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Graphical Abstract

Stationary Travelling

Highlights

• In-plane motion of an axially travelling orthotropic sheet was modelled

• Velocity difference between supports generates strain due to mass conserva-
tion

• In a travelling viscoelastic material the axial strain varies along the length

• Small deformations of free edges due to the Poisson effect affect the velocity

• Inertial effects lead to additional cross-directional contraction
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The Origin of In-plane Stresses in Axially Moving
Orthotropic Continua

Matti Kurki1 , Juha Jeronen2∗, Tytti Saksa2 , Tero Tuovinen2

1JAMK University of Applied Sciences, P.O. Box 207, FI-40101, Jyvaskyla, Finland
2Department of Mathematical Information Technology, P.O. Box 35 (Agora), FI-40014 University of

Jyvaskyla, Finland

Abstract

In this paper, we address the problem of the origin of in-plane stresses in continu-
ous, two-dimensional high-speed webs. In the case of thin, slender webs, a typical
modeling approach is the application of a stationary in-plane model, without con-
sidering the effects of the in-plane velocity field. However, for high-speed webs
this approach is insufficient, because it neglects the coupling between the total ma-
terial velocity and the deformation experienced by the material. By using a mixed
Lagrange–Euler approach in model derivation, the solid continuum problem can be
transformed into a solid continuum flow problem. Mass conservation in the flow
problem, and the behaviour of free edges in the two-dimensional case, are both seen
to influence the velocity field. We concentrate on solutions of a steady-state type,
and study briefly the coupled nature of material viscoelasticity and transport ve-
locity in one dimension. Analytical solutions of the one-dimensional equation are
presented with both elastic and viscoelastic material models. The two-dimensional
elastic problem is solved numerically using a nonlinear finite element procedure.
An important new fundamental feature of the model is the coupling of the driv-
ing velocity field to the deformation of the material, while accounting for small de-
formations of the free edges. The results indicate that inertial effects produce an
additional contribution to elastic contraction in unsupported, free webs.
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1. Introduction

In the handling of continuous, high-speed webs the origin of in-plane stresses
creates a scientific problem, which is not yet completely understood. Especially, the
type of the web material has a significant effect on both qualitative and quantitative
characteristics of the in-plane stresses. In moving continuous web systems, the ten-
sion of the web can usually be controlled in the direction of the transport velocity,
the tension being generated by a velocity difference between the starting and ending
lines of a free span. At high transport velocities, both web stress and web stability
are of concern, not only in this longitudinal direction, but also in the direction per-
pendicular to the main transport velocity in the plane of the web.

Axially moving materials have many applications in industry, e.g. in paper pro-
duction, and their mechanics have been studied widely. In the processing of dif-
ferent kinds of thin, laterally moving solid webs, challenges are met, such as the
efficiency of production and effects caused by the high processing speed. The first
studies of the vibrations of travelling elastic materials date back to the end of the
19th century (Skutch, 1897 [63]) and to the middle of the 20th century (Sack, 1954
[57]; Archibald and Emslie, 1958 [1]). A string model for the moving material was
used in all of these studies. Later on, in the 1960s and 1970s, many researchers con-
tinued studies on moving strings and beams, concentrating mainly on various as-
pects of free and forced transverse vibrations (e.g. Miranker [46], Swope and Ames
[66], Mote et. al. [48, 49, 50] and Simpson [61]).

The stability of small transverse vibrations of travelling two-dimensional rect-
angular membranes and plates have been studied by Ulsoy and Mote [71], and Lin
[40]. When the web is advancing through a process without external support, the
inertial forces depending on the web speed are coupled with web tension. Also the
transverse behaviour of the web and the response of the fluid (air) surrounding the
web are coupled (see e.g. [9, 54]). Studies modelling the moving web coupled with
the surrounding air have been made by Pramila et al. [51, 55, 33]. In their stud-
ies, it was found that the surrounding air significantly reduces the eigenfrequencies
and critical velocities of the web, when compared to the vacuum case. Chang and
Moretti [9] studied membranes using potential flow theory, and Banichuk et al. [5, 6]
used the flat panel model coupled with potential flow. This research was extended
by Jeronen [31], where the eigenfrequency spectra were investigated for this model
and for the moving string with damping. In Watanabe et al. [72], two different
methods of analysis were developed for the phenomenon of paper flutter. One of
these was a flutter simulation using a Navier–Stokes code, and the other method
was based on a potential flow analysis of an oscillating thin airfoil.

Lin and Mote studied an axially moving membrane in a 2D formulation, predict-
ing the equilibria of the displacement and the stress distribution under transverse
loading [41]. Later, they continued studying the wrinkling of axially moving rect-
angular webs with a small flexural stiffness [42]. They predicted the critical value of
the non-linear component of the edge loading after which the web wrinkles, and the
corresponding wrinkled shape of the web. It is also known that the lack of web ten-
sion will result in a loss of stability of the moving web, which from the application
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viewpoint, disturbs the required smooth advancing of the web (see e.g. [4, 3]). On
the other hand, high tension may cause web breaks, which deteriorates production
efficiency (see e.g. [2, 56, 58, 62]).

Paper has often been modelled as an orthotropic elastic solid. Elastic constants
have been measured for some paper-like materials by Mann, Baum and Habeger
[43]; and Baum, Brennan and Habeger [7]. Recently, for anisotropic solids, Erkkilä et
al. [18] have studied competent parameters based on modeled stress-strain curves
for further construction of a material model. Out-of-plane Poisson ratios, specifi-
cally, have been recently studied by Stenberg and Fellers [65], who reported that
paper is an auxetic material: stretching in the machine direction will cause the pa-
per web to thicken in the out-of-plane direction. The relevant Poisson ratio, ν13, is
negative, and |ν13|may be as large as 3.0. Incompressible and slightly compressible
orthotropic and transversely isotropic materials have been investigated by Itskov
and Aksel [30], who discovered nontrivial conditions that the elastic constants must
satisfy in order to obtain incompressible or slightly compressible behaviour.

Considering wet paper material, the viscoelastic properties play an important
role in the behaviour of the web, and thus, need to be included in the model. The
first study on transverse vibration of travelling viscoelastic material was carried out
by Fung et. al. using a string model [20]. Extending their work, they studied the vis-
cous damping effect in their later research [21]. Viscoelastic strings and beams have
recently been studied extensively, see e.g. [45, 74]. Oh et al. studied critical speeds,
eigenvalues and natural modes of the transverse displacement of axially moving
viscoelastic beams using the spectral element method [39, 52]. Chen and Zhao [14]
presented a modified finite difference method to simplify a non-linear model of an
axially moving string. They studied numerically the free transverse vibrations of
both elastic and viscoelastic strings. Chen and Yang studied free vibrations of vis-
coelastic beams travelling between simple supports with torsion strings [13]. They
studied the viscoelastic effect by perturbing the similar elastic problem and using
the method of multiple scales. Very recently, Yang et al. studied vibrations, bifur-
cation, and chaos of axially moving viscoelastic plates using finite differences and a
non-linear model for transverse displacements [73].

Marynowski and Kapitaniak studied differences between the Kelvin–Voigt and
Burgers models in the modelling of the internal damping of axially moving vis-
coelastic beams. They found out that both models gave accurate results with small
damping coefficients, but with a large damping coefficient, the Burgers model was
more accurate [44]. In 2007, they compared the models with the Zener model study-
ing the dynamic behaviour of an axially moving viscoelastic beam [45]. They found
out that the Burgers and Zener models gave similar results for the critical transport
speed whereas, the Kelvin–Voigt model gave a greater critical speed compared to
the other two models.

The origin and structure of the in-plane stress and strain distribution in a mov-
ing solid web seems to be an exceptionally unknown area. The models used with
web materials are often based on assumptions of isotropic or orthotropic material
properties (see e.g. [7, 68]). The material is considered as viscoelastic or viscoplastic,
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but in the models, there is usually no coupling between the in-plane strain and the
web velocity effects (see e.g. [24, 53, 70]).

Time-dependent, in-plane vibrations of a moving continuous membrane were
studied by Shin et al. [59]. In their work, in-plane vibration modes of an isotropic
web were studied between the traction lines. Also Guan et. al. have studied vis-
coelastic web behaviour in both steady state and unsteady state cases [22, 23]. In the
recent years, the topic of supercritically moving materials has received attention;
for example, see Ding et al. [16], where steady-state periodic responses regarding
time-harmonic forced vibrations of supercritically moving viscoelastic beams were
studied using multiscale analysis and finite differences. Note, however, that in the
present study, we will concentrate on the subcritical regime, which is more relevant
for paper production.

Traditionally, the partial time derivative has been used instead of the material
derivative in the viscoelastic constitutive relations, but Mockensturm and Guo sug-
gested that the material derivative should be used [47]. They studied non-linear
vibrations and the dynamic response of axially moving viscoelastic strings. Kurki
and Lehtinen also independently suggested that the material derivative should be
used in the constitutive relations, in their study concerning the in-plane displace-
ment field of a travelling viscoelastic plate [37, 35].

In a study by Chen et al., the material derivative was used in the viscoelastic
constitutive relations [10]. They studied parametric vibration of axially accelerat-
ing viscoelastic strings. Chen and Ding studied the stability of axially accelerating
viscoelastic beams using the method of multiple scales, and the material deriva-
tive was used in the viscoelastic constitutive relations [15]. Chen and Wang studied
the stability of axially accelerating viscoelastic beams using asymptotic perturbation
analysis and the material derivative in the viscoelastic relations [12]. The material
derivative was also used in a recent paper by Chen and Ding, where the dynamic vi-
bration response of axially moving viscoelastic beams was studied [11]. A non-linear
model was used, taking into account the coupling of the transverse displacement
with the longitudinal (in-plane) displacement. However, the transverse behaviour
of the beam was their main focus.

In this paper, we propose to modify the classical two-dimensional model of a
moving viscoelastic web by accounting for the coupling between the velocity field
and the in-plane strain. A two-dimensional, thin open loop (non-conservative sys-
tem) made of an orthotropic membrane is stretched using a relative speed differ-
ence between the traction lines. The orthotropic viscoelastic material assumption is
applied, using a viscoelastic model of the Kelvin–Voigt type. The axial motion is
accounted for by using a moving reference state that translates axially at constant
velocity (see e.g. [67, 34]). This method handles the behaviour of a solid moving web
using a control volume approach similar to the treatment of fluid flows. Preliminary
one-dimensional studies have been reported in the paper [36]. In the present paper,
the steady state of the two-dimensional moving continuum, in the pure elastic case,
is solved using the nonlinear finite element method. An important new fundamen-
tal feature of the considered model is the coupling of the driving velocity field to
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Figure 1: Schematic representation of the setup for modelling a moving viscoelastic web, stressed at
the traction lines represented by the rollers. The arrows depict axial motion.

the deformation of the material, while accounting for small deformations of the free
edges.

2. Strain generated by velocity difference of subsequent rollers

A continuous, moving web creates a flow continuum which is possible to con-
sider as a solid medium experiencing flow. Due to its solid nature, the web contin-
uum is always under a stress state, which is caused by a strain state, which further
can be expressed in terms of the velocity difference between subsequent supporting
rollers, by the means of a mass conservation argument.

Consider an orthotropic material having initially (i.e. in the undeformed state)
constant density ρ0, undergoing steady-state longitudinal transport at velocity U =
(Ux, 0, 0), depicted in Figure 1. Let us assume that the material axes 1, 2 and 3 are
aligned with the global coordinate axes x, y and z, respectively. The continuity
equation, as expressed in the Eulerian frame, is

∂ρ

∂t
+∇ · (ρU) = 0 , (1)

where ρ is density of the material, and ∂/∂t is the partial time derivative in the
Eulerian frame. In a steady state, the equation reduces to

∇ · (ρU) = 0 . (2)

Mass conservation requires that the flow rates at the incoming and outgoing flow
control areas match; this requirement is readily obtained from (2). Let us consider a
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Figure 2: Solid web continuum flowing between the incoming and outgoing flow control areas (two-
dimensional surfaces) A1 and A2, at longitudinal speeds U1 and U2 at the beginning and ending
traction lines (respectively).

stationary control volume

Ω = { (x, y, z) : 0 < x < ` , 0 < y < b , 0 < z < h } ,

where ` is the length of the span between the rollers, b is the width of the span, and
h is the thickness of the sheet of material. Integrating (2) over the control volume Ω,
applying the divergence theorem, and noting that ρ is a scalar, we have

∫

Ω

∇ · (ρU) dΩ =

∫

∂Ω

ρ (n ·U) dΓ , (3)

where ∂Ω is the closed surface delimiting the control volume Ω, and n represents
outer unit normal vector. The differential dΓ refers to integration over a surface.

As is shown in Figure 2, flows in and out of the control volume occur only at
the surfaces A1 and A2. Let us assume that ρ and U are constant across these in-
and outflow surfaces, but that their values may change between these surfaces. In
practice, there may exist small variations in the velocity at the outlet due to mate-
rial straining, but for small strains and high velocity, constant velocity along these
surfaces is a reasonable approximation.

Under these assumptions, the mass balance in (3) becomes

−ρ1A1U1 + ρ2A2U2 = 0 . (4)

The subscripts 1 and 2 for ρ and U refer to the (constant) values on the surfaces A1

and A2, respectively. Note the form of the velocity field, U = (Ux, 0, 0). Finally, it is
convenient to rewrite (4) as

U1
ρ1A1

ρ2A2

− U2 = 0 . (5)
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In order to manipulate (5) further, we must consider the ratios of the densities
and the cross-sectional areas. When subjected to a small-displacement deformation
u = (u, v, w), the volume V of a differential element initially (in the undeformed
state) having volume V0 becomes

V = V0

[
1 +∇ · u

]
≡ V0

[
1 + εx + εy + εz

]
, (6)

as is known from e.g. the theory of elasticity. Here εx, εy and εz are the axial strains
with respect to x, y and z -directions. Because the total mass M of the differential
element is conserved in the small deformation, it follows for the density ρ that

ρ ≡ M

V
=

1

V0

M

V/V0

=
M

V0

1

V/V0

= ρ0

[
1 + εx + εy + εz

]−1
, (7)

by (6) and the definition ρ0 ≡M/V0.
Let us assume that the material is subjected to pure axial stress. This induces

an axial strain εx, and via the Poisson effect, also the strains εy and εz in the two
orthogonal directions:

εy = −ν12εx , εz = −ν13εx , (8)

where ν12 and ν13 are the (orthotropic) Poisson ratios for stretching in the direction
of the material axis 1, describing the resulting contraction on material axes 2 and 3,
respectively. This purely elastic approximation neglects all viscous effects, but since
a steady state is being considered, this is reasonable. The cross-sectional area of the
web is

A = (1 + εz)h(1 + εy)b ≈ bh ( 1 + εy + εz ) , (9)

where second-order small terms have been neglected. Combining (8) and (9), we
have

A = bh ( 1− (ν12 + ν13)εx ) ≡ bh ( 1− ν1Aεx ) , (10)

where the effective Poisson ratio for the change in cross-sectional area, when stretched
along material axis 1, is defined as

ν1A ≡ ν12 + ν13 . (11)

As was noted in the introduction, for paper materials, it is known (see e.g. the
study by Stenberg and Fellers [65]) that ν13 < 0, and that |ν13| may be as large as
3.0. Typically, we will thus have ν1A < 0: the cross-sectional area may actually
increase under tension, because the thickness increases. Even though the thickness
itself is typically small, it may undergo a large relative change, and therefore must
be considered when calculating the area of the cross-section.

It also follows from (6), (8) and (11) that

V = V0

[
1 + (1− ν1A)εx

]
. (12)

It should be pointed out that if for some particular material ν1A = 1, then V = V0,
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and such a material behaves incompressibly when stretched along material axis 1.
The effective Poisson ratio contains the directional Poisson ratios ν12 and ν13. The
only requirement for incompressibility under uniaxial stretching is that the sum of
ν12 and ν13 is unity; unlike the isotropic case, neither of them needs to be 0.5.

Furthermore, the values of ν23, ν21, ν31 and ν32 still remain free. Elastic com-
patibility is required, but this brings in additional free parameters, because elastic
compatibility involves not only the Poisson ratios, but also the Young moduli; e.g.
E1ν21 = E2ν12. Depending on the set of parameter values chosen, it is possible that
an orthotropic material behaves incompressibly in axial stretching only when the
deformation is applied along some particular axis.

It is thus evident that the conditions of incompressibility for anisotropic materi-
als are more complicated than for isotropic materials, where the only requirement is
ν = 0.5. For a more thorough consideration of incompressibility in orthotropic and
transversely isotropic materials, see the study by Itskov and Aksel [30].

By combining (7), (8) and (11), we obtain

ρ =
ρ0

1 + (1− ν1A)εx
. (13)

In the following, we shall assume that the material, subjected to constant axial
tension at the rollers (traction lines), has zero strain at A1, and experiences some
nonzero axial strain εx at A2, due to the applied axial stress. Preliminary one-
dimensional results [36] indicate that such a strain state occurs at least for an axi-
ally travelling Kelvin–Voigt viscoelastic material; see also the treatment of the one-
dimensional case further below, where we will show this briefly. By (10), the cross-
sectional areas at the inflow and outflow surfaces A1 and A2 become

A1 = bh , A2 = bh(1− ν1Aεx) , (14)

and by (13), the material densities on these surfaces are

ρ1 = ρ0 , ρ2 =
ρ0

1 + (1− ν1A)εx
. (15)

By inserting (14) and (15) into the mass balance (5), simplifying, and solving for εx,
we obtain the result

εx =

U2

U1

− 1

1 +

[
U2

U1

− 1

]
ν1A

. (16)

Equation (16) gives the axial strain, at the traction line at x = `, for the problem of
in-plane (visco-)elastic deformation, corresponding to given roller speeds U1 and U2.
Obviously, in order for the model to remain valid, the given velocities must be such
that the strain according to (16) remains in the small-deformation range.

The transport velocity of the flowing solid continuum in the above case is as-
sumed to be controlled only in the x (longitudinal) direction; all in-plane deforma-
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Figure 3: Roller-induced axial strain εx as a function of velocity ratio U2/U1, based on equations
(16)–(18). Left: Overall behaviour of the functions, showing their curvature (only the line for ν1A = 0
is straight). Right: Zoomed-in view. Location of the zoomed area is shown by the dashed box in the
left subfigure.

tions in the y (widthwise) direction are determined by the (visco-)elastic response.
It should also be kept in mind that (16) only applies in a steady-state flow, i.e. when
the web flows smoothly without time-dependent disturbances.

The traction lines at the cross-sectional areasA1 andA2 affect only the surfaces of
the web, which implies that stress and strain waves advancing inside the web thick-
ness can cross the traction lines. Therefore in the boundary conditions of moving
continuous webs, in reality, one should consider rather complicated friction-based
force transmission phenomena at web-roll contact areas [35].

In the special case of a material which behaves incompressibly when stretched
along axis 1, we have ν1A = 1. By inserting this into (16) and simplifying, we obtain

εx = 1− U1

U2

, (17)

which holds only when ν1A = 1.
In the limit ν1A → 0, equation (16) simplifies to

εx =
U2

U1

− 1 . (18)

The behaviour of equations (16)–(18) is illustrated in Figure 3.
Equation (18) corresponds to cork-like materials, which do not exhibit the Pois-

son effect. Note, however, that if the material is an auxetic orthotropic one, it is
possible that ν13 = −ν12, also leading to ν1A = 0.

The result (18) also arises in the case of a one-dimensional string model. Consider
a compressible travelling string, undergoing steady-state flow through the span 0 <

10
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x < `. Mass conservation now requires

R1U1 −R2U2 = 0 , (19)

with similar definitions for the subscripts as above. Here R is the linear density,
[R] = kg/m, and the cross-sectional area of the string is assumed constant. As the
string becomes stretched or compressed, the linear density changes as

R =
R0

1 + εx
, (20)

where R0 is the (constant) linear density in the initial (unstretched) state. Equation
(20) follows directly from (7) and the assumption that the cross-sectional area is
constant (whence εy = εz = 0).

As before, let as assume that at x = 0 the strain in the string is zero, and at x = `,
the string experiences some nonzero strain εx due to axial tension applied at the
ends of the span. As was noted above, this is consistent for a travelling Kelvin–
Voigt viscoelastic string. Hence R1 = R0, and R2 is given by (20). By combining (19)
and (20), and solving for εx, the equation (18) is obtained.

3. The governing equations

In this section we will define the stresses and strains, deformations, material as-
sumptions and velocity-dependent in-plane inertial forces for the moving web. This
leads to both one- and two-dimensional models, and equations for the viscoelastic
moving web continuum application.

The standard approach for describing structural deformations is the Lagrangean
description. However, longitudinal in-plane deformations in axially moving mate-
rials are more challenging. One possibility is to actually move the medium at the
desired speed, and update the boundary conditions at each timestep [64]. Another
possibility is to use an Eulerian flow description, and by this the actual deformation
of the moving continuum can be handled using a mixed Lagrange–Euler descrip-
tion [34]. The Eulerian description is a standard approach in fluid dynamics where
the observer is watching a control volume, where possible deformations will appear
[64, 38].

In this paper, we consider two-dimensional in-plane membrane behaviour. Based
on Figure 4, one can derive the following well-known force balance [69]:

∂σx
∂x

+
∂τyx
∂y

+Fx = 0 , (21)

∂τxy
∂x

+
∂σy
∂y

+Fy = 0 , (22)

where τyx and τxy are shear stresses and Fx and Fy are (external) body forces. The
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Figure 4: Differential parallelepiped and forces acting in the in-plane directions x and y.

linear Cauchy strains are

εxx =
∂u

∂x
, εyy =

∂v

∂y
, εxy =

∂u

∂y
, εyx =

∂v

∂x
, γxy =

(
∂u

∂y
+
∂v

∂x

)
. (23)

We will use the material assumption of orthotropic viscoelasticity. In the mixed
Lagrange–Euler description, the strains

εij = εij (x, y, t) (24)

lead to the time derivatives

dεij
dt

=
∂εij
∂t

+
∂εij
∂x

dx
dt

+
∂εij
∂y

dy
dt

=
∂εij
∂t

+
∂εij
∂x

Ux +
∂εij
∂y

Uy , (25)

where (Ux, Uy) is the velocity field and d/dt is the material derivative.
With fibrous, composite-type materials, the mechanical deformation response

properties are the result of complicated material preprocessing, which results in or-
thotropic anisotropy and material time-dependence (see e.g. [70, 32, 53, 8]). It is
possible to derive a vast number of different rheological models for time-dependent
material behaviour, but the fundamental behaviour of continuous flow of a solid vis-
coelastic web can be analyzed using the simple classical Kelvin–Voigt model. The
singular stress response to a step strain does not matter, because we are consider-
ing a steady state where no rapidly changing strains occur; hence the Kelvin–Voigt
model is sufficient for the present application.

The stress-strain behaviour of one-dimensional Kelvin-Voigt material (see e.g.
[19]) is simply

σ = Eε+ η
dε
dt

, (26)
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where E is Young’s modulus and η is the material viscosity. We will apply a two-
dimensional, orthotropic plane stress extension of the above model, based on prac-
tical observations of fibrous web materials [68, 70]:

σx =
Ex

1− ν12ν21

(εxx + ν21εyy) +
ηx

1− ϕ12ϕ21

(
dεxx
dt

+ ϕ21
dεyy
dt

)
(27)

σy =
Ey

1− ν12ν21

(εyy + ν12εxx) +
ηy

1− ϕ12ϕ21

(
dεyy
dt

+ ϕ12
dεxx
dt

)
(28)

τyx = τxy = Gγxy + Π
dγxy
dt

(29)

Here ϕ12 and ϕ21 are the viscous analogues of the orthotropic in-plane Poisson ratios
ν12 and ν21, G is a shear modulus, γ is a shear strain and Π is the viscous shear
modulus.

Often, problems considering the in-plane behaviour of a continuous material
are written using only an elastic model, involving the moduli of elasticity Ex and
Ey, and the strain variables εxx and εyy. However, in practice all the elastic-related
material properties are measured with some definite speed, and therefore apparent
elasticity includes both elastic and viscous material properties [19]. Fundamentally,
all materials exhibit some form of viscoelasticity, typically measured by normal and
complex moduli E and E ′, respectively. It should also be pointed out that the vis-
coelastic Poisson ratios ϕ12 and ϕ21 cannot be calculated using compliances from the
theory of elasticity [25].

In fibrous cellulose-based materials, moisture-dependent dimension changes can
be significant, which generates stresses in addition to those related to the strains
based on external velocity differences (equation (16)). In this study, we have chosen
not to model these moisture-dependent stresses.

Let us now consider the dynamic equilibrium. According to Newton’s second
law, time-dependent dynamical behaviour always includes inertial forces. Two-
dimensional inertial forces in in-plane membrane behaviour can be accounted for
using the following dynamic equilibrium equations (see e.g. [60]):

∂σx
∂x

+
∂τxy
∂y

+ Fx = ρ
d2u

dt2
(30)

∂σy
∂y

+
∂τyx
∂x

+ Fy = ρ
d2v

dt2
(31)

Note that the operator d2/dt2 describes the inertial behaviour in the Lagrangean
reference frame. Thus the inertial terms depending on the displacements u and v, in
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the Eulerian frame, must be presented using the material derivative:

du
dt

=
∂u

∂t
+
∑

i=1,2

∂u

∂xi

dxi
dt

(32)

dv
dt

=
∂v

∂t
+
∑

i=1,2

∂v

∂xi

dxi
dt

(33)

The second material derivatives of the displacements u and v are

d2u

dt2
=
∂2u

∂t2
+ 2Ux

∂2u

∂x∂t
+ 2Uy

∂2u

∂y∂t
+ U2

x

∂2u

∂x2
+ 2UxUy

∂2u

∂x∂y
+ U2

y

∂2u

∂y2
(34)

+
∂u

∂x

(
∂Ux

∂x
Ux +

∂Ux

∂y
Uy +

∂Ux

∂t

)
+
∂u

∂y

(
∂Uy

∂x
Ux +

∂Uy

∂y
Uy +

∂Uy

∂t

)

d2v

dt2
=
∂2v

∂t2
+ 2Ux

∂2v

∂x∂t
+ 2Uy

∂2v

∂y∂t
+ U2

x

∂2v

∂x2
+ 2UxUy

∂2v

∂x∂y
+ U2

y

∂2v

∂y2
(35)

+
∂v

∂x

(
∂Ux

∂x
Ux +

∂Ux

∂y
Uy +

∂Ux

∂t

)
+
∂v

∂y

(
∂Uy

∂x
Ux +

∂Uy

∂y
Uy +

∂Uy

∂t

)

By substituting (34)–(35) and (27)–(29) into (30) and (31), we obtain the following
time-dependent two-dimensional equations for the in-plane, plane stress membrane
behaviour of the moving viscoelastic web:

(C11 − ρU2
x)
∂2u

∂x2
+
(
C66 − ρU2

y

) ∂2u

∂y2
+ C12

∂2v

∂x∂y
+ C66

∂2v

∂x∂y
+K11Ux

∂3u

∂x3

+K11Uy
∂3u

∂x2∂y
+K11

∂3u

∂x2∂t
+ (K12 +K66)Uy

∂3v

∂x∂y2
+K66Uy

∂3u

∂y3

+ (K12 +K66)Ux
∂3v

∂x2∂y
+ (K12 +K66)

∂3v

∂x∂y∂t
+K66Ux

∂3u

∂x∂y2
+K66

∂3u

∂y2∂t
+ Fx

= ρ
∂2u

∂t2
+ 2ρUxUy

∂2u

∂x∂y
+ 2ρUx

∂2u

∂x∂t
+ 2ρUy

∂2u

∂y∂t

+ρ
∂u

∂y

(
∂Ux

∂x
Ux +

∂Ux

∂y
Uy +

∂Ux

∂t

)
+ ρ

∂u

∂y

(
∂Uy

∂x
Ux +

∂Uy

∂y
Uy +

∂Uy

∂t

)

(36)

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and

(
C22 − ρU2

y

) ∂2v

∂y2
+ (C66 − ρU2

x)
∂2v

∂x2
+ C21

∂2u

∂x∂y
+ C66

∂2v

∂x∂y
+K22Uy

∂3v

∂y3

+K22Ux
∂3v

∂x∂y

2

+K22
∂3v

∂x2∂t
+ (K21 +K66)Ux

∂3u

∂x2∂y
+K66Ux

∂3v

∂x3

+ (K21 +K66)Uy
∂3u

∂x∂y2
+ (K21 +K66)

∂3u

∂x∂y∂t
+K66Uy

∂3v

∂x2∂y
+K66

∂3v

∂y2∂t
+ Fy

= ρ
∂2v

∂t2
+ 2ρUxUy

∂2v

∂x∂y
+ 2ρUx

∂2v

∂x∂t
+ 2ρUy

∂2v

∂y∂t

+ρ
∂v

∂x

(
∂Ux

∂x
Ux +

∂Ux

∂y
Uy +

∂Ux

∂t

)
+ ρ

∂v

∂y

(
∂Uy

∂x
Ux +

∂Uy

∂y
Uy +

∂Uy

∂t

)
,

(37)
where the coefficients are

C11 =
Ex

1− ν12ν21

, C22 =
Ey

1− ν12ν21

, (38)

C12 = C11ν21 = C22ν12 = C21 , C66 = G , (39)

K11 =
ηx

1− ϕ12ϕ21

, K22 =
ηy

1− ϕ12ϕ21

, (40)

K12 = K11ϕ21 = K22ϕ12 = K21 , K66 = Π . (41)

The equations (36) and (37) are nonlinear. Nonlinearity appears in the velocities Ux

and Uy, which are dependent on the deformation. There are also nonlinear Navier–
Stokes type convection terms, the significance of which is small if the strains defined
in (23) can be considered small.

4. Steady state of one-dimensional viscoelastic moving continuum

One-dimensional application of (36) and (37) will lead to the following time-
dependent solid continuum flow equation [36]:

ρ
∂2u

∂t2
+ 2ρUx

∂2u

∂x∂t
+ ρU2

x

∂2u

∂x2
+ ρ

∂u

∂x

(
∂Ux

∂x
Ux +

∂Ux

∂t

)

= Ex
∂2u

∂x2
+ ηx

(
∂3u

∂x2∂t
+ Ux

∂3u

∂x3

) (42)
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In a steady state, where there is no time-dependent fluctuation in the displacement,
we can write the following equation for ideal, undisturbed axial narrow web flow:

ηxUx
∂3u

∂x3
+
(
Ex − ρU2

x

) ∂2u

∂x2
− ρ∂u

∂x

(
∂Ux

∂x
Ux

)
= 0 . (43)

In general, equation (43) is nonlinear due to the dependence of Ux on ∂u/∂x. To
see how this arises in the one-dimensional case, recall (16) and its one-dimensional
specialization (18), which were obtained via a mass conservation argument. There
are now two possibilities. The strain εxx = ∂u/∂x (equation (23)) either depends on
x, or is constant along the span.

Let us first investigate the case where the strain depends on x. This was a starting
assumption in the derivation of (18); if it holds, then also (18) holds. Let the velocity
U1 at the beginning of the span be fixed. By rearranging, (18) becomes

U2 = U1[1 + εxx] , (44)

where we now use the notation εxx for the strain.
Because mass conservation must hold for any value of x, equation (44) is valid

along the whole span, and we have Ux(x) = U2(x). However, because εxx = εxx(x) =
(∂u/∂x)(x) appears on the right-hand side of (44), actually U2 = U2(εxx). Thus, if the
strain varies along the span, mass conservation implies that a linear relationship
exists between the strain and velocity fields.

Because Ux is now a linear function of εxx, all terms of (43) involving factors
of Ux and its derivatives become nonlinear with respect to the unknown u and its
derivatives. Using U2 from (44) as Ux in (43), we see that the nonlinearity is of a
polynomial form; up to cubic terms are present. Numerical FEM solution of the
nonlinear equation has been presented in [36].

The other possibility is that the strain is a constant along the whole span, in
which case the starting assumption leading to (18) does not hold. On the other
hand, a constant value for εxx = ∂u/∂x implies ∂2u/∂x2 = ∂3u/∂x3 ≡ 0. Let us
investigate the nontrivial case where εxx 6= 0. The first and second terms in (43)
vanish. Dividing by the nonzero constant strain ∂u/∂x and the material density
ρ 6= 0, all that remains is

∂Ux

∂x
Ux = 0 . (45)

Equation (45) must hold pointwise at any x. Thus for each fixed x, either ∂Ux/∂x = 0
or Ux = 0. More interesting of the two is ∂Ux/∂x = 0, which leads to Ux = constant.

We conclude that if a constant strain is observed, this implies that the velocity
must also be constant. However, the reverse is not true, as we will see below. The
value of the constant strain is determined by the boundary conditions, which were
not analyzed here.

For the rest of this section, we again let εxx vary along the span, concentrating on
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the special case where Ux is approximately constant:

Ux(x) = U0 + φ(x) . (46)

Here U0 is a constant, and the arbitrary function φ(x) and its derivatives are con-
sidered small. If the strain variable and its derivatives are small, and the velocity
field is of the form (44), this representation is applicable. Inserting (46) into (43) and
dropping second-order small terms leads to a linear equation, namely

ηxU0
∂2εxx
∂x2

+
(
Ex − ρU2

0

) ∂εxx
∂x

= 0 , (47)

which is of the form of a standard linear steady-state advection-diffusion equation.
To obtain this form, it is not sufficient that φ itself is small; also ∂φ/∂x must be

small to avoid an additional term −ρεxx[∂φ/∂x]U0 on the left-hand side. Observe
that (47) is exact in the case where Ux is (an exact) constant. Thus any conclusions
will apply to cases with exactly constant as well as approximately constant transport
velocities.

The equation (47) can be solved using analytical methods. First, as a special case,
if only pure elasticity is present (ηx = 0), the solution is of the form [36]

(
Ex − ρU2

0

)
εxx = C . (48)

In this case the solution describes Hookean behaviour, i.e., the strain εxx is constant
along the whole span regardless of the magnitude of the constant transport velocity
U0. The corresponding stress field, from (26) with ηx = 0 and (48), is also constant:

σx = Exεxx =
ExC

(Ex − ρU2
0 )
≡ C ′ . (49)

The values of the constants C and C ′ are determined by the boundary conditions.
Because (48) is a first-order ordinary differential equation with respect to εxx, for
this variable we may set only one boundary condition. Choosing this boundary
condition as εxx(`) = εT , from (48) we have C = (Ex − ρU2

0 ) εT , which leads to
εxx(x) = εT (for all x), and for the stress σx = ExεT . This may seem trivial, but it
provides an important point of comparison for the following case.

Consider a material with viscosity ηx 6= 0, moving axially at a velocity U0 6= 0.
Equation (47) becomes, after division by ηxU0,

∂2εxx
∂x2

+

(
Ex − ρU2

0

ηxU0

)
∂εxx
∂x

= 0 . (50)

The differential equation is of the second order in εxx, hence two boundary con-
ditions are required. With the choices εxx(0) = 0 and εxx(`) = εT , the analytical
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solution of (50) is [35, 37]:

εxx(x) = εT
1− e−kx
1− e−k` , where k =

Ex − ρU2
0

ηxU0

. (51)

We have thus obtained the following result: for a Kelvin–Voigt viscoelastic material
moving at a constant or an approximately constant transport velocity, loaded only
by a prescribed strain at the ends of the span, the strain follows a saturating expo-
nential curve along the span. This is unlike the case of purely elastic material, where
the strain along the span is constant.

As x → `, the strain approaches the same value it had in the elastic case, εT .
Additionally, if ` is large, the exponential terms approximately vanish in most of the
domain, and the strain approximately obtains its elastic value everywhere except
in a short boundary layer at the start of the span. The larger k is, the shorter is the
boundary layer. Especially, the boundary layer vanishes in the limits ηx → 0 and
U0 → 0, where k → ∞ (see definition of k in equation (51)). This agrees with the
elastic solution.

The physical conclusion is that the strain εxx depends on x only if both the vis-
cosity ηx and the transport velocity U0 are nonzero. In other words, in the context of
this analysis, the effect appears only if the material is both viscoelastic and subjected
to axial motion.

Finally, let us find the corresponding stress field. The stress, which is based on
the strain in (51), is a superposition of elastic and viscous stress components ([36];
see also equation (26)):

σx = Exεxx + ηx
dεxx
dt

. (52)

Straightforward analytical solution of the stress is easy to obtain only in the lin-
earized, one-dimensional, steady-state case having constant transport velocity [36].
Using (24) and (25), the time derivative of the strain, in mixed Lagrange–Euler form,
can be written for the steady-state solution as follows:

dεxx
dt

=
∂εxx
∂x

Ux . (53)

Inserting (53) into (52), using (46) forUx, noting that both ∂εxx/∂x and φ(x) are small,
and then using the analytical solution (51), we obtain the stress field as

σx = ExεT
1− e−kx
1− e−k` + ηxU0εT

ke−kx

1− e−k` . (54)

where the elastic and viscous contributions are apparent. Both contributions follow
an exponential curve. By expanding the multiplicative factor k in the second term
of (54) (using again (51)), the result simplifies to

σx =
εT

1− e−k`
(
Ex − ρU2

0 e
−kx) , (55)
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which shows the total stress more clearly. Equation (55) is valid for ηx 6= 0, U0 6= 0.
We observe that also the total stress follows an exponential curve.

For large `, the exponentials again approximately vanish in most of the domain,
and the stress approximately obtains its elastic value, except in a short boundary
layer at the start of the span. The previous observations regarding k apply also here.

In this section, we have seen that for a narrow strip of Kelvin–Voigt material
moving at a constant or an approximately constant transport velocity, both the strain
and stress fields follow an exponential shape along the span. This effect appears
only if the material is both viscoelastic and subjected to axial motion.

5. The weak form and the natural boundary conditions

In the following, we will concentrate on the two-dimensional, steady-state, purely
elastic case. This is obtained from (36)–(37) by omitting time-dependent terms and
setting the viscous coefficients to zero.

The aim in the rest of this paper is to numerically study the two-dimensional,
orthotropic, elastic moving continuum plane stress problem using the finite element
method (FEM). The above approach was extremely useful for the one-dimensional
analysis that was performed, but it is difficult to correctly derive the weak form by
starting from (36)–(37).

The difficulty arises because the equations contain terms with mixed derivatives,
∂2u/∂x∂y and ∂2v/∂x∂y. It is not immediately clear how these terms should be
considered when applying integration by parts in the component-form equations.
Each such mixed term can be integrated by parts in either the x or the y direction,
and each such choice will produce different contributions to the natural boundary
conditions of the weak problem. Most combinations of choices lead to boundary
conditions which make no physical sense, and the correct combination of choices is
not obvious.

Hence, we will derive the weak form in cartesian tensor notation. Although
in the present study only a rectangular sheet will be studied, this approach pro-
vides the additional advantage of arbitrary domain shape. We start with the general
dynamic equilibrium equations (30)–(31), rewritten in tensor notation, and then ex-
pand the second material derivative. The dynamic equilibrium reads

ρ
d2u

dt2
−∇ · σT = F , (56)

where (. . . )T denotes the transpose of a rank-2 tensor. In the case where U is not
time-dependent, the second material derivative expands as

d2u

dt2
=

d
dt

(
∂u

∂t
+ U · ∇u

)
=
∂2u

∂t2
+ 2U · ∇

(
∂u

∂t

)
+ (U · ∇)(U · ∇u) . (57)

Applying (57), the steady-state form of equation (56) becomes

ρ (U · ∇)(U · ∇u)−∇ · σT = F . (58)
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Next, we will use the principle of virtual work. Let us take the dot product of the
equation (58) with a vector-valued test function (virtual displacement) φ, and inte-
grate the equation over the two-dimensional domain

Ω ≡ { (x, y) : 0 < x < ` , 0 < y < b } . (59)

We assume that the material density ρ can be approximated as a constant and obtain

ρ

∫

Ω

φ · (U · ∇)(U · ∇u) dΩ−
∫

Ω

φ · [∇ · σT] dΩ =

∫

Ω

φ · F dΩ . (60)

In order to integrate by parts in (60), we make use of the following two identities:
∫

Ω

φ · [∇ · σT] dΩ =

∫

∂Ω

φ · (n · σT) dΓ−
∫

Ω

∇φ : σ dΩ , (61)
∫

Ω

φ · (U · ∇)(U · ∇u) dΩ =

∫

∂Ω

n · [(U · ∇u) · (φ⊗U)] dΓ (62)

−
∫

Ω

(U · ∇u) · [∇ · (U⊗ φ)] dΩ .

where n is the outer unit normal, and the notational conventions are

(∇a)ij ≡ ∂iaj , (∇ ·A)j ≡ ∂iAij (a⊗ b)ij = aibj , A : B ≡ AijBji . (63)

Here a and b are vectors, and A and B are rank-2 tensors. The summation conven-
tion for repeated indices applies. Note the ordering of indices in the gradient.

The integration-by-parts formula (61) is standard in the theory of elasticity; only
the formula (62) requires explanation. Observe that for any differentiable vector
fields a, b and c,

∇ · (a · (b⊗ c)) = b · (c · ∇a) + a · (∇ · (c⊗ b)) . (64)

By integrating (64) over the domain Ω, applying the divergence theorem to the left-
hand side, and choosing a = (U · ∇u), b = φ, and c = U, relation (62) follows.

Using (61) and (62) in (60), we obtain

− ρ
∫

Ω

(U · ∇u) · [∇ · (U⊗ φ)] dΩ +

∫

Ω

∇φ : σ dΩ

+ ρ

∫

∂Ω

n · [(U · ∇u) · (φ⊗U)] dΓ−
∫

∂Ω

φ · (n · σT) dΓ =

∫

Ω

φ · F dΩ . (65)

By using the identity

∇ · (U⊗ φ) = (∇ ·U)φ + U · ∇φ (66)

and rearranging
φ · (n · σT) = (n · σT) · φ = n · (σT · φ) , (67)

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

we have

− ρ
∫

Ω

(U · ∇u) · [(∇ ·U)φ + U · ∇φ] dΩ +

∫

Ω

∇φ : σ dΩ

+

∫

∂Ω

n ·
[
ρ (U · ∇u) · (φ⊗U)− σT · φ

]
dΓ =

∫

Ω

φ · F dΩ . (68)

We may simplify (68) with

(U·∇φ)·(U·∇u) = Ui(∂iφj)Uk(∂kuj) = (∂iφj)(UiUk∂kuj) = ∇φ :
(
U⊗U·∇u

)T
, (69)

which allows us to combine some terms on the first line:

− ρ
∫

Ω

φ · (U · ∇u)(∇ ·U) dΩ +

∫

Ω

∇φ :
[
σ − ρ

(
U⊗U · ∇u

)T] dΩ

+

∫

∂Ω

n ·
[
ρ (U · ∇u) · (φ⊗U)− σT · φ

]
dΓ =

∫

Ω

φ · F dΩ . (70)

Finally, observing that

n ·
[

(U · ∇u) · (φ⊗U)
]
= (U · ∇u) · (φ⊗U) · n =

(
(U · ∇u) · φ

)
(U · n)

= (n ·U)
(
(U · ∇u) · φ

)
= (niUi)

(
(Uj∂juk)φk

)
= ni

(
UiUj∂juk

)
φk

= n ·
(
U⊗U · ∇u

)
· φ = φ ·

(
U⊗U · ∇u

)T · n (71)

we obtain the result

− ρ
∫

Ω

φ · (U · ∇u)(∇ ·U) dΩ +

∫

Ω

∇φ :
[
σ − ρ

(
U⊗U · ∇u

)T] dΩ

+

∫

∂Ω

φ ·
[
−σ + ρ (U⊗U · ∇u)T

]
· n dΓ =

∫

Ω

φ · F dΩ . (72)

Equation (72) holds for the steady-state in-plane equilibrium of any sheet of trav-
elling material, as long as ρ is approximately constant. We will apply the material
model later.

We see from (72) that if ∇ · U = 0, then the first term vanishes. In such a case,
the equations have the same form as those of a stationary membrane, but now the
stresses obtain contributions (both inside the domain and on the traction bound-
aries) from the additional term involving velocity. However, if the velocity field has
nonzero divergence, then no such analogy can be drawn.

The boundary term of (72) gives the natural boundary conditions for this prob-
lem. The natural quantity to be prescribed is the normal component of the following
rank-2 tensor:

σeff ≡ σ − ρ (U⊗U · ∇u)T . (73)

This can be interpreted as an effective stress tensor, where the apparent stress (in
laboratory coordinates) is modified by the centrifugal inertial effect.
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6. Component form of the weak form

For convenience of software implementation, let us split (72) into component
form. Let us denote the components of the virtual displacement as φ ≡ (φ, ψ). In
the two-dimensional case being investigated in the present study, (72) gives the two
equations

∫

Ω

[
−σx + ρU2

x

∂u

∂x
+ ρUyUx

∂u

∂y

]
∂φ

∂x
dΩ

+

∫

Ω

[
−τxy + ρUxUy

∂u

∂x
+ ρU2

y

∂u

∂y

]
∂φ

∂y
dΩ

+ρ

∫

Ω

{[
Ux
∂u

∂x
+ Uy

∂u

∂y

][∂Ux

∂x
+
∂Uy

∂y

]}
φ dΩ

+

∫

∂Ω

nx

[
σx − ρU2

x

∂u

∂x
− ρUyUx

∂u

∂y

]
φ dΓ

+

∫

∂Ω

ny

[
τxy − ρUxUy

∂u

∂x
− ρU2

y

∂u

∂y

]
φ dΓ

+

∫

Ω

Fxφ = 0 . (74)

and
∫

Ω

[
−τyx + ρU2

x

∂v

∂x
+ ρUyUx

∂v

∂y

]
∂ψ

∂x
dΩ

+

∫

Ω

[
−σy + ρUxUy

∂v

∂x
+ ρU2

y

∂v

∂y

]
∂ψ

∂y
dΩ

+ρ

∫

Ω

{[
Ux
∂v

∂x
+ Uy

∂v

∂y

][∂Ux

∂x
+
∂Uy

∂y

]}
ψ dΩ

+

∫

∂Ω

nx

[
τyx − ρU2

x

∂v

∂x
− ρUyUx

∂v

∂y

]
ψ dΓ

+

∫

∂Ω

ny

[
σy − ρUxUy

∂v

∂x
− ρU2

y

∂v

∂y

]
ψ dΓ

+

∫

Ω

Fyψ = 0 , (75)

where the outer unit normal n has components n = (nx , ny ). We have moved all
terms to the left-hand side and multiplied each equation by −1.

Equations (74)–(75) represent the steady state in-plane equilibrium for any sheet
of moving material. We obtain the equations for the orthotropic Kelvin–Voigt mate-
rial by inserting the viscoelastic stress-strain relations (27)–(29). Then, we insert the
mixed Lagrange–Euler representations (25) for the material derivative in the viscous
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terms, and restrict the inserted terms to the steady state (∂/∂t→ 0). The result is
∫

Ω

[
−
[
C11εxx +K11(Ux

∂εxx
∂x

+ Uy
∂εxx
∂y

) + C12εyy +K12(Ux
∂εyy
∂x

+ Uy
∂εyy
∂y

)

]

+ρU2
x

∂u

∂x
+ ρUyUx

∂u

∂y

]
∂φ

∂x
dΩ

+

∫

Ω

[
−
[
C66γxy +K66(Ux

∂γxy
∂x

+ Uy
∂γxy
∂y

)

]
+ ρUxUy

∂u

∂x
+ ρU2

y

∂u

∂y

]
∂φ

∂y
dΩ

+ρ

∫

Ω

{[
Ux
∂u

∂x
+ Uy

∂u

∂y

] [
∂Ux

∂x
+
∂Uy

∂y

]}
φ dΩ

+

∫

∂Ω

nx

[[
C11εxx +K11(Ux

∂εxx
∂x

+ Uy
∂εxx
∂y

) + C12εyy +K12(Ux
∂εyy
∂x

+ Uy
∂εyy
∂y

)

]

−ρU2
x

∂u

∂x
− ρUyUx

∂u

∂y

]
φ dΓ

+

∫

∂Ω

ny

[[
C66γxy +K66(Ux

∂γxy
∂x

+ Uy
∂γxy
∂y

)

]
− ρUxUy

∂u

∂x
− ρU2

y

∂u

∂y

]
φ dΓ

+

∫

Ω

Fxφ dΩ = 0

(76)
and

∫

Ω

[
−
[
C66γxy +K66(Ux

∂γxy
∂x

+ Uy
∂γxy
∂y

)

]
+ ρU2

x

∂v

∂x
+ ρUyUx

∂v

∂y

]
∂ψ

∂x
dΩ

+

∫

Ω

[
−
[
C21εxx +K21(Ux

∂εxx
∂x

+ Uy
∂εxx
∂y

) + C22εyy +K22(Ux
∂εyy
∂x

+ Uy
∂εyy
∂y

)

]

+ρUxUy
∂v

∂x
+ ρU2

y

∂v

∂y

]
∂ψ

∂y
dΩ

+ρ

∫

Ω

{[
Ux
∂v

∂x
+ Uy

∂v

∂y

] [
∂Ux

∂x
+
∂Uy

∂y

]}
ψ dΩ

+

∫

∂Ω

nx

[[
C66γxy +K66(Ux

∂γxy
∂x

+ Uy
∂γxy
∂y

)

]
− ρU2

x

∂v

∂x
− ρUyUx

∂v

∂y

]
ψ dΓ

+

∫

∂Ω

ny

[[
C21εxx +K21(Ux

∂εxx
∂x

+ Uy
∂εxx
∂y

) + C22εyy +K22(Ux
∂εyy
∂x

+ Uy
∂εyy
∂y

)

]

−ρUxUy
∂v

∂x
− ρU2

y

∂v

∂y

]
ψ dΓ

+

∫

Ω

Fyψ dΩ = 0 .

(77)
Finally, by inserting into (76) and (77) the definitions of the Cauchy strains from
(23), the weak form component equations for FEM implementation are obtained.
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The final result is
∫

Ω

[
−
[
C11

∂u

∂x
+K11(Ux

∂2u

∂x2
+ Uy

∂2u

∂x∂y
) + C12

∂v

∂y
+K12(Ux

∂2v

∂x∂y
+ Uy

∂2v

∂y2
)

]

+ρU2
x

∂u

∂x
+ ρUyUx

∂u

∂y

]
∂φ

∂x
dΩ

+

∫

Ω

[
−
[
C66(

∂u

∂y
+
∂v

∂x
) +K66(Ux(

∂2u

∂x∂y
+
∂2v

∂x2
) + Uy(

∂2u

∂y2
+

∂2v

∂x∂y
))

]

+ρUxUy
∂u

∂x
+ ρU2

y

∂u

∂y

]
∂φ

∂y
dΩ

+ρ

∫

Ω

{[
Ux
∂u

∂x
+ Uy

∂u

∂y

] [
∂Ux

∂x
+
∂Uy

∂y

]}
φ dΩ

+

∫

∂Ω

nx

[[
C11

∂u

∂x
+K11(Ux

∂2u

∂x2
+ Uy

∂2u

∂x∂y
) + C12

∂v

∂y
+K12(Ux

∂2v

∂x∂y
+ Uy

∂2v

∂y2
)

]

−ρU2
x

∂u

∂x
− ρUyUx

∂u

∂y

]
φ dΓ

+

∫

∂Ω

ny

[[
C66(

∂u

∂y
+
∂v

∂x
) +K66(Ux(

∂2u

∂x∂y
+
∂2v

∂x2
) + Uy(

∂2u

∂y2
+

∂2v

∂x∂y
))

]

−ρUxUy
∂u

∂x
− ρU2

y

∂u

∂y

]
φ dΓ +

∫

Ω

Fxφ dΩ = 0

(78)
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and
∫

Ω

[
−
[
C66(

∂u

∂y
+
∂v

∂x
) +K66(Ux(

∂2u

∂x∂y
+
∂2v

∂x2
) + Uy(

∂2u

∂y2
+

∂2v

∂x∂y
))

]

+ρU2
x

∂v

∂x
+ ρUyUx

∂v

∂y

]
∂ψ

∂x
dΩ

+

∫

Ω

[
−
[
C21

∂u

∂x
+K21(Ux

∂2u

∂x2
+ Uy

∂2u

∂x∂y
) + C22

∂v

∂y
+K22(Ux

∂2v

∂x∂y
+ Uy

∂2v

∂y2
)

]

+ρUxUy
∂v

∂x
+ ρU2

y

∂v

∂y

]
∂ψ

∂y
dΩ

+ρ

∫

Ω

{[
Ux
∂v

∂x
+ Uy

∂v

∂y

] [
∂Ux

∂x
+
∂Uy

∂y

]}
ψ dΩ

+

∫

∂Ω

nx

[[
C66(

∂u

∂y
+
∂v

∂x
) +K66(Ux(

∂2u

∂x∂y
+
∂2v

∂x2
) + Uy(

∂2u

∂y2
+

∂2v

∂x∂y
))

]

−ρU2
x

∂v

∂x
− ρUyUx

∂v

∂y

]
ψ dΓ

+

∫

∂Ω

ny

[[
C21

∂u

∂x
+K21(Ux

∂2u

∂x2
+ Uy

∂2u

∂x∂y
) + C22

∂v

∂y
+K22(Ux

∂2v

∂x∂y
+ Uy

∂2v

∂y2
)

]

−ρUxUy
∂v

∂x
− ρU2

y

∂v

∂y

]
ψ dΓ +

∫

Ω

Fyψ dΩ = 0 .

(79)
Equations (78)–(79) represent the weak form of the classical strong form equations
(36)–(37), when consideration is restricted to the steady state.

We see that the weak form contains second derivatives in the viscous terms.
Thus, to enforce integrability (see e.g. [29]), C1 continuity of basis functions across
element boundaries is required in the viscoelastic case.

The corresponding pure elastic equations are obtained by setting K11 = K12 =
K21 = K22 = K66 = 0. Explicitly, we have

∫

Ω

[
−
[
C11

∂u

∂x
+ C12

∂v

∂y

]
+ ρU2

x

∂u

∂x
+ ρUyUx

∂u

∂y

]
∂φ

∂x
dΩ

+

∫

Ω

[
−
[
C66(

∂u

∂y
+
∂v

∂x
)

]
+ ρUxUy

∂u

∂x
+ ρU2

y

∂u

∂y

]
∂φ

∂y
dΩ

+ρ

∫

Ω

{[
Ux
∂u

∂x
+ Uy

∂u

∂y

] [
∂Ux

∂x
+
∂Uy

∂y

]}
φ dΩ

+

∫

∂Ω

nx

[[
C11

∂u

∂x
+ C12

∂v

∂y

]
− ρU2

x

∂u

∂x
− ρUyUx

∂u

∂y

]
φ dΓ

+

∫

∂Ω

ny

[[
C66(

∂u

∂y
+
∂v

∂x
)

]
− ρUxUy

∂u

∂x
− ρU2

y

∂u

∂y

]
φ dΓ

+

∫

Ω

Fxφ dΩ = 0

(80)
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and ∫

Ω

[
−
[
C66(

∂u

∂y
+
∂v

∂x
)

]
+ ρU2

x

∂v

∂x
+ ρUyUx

∂v

∂y

]
∂ψ

∂x
dΩ

+

∫

Ω

[
−
[
C21

∂u

∂x
+ C22

∂v

∂y

]
+ ρUxUy

∂v

∂x
+ ρU2

y

∂v

∂y

]
∂ψ

∂y
dΩ

+ρ

∫

Ω

{[
Ux
∂v

∂x
+ Uy

∂v

∂y

] [
∂Ux

∂x
+
∂Uy

∂y

]}
ψ dΩ

+

∫

∂Ω

nx

[[
C66(

∂u

∂y
+
∂v

∂x
)

]
− ρU2

x

∂v

∂x
− ρUyUx

∂v

∂y

]
ψ dΓ

+

∫

∂Ω

ny

[[
C21

∂u

∂x
+ C22

∂v

∂y

]
− ρUxUy

∂v

∂x
− ρU2

y

∂v

∂y

]
ψ dΓ

+

∫

Ω

Fyψ dΩ = 0 .

(81)

Equations (80) and (81) are the basis of the two-dimensional solutions presented in
this study. Only first derivatives of the displacements are needed. Hence, C0 finite
elements are sufficient.

Once a basis is chosen for u and v, it is straightforward to insert the Galerkin
representation of both displacement variables into (80) and (81). Then, considering
that the virtual displacement φ is arbitrary, we use the basis functions of u as the test
functions φ and the basis functions of v as the test functions ψ, obtaining the discrete
equation system for the classical Galerkin method. Essential and natural boundary
conditions are then applied as usual.

If the velocity field is divergence-free, we may omit the third line in both equa-
tions, and the velocity can be allowed to have finite discontinuities across element
boundaries. In all other cases, the velocity field must have C0 continuity across
element boundaries, in order to enforce integrability of (80)–(81). This is because
the terms on the third line of both equations follow directly from the weak form of
the problem, and thus cannot be applied only in element interiors (as is done e.g.
when second derivatives appear in certain numerical stabilization schemes for flow
problems; see e.g. [17]).

7. Coupling between drive velocity and in-plane displacement

If some edges of the domain are free, the velocity field driving the material may
cause them to move. Each free edge will move until the velocity field becomes tan-
gential to it. For small deformations, it is possible to avoid deforming the mesh, and
still account for the slightly changed direction of the free edges by using approxi-
mate methods.

When free edges are present, the effective velocity field in the material is a priori
unknown. In a sense, the driving velocity field modifies itself when the free edge
deformations are taken into account. Thus, instead of taking U as a prescribed ex-
ternal velocity, this quantity may be redefined to fulfill two tasks. First, it will still
be based on the driving velocity field, but secondly, the modified U will also take
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into account the small deformations in the free edges, including the effect that the
free edge deformations have on the effective velocity field inside the domain.

We will use a deformation-based approach. Consider the differential plane el-
ement in the small-displacement regime, see Figure 5. The original, undeformed
edges are given by the vectors x = (dx, 0) and y = (0,dy). After deformation by
a displacement field u = (u, v), these edges become (with the help of a first-order
two-dimensional Taylor expansion of each of the fields u and v)

x̃ =

((
1 +

∂u

∂x

)
dx,

∂v

∂x
dx
)
, ỹ =

(
∂u

∂y
dy,

(
1 +

∂v

∂y

)
dy
)
. (82)

The projection
uX = M · ux , (83)

that is, [
uX
uY

]
=

[
x̂ · X̂ ŷ · X̂
x̂ · Ŷ ŷ · Ŷ

] [
ux
uy

]
, (84)

transforms any vector field u given in x = (x, y) components into X = (X, Y ) com-
ponents. Here x̂ and ŷ (respectively X̂ and Ŷ) are the unit vectors giving the direc-
tions of the axes of the (x, y) (respectively (X, Y )) coordinate systems. The boldface
subscript denotes which coordinate system the quantity is given in, and the plain
subscripts denote components.

We choose
X̂ := (1, 0) , Ŷ := (0, 1) , (85)

and accounting for both direction and (small) length changes of the reference vec-
tors, take x̂ and ŷ as

x̂ := x̃/dx , ŷ := ỹ/dy . (86)

using the fact that the original lengths of the sides of the differential element were
dx and dy.

Figure 5: Small deformation of a differential plane element.
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Now, instead of prescribing the velocity field UX, we prescribe Ux (along the
deformed coordinate directions), and then project it to the capital-X axes using (84).
Then we set U = UX in equations (80)–(81).

Using (84)–(86), we obtain the corrected velocity components as

UX = x̂1Ux + ŷ1Uy =

(
1 +

∂u

∂x

)
Ux +

∂u

∂y
Uy ,

UY = x̂2Ux + ŷ2Uy =
∂v

∂x
Ux +

(
1 +

∂v

∂y

)
Uy .

(87)

Here x̂j denotes the jth component of the vector x̂, and we have used (85).
In case of pure axial input flow, Ux = Uin and Uy = 0, we have

UX =

(
1 +

∂u

∂x

)
Uin ,

UY =
∂v

∂x
Uin .

(88)

In the present study, equations (88) have been used for computing the velocity field
UX.

Note that the correction (87) makes the effective velocity field UX space-dependent,
even if the original input Ux is not, due to the space dependence of u. Hence, we
cannot assume U to be constant; terms involving its derivatives must be retained in
the equations.

The corrected velocity field will violate mass conservation, because the calcula-
tion is based on geometric considerations only. Thus, a further correction is required
to preserve mass. We will need two different approaches depending on whether the
material is compressible or not.

For a compressible material, we may use the mass conservation equation (1) to
compute the velocity field inside the domain, using for boundary conditions the
edge data for the normal component (in (X, Y ) coordinates) of the proposed velocity
given by (87).

To do this, one can view the mass conservation equation as diffusion of velocity
potential. Assume that the velocity field is irrotational (∇×v = 0); this is reasonable
for steady state flow of a solid. In a steady state, ∂ρ/∂t = 0. We have

∇ · (ρv) = 0 . (89)

After multiplication by a test function χ, integrating over the domain Ω, and apply-
ing the divergence theorem, we have the weak form

∫

∂Ω

(n · v) ρχ dΓ−
∫

Ω

ρ∇χ · v dΩ = 0 . (90)

Note that here ρ does not need to be constant. Next, let us use the fact that an
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irrotational vector field has a scalar potential:

v = ∇V , (91)

where V is a scalar-valued function. Inserting (91) into (90) obtains
∫

∂Ω

(n · ∇V ) ρχ dΓ−
∫

Ω

ρ∇χ · ∇V dΩ = 0 . (92)

which is a steady-state diffusion equation (Poisson equation) for the velocity poten-
tial V . The natural boundary condition is

(n · ∇V )ρ = q , (93)

i.e. one can prescribe the normal component of mass flow as a known function q.
Hence, if the density at the edge is known, it is possible to prescribe the normal
component of velocity there, via use of the natural boundary condition.

Recall (7), which gives density in terms of the axial strains, which in turn are
obtained from the displacements via (23). Thus the density field can be computed
once the displacements are known. Any C0 elements can be used for representing
V .

By computation of the scalar potential V , the tangential velocity component at
the edges will adjust itself such that mass balance is satisfied. Furthermore, the
computed velocity field∇V inside the domain will also satisfy mass balance.

Because we have a Poisson problem with purely natural boundary conditions,
the solution V is unique only up to an arbitrary additive constant. This can be reme-
died by standard techniques. One that is easy to implement is to add a small reac-
tion term

∫
Ω
ε χ V dΩ to the left-hand side of (92), where ε is a small constant (e.g.

ε = 10−8).
In the case of an incompressible material, in the steady state the mass conserva-

tion equation (1) becomes simply∇·v = 0, i.e., the velocity field of an incompressible
material must be divergence-free.

Therefore, in this case we simply compute the divergence-free projection of the
proposed velocity field (87). The projection can be obtained using the standard trick
based on the Helmholtz decomposition. For completeness, let us review this briefly.
Let Ue be the expected velocity field before the correction for mass conservation.
Define a scalar potential p such that

∆p = ∇ ·Ue . (94)

Since the laplacian ∆(. . . ) ≡ ∇ · ∇(. . . ), equation (94) is equivalent with

∇ · ∇p = ∇ ·Ue . (95)
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By rearranging terms, we have

∇ · (Ue −∇p) = 0 , (96)

i.e. the difference Ue −∇p is divergence-free. Define the final velocity field as

U = Ue −∇p . (97)

Then U is the divergence-free projection of Ue. As the boundary conditions, one
may require

n · ∇p = 0 (98)

on all boundaries. This ensures that the normal component of the correction ∇p
vanishes at the boundaries. The solution will then adjust the tangential component
at the boundaries to enforce the divergence-free property there; in the interior of the
domain, both components are allowed to change.

Again, we have a Poisson problem with purely natural boundary conditions,
and thus the solution p is unique only up to an arbitrary additive constant. This can
be worked around as above. Let ε be a small constant, e.g. ε = 10−8. The final weak
form of the projection problem is

−
∫

Ω

∇p · ∇χ dΩ + ε

∫

Ω

p χ dΩ +

∫

∂Ω

(n · ∇p)χ dΓ =

∫

Ω

(∇ ·Ue)χ dΩ , (99)

where χ is a test function. Any C0 elements can be used for representing p.
Strictly speaking, if u is represented by C0 elements, the divergence of Ue (which

depends on the second derivatives of u) is not integrable due to singularities at the
element boundaries. However, the right-hand side of (95) is basically arbitrary, as is
also the velocity field U when viewed as input to (80)–(81). The only requirement is
that either∇ ·U ≡ 0, or alternatively, that∇ ·U is integrable. Thus, we may choose
to omit the singularities when defining the auxiliary quantity p by (95); any practical
solver code will then see U = Ue −∇p as a divergence-free velocity field.

This also has implications for the compressible case treated further above. There,
nonzero divergence was allowed for the velocity field (via local variations in den-
sity). Now, however, the divergence of the velocity field is present in the original
equations (80)–(81) themselves, and we cannot ignore singularities if we are to rep-
resent the problem correctly. If the presented free-edge approximation is used, then
u and v must be represented using elements having C1 continuity across the ele-
ment edges. In the present study, we have chosen to ignore this issue by using a
divergence-free velocity field, allowing us to omit the problematic terms in (80)–
(81).

There is one final issue that must be accounted for. The presented free-edge
approximation will make (80)–(81) nonlinear, since the effective velocity field U de-
pends on the displacement u. Thus an iterative process must be introduced to find
the solution.
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8. Numerical results

In this section, we will present numerical results from both the one- and two
dimensional models. In the one-dimensional case, the full viscoelastic model is
used. The two-dimensional study is focused on the inertial contribution in the pure
elastic case.

In the one-dimensional model, the strain and stress states can be calculated an-
alytically using equations (51) and (55). Using the parameter values Ex = 2.5 ·
107 N/m2, ηx = 4.0 · 105 Ns/m2, U0 = 10 m/s, span length ` = 1.0 m and endpoint
strain εT = 0.03, the results shown in Figures 6–8 are obtained.

Figure 6 shows the strain distribution along the length of the span based on both
analytical and numerical solutions, which are seen to agree. The analytical solution
is given by equation (51), and the numerical solution is reproduced from the pre-
vious study [36]. As was pointed out in the analysis, the strain distribution along
the travelling viscoelastic span differs from the traditional constant strain that is
observed for purely elastic materials [69].

Figure 7 displays the viscous and elastic stress contributions, and the resulting
total stress. Even though the strain distribution is not constant, the stress distribu-
tion is a combination of elastic and viscous contributions as per equation (52), and
it is approximately constant (in Figure 7, to within 0.4%). The stress increases very
slightly towards the traction line A2; this is a consequence of the acceleration of the
web due to higher outlet velocity, U2 > U1 [36].

Figure 8 shows the total stress at the point x = `, where the stress reaches its
maximum, for different span lengths ` and drive velocities U0. The effect of the
span length on the web stress state is visible. Basically, the shorter the processing
time of the viscoelastic span is (for a given endpoint strain εT ), the higher is the
response of time-dependent viscous force component. This is seen from equation
(54) by considering the point x = ` and letting ` tend to zero. Then, while the elastic
stress stays constant at the value ExεT , the viscous stress (after cancelling by e−k`)
increases without bound.

In case of the two-dimensional model, a purely elastic travelling two-dimensional
sheet was investigated numerically using finite elements. For the setup, see Figure
9. The unknowns were the displacements u and v. The element type used was
Q2 (quadratic and quadrangular). Isoparametric mapping (i.e. also Q2) was used
for the coordinates. The auxiliary potential p for divergence-free velocity projection
was represented using Q1 (bilinear quadrangular) elements. The classical Galerkin
method was used: for each unknown quantity, its own basis functions were used as
the test functions.

The mesh was set up as a uniform cartesian grid with 16 × 16 elements for each
of the unknowns. Discretizations were produced automatically from (80)–(81) and
(99). Dirichlet boundary conditions, prescribing displacements, were enforced by
the elimination technique. Homogeneous natural (i.e. zero Neumann) boundary
conditions required no action on part of the implementation. The discretization lead
to 32895 global degrees of freedom in the linear problem (u and v only), and 37120
in the nonlinear problem (u, v and auxiliary potential p).
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Figure 6: Numerical and analytical solutions of strain distribution along the length of the span. The
analytical solution is given by equation (51). [36]

The solution of the corresponding linear problem for the stationary elastic sheet
(U = 0) was used as the initial guess for u, and fixed-point iteration was used to
refine the solution of the nonlinear problem of the moving sheet. At each fixed-
point iteration, the linear equation system was solved by a direct solver. The velocity
field U was computed starting from a purely axial inflow, as described above. See
equations (88), (97) and (99).

A common desktop computer with 4 CPU cores was used for the finite element
computations. With MPI-parallelized matrix assembly, each nonlinear problem took
about one minute of wall time. The implementation was based on the scientific
Python software stack.

Problem parameter values used in the study are listed in Table 1. The shear
modulus based on the geometric average,

G =

√
E1E2

2(1 +
√
ν12ν21)

, (100)

was used for both the isotropic and orthotropic materials. Equation (100) is some-
times known as the Huber value for the shear modulus, after M. T. Huber who
proposed this relation for orthotropic materials [26, 27, 28].

The boundary conditions for the displacements u and v were

u(y) = v(y) = 0 at x = 0, 0 < y < b , (101)
u(y) = u0 at x = `, 0 < y < b , (102)

and zero Neumann for v at x = `, 0 < y < b. In (102), u0 is a prescribed constant
value for the displacement. Note that at the outflow edge, only u is fixed; v is deter-
mined by the zero Neumann condition.
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Figure 7: Analytical solution of the stress distribution along the length of the span, using equations
(51), (54) and (55). Left: Elastic and viscous stress contributions, and the total stress. Right: Zoomed-in
view of the total stress. Note the vertical scales.
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Figure 9: Setup for the two-dimensional numerical investigation. Elastic material enters from the left
at velocity Uin, and flows through the domain at a velocity determined by the interaction of Uin and
the approximated behaviour of the free edges.

On the free edges, 0 < x < `, y = 0 and 0 < x < `, y = b, the zero Neumann con-
dition was used for both u and v. The zero Neumann condition (weakly) prescribes
zero normal component for the effective stress tensor (73), i.e.

σeff · n ≡
[
σ − ρ(U⊗U · ∇u)T

]
· n = 0 . (103)

Explicitly, accounting for our geometry and spelling out the component form, from
(81) we can read the following condition corresponding to v at the outflow bound-
ary:

C66

(
∂u

∂y
+
∂v

∂x

)
− ρU2

x

∂v

∂x
− ρUyUx

∂v

∂y
= 0 at x = `, 0 < y < b , (104)

and from (80) and (81), the following conditions corresponding to u and v (respec-
tively) on the free boundaries:

C66

(
∂u

∂y
+
∂v

∂x

)
− ρUxUy

∂u

∂x
− ρU2

y

∂u

∂y
= 0 at 0 < x < `, y = {0, b} , (105)

C21
∂u

∂x
+ C22

∂v

∂y
− ρUxUy

∂v

∂x
− ρU2

y

∂v

∂y
= 0 at 0 < x < `, y = {0, b} . (106)

The boundary conditions for the auxiliary potential p were (98) on all bound-
aries. As was mentioned, this requires that the normal component of the velocity
correction vanishes at the boundaries.

The problem was solved numerically for all 24 input value combinations result-
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Table 1: Parameter values used in the two-dimensional numerical study. All 24 combinations re-
sulting from the choices of Uin (4 values), b (3 values) and the two materials were investigated. The
shear modulus based on the geometric average (equation (100)) was used for both the isotropic and
orthotropic materials. Note elastic compatibility E1ν21 = E2ν12 (see e.g. [38]).

Uin [m/s] ` [m] b [m] ρ [kg/m3] u0 [m]

0 0.5 0.1 800 0.03 · `
15 0.5
25 2.5
50

E1 [107 Pa] E2 [107 Pa] ν12 ν21

Isotropic 2.5 2.5 0.3 0.3
Orthotropic 5.0 1.25 0.6 0.15

ing from the choices of Uin (4 values), b (3 values) and the two materials, as listed in
Table 1.

Figure 10 shows the y-directional displacement profile (displacement v) along
the free edge 0 < x < `, y = b for representative isotropic and orthotropic cases for
both stationary and moving materials.

Figures 11–14 display contour plots of the displacements u and v for a material
moving at Uin = 50 m/s, which is a representative example of the nonlinear case.
Also shown is the contribution of the nonlinear part, i.e. the differences u− ulin and
v − vlin. Here ulin and vlin refer to the solution of the same problem for a stationary
material, in which case the problem is linear.

For all investigated cases, it was observed that for the displacements, strains, and
stresses, the difference between the nonlinear and linear solutions is small, when
compared to the maximum value of the linear solution. While varying the magni-
tude of Uin changed the magnitude of this difference, the qualitative shape of the
nonlinear contribution remained the same.

All effects were observed to become more pronounced for small aspect ratios `/b,
i.e. short and wide spans. The span length ` was kept constant, and the width b was
varied; hence in the figures, large values of b correspond to small aspect ratios.

In all investigated cases, inertial effects caused additional elastic contraction of
the travelling span, on top of the contraction already observed for a stationary ma-
terial. This effect can be seen especially clearly in the y-directional displacement
profile, Figure 10.
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Figure 10: Displacement v, normalized to u0 (see equation (102) and Table 1), along the free edge
0 < x < `, y = b. Top: isotropic. Bottom: orthotropic. Line style indicates inflow velocity Uin,
darkness indicates span width b.
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Figure 11: Displacements u and v, normalized to u0 (see equation (102) and Table 1). Isotropic,
Uin = 50 m/s (representative). Top to bottom: b = 2.5, 0.5, 0.1m (`/b = 1/5, 1, 5).
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Figure 12: Displacements u and v, normalized to u0 (see equation (102) and Table 1). Orthotropic,
Uin = 50 m/s (representative). Top to bottom: b = 2.5, 0.5, 0.1m (`/b = 1/5, 1, 5).
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Figure 13: Nonlinear contribution to displacements, normalized to u0 (see equation (102) and Table
1). Isotropic, Uin = 50 m/s (representative). Top to bottom: b = 2.5, 0.5, 0.1m (`/b = 1/5, 1, 5).
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Figure 14: Nonlinear contribution to displacements, normalized to u0 (see equation (102) and Table
1). Orthotropic, Uin = 50 m/s (representative). Top to bottom: b = 2.5, 0.5, 0.1m (`/b = 1/5, 1, 5).

40



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9. Conclusion

In the present study, one-dimensional and two-dimensional models for the steady
state in-plane flow of axially moving thin solid sheets were considered.

By a mass conservation argument, an expression was derived for the strain in-
duced by a velocity difference between subsequent supporting rollers. This is rele-
vant especially in paper production, where this velocity difference is the mechanism
used for generating the axial tension in the travelling paper web.

The one-dimensional analysis was performed using the Kelvin–Voigt viscoelas-
tic solid material model, while the two-dimensional analysis concentrated on a lin-
ear elastic material.

The one-dimensional model was solved analytically, leading to expressions for
the strain and stress distributions. It was found that when viscous effects and axial
motion are both present, the strain and stress follow a saturating exponential curve
across the free span. This is unlike in the classical linear elastic case, where the strain
and stress take on a constant value across the whole span, regardless of whether or
not the material is subjected to axial motion. Furthermore, for short free spans, the
total stress at the span endpoint, in the viscoelastic model, increases significantly
(compared to its elastic value) due to viscous effects.

In the two-dimensional model, the focus of the study was on inertial effects. A
key finding is that inertial effects cause additional contraction on top of the Poisson
contraction already observed for a stationary material.

Due to Poisson contraction of the travelling material subjected to axial strain, the
driving velocity field is not exactly axial, but instead it follows the shape of the free
edges. This was modeled as a small velocity perturbation on top of the axial driving
velocity field. A method was proposed to approximately find the final velocity field
when an initial velocity field (without contraction-dependent corrections) is given.

The two-dimensional model presented is always nonlinear. The reason for this
is that due to mass conservation and the behaviour of free edges, the total material
velocity U is dependent on the displacement u, which further is dependent on the
same in-plane velocity.

The present study includes some limitations. The model was studied in a steady
state, which does not allow for temporal variations in the flowing medium preced-
ing the observation span under study. To include such effects, a time-dependent
formulation must be used. Also, a purely elastic material law was used for de-
termining the strain caused by a velocity difference between subsequent rollers; to
properly account for viscoelastic materials in a time-varying model, this must be
generalized to the viscoelastic case.

The velocity field used in the model is currently assumed to affect the in-plane
flow of the material ”as such”, without the loss of stability or deflections in the out-
of-plane direction (which are considered in e.g. [3, 4, 9, 54]).

From a physical viewpoint, the use of Dirichlet boundary conditions in two-
dimensional web handling models is problematic. In a two-dimensional model,
there is no dimension in the thickness direction. Thus, the Dirichlet boundary con-
ditions affect the whole thickness of the web, even though in reality all web handling
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systems are based on surface traction. In the interior of the web, the actual axial dis-
placement (e.g. at the mid-surface) will differ from the value set by the Dirichlet
boundary condition, which in physical terms represents a prescribed displacement
at the surface.

A logical future step to continue along the present line of study would be to
consider the effects viscoelasticity also in the two-dimensional case, since the web
velocity and viscous properties are closely connected [36].

Acknowledgments

This research was supported by the Finnish Cultural Foundation and the Jenny
and Antti Wihuri Foundation. The authors would like to thank prof. Reijo Kouhia
for the observation (64).

References

[1] F. R. Archibald and A. G. Emslie. The vibration of a string having a uniform
motion along its length. ASME Journal of Applied Mechanics, 25:347–348, 1958.

[2] N. Banichuk, S. Ivonova, M. Kurki, T. Saksa, M. Tirronen, and T. Tuovinen.
Safety analysis and optimization of travelling webs subjected to fracture and
instability. In S. Repin, T. Tiihonen, and T. Tuovinen, editors, Numerical methods
for differential equations, optimization, and technological problems. Dedicated to Pro-
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of an axially moving plate undergoing small cylindrical deformation sub-
merged in axially flowing ideal fluid. Journal of Fluids and Structures, 27(7):986–
1005, 2011.

[7] G. A. Baum, D. C. Brennan, and C. C Habeger. Orthotropic elastic constants of
paper. Tappi Journal, 64(8):97–101, 1981.

42



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[8] J. Castro and M. Ostoja-Starzewski. Elasto-plasticity of paper. International
Journal of Plasticity, (19):2083–2098, 2003.

[9] Y. B. Chang and P. M. Moretti. Interaction of fluttering webs with surrounding
air. TAPPI Journal, 74(3):231–236, 1991.

[10] L.-Q. Chen, H. Chen, and C.W. Lim. Asymptotic analysis of axially accelerating
viscoelastic strings. International Journal of Engineering Science, 46(10):976 – 985,
2008. DOI: 10.1016/j.ijengsci.2008.03.009.

[11] L.-Q. Chen and H. Ding. Steady-state transverse response in coupled planar
vibration of axially moving viscoelastic beams. ASME Journal of Vibrations and
Acoustics, 132:011009–1–9, 2010. http://dx.doi.org/10.1115/1.4000468.

[12] L.-Q. Chen and B. Wang. Stability of axially accelerating viscoelastic
beams: asymptotic perturbation analysis and differential quadrature valida-
tion. European Journal of Mechanics - A/Solids, 28(4):786 – 791, 2009. DOI:
10.1016/j.euromechsol.2008.12.002.

[13] L.-Q. Chen and X.-D. Yang. Vibration and stability of an axially moving vis-
coelastic beam with hybrid supports. European Journal of Mechanics - A/Solids,
25(6):996 – 1008, 2006. DOI: 10.1016/j.euromechsol.2005.11.010.

[14] L.-Q. Chen and W.-J. Zhao. A numerical method for simulating transverse
vibrations of an axially moving string. Applied Mathematics and Computation,
160(2):411 – 422, 2005. DOI: 10.1016/j.amc.2003.11.012.

[15] H. Ding and L.-Q. Chen. Stability of axially accelerating viscoelastic beams:
multi-scale analysis with numerical confirmations. European Journal of Mechan-
ics - A/Solids, 27(6):1108 – 1120, 2008. DOI: 10.1016/j.euromechsol.2007.11.014.

[16] H. Ding, G.-C. Zhang, L.-Q. Chen and S.-P. Yang. Forced Vibrations of Su-
percritically Transporting Viscoelastic Beams. J. Vib. Acoust, 134(5): 051007 –
051007-11, 2012. DOI: doi:10.1115/1.4006184.

[17] J. Donea and A. Huerta. Finite Element Methods for Flow Problems. Wiley, 2003.
ISBN: 0-471-49666-9.
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