
    

 

 

 
 
This is an electronic reprint of the original article.  
This reprint may differ from the original in pagination and typographic detail. 
 

Author(s): 

 

 

Title: 

 

Year: 

Version:  

 

Please cite the original version: 

 

 

  

 

 

All material supplied via JYX is protected by copyright and other intellectual property rights, and 
duplication or sale of all or part of any of the repository collections is not permitted, except that 
material may be duplicated by you for your research use or educational purposes in electronic or 
print form. You must obtain permission for any other use. Electronic or print copies may not be 
offered, whether for sale or otherwise to anyone who is not an authorised user. 

 

Dynamical origin of the electroweak scale and the 125 GeV scalar

Di Chiara, Stefano; Foadi, Roshan; Tuominen, Kimmo; Tähtinen, Sara Karoliina

Di Chiara, S., Foadi, R., Tuominen, K., & Tähtinen, S. K. (2015). Dynamical origin of the
electroweak scale and the 125 GeV scalar. Nuclear Physics B, 900, 295-330.
https://doi.org/10.1016/j.nuclphysb.2015.09.013

2015



Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 900 (2015) 295–330

www.elsevier.com/locate/nuclphysb

Dynamical origin of the electroweak scale and the 

125 GeV scalar

Stefano Di Chiara a,b, Roshan Foadi a,b, Kimmo Tuominen c,b, 
Sara Tähtinen a,b

a Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
b Helsinki Institute of Physics, P.O. Box 64, FI-000140, University of Helsinki, Finland

c Department of Physics, University of Helsinki, P.O. Box 64, FI-000140, University of Helsinki, Finland

Received 17 June 2015; received in revised form 14 September 2015; accepted 21 September 2015

Available online 28 September 2015

Editor: Hong-Jian He

Abstract

We consider a fully dynamical origin for the masses of weak gauge bosons and heavy quarks of the Stan-
dard Model. Electroweak symmetry breaking and the gauge boson masses arise from new strong dynamics, 
which leads to the appearance of a composite scalar in the spectrum of excitations. In order to generate mass 
for the Standard Model fermions, we consider extended gauge dynamics, effectively represented by four 
fermion interactions at presently accessible energies. By systematically treating these interactions, we show 
that they lead to a large reduction of the mass of the scalar resonance. Therefore, interpreting the scalar 
as the recently observed 125 GeV state implies that the mass originating solely from new strong dynamics 
can be much heavier, i.e. of the order of 1 TeV. In addition to reducing the mass of the scalar resonance, 
we show that the four-fermion interactions allow for contributions to the oblique corrections in agreement 
with the experimental constraints. The couplings of the scalar resonance with the Standard Model gauge 
bosons and fermions are evaluated, and found to be compatible with the current LHC results. Additional 
new resonances are expected to be heavy, with masses of the order of a few TeVs, and hence accessible in 
future experiments.
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(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) [1,2] established the 
Standard Model (SM) as an accurate description of elementary particle interactions [3–5]. How-
ever, it is know that the SM is incomplete: for example, the SM itself does not provide any clue 
towards understanding the generational structure and mass patterns of the matter fields. Further-
more, understanding the origin of dark matter or the baryon–antibaryon asymmetry continue to 
provide motivation for searches of viable beyond-the-Standard-Model (BSM) scenarios.

So far the LHC has shown no sign of new particles typically predicted by various BSM se-
tups, such as Technicolour (TC) and its variants (see [6,7] for review). Furthermore, the lightest 
resonance in a model of dynamical electroweak symmetry breaking is naturally expected to be 
much heavier than MH � 125 GeV [8]. These premature concerns rest on treating new strong 
dynamics in isolation, i.e. without taking the interaction with the SM fields into account. A light 
scalar can arise from approximate global symmetries, as in models where the Higgs is a pseudo 
Goldstone boson associated with chiral symmetry [9–11] or scale invariance [12–16]. Another 
possibility is that the light SM-like scalar arises from strong dynamics due to peculiar decoupling, 
see [17]. However, only recently it has been realised that also with QCD-like TC dynamics the 
scalar particle can become light because of loop corrections originating from extended sectors, 
which are always required in TC models to account for the generation of fermion masses. In [8]
a preliminary analysis, using simply SM-like Yukawa couplings to parametrise the effects from 
the coupling with the top quark, was carried out to point out this effect. In [18] this effect was 
investigated in a fully dynamical model setup of simple extended Technicolour (ETC). Within 
this model, a computation in the large-N limit was carried out, where N is the dimension of 
the technifermion representation under the TC gauge group. It was then possible to rigorously 
demonstrate a large reduction of the scalar mass from the value arising solely from new strong 
dynamics. The amount of fine tuning involved is on the tolerable level of a few per cent [18]. 
However, the model considered in [18] was simple and devised only to illustrate this effect, and 
it could not be used for a realistic description of the origin of all mass scales of the SM.

In this paper we present a necessary further development of the model framework described 
above. We use a chiral fermion model, similar to the Nambu–Jona-Lasinio model (NLJ), to ac-
count for TC dynamics, and augment it with a whole set of four-fermion operators, low-energy 
remnants of ETC interactions. We show that the mechanism featured in [18] for the reduction of 
the scalar mass also works in this case, and that the effective couplings of the composite Higgs 
particle with the SM particles are very close to the SM-Higgs couplings, and hence compatible 
with the LHC data.1 We also compute the oblique corrections and demonstrate the viability of 
the model with respect to the electroweak precision data. One of our robust and generic findings 
within this framework is that in order to reduce the Higgs mass from values near 1 TeV, natural 
for new strong dynamics, to 125 GeV, the ETC interactions must be strongly coupled. However, 
we only consider scenarios in which the ETC interactions, although strong, are not strong enough 
to generate fermion condensation. Therefore, we complement the analysis of [20], where a model 
with strong ETC dynamics and weak TC interactions was considered.

Model building of the full gauge dynamics required by ETC theories is challenging [21]. Our 
effective theory, formulated in terms of four fermion couplings, and taking into account only the 
third generation quarks, can hopefully be seen as a stepping stone towards more complete dy-

1 See also [19] for a related study.



S. Di Chiara et al. / Nuclear Physics B 900 (2015) 295–330 297
namical theories of flavour. There exists lots of earlier work using NJL-like models to describe 
dynamical electroweak symmetry breaking and the associated Higgs physics, see e.g. [22–30]. 
There is also a large lattice program motivated by applications to BSM physics and aimed at 
studying strong dynamics in isolation [31–40]. For lattice studies concerning four fermion in-
teractions see e.g. [41,42]. Our analysis should be applicable in refining the phenomenological 
interpretation of the lattice results.

The paper is organised as follows. In Sections 2 and 3 we introduce the effective description 
of the strong TC dynamics, and the interactions arising from the ETC theory, in terms of a 
chiral-techniquark model augmented with four fermion interactions. In Section 4 we show how 
confinement and cutoff are realised in the model when smearing the momentum integrals with a 
mass distribution density for the techniquarks. In Section 5 we demonstrate how the fundamental 
SM fields acquire mass dynamically, whereas in Section 6 we prove that a strongly-coupled yet 
subcritical ETC theory may lead to a large reduction of the mass of the lightest scalar resonance 
from values near 1 TeV to 125 GeV. In Section 7 we compute the coupling of the scalar resonance 
with the fundamental SM fields, and in Section 8 we evaluate the oblique electroweak parameters. 
In Section 9 we present the numerical results of our analysis for two different TC theories, and 
compare with precision data as well as LHC results. Finally, in Section 10 we conclude and 
discuss the further prospects.

2. Chiral-techniquark Lagrangian

We focus on TC theories featuring one colourless weak technidoublet, Q ≡ (U, D), in the 
complex N -dimensional representation of the TC gauge group. We assume that there are no 
additional weak doublets. Therefore, in order to avoid the topological Witten anomaly, N must be 
an even number. Since the spinorial representation is not complex, we must have N = 4, 6, 8, . . . . 
Cancellation of the standard gauge anomalies, and requiring the electromagnetic gauge group to 
remain unbroken, impose the hypercharge assignments

YQL
= 0 , YUR

= 1

2
, YDR

= −1

2
. (1)

In the limit of zero electroweak gauge couplings, the techniquark kinetic terms feature a global 
SU(2)L × SU(2)R chiral symmetry, which is dynamically broken by the TC force to SU(2)V . 
The lightest states, and the only ones that we include in our analysis, are therefore expected to 
be the massless technipion triplet – which upon electroweak gauging become the longitudinal 
component of the W and Z boson – and a scalar singlet H , which will be identified with the 
Higgs particle. In order to model TC dynamics, we employ a chiral-techniquark Lagrangian 
featuring both constituent techniquarks and resonances. This reads

L = LSM + QLi/DQL + URi/DUR + DRi/DDR

− MQ

(
1 + y

MQ

H + · · ·
)(

QL�QR + QR�†QL

)
− M2

2
H 2 + · · · +LETC , (2)

where LSM is the SM Lagrangian without the terms containing the Higgs doublet, the covariant 
derivatives are with respect to the electroweak gauge fields, the ellipses denote higher-order terms 
in H , and the TC gauge indices have been suppressed from the techniquark fields. The field � is 
the standard non-linear sigma-model field,

� ≡ exp
2 i �i T i

, (3)

v
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where �i is the technipion triplet, 2T i are the Pauli matrices, and v is the vacuum expectation 
value. The composite nature of the H and �i fields in (2) is manifest because the corresponding 
kinetic terms are absent. These are generated radiatively, and vanish at some large compositeness 
scale. Finally, LETC contain four-fermion operators which are obtained by integrating out the 
heavy ETC gauge bosons. These are considered in more detail in the next section.

3. Four-fermion operators from ETC

In LETC we only consider four-fermion operators containing the techniquark doublet and the 
top-bottom doublet q ≡ (t, b). In fact, operators built out of lighter SM fermions are expected 
to arise from exchanges of very heavy ETC bosons, and are therefore highly suppressed at the 
electroweak scale. We focus on ETC theories in which left-handed and right-handed fields belong 
to different representations, and classify the four-fermion operators according to the quantum 
numbers of the exchanged ETC gauge bosons. We assume that there is only one ETC gauge 
boson with a given set of quantum numbers, and that, under the TC and QCD gauge groups, the 
ETC bosons are either singlets or N - and Nc-multiplets, respectively. This categorizes the ETC 
bosons into five distinct classes which we call A, B, C, D, and E: The classes A and B correspond 
to bosons which are TC and QCD singlet with hypercharge Y = 0 (for class A) and Y = 1 (for 
class B). The classes C, D and E consist of bosons which are N - and Nc-multiplets of TC and 
QCD, respectively, with hypercharge Y = 1/6 for class C, Y = 5/6 for class D and Y = 7/6 for 
class E.

Below the ETC scale the ETC gauge bosons Gμ are heavy with masses MG. Integrating out 
the heavy bosons leads to effective four fermion interactions. Generally, the relevant terms in the 
fundamental Lagrangian are of the form

LG
ETC ∼ gXX′X γμ X′ Gμ +M2

GGμGμ∗, (4)

where X and X′ are any of the fermions Q, q , U , D, t , b, and all interaction terms allowed by the 
representation of the ETC boson under consideration should be taken into account. Integrating 
out the ETC boson Gμ at tree-level gives first

G∗
μ ∼ −gXX′

M2
G

XγμX′ , (5)

and, after plugging back in LG
ETC, one obtains the effective four fermion interaction

LG
ETC ∼ −|gXX′ |2

M2
G

∣∣X γμ X′∣∣2
, (6)

valid below the ETC scale. For example, for the class D and E bosons this procedure leads to

LD
ETC = −|gUb|2

M2
D

(
URγμbR

) (
bRγ μUR

)
, LE

ETC = −|gDt |2
M2

E

(
DRγμtR

) (
tRγ μDR

)
,

(7)

where the quark colour index a = 1, 2, . . .Nc has been suppressed. The complete results of this 
classification are given in Appendix A. Also, it is convenient to Fierz rearrange some of the 
products of fermion bilinears. The formulas which we use are given in Appendix B.

Note that the diagonal couplings gXX are real, but the off-diagonal couplings gXY , with X �= Y , 
can be complex. We assume that also these couplings are real,

g∗ = gXY , (8)
XY
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i.e. we assume that there are no new sources of CP violation. Furthermore, for simplicity we 
assume that all ETC masses are identical:

MA =MB =MC =MD =ME ≡M . (9)

Putting together all ETC operators from Appendix A and using the Fierz rearrangement formulas 
from Appendix B, under the above assumptions, gives the ETC Lagrangian

LETC = 2GQqUt
[(

QLUR

) (
tRqL

) + (qLtR)
(
URQL

)]
+ 2GQqDb

[(
QLDR

) (
bRqL

) + (qLbR)
(
DRQL

)]
+ 2GQQUU

(
QLUR

) (
URQL

) + 2GQQDD
(
QLDR

) (
DRQL

)
+ 2Gqqtt (qLtR)

(
tRqL

) + 2Gqqbb (qLbR)
(
bRqL

) + �LETC , (10)

where the couplings are defined as

GQqUt ≡ gQqgUt

M2
, GQqDb ≡ gQqgDb

M2
,

GQQUU ≡ gQQgUU

NM2
, GQQDD ≡ gQQgDD

NM2
,

Gqqtt ≡ gqqgtt

NcM2
, Gqqbb ≡ gqqgbb

NcM2
. (11)

The contribution �LETC is more complicated and reads

�LETC = −1

2

g2
QQ

M2

(
QLγμQL

)2 − 1

2

g2
qq

M2

(
qLγμqL

)2 − 1

2

g2
UU

M2

(
URγμUR

)2

− 1

2

g2
DD

M2

(
DRγμDR

)2 − 1

2

g2
t t

M2

(
tRγμtR

)2 − 1

2

g2
bb

M2

(
bRγμbR

)2

− gQQgqq + g2
Qq/2

M2

(
QLγμQL

) (
qLγ μqL

) − gQQgtt

M2

(
QLγμQL

) (
tRγ μtR

)
− gQQgbb

M2

(
QLγμQL

) (
bRγ μbR

) − gqqgUU

M2

(
qLγμqL

) (
URγ μUR

)
− gqqgDD

M2

(
qLγμqL

) (
DRγ μDR

) − gUUgDD

M2

(
URγμUR

) (
DRγ μDR

)
− gUUgtt + g2

Ut

M2

(
URγμUR

)(
tRγ μtR

) − gUUgbb + g2
Ub

M2

(
URγμUR

)(
bRγ μbR

)
− gDDgtt + g2

Dt

M2

(
DRγμDR

)(
tRγ μtR

) − gDDgbb + g2
Db

M2

(
DRγμDR

)(
bRγ μbR

)
− gttgbb

M2

(
tRγμtR

) (
bRγ μbR

) − g2
UD

M2

(
URγμDR

) (
DRγ μUR

)
− g2

tb

M2

(
tRγμbR

) (
bRγ μtR

)
− gUDgtb + gUtgDb

M2

[(
URγμDR

) (
bRγ μtR

) + (
DRγμUR

) (
tRγ μbR

)]
− 2g2

Qq

M2

(
QLγμT iQL

)(
qLγ μT iqL

)
+ 4gQQgUU

M2

(
QLT A

TCUR

)(
URT A

TCQL

)
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+ 4gQQgDD

M2

(
QLT A

TCDR

)(
DRT A

TCQL

)
+ 4gqqgtt

M2

(
qLT a

QCDtR

)(
tRT a

QCDqL

)
+ 4gqqgbb

M2

(
qLT a

QCDbR

)(
bRT a

QCDqL

)
, (12)

where T A
TC are the TC generators for the N representation, and T a

QCD are the generators for the 
fundamental representation of SU(Nc). These matrices are normalised as

TrT iT j = 1

2
δij , Tr T a

QCDT b
QCD = 1

2
δab , Tr T A

TCT B
TC = 1

2
δAB . (13)

As we shall see below, the operators not included in �LETC contribute both to scalar and fermion 
masses, whereas the operators included in �LETC contribute to neither.2

We compute observables in the large-N limit, with N/Nc finite. For a consistent large-N
expansion, the ETC couplings gXY must scale like 1/

√
N . Therefore, the GQqUt and GQqDb

couplings in (11) scale like 1/N , whereas the diagonal couplings GQQXX and GqqXX scale like 
1/N2, the extra factor of 1/N arising from the Fierz rearrangement of the class-A operators. It 
is clear that the operators in (11) contribute to mass, as they involve bilinears mixing left-handed 
and right-handed fermions. Therefore, we get mass contribution at leading order (LO) in N
from the GQqUt and GQqDb operators, and contributions at next-to-leading order (NLO) from the 
GQQXX and GqqXX operators. On the other hand, the operators contained in �LETC contribute 
to fermion and scalar masses neither to LO nor to NLO in the large-N expansion. At LO this is 
evident from the presence of uncontracted γμ matrices in separate loops. The NLO is zero either 
because of the appearance of products PLPR = 0 (as in the case of left–left bilinear products 
and the operators with the TC and QCD generators), or because it is manifestly absent (as in the 
case of left–right bilinear products mixing quarks and techniquarks). Hence, we can consistently 
compute masses to LO and NLO by only considering the operators in (11). However, NLO 
computations are rather complicated. In this paper, we find it more convenient to formally treat 
the GQQXX and GqqXX couplings as quantities scaling like 1/N , and compute all observables 
to LO in the large-N expansion. The error is still NLO in 1/N , but this approach allows us to 
account for the important mass contribution from the class-A operators.3

4. Cutoff and confinement

There are two physical cutoffs in the model: �, associated to TC dynamics, and the ETC 
scale M. Therefore, we are naturally led to use a cutoff regulator for the standard loop integrals. 
It is not clear, though, which one of the two cutoffs should be used to evaluate the integrals. 
A possible approach consists in using the smaller mass scale, which we assume to be �. This, 
however, would imply losing information from the dynamics occurring between � and M. Fur-
thermore, it is well know that making the techniquark loop integrals finite with a sharp cutoff 
does not account for confinement, as the fermion propagators go on-shell for sufficiently large 
external momenta. A solution to both problems is provided by models of confinement. In the 
model of [43], for instance, the interaction of n external mesons is given by amplitudes of the 
form

2 Note that in TC theories with near-conformal dynamics, four-fermion operators with techniquark bilinears may be en-
hanced relative to operators with quark bilinears. In this paper we will not pursue such more model dependent questions, 
but treat all four fermion interactions appearing in (10).

3 This approach is similar to the one adopted in topcolour–assisted Technicolour for treating the new hypercharge 
interactions.
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iT (q1, q2, . . . , qn−1)

≡ −
∫

d4k

(2π)4

∫
dMQ

2πi
ρ(MQ) Tr i 
1

i(/k − /q1 + MQ)

(k − q1)2 − M2
Q

× i 
2
i(/k − /q1 − /q2 + MQ)

(k − q1 − q2)2 − M2
Q

· · · i 
n−1
i(/k − /q1 − /q2 − · · · − /qn−1 + MQ)

(k − q1 − q2 − · · · − qn−1)2 − M2
Q

× i 
n

i(/k + MQ)

k2 − M2
Q

(14)

where 
i are matrices in Dirac space, and are determined by the quantum numbers of the external 
mesons. Here the fermion mass MQ is a complex variable which is integrated along a closed 
contour enclosing the external momenta. Confinement and convergence of the integrals are both 
guaranteed by taking the function ρ(z) to be holomorphic everywhere and decreasing faster than 
any polynomial for |z| → ∞. Under these assumptions we may use the Cauchy integral formula 
to obtain

ρ(z) =
∫

dMQ

2πi

ρ(MQ)

MQ − z
= 1

κ
a(−z2/κ2) + 1

κ2
z b(−z2/κ2) , (15)

where κ is an intrinsic mass scale of confinement, and a(ξ), b(ξ) → 0 faster than any polynomial 
for |ξ | → ∞. The equation above gives

a(−z2/κ2) = κ

∫
dMQ

2πi

ρ(MQ)MQ

M2
Q − z2

, b(−z2/κ2) = κ2
∫

dMQ

2πi

ρ(MQ)

M2
Q − z2

. (16)

Consider for instance the two-point function for two external scalar mesons, that is 
1 = 
2 = 1:

i T (q) ≡ −
∫

d4k

(2π)4

∫
dMQ

2πi
ρ(MQ) Tr i

i(/k − /q + MQ)

(k − q1)2 − M2
Q

i
i(/k + MQ)

k2 − M2
Q

. (17)

After combining the denominators, reducing the powers of MQ in the numerator, Wick rotating, 
shifting to Euclidean momentum, and changing the integration variable to u ≡ k2

E , we obtain

i T (q) = i

4π2

1

κ2

1∫
0

dx

∞∫
0

du

[
−2u2 d

du
− u

]
b
(
u/κ2 − x(1 − x)q2/κ2

)
. (18)

Integrating by parts, and using the hypothesis that b(ξ) decreases faster than any polynomial for 
|ξ | → ∞, leads to the result

T (q) = 3

4π2

[
κ2 B1(q

2) + q2 B0(q
2)

]
, (19)

where

B0(q
2) ≡

1∫
0

dx

∞∫
0

dξ x(1 − x)b(ξ − x(1 − x)q2/κ2) ,

B1(q
2) ≡

1∫
dx

∞∫
dξ

(
ξ − x(1 − x)q2/κ2

)
b(ξ − x(1 − x)q2/κ2) . (20)
0 0
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These functions are finite and, featuring no pole singularity, imply fermion confinement.
It is interesting to compute the three-meson and four-meson interactions at zero external mo-

menta. For three external mesons we have to compute integrals like

−
∫

d4k

(2π)4

∫
dMQ

2πi
ρ(MQ) Tr i 
1

i(/k + MQ)

k2 − M2
Q

i 
2
i(/k + MQ)

k2 − M2
Q

i 
3
i(/k + MQ)

k2 − M2
Q

In general, this requires evaluating an integral of the form

i I (c1, c3) ≡
∫

d4k

(2π)4

∫
dMQ

2πi
ρ(MQ)

c1 MQ k2 + c3 M3
Q

(k2 − M2
Q)3

, (21)

where the coefficients c1 and c3 depend on the 
i matrices. Employing the same techniques 
leading to (19) gives

I (c1, c3) = 1

16π2

1

κ

∞∫
0

du

[
(c1 + c3)

u2

2

d2

du2
+ c3 u

d

du

]
a(u/κ2) . (22)

Integrating by parts twice, and using the hypothesis that a(ξ) decreases faster than any polyno-
mial for |ξ | → ∞, leads to

I (c1, c3) = c1 κ

16π2

∞∫
0

dξ a(ξ) . (23)

In the case of four external mesons at zero external momenta, the integrals to be computed are 
like

−
∫

d4k

(2π)4

∫
dMQ

2πi
ρ(MQ) Tr i 
1

i(/k + MQ)

k2 − M2
Q

i 
2
i(/k + MQ)

k2 − M2
Q

× i 
3
i(/k + MQ)

k2 − M2
Q

i 
4
i(/k + MQ)

k2 − M2
Q

.

This requires evaluating an integral of the form

i I (c0, c2, c4) ≡ −
∫

d4k

(2π)4

∫
dMQ

2πi
ρ(MQ)

c0 (k2)2 + c2 M2
Q k2 + c4 M4

Q

(k2 − M2
Q)4

, (24)

which eventually gives

I (c0, c2, c4) = c0

16π2

∞∫
0

dξ b(ξ) . (25)

The interesting aspect of (23) and (25) is that only the highest power of momentum contributes to 
the loop integral. This is important, as it preserves the special relation between form factors which 
is implied by the underlying chiral symmetry. In fact, using a sharp cutoff, rather than a confining 
function, the terms with the highest power of loop momentum, in the three-point and four-point 
vertices, correspond to the leading divergent logarithm, which preserves the underlying chiral 
symmetry [44].



S. Di Chiara et al. / Nuclear Physics B 900 (2015) 295–330 303
If we use a distribution density ρ(M) to smear the integrals over techniquarks, we may cutoff 
the full theory at M. The integrals over SM quarks are cutoff at M, whereas the integrals over 
techniquarks are naturally finite. Clearly we must choose an appropriate function ρ(M), and 
integrals are unavoidably more difficult to evaluate than the standard loop integrals, especially 
in the presence of isospin mass splitting. However in our analysis we are only interested in 
small external momenta, and thus we are not concerned with unphysical thresholds. Therefore, 
we make the approximation of using a sharp cutoff � for the loop integrals over techniquark 
momenta, rather than a distribution density, while still cutting off the SM-fermion loop integrals 
at M. This approach allows the dynamics between � and M to contribute to the low-energy 
observables, and at the same time preserves the symmetries of the Lagrangian [18]. In accordance 
with the above results, our prescription is the following:

1. Compute integrals over techniquarks with a cutoff �, and integrals over ordinary quarks with 
a cutoff M.

2. In evaluating interaction vertices, retain only the logarithmically divergent part of the inte-
gral.

3. Evaluate the integrals at zero external momenta.

We will need to evaluate fermion loops with external weak bosons, hence we must use a reg-
ulator preserving gauge invariance. Since we are using a cutoff, we find it convenient to employ 
the regularisation prescription of [45], and require that the relation∫

d4lE

(2π)4

lEμlEν

(l2
E + m2)n+1

= gμν

2n

∫
d4lE

(2π)4

1

(l2
E + m2)n

(26)

is satisfied, for integrals in Euclidean space, for any n ≥ 1. After this condition is imposed, 
integrals may be evaluated with a sharp cutoff. In [45] this prescription is shown to satisfy the 
Ward identities.

We end this section by enlisting the standard integrals used for computing the two-point func-
tions. In accordance to the prescription above, we evaluate these at zero external momentum:

IX ≡ i

∫
d4k

(2π)4

1

k2 − M2
X

,

JXY ≡ −i

1∫
0

dx

∫
d4l

(2π)4

1(
l2 − x M2

X − (1 − x)M2
Y

)2
,

KXY ≡ −i

1∫
0

dx

∫
d4l

(2π)4

x(
l2 − x M2

X − (1 − x)M2
Y

)2
,

LXY ≡ −i

1∫
0

dx

∫
d4l

(2π)4

x(1 − x)(
l2 − x M2

X − (1 − x)M2
Y

)2
. (27)

In order to evaluate the scalar wavefunction renormalisation, as well as the S parameter, we 
also need to consider JXX at finite external momentum q , take the derivative with respect to q2, 
and evaluate the resulting integral at q2 = 0. Since the latter has dimension 1/M2

X, we find it 
convenient to define
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Fig. 1. Diagrams contributing to the fermion masses at LO in the large-N expansion. The dominant contribution to U
and D mass arise from TC dynamics, and is denoted by the tree-level mass insertions.

J ′
XX ≡ i

3

∫
d4l

(2π)4

M2
X(

l2 − M2
X

)3
. (28)

We provide explicit expressions for these integrals in Appendix C.

5. Mass of the fundamental particles

5.1. Fermion masses

To LO in the large-N expansion, the fermion masses are given by the diagrams of Fig. 1. 
These lead to the coupled equations

MU = MQ + 4N GQQUU MU IU + 4Nc GQqUt Mt It

Mt = 4N GQqUt MU IU + 4Nc Gqqtt Mt It , (29)

and

MD = MQ + 4N GQQDD MD ID + 4Nc GQqDb Mb Ib

Mb = 4N GQqDb MD ID + 4Nc Gqqbb Mb Ib . (30)

Note that unlike the model of [18], in which the only ETC operator was the one proportional 
to GQqUt, now we have additional ETC contributions to mass. In particular, the U − D isospin 
splitting may be softened or even set to zero by adjusting the GQQUU and GQQDD operators. This 
removes the major obstacle of [18]: There, in order to obtain a large reduction of the TC-Higgs 
mass, the value of GQqUt ×M had to be increased. This, in turn, made U considerably heavier 
than D, and the T parameter unacceptably large. Now, instead, contributions from GQQUU and 
GQQDD have a double effect: they reduce the amount of U −D isospin splitting, and, as we shall 
see, contribute to further reduce the TC-Higgs mass.
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Fig. 2. Diagrams contributing to the coefficient of gμν in the W (top) and Z boson (bottom) VPAs. Contributions from 
the operators contained in �LETC are suppressed by a factor of the order of M2

Q
/M2, and may therefore be ignored.

5.2. Weak boson masses

We may compute the W mass in terms of the fermion masses. In order to do so we must 
compute the corresponding vacuum-polarisation amplitude (VPA), which is required by gauge 
invariance to be transverse:

�
μν
WW(q) = �WW(q2)

(
gμν − qμqν

q2

)
. (31)

The expression for �WW(q2) can be extracted from the gμν part of the amplitude. Ignoring con-
tributions from �LETC, which are suppressed by a factor of the order of M2

Q/M2,4 the only 
contribution to gμν arises from the one-loop diagrams of Fig. 2 (top). In order to recover a fully 
transverse result, one needs to include an infinite chain of fermion loops, as well as tree-level 
Goldstone bosons exchanges. Using the fermion mass equations, we have verified in the simpli-
fied case GQQUU, GQQDD → 0 that transversality is recovered. From the one-loop diagrams we 
obtain

�WW(q2) = −2g2
[
N LUD + Nc Ltb

]
q2

+ g2
[
N M2

U KUD + N M2
D KDU + Nc M2

t Ktb + Nc M2
b Kbt

]
. (32)

Since the W boson has a tree-level kinetic term, to leading-order in the weak coupling g we may 
ignore the first term. Then MW is given by5

M2
W = g2

[
N M2

U KUD + N M2
D KDU + Nc M2

t Ktb + Nc M2
b Kbt

]
. (33)

We may rewrite this equation as

1√
2GF

= 4
[
N M2

U KUD + N M2
D KDU + Nc M2

t Ktb + Nc M2
b Kbt

]
, (34)

where GF is the Fermi constant, (
√

2GF )−1 � 246 GeV. Equation (34) generalises the Pagels–
Stokar equation by taking into account the ETC contributions. Using this equation, together with 
the fermion mass equations (29) and (30), we can solve for MQ, MU , MD , GQqUt, GQqDb, as a 
function of �, M, GQQUU , GQQDD, Gqqtt, Gqqbb , N , and the experimental values of GF , Mt , 
Mb and Nc.

4 The �LETC contribution to MW and MZ may be ignored as long as the corresponding contribution to the T param-
eter is within experimental bounds, which is anyway a strict requirement for viability.

5 Clearly the contribution from Mb is completely negligible: however we display it in order to show the contribution 
from all isospin components.
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Fig. 3. The diagrams contributing to the TC-Higgs self-energy are shown in the top figure, including the tree-level mass. 
The shaded circles represent the sum of fermion-bubble chains, as shown in the bottom figure.

We finally compute the mass of the Z boson. The result is

M2
Z = g2 + g′ 2

2

[
N M2

U JUU + N M2
D JDD + Nc M2

t Jtt + Nc M2
b Jbb

]
. (35)

6. Mass of the TC Higgs

The TC-Higgs self-energy is given by the chain of diagrams shown in Fig. 3. Including the 
tree-level mass M2, we obtain

�HH = −M2 + Ny2

[
ISS

UU

1 − N Nc G2
QqUt ISS

UU ISS
t t

+ ISS
DD

1 − N Nc G2
QqDb ISS

DD ISS
bb

]
, (36)

where

ISS
XX ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I SS
XX

1 − N GQQXX I SS
XX

, X = U,D

I SS
XX

1 − Nc GqqXX I SS
XX

, X = t, b ,

(37)

and

I SS
XY ≡ −i

∫
d4k

(2π)4
Tr

i (/k + MY )

k2 − M2
Y + i ε

i (/k + /q + MX)

(k + q)2 − M2
X + i ε

= 2
(
q2 − (MX + MY )2

)
JXY + 2(IX + IY ) . (38)

We trade M for the one-loop mass MH0:

−M2 + Ny2
(
I SS

UU + I SS
DD

)
q2=M2

H0

= 0 . (39)

This is a quantity with a precise physical meaning: after including the ETC corrections to the TC 
vacuum, which are encoded by the expression for GF in (34), MH0 is the scalar mass due to TC 
dynamics alone, and can be estimated, for instance, by scaling up the mass of the σ meson from 
QCD. Using this definition, �HH becomes
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�HH = Ny2

[
ISS

UU

1 − N Nc G2
QqUt ISS

UU ISS
t t

+ ISS
DD

1 − N Nc G2
QqDb ISS

DD ISS
bb

−
(
I SS

UU + I SS
DD

)
q2=M2

H0

]
. (40)

The physical Higgs mass, MH � 125 GeV, is found by solving the equation

�HH

(
M2

H

)
= 0 . (41)

This can be solved for MH0 by using (38) in (40)

M2
H0 = 1

2(JUU + JDD)

[( ISS
UU

1 − N Nc G2
QqUt ISS

UU ISS
t t

+ ISS
DD

1 − N Nc G2
QqDb ISS

DD ISS
bb

)
q2=M2

H

+ 8
(
M2

U JUU + M2
D JDD

) − 4(IU + ID)

]
. (42)

To understand the implications of (42), we assume for a moment that we can expand in the 
ETC couplings. Expanding up to the linear term in the four-fermion couplings, and ignoring 
corrections of the order of M2

X/�2, leads to the approximate relation

M2
H � M2

H0 − N
(
GQQUU + GQQDD

)
�2

4π2

�2

〈log(�2/M2
Q)〉 (43)

where we defined

log
�2

M2
X

≡ log
�2

M2
X

− 1 , (44)

and

〈log
�2

M2
Q

〉 ≡ 1

2

(
log

�2

M2
U

+ log
�2

M2
D

)
(45)

The last factor in (43) is reasonably of the order of (1 TeV)2. Estimates obtained by scaling 
up the mass of the σ meson from QCD to a TC theory suggest MH0 � 1 TeV [46]. Therefore, 
the factor containing the ETC couplings, in (43), must be O(1). Bounds on the ETC couplings 
can be derived by requiring that the series leading to (36) and (37) are convergent. This gives the 
constraints

N GQQUU �2 < 4π2 , N GQQDD �2 < 4π2 ,

Nc Gqqtt M2 < 4π2 , Nc Gqqbb M2 < 4π2 , (46)

which guarantee, respectively, no UU , DD, t t , and bb condensation from ETC, and the con-
straints

N Nc G2
QqUt �

2 M2 < 16π4 , N Nc G2
QqDb �2 M2 < 16π4 , (47)

which prevent the ETC force from generating Ut and Db condensates, respectively. If the 
ETC couplings are large enough, yet subcritical, we obtain N

(
GQQUU + GQQDD

)
�2/4π2 ∼ 1, 

which, according to the estimate (43), is the order of magnitude required for the ETC interac-
tions to reduce the TC-Higgs mass from O (1 TeV) to O (100 GeV). Clearly, as the four-fermion 
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couplings reach the critical value for condensation, the expansion (43) becomes less and less 
accurate. On the other hand, (43) shows unambiguously that four-fermion couplings much be-
low the critical value cannot lower the scalar mass from values around 1 TeV to values of 
O(100) GeV. Therefore, we conclude that only strongly-coupled ETC interactions can lower 
the mass of the TC-Higgs to the observed value of 125 GeV. This argument does not apply to TC 
theories with near-conformal dynamics, which are expected to feature a light scalar resonance 
even in isolation, i.e. with the ETC interactions switched off.

As this discussion implies, there will be some amount of fine tuning involved in this scenario. 
However, the same applies to practically any BSM scenario which explains the relatively small 
mass of the observed Higgs boson. For example, in walking TC the fine tuning is associated with 
engineering the matter content or couplings so that the theory is only slightly within the critical 
region for the onset of spontaneous chiral symmetry breaking. In our case the amount of fine 
tuning can be quantified in a simple way as

FT = M2
H

M2
H0

. (48)

The concrete values are on the level of few percents. For example, for MH0 � 1 TeV, FT � 1.6%, 
whereas for MH0 ∼ 600 GeV, FT � 4.3%.

We end this section by evaluating the wave function renormalisation ZH ≡ �′
HH . In order to 

compute the latter, we need

dI SS
XX

dq2
= 2JXX + 8

(
q2

4M2
X

− 1

)
J ′

XX . (49)

We obtain

ZH = N y2(
1 − N Nc G2

QqUt ISS
UU ISS

t t

)2 (
1 − N GQQUU I SS

UU

)2

×
⎡
⎣dI SS

UU

dq2
+ N Nc G2

QqUt

(
ISS

t t

)2 (
I SS

UU

)2

(
I SS
t t

)2

dI SS
t t

dq2

⎤
⎦

+ N y2(
1 − N Nc G2

QqDb ISS
DD ISS

bb

)2 (
1 − N GQQDD I SS

DD

)2

×
⎡
⎣dI SS

DD

dq2
+ N Nc G2

QqDb

(
ISS

bb

)2 (
I SS

DD

)2

(
I SS
bb

)2

dI SS
bb

dq2

⎤
⎦ . (50)

Neglecting terms of order M2
X/�2, and using the fermion-mass equations, gives

ZH � y2

M2
Q

[
N M2

U

dI SS
UU

dq2
+ N M2

D

dI SS
DD

dq2
+ Nc M2

t

dI SS
t t

dq2
+ Nc M2

b

dI SS
bb

dq2

]
. (51)

To a good approximation we may also ignore J ′
XX/JXX , and set JXX � 2KXY � 2KYX , where X

and Y are U and D or t and b. Using (34), this gives

ZH � y2

√
2GF M2

Q

. (52)
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Fig. 4. Diagrams contributing to the UUH and t tH Yukawa vertices. The DDH and bbH vertices are just obtained by 
replacing U and t with D and b everywhere.

7. Couplings of the TC Higgs

In this section we compute the coupling of the TC Higgs with the constituent techniquarks, 
the SM quarks, and the weak bosons. The TC Higgs coupling to gluons is the same as in the 
SM, given that all new particles in our model are colourless: since the Higgs is produced at LHC 
mainly via gluon–gluon fusion, the TC Higgs production rate is SM like. On the other hand the 
triangle loop responsible for the TC Higgs coupling to two photons receives new contributions 
from the technifermions and, at next to leading order in N , from charged composite technivector 
bosons. Contrarily to the SM, where the W boson gives the largest contribution to the loop ampli-
tude, the technivectors contribution is suppressed by a factor of N−1: it is therefore foreseeable 
that, assuming that the technifermions and technivectors’ respective couplings to the Higgs are 
SM-like, for some value of N larger than one the contributions to the Higgs coupling to diphoton 
of the technivectors and technifermions simply cancel each other. A full calculation of the Higgs 
coupling to diphoton goes beyond the limits of this study, as it would require us to introduce a 
whole new sector involving also the technivectors. On the other hand the assessment made above 
shows that the TC-Higgs coupling to two photons can be matched to the experimental value for 
a suitable value of N in the same region of parameter space producing SM-like tree level Higgs 
couplings: for this reason we postpone to future work the computation of the TC-Higgs coupling 
to two photons.

7.1. Coupling to fermions

To leading order in the large-N expansion, the diagrams contributing to the coupling of the 
TC-Higgs to fermions are shown in Fig. 4. These lead to the effective Yukawa vertices

LYukawa = −yU U U H − yD D D H − yt t t H − yb b bH , (53)

where

yU = 1 + N GQQUU ISS
UU

1 − N Nc G2 ISS ISS

y√
ZH

,

QqUt UU t t
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Fig. 5. Diagrams contributing to the coupling of the TC-Higgs with the W boson (top) and the Z boson (bottom). The 
Yukawa vertices are denoted by a black disk, and correspond to the diagrams of Fig. 4

yt = N GQqUt ISS
UU + N Nc Gqqtt GQqUt ISS

t t ISS
UU

1 − N Nc G2
QqUt ISS

UU ISS
t t

y√
ZH

, (54)

and

yD = 1 + N GQQDD ISS
DD

1 − N Nc G2
QqDb ISS

DD ISS
bb

y√
ZH

,

yb = N GQqDb ISS
DD + N Nc Gqqbb GQqDb ISS

bb ISS
DD

1 − N Nc G2
QqDb ISS

DD ISS
bb

y√
ZH

. (55)

Neglecting terms of order M2
X/�2, and using equations (29), (30), as well as the approximation 

(52), leads to

yU �
(√

2GF

)1/2
MU , yt �

(√
2GF

)1/2
Mt , (56)

and

yD �
(√

2GF

)1/2
MD , yb �

(√
2GF

)1/2
Mb . (57)

Therefore, the top and bottom Yukawa couplings are close to their SM values. We shall evaluate 
the Yukawa couplings numerically in Section 9.

7.2. Coupling to weak bosons

To leading order in the large-N expansion, the diagrams contributing to the coupling of the 
TC-Higgs to the W and Z bosons are shown in Fig. 5. These are given in terms of the effec-
tive Yukawa vertices computed above. At zero momentum, these diagrams lead to the effective 
vertices

LHWW = 2M2
W

(√
2GF

)1/2
aW H W+

μ W−μ + M2
Z

(√
2GF

)1/2
aZ H Zμ Zμ (58)

where

aW = 4
(√

2GF

)1/2
(N yU MU KUD + N yD MD KDU + Nc yt Mt Ktb + Nc yb Mb Kbt )

×
√

1 − 4
√

2GF (NcM
2
t Ktb + NcM

2Kbt )
b
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aZ = 2
(√

2GF

)1/2
(N yU MU JUU + N yD MD JDD + Nc yt Mt Jtt + Nc yb Mb Jbb)

×
√

1 − 4
√

2GF (NcM
2
t Jtt + NcM

2
bJbb) . (59)

The factor under the square root is due to the fact that we must keep the SM reference value con-
sistent with the leading order computation in our model, and therefore include the contribution 
from top and bottom loops. Expressed in terms of MW and GF , we have

gSM
HWW = 2M2

W(
√

2GF )1/2√
1 − 4GF (NcM

2
t Ktb + NcM

2
bKbt )

, (60)

and similarly for gSM
HZZ with the replacement of Ktb and Kbt with Jtt and Jbb , respectively. The 

effect of the correction from top and bottom loops is small: the reduction due to the factor in the 
square root is on the level of 1–5%.

We may use the approximation JXY � 2KXY , which is only valid as long as the isospin mass 
splitting is small, and thus for phenomenologically viable MU and MD . However, we can use 
this approximation also for Mt and Mb, as the corresponding contributions to aW and aZ are 
much smaller. Then, using (56) and (57), as well as (34), gives

aZ � aW � √
2GF × 4

(
N M2

U KUD + N M2
D KDU + Nc M2

t Ktb + Nc M2
b Kbt

)
� 1 .

(61)

The gHWW and gHZZ couplings are therefore close to their SM values. We shall evaluate numeri-
cally aW and aZ in Section 9.

8. Electroweak parameters

The general form of the electroweak vacuum polarisation amplitude (VPA) is

�
μν
AB(q) = �AB(q2)

(
gμν − qμqν

q2

)
. (62)

As explained in Section 5, in order to recover a fully transverse result, all contributions have to 
be taken into account, including tree-level exchanges of Goldstone bosons. However �AB(q2)

can be more easily extracted from the gμν part, which requires computing less diagrams. For 
instance, the four-fermion operators not included in �LETC only contribute indirectly to gμν , 
by affecting the fermion masses. Therefore, their contribution to �AB(q2) can be extracted 
from one-loop diagrams. On the other hand, the operators contained in �LETC contribute di-
rectly to the gμν part of the VPAs, and a chain of fermion loops must be computed to obtain 
the full leading-N contribution. However the fermion bubbles with external vectors are only 
logarithmically divergent, and each loop brings a suppression factor of the order of M2

X/M2. 
Therefore, the full contribution to �AB(q2) from the operators contained in �LETC is of the 
form �AB(q2) = two loop × [

1 +O(M2
X/M2)

] � two loop. As a consequence, in order to eval-
uate �AB(q2) we only need to compute one-loop and two-loop diagrams, as shown in Fig. 6: 
the one-loop diagrams give the contribution from the four-fermion operators not contained in 
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Fig. 6. One-loop and two-loop diagrams giving the dominant contributions to the gμν part of the electroweak VPAs. See 
text for details.

�LETC (through modified fermion masses), whereas the two-loop diagrams give, to an excellent 
approximation, the contribution from the operators contained in �LETC.6

The S and T parameters are defined by

S = 16π

g g′ �′
W 3B

(0) , (63)

T = 1

α M2
W

[
�W 3W 3(0) − �W+W−(0)

]
, (64)

where α is the electromagnetic coupling evaluated at the Z pole. We define standard units for S
and T :

S0 ≡ 1

6π
� 0.05 , T0 ≡

√
2GF M2

t

16π2 α
� 0.40 . (65)

Now we shall consider the different contributions to S and T from the four-fermion operators. 
Unlike done so far, we will neglect the bottom mass, except, of course, in logM2/M2

b . The 
building-block integrals for evaluating the VPAs are

IRR
XY gμν + qμqν terms

= ILL
XY gμν + qμqν terms

≡ i

∫
d4k

(2π)4
Trγ μ PL

i (/k + MY )

k2 − M2
Y + i ε

γ ν PL

i (/k + /q + MX)

(k + q)2 − M2
X + i ε

(66)

and

IRL
XY gμν + qμqν terms

= ILR
XY gμν + qμqν terms

≡ i

∫
d4k

(2π)4
Trγ μ PL

i (/k + MY )

k2 − M2
Y + i ε

γ ν PR

i (/k + /q + MX)

(k + q)2 − M2
X + i ε

. (67)

In order to compute S and T we need the integrals

(
IRR

XY

)
q2=0 = (

ILL
XY

)
q2=0 = −2

(
KXY M2

X + KYX M2
Y

)
,(

IRL
XY

)
q2=0 = (

ILR
XY

)
q2=0 = 2JXY MX MY , (68)

and the derivatives

6 There are also one-loop diagrams with scalars and electroweak gauge bosons running in the loop, but these are 
subleading in N . As we aim to perform a consistent calculation to leading order in N , we neglect these contributions.
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(
dIRR

XX

dq2

)
q2=0

=
(

dILL
XX

dq2

)
q2=0

= 4LXX − 2J ′
XX ,

(
dIRL

XX

dq2

)
q2=0

=
(

dILR
XX

dq2

)
q2=0

= 2J ′
XX , (69)

together with (C.4). The one-loop contributions are simple and reproduce the usual results, 
namely

Sone loop = 16π

[
N

2

(
J ′

UU + J ′
DD

) + Nc

2

(
J ′

t t + J ′
bb

) + Nc

18
(Jtt − Jbb)

]
− SSM

= N S0

[
1 +O

(
M2

Q

�2

)
+O

(
M2

t

M2

)]
, (70)

for the S-parameter and

Tone loop = 4
√

2GF

α

[
N

(
KUD − JUU

2

)
M2

U + N

(
KDU − JDD

2

)
M2

D

+ Nc

(
Ktb − Jtt

2

)
M2

t

]
− TSM

= N T0
M4

U − M4
D − 2M2

U M2
D log

(
M2

U/M2
D

)
(
M2

U − M2
D

)
M2

t

[
1 +O

(
M2

Q

�2

)
+O

(
M2

t

M2

)]

(71)

for the T parameter. Then we consider the leading contributions, in the large-N expansion, from 
the operators contained in �LETC. As argued above, these are dominantly given by two-loop 
diagrams. We label them according to the corresponding product of ETC couplings. The formulas 
are collected in Appendix D.

9. Numerical results

The model parameters are g, g′, y, MQ, M , �, M, gQQ, gqq , gQq , gUU , gDD, gUD, gtt , 
gbb , gtb, gUt , gDt , gUb , gDb, and N . The Yukawa coupling y disappears after renormalisation, 
whereas M can be exchanged for the dynamical mass MH0. We trade g, g′, MQ, MH0, gUt , and 
gDb for the experimental values of α, GF , MZ , MH , Mt , and Mb, respectively. Therefore, we 
end up with the free variables �, M, gQQ, gqq , gQq , gUU , gDD, gUD, gtt , gbb , gtb , gDt , gUb , 
and N . We may obtain an estimate of � by scaling up the corresponding quantity from QCD. 
Putting together the Pagels–Stokar equation and the NJL formula for the mass of the σ meson, 
leads to the equation

f 2
π = Nc

16π2
m2

σ log
�2

QCD

m2
σ /4

, (72)

where �QCD here is the mass scale of the non-Goldstone states and should not be confused with 
the standard one defined in the literature (of the order of 200 MeV). We may solve for �QCD, 
and use the scaling law

� =
√

Nc F�
�QCD , (73)
N fπ
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where F� = (
√

2GF )−1/2 � 246 GeV. Setting fπ � 93 MeV, mσ � 441 MeV [47], and Nc = 3, 
gives

� �
{

2.7 TeV N = 4
2.2 TeV N = 6 .

(74)

We take these as an input to the numerical calculation. The ETC scale M remains as a free 
parameter, and we consider values increasing from M = �. Then, we perform a random scan 
over the couplings gQQ, gqq , gQq , gUU , gDD, gUD, gtt , gbb , gtb, gDt , gUb .

The conditions of sub-criticality (46) and (47) imply direct bounds on the ETC couplings. 
Using (11), we obtain

gQQgUU <
M2

�2
4π2 , gQQgDD <

M2

�2
4π2 , gqqgtt < 4π2 , gqqgbb < 4π2 , (75)

and

gQqgUt <
M
�

4π2

√
N Nc

, gQqgDb <
M
�

4π2

√
N Nc

. (76)

To further restrict the values of the parameters we consider the following:

• Taking gUU �= gDD causes large corrections to T , as one can see by adding together (D.4), 
(D.6) and (D.9). To avoid this we impose gUU = gDD. One can think of this relation as arising 
from an approximate custodial symmetry in the ETC Lagrangian. With this motivation we 
also set gtt = gbb .

• The coupling gUD gives an unbalanced large and negative contribution to T , and thus we 
choose to set gUD = 0. As for gUU = gDD and gtt = gbb , also this relation can be thought 
of arising from a custodial symmetry in the ETC sector. This prompts us to set gtb = 0, 
although the corresponding contribution to the oblique parameters is negligible.

• The mass MU is always larger than MD because of the contribution from GUt and the 
imposed relation gUU = gDD. From (D.24) we see that |gUt | cannot be too large, or else a 
large and positive contribution to T appears. Since GUt ≡ gQq gUt/M2 is fixed by the top 
mass, this means that |gqQ| cannot be too small. We impose π/3 ≤ |gQq | ≤ 2π .

• Equation (D.26) shows that a positive contribution to T can be balanced by increasing |gDt |
which, by a similar argument as above for |gqQ|, should not be too small. Thus we require 
π/3 ≤ |gDt | ≤ 2π . This implies also a negative contribution to S, as shown by (D.25).

• The coupling |gUb| should be large enough to give a negative contribution to S, see 
Eq. (D.27). Also note that this coupling does not contribute to T , see Eq. (D.28). We re-
quire π/3 ≤ |gUb| ≤ 2π .

• As we have discussed earlier, large ETC couplings are required to lower the Higgs mass to 
the observed value. This is particularly true for gQQ and gUU = gDD, and thus we require 
these to be large enough by imposing π/3 ≤ |gQQ|, |gUU| = |gDD| ≤ 2π .

Therefore, we scan the parameter space by assigning random values for the couplings within 
the following ranges:

π/3 ≤ |gQQ|, |gUU|, |gQq |, |gDt |, |gUb| ≤ 2π, −2π ≤ |gqq |, |gtt | ≤ 2π, (77)

and we also set

gDD = gUU , gbb = gtt , gUD = 0 , gtb = 0 . (78)
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Fig. 7. Result over the random scan of the model parameter space for N = 4 and � = 2.7 TeV. The four figures corre-
spond to M = 2.7, 3.2, 3.7 and 5 TeV as indicated in the figure labels. The details of the scan are explained in the text 
and all points shown in the figure correspond to the Higgs mass 125 GeV. The shown points have the dynamical Higgs 
mass between fractions 0.5 to 1.25 of the scaled up mass of the sigma meson.

For each generated data point we compute masses, the couplings of the Higgs particle, and 
evaluate the S and T parameters. As shown in Section 7, the Higgs couplings are expected to 
be close to their SM values. Numerical computations show that this is true within ∼ 10% for 
any value of the ETC couplings and mass. In particular, the Higgs coupling to the weak boson 
is always slightly larger than the SM value, the top Yukawa is slightly smaller, whereas the 
bottom Yukawa is standard within a few per cents. Hence, we conclude that tuning the model to 
reproduce the observed value of the Higgs mass is sufficient to also tune its couplings close to 
their standard model values.

For each considered value of � and M, we sampled 25 000 points satisfying (77) and (78), 
and plotted these in the S, T plane, together with the experimentally viable 3σ contour. The 
dynamical mass MH0 is of course highly dependent on the ETC couplings. In Fig. 7, for N = 4, 
and 8, for N = 6, we only show those points for which MH0 is between the fractions 0.5 and 
1.25 of the scaled up mass of the sigma meson:
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Fig. 8. Result over the random scan of the model parameter space for N = 6 and � = 2.2 TeV. The four figures corre-
spond to M = 2.2, 2, 7, 3.2 and 5 TeV, respectively.

0.5mσ

F�

fπ

√
Nc

N
< MH0 < 1.25mσ

F�

fπ

√
Nc

N
. (79)

The reason to allow for smaller values of MH0 is to account for possible effects from walking 
dynamics. The colour coding of the points shown in the figure is related to the different couplings 
as follows: The bigger the value of |gDt |, the greener the point, and the larger the value of |gUb|, 
the redder the point. Furthermore, the larger the value of |gQq | the darker the shade of the colour, 
with a clear border at |gQq | = 3. Larger values of |gUb| imply smaller S whereas larger values 
of |gDt | imply smaller S and also smaller T . Therefore, as we can observe from the figure, the 
redder points are towards the top-left of the plot while the greener points are towards the bottom.

For small values of M the green points are disfavoured. This is because T is too large and 
negative. The favoured points on the other hand are orange, corresponding to approximately 
equal values of |gDt | and |gUb|. Increasing the ETC scale M makes the mass splitting MU −MD

larger. In the gap equations this splitting originates from GQqUt, the latter being fixed by the 
top quark mass. The large MU − MD splitting implies a large positive one-loop contribution 
to the T parameter, and this needs to be balanced by a negative contribution. Such a balancing 



S. Di Chiara et al. / Nuclear Physics B 900 (2015) 295–330 317
Fig. 9. The plots on the top-left corner in Figs. 7 and 8 are reproduced here with the additional constraints |gDt | < 2.5
and |gQq | < 3.5 (|gQq | < 2.0), for N = 4 (N = 6).

contribution can only arise from gDt , as shown by (D.26), and therefore for large M the favoured 
points are the greener ones.

Overall, for large values of M, e.g. 5 TeV, there are less points since larger values of gQQgUU
and gQQgDD are required to have sufficient reduction for the Higgs mass. In other words, the 
portion of the sampled points shown in the figure shrinks as M increases. Finally, we note that 
varying � within, say, 20% range around the values we have used does not change the results 
qualitatively. For slightly smaller � one needs slightly larger values of gQQgUU and gQQgDD to 
have correct reduction in the Higgs mass. However, the values of S and T are only little affected 
by these couplings in the limit gUU = gDD which we have imposed.

We note that T can take on values from a very large interval, making the agreement with 
experiment challenging. On the one hand this is due to the fact that the natural size T0, in (65), is 
relatively large, unlike S0 which is small. On the other hand this occurs because we have allowed 
for a wide range of ETC couplings. To illustrate this, we plot in Fig. 9 points satisfying |gDt | <
2.5 and |gQq | < 3.5 (|gQq | < 2.0), for N = 4 (N = 6) and M = �. We see that only a small 
portion of the original points are selected, and the electroweak parameters can take on values 
from much smaller intervals. This can be projected on the amount of fine tuning in the model: 
Restricting the values of the ETC couplings as done for the points shown in Fig. 9 corresponds 
to fine tuning on the level of O (10%). This is less severe than the fine tuning we have estimated 
from the precision of the Higgs mass, which is on the level of few per cents; see Eq. (48) and the 
related discussion in Section 6.

In Table 1 we show the average values of the Higgs couplings over the sample of points 
compatible with the precision data on the 3σ -level. These numbers can be compared with results 
of global fits; see e.g. [48]. The precision of these numbers must of course be taken within the 
context of our computation at leading order in N and Nc. Nevertheless, it is encouraging that 
we have demonstrated in a fully dynamical setting of electroweak symmetry breaking that the 
composite Higgs particle can be light, there are no large deviations from the experimental values 
of S and T and the couplings between the composite Higgs and electroweak gauge bosons and 
SM fermions are compatible with current experimental data.

In general the scatter plots in Figs. 7 and 8 can be considered as instructions on how to build 
an ETC theory satisfying the experimental constraints from precision electroweak observables. 
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Table 1
The values of Higgs couplings averaged over the sample of points compatible with the precision data on the 3σ -level.

N , �, M values ỹt ỹb g̃HWW g̃HZZ

N = 4, � = 2.7, M = 3.7 0.92 1.04 1.08 1.07
N = 4, � = 2.7, M = 3.2 0.93 1.03 1.08 1.07
N = 4, � = 2.7, M = 2.7 0.93 1.01 1.09 1.08
N = 6, � = 2.2, M = 3.2 0.92 1.04 1.08 1.07
N = 6, � = 2.2, M = 2.7 0.92 1.03 1.09 1.08
N = 6, � = 2.2, M = 2.2 0.92 1.02 1.09 1.08

We leave for future work the more thorough analyses highlighting different domains and their 
relevance for microscopic ETC model building.

10. Conclusions

In this paper we have considered a realistic effective model where the electroweak scale and 
the masses of the weak gauge bosons arise dynamically from a TC force. We assume that the 
technifermions are coupled with the SM matter fields via four-fermion interactions, low-energy 
remnants of an ETC theory, and classified all four-fermion operators based on the quantum 
numbers of the exchanged ETC gauge bosons. We have demonstrated that the lightest scalar 
resonance can be as light as 125 GeV, and has SM-like couplings with the particles of the SM. 
We have also evaluated the contribution of the four fermion operators to the oblique electroweak 
parameters, and demonstrated that the model is viable in some region of the parameter space. 
This instructs us on how to build an ETC theory satisfying the experimental constraints on the 
precision electroweak parameters.

Observables have been computed in the large-N scheme, where N is the dimension of the 
technifermion representation under the TC gauge group, and this has allowed us to obtain rig-
orous and robust results. One of our main conclusions is that in models of this type, in order to 
obtain a light composite Higgs, the ETC theory needs to be strongly coupled. We considered the 
case where ETC couplings were nevertheless required to be subcritical, and the success of this 
setup to produce a light scalar necessarily implies some amount of fine tuning. With the scales 
relevant for strong dynamics we considered, this fine tuning is on the level of few percents.

In addition to the phenomenological results, we have outlined features of the computation 
which are important for theories where multiple cutoff scales are introduced and gauge invariance 
needs to be maintained. These results are expected to have applications for a range of models 
involving strong dynamics.

The results we have obtained here provide a solid benchmark model to investigate in light of 
current and future collider data. One can think of several further prospects which can be pursued: 
For example, additional composite states with masses of O (1 TeV) are expected to appear in 
the spectrum, and their properties and couplings could be analysed in more detail. Also, the 
momentum dependence of the couplings of the scalar boson to the SM fields should be studied 
in more detail, as they could provide an important window into the possible composite nature of 
the Higgs boson.

Finally, our results can be applied to strengthen the analysis of the phenomenological implica-
tions of the lattice results on new strong dynamics. On the one hand, the lattice computations are 
performed on strong dynamics in isolation, and these first principle analyses provide valuable in-
put on the scales appearing in the model setup we have analysed in this paper. On the other hand, 
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our results for the corrections to the scalar mass from external four fermion interactions, when 
implemented on the lattice results of the scalar particle, can help in estimating the applicability 
of new strong dynamics within the TC/ETC framework.
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Appendix A. Classification of the four-fermion operators from ETC

A.1. Class A: TC-singlet and QCD-singlet ETC bosons, with Y = 0

At zero-momentum, the Lagrangian for type-A ETC bosons reads

LA
ETC =

[
gQQ QLγμQL + gqq qLγμqL + gUU URγμUR + gDD DRγμDR + gtt tRγμtR

+ gbb bRγμbR

]
Aμ + 1

2
M2

AAμAμ , (A.1)

where TC and colour indices are suppressed, and all couplings are real. Integrating out the ETC 
field Aμ at tree-level gives

Aμ = − 1

M2
A

[
gQQ QLγμQL + gqq qLγμqL + gUU URγμUR + gDD DRγμDR

+ gtt tRγμtR + gbb bRγμbR

]
, (A.2)

whence, plugging back in LA
ETC,

LA
ETC = −1

2

g2
QQ

M2
A

(
QLγμQL

)2 − 1

2

g2
qq

M2
A

(
qLγμqL

)2 − 1

2

g2
UU

M2
A

(
URγμUR

)2

− 1

2

g2
DD

M2
A

(
DRγμDR

)2 − 1

2

g2
t t

M2
A

(
tRγμtR

)2 − 1

2

g2
bb

M2
A

(
bRγμbR

)2

− gQQgqq

M2
A

(
QLγμQL

) (
qLγ μqL

) − gQQgUU

M2
A

(
QLγμQL

) (
URγ μUR

)
− gQQgDD

M2
A

(
QLγμQL

) (
DRγ μDR

) − gQQgtt

M2
A

(
QLγμQL

) (
tRγ μtR

)
− gQQgbb

M2
A

(
QLγμQL

) (
bRγ μbR

) − gqqgUU

M2
A

(
qLγμqL

) (
URγ μUR

)
− gqqgDD

M2
A

(
qLγμqL

) (
DRγ μDR

) − gqqgtt

M2
A

(
qLγμqL

) (
tRγ μtR

)
− gqqgbb

M2
A

(
qLγμqL

) (
bRγ μbR

) − gUUgDD

M2
A

(
URγμUR

) (
DRγ μDR

)
− gUUgtt

M2
A

(
URγμUR

) (
tRγ μtR

) − gUUgbb

M2
A

(
URγμUR

) (
bRγ μbR

)
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− gDDgtt

M2
A

(
DRγμDR

) (
tRγ μtR

) − gDDgbb

M2
A

(
DRγμDR

) (
bRγ μbR

)
− gttgbb

M2
A

(
tRγμtR

) (
bRγ μbR

)
. (A.3)

A.2. Class B: TC-singlet and QCD-singlet ETC bosons, with Y = 1

At zero-momentum, the Lagrangian for type-B ETC bosons reads

LB
ETC =

[
gUD URγμDR + gtb tRγμbR

]
Bμ + h.c. +M2

BB∗
μBμ . (A.4)

Integrating out the ETC field Bμ at tree-level gives

B∗
μ = − 1

M2
B

[
gUD URγμDR + gtb tRγμbR

]
, (A.5)

whence, plugging back in LB
ETC,

LB
ETC = −|gUD|2

M2
B

(
URγμDR

) (
DRγ μUR

) − |gtb|2
M2

B

(
tRγμbR

) (
bRγ μtR

)

−
[

gUDg∗
tb

M2
B

(
URγμDR

) (
bRγ μtR

) + h.c.

]
(A.6)

A.3. Class C: TC-N and QCD-Nc ETC bosons, with Y = 1/6

At zero-momentum, the Lagrangian for type-C ETC bosons reads

LC
ETC =

[
gQq QLγμqL + gUt URγμtR + gDb DRγμbR

]
Cμ + h.c. +M2

CC∗
μCμ . (A.7)

Integrating out the ETC field Cμ at tree-level gives

C∗
μ = − 1

M2
C

[
gQq QLγμqL + gUt URγμtR + gDb DRγμbR

]
, (A.8)

whence, plugging back in LC
ETC,

LC
ETC = −|gQq |2

M2
C

(
QLγμqL

) (
qLγ μQL

) − |gUt |2
M2

C

(
URγμtR

) (
tRγ μUR

)

− |gDb|2
M2

C

(
DRγμbR

) (
bRγ μDR

) −
[

gQqg∗
Ut

M2
C

(
QLγμqL

) (
tRγ μUR

) + h.c.

]

−
[

gQqg∗
Db

M2
C

(
QLγμqL

) (
bRγ μDR

) + h.c.

]

−
[

gUtg
∗
Db

M2
C

(
URγμtR

) (
bRγ μDR

) + h.c.

]
. (A.9)
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A.4. Class D: TC-N and QCD-Nc ETC bosons, with Y = 5/6

At zero-momentum, the Lagrangian for type-D ETC bosons reads

LD
ETC = gUb URγμbRDμ + h.c. +M2

DD∗
μDμ . (A.10)

Integrating out the ETC field Dμ at tree-level gives

D∗
μ = − 1

M2
D

gUb URγμbR , (A.11)

whence, plugging back in LD
ETC,

LD
ETC = −|gUb|2

M2
D

(
URγμbR

) (
bRγ μUR

)
. (A.12)

A.5. Class E: TC-N and QCD-Nc ETC bosons, with Y = 7/6

At zero-momentum, the Lagrangian for type-E ETC bosons reads

LE
ETC = gDt DRγμtREμ + h.c. +M2

EE∗
μEμ . (A.13)

Integrating out the ETC field Eμ at tree-level gives

E∗
μ = − 1

M2
E

gDt DRγμtR , (A.14)

whence, plugging back in LE
ETC,

LE
ETC = −|gDt |2

M2
E

(
DRγμtR

) (
tRγ μDR

)
. (A.15)

Appendix B. Fierz rearrangement formulas

We use the following Fierz rearrangement formulas for anticommuting fields to simplify the 
products:

− (
QLγμQL

) (
URγ μUR

) = 2

N

(
QLUR

) (
URQL

) + 4
(
QLT A

TCUR

)(
URT A

TCQL

)
,

− (
QLγμQL

) (
DRγ μDR

) = 2

N

(
QLDR

) (
DRQL

) + 4
(
QLT A

TCDR

)(
DRT A

TCQL

)
,

− (
qLγμqL

) (
tRγ μtR

) = 2

Nc

(qLtR)
(
tRqL

) + 4
(
qLT a

QCDtR

)(
tRT a

QCDqL

)
,

− (
qLγμqL

) (
bRγ μbR

) = 2

Nc

(qLbR)
(
bRqL

) + 4
(
qLT a

QCDbR

)(
bRT a

QCDqL

)
,

− (
QLγμqL

) (
tRγ μUR

) = 2
(
QLUR

) (
tRqL

)
,

− (
QLγμqL

) (
bRγ μDR

) = 2
(
QLDR

) (
bRqL

)
,

− (
QLγμqL

) (
qLγ μQL

) = −1

2

(
QLγμQL

) (
qLγ μqL

) − 2
(
QLγμT iQL

)(
qLγ μT iqL

)
,

− (
tRγμUR

) (
URγ μtR

) = − (
URγμUR

) (
tRγ μtR

)
,
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− (
bRγμUR

) (
URγ μbR

) = − (
URγμUR

) (
bRγ μbR

)
,

− (
bRγμDR

) (
DRγ μbR

) = − (
DRγμDR

) (
bRγ μbR

)
,

− (
tRγμDR

) (
DRγ μtR

) = − (
DRγμDR

) (
tRγ μtR

)
,

− (
URγμtR

) (
bRγ μDR

) = − (
URγμDR

) (
bRγ μtR

)
. (B.1)

Appendix C. Integrals

We provide expressions for the standard integrals shown at the end of Section 4. For definite-
ness, we use the cutoff �.

IX = 1

16π2

[
�2 − M2

X log
�2 + M2

X

M2
X

]
, (C.1)

JXY = 1

16π2

[
M2

X

M2
X − M2

Y

log
�2 + M2

X

M2
X

− M2
Y

M2
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Y

log
�2 + M2

Y

M2
Y

]
(C.2)

KXY = 1

32π2
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X
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M2
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(
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)2
log

�2 + M2
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Y(
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log

�2 + M2
Y

M2
Y

+ �4(
M2
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log

�2 + M2
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Y
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Y

]
. (C.3)

The expression for LXY is rather complicated for X �= Y . However for our computations we only 
need LXX , which is much simpler. We have

JXX = 2KXX = 6LXX = 1

16π2

[
log

�2 + M2
X

M2
X

− �2

�2 + M2
X

]
(C.4)

Finally, we have

J ′
XX = 1

96π2

1(
1 + M2

X/�2
)2

. (C.5)

Appendix D. Two-loop contributions to S and T parameters

SQQQQ = −16π
g2

QQ
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[
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TQQQQ = 4
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SUUUU = 16π
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Tttbb = 0 (D.37)

SUDtb = SUtDb = 0 , TUDtb = TUtDb = 0 . (D.38)
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