−96 log

(
mb

vh

)
m4
b

v2
h

− 96 log

(
mt

vh

)
m4
t

v2
h

}
,

(
M2

ϕ

)
12

=
(
M2

ϕ

)
21

= −λpvhvφ +
1

32π2

{
6λpvhvφ

− log

[(
1 +

v2
φ

v2
h

)
λp

](
3v3
h

vφ
− 4vφvh +

3v3
φ

vh

)
λ2
p

}
,

(
M2

ϕ

)
22

= λpv
2
h +

1

32π2

{
log

[(
1 +

v2
φ

v2
h

)
λp

](
v2
φ +

9v4
h

v2
φ

)
λ2
p − 6λ2

pv
2
h+

+8
(
N2 − 1

) [
1 + 3 log

(
mA

vh

)]
m4
A

v2
φ

}
, (A.1)
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with the SM masses given by the usual expressions , mA by eq. (2.9), and the renormal-

ization scale set equal to vh.

B Beta functions

The only SM beta function that is modified in the present model is

16π2dλh
dt

= 16π2

(
dλh
dt

)
SM

+N2λ2
p, (B.1)

with t = log(E/Λ). The beta functions for the beyond the SM couplings in eqs. (2.3), (2.2)

are, for N = 2, 3, 4:

16π2dgD
dt

= − r1,Ng
3
D ;

r1,N =
253

36
,

43

4
,
1297

90
;

16π2dλφ
dt

= r2,Ng
4
D − r3,Ng

2
Dλφ + r4,Nλ

2
φ + 4λ2

p ;

r2,N =
41

6
,

51

16
,

353

150
; r3,N = 14,

27

2
,

76

5
; r4,N = 12, 17, 24 ;

16π2dλp
dt

= − 9

10
g2

1λp −
9

2
g2

2λp −
r3,N

2
g2
Dλp + 6y2

bλp

+ 6y2
t λp + 2y2

τλp + 6λhλp − 4λ2
p + r5,Nλpλφ ;

r5,N = 6, 11, 18 . (B.2)
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