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ABSTRACT

Poretskii, Aleksandr
Electromagnetic wave propagation in non-homogeneous waveguides
Jyväskylä: University of Jyväskylä, 2015, 121 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 224)
ISBN 978-951-39-6369-9 (nid.)
ISBN 978-951-39-6370-5 (PDF)
Finnish summary
Diss.

We investigate an electromagnetic waveguide, having several cylindrical ends.
The waveguide is assumed to be empty and to have a perfectly conductive bound-
ary. We study the electromagnetic field, excited in the waveguide in the presence
of charges and currents. The field can be described as a solution of the stationary
Maxwell system with conductive boundary conditions and “intrinsic” radiation
conditions at infinity. We prove the problem to be well-posed. Electromagnetic
waves propagation in the waveguide can be described by means of a scattering
matrix. We introduce such a matrix for all values of the spectral parameter k in the
waveguide continuous spectrum and study its properties. Moreover, we propose
and justify a method for approximating the scattering matrix for all k in the con-
tinuous spectrum, including thresholds; the presence of waveguide eigenvalues
does not influence the method statement.

The results of the thesis extend the area of electromagnetic waveguide the-
ory and have numerous applications. Particularly, the asymptotic and numerical
methods, developed in the thesis, can be used for design and analysis of complex
waveguides with resonators, SHF splitters, etc. To prove the results, we extend
the over-determined Maxwell system to an elliptic problem and study the latter
in detail. The information on the Maxwell system comes from that, obtained for
the elliptic problem.

Keywords: The stationary Maxwell system, waveguides, elliptic extension,
intrinsic radiation conditions, radiation principle, scattering matrix,
method for approximating the scattering matrix, minimizer of a quad-
ratic functional, exponential convergence rate, thresholds, stable ba-
sis, extended scattering matrix, limits of the scattering matrix at thresh-
olds.
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1 INTRODUCTION

1.1 Preliminaries

As a model for a non-homogeneous electromagnetic waveguide, we consider a
boun-dary value problem for the stationary Maxwell system

i rot u2(x)− ku1(x) = f 1(x), −i div u2(x) = h1(x),

−i rot u1(x)− ku2(x) = f 2(x), i div u1(x) = h2(x), x ∈ G, (1.1.1)

with the conductive boundary conditions

ν(x)× u1(x) = 0, 〈u2(x), ν(x)〉 = 0, x ∈ ∂G, (1.1.2)

in a three-dimensional domain G having several cylindrical ends. Here u1 and u2

are electric and magnetic vectors while ν stands for the unit outward normal to
the boundary ∂G.

The theory of electromagnetic waveguides basically deals with two prob-
lems: the problem of scattering (diffraction) of an electromagnetic wave on the
waveguide inhomogeneities and the problem of electromagnetic field excitation
by given charges and currents. Among numerous mathematical works devoted
to the problems, we outline two directions: in the papers of the first direction
(see [20], [8],[9] and references therein), there are considered cylindrical waveg-
uides with filling medium that does not depend on the cylinder axial variable;
some local perturbations (in a bounded domain) of the waveguide shape and
filling medium are allowed as well. Another direction is related to the Wiener-
Hopf technique and the mode matching method. One considers the case when
the Maxwell system can be reduced to the Helmholtz equation and a waveguide
consists of finitely many model domains. Surveys of the methods are given in
monographs [35], [24], [27].

An actual problem is to extend the class of electromagnetic waveguides
admitting a mathematically accurate investigation and to develop mathemati-
cal scattering theory of such waveguides. In particular, the problem is to define



10

a scattering matrix in the scattering theory framework, to develop asymptotic
methods for the matrix investigation, as well as to elaborate and justify a method
for approximating the matrix.

In the present thesis, we abandon the limitations related to cylindrical shape
of waveguide and admit waveguides having arbitrary finite number of cylindri-
cal outlets to infinity. In a bounded domain the waveguide may have an arbitrary
shape with a smooth boundary. For such waveguides, we propose and justify a
radiation principle, introduce a scattering matrix that depends on the spectral pa-
rameter and is defined at the waveguide continuous spectrum. For any spectral
parameter, the matrix is unitary and have a finite size that changes at thresholds
and remains constant between two neighbouring thresholds. Moreover, in the
thesis we propose and justify a method for approximating the scattering matrix.

Results of the thesis extend the area of electromagnetic waveguide theory
and have numerous applications. A waveguide excitation is described by the ra-
diation principle and the wave propagation is described by the scattering matrix.
A method for approximating the scattering matrix can be applied for computer
modelling of a real-life wave propagation process. Particularly, the asymptotic
and numerical methods, developed in the thesis, can be used to analyze quality
of complex waveguides with resonators and SHF splitters, etc.

We use neither the methods nor the results of the works mentioned in the
second paragraph. Our investigation begins with extension of the overdeter-
mined Maxwell system (1.1.1)- (1.1.2) to an elliptic system. To this end, we use
the orthogonal extension method suggested by I.S. Gudovich, S.G. Krein, and
I.M. Kulikov (see [15] and references therein) and come to the system

i rot u2(x) + i∇a2(x)− ku1(x) = f 1(x), −i div u2(x)− ka1(x) = h1(x),

−i rot u1(x)− i∇a1(x)− ku2(x) = f 2(x), i div u1(x)− ka2(x) = h2(x),
(1.1.3)

x ∈ G, with the boundary conditions

−〈u1(x), τ2(x)〉 = 0, 〈u1(x), τ1(x)〉 = 0, 〈u2(x), ν(x)〉 = 0, a2(x) = 0, (1.1.4)

x ∈ ∂G. Here u1, u2 are, as previously mentioned, three-dimensional vector func-
tions, while a1 and a2 stand for scalar functions. Vectors τ1(x) and τ2(x) are unit
tangent vectors to ∂G and ν(x) is the unit vector of outward normal, (τ1, τ2, ν)
is a right-hand triple of vectors. Such an extension was used, in particular, in
papers by Birman and Solomyak [7] for investigating spectrum of the Maxwell
system in domains with non-smooth boundary. In the case of waveguides, such
an “elliptization” of the Maxwell system is employed for the first time, possibly,
because a theory of waveguides for elliptic systems was developed lately with a
sufficient generality. We refer the reader to the works of Picard et al. [28], [29],
Matioukevitch et al. [22] for other examples of the Maxwell system elliptization.

Elliptic boundary-value problems (for systems of equations) in waveguides,
having several cylindrical outlets to infinity, were studied in Nazarov and Plame-
nevskii [25] (see also an extensive bibliography therein). In particular, the in-
trinsic radiation conditions were described, the solvability of the boundary value
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problem with those radiation conditions was established, the unitary scattering
matrix was introduced. Essentially, the matrix was defined on the waveguide
continuous spectrum and for every value of spectral parameter the matrix has a
finite size equal to the multiplicity of waveguide continuous spectrum.

The theory of elliptic problems in waveguides was developed in further pa-
pers by Nazarov, Plamenevskii and their coauthors. We outline a series of papers
devoted to a method for approximate computation of the scattering matrix. For
the first time the method was proposed in Grikurov et al. [14] for approximating
the scattering matrix of the Helmholtz equation in diffraction gratings. Then it
was developed by Plamenevskii et al. [30], [31] for the case of waveguides. In
[30] the authors considered the two-dimensional waveguides and the Helmholtz
operator, while the waveguides of arbitrary dimensions and the self-adjoint el-
liptic systems of any order were discussed in [31]. The approach suggested in
[31] turns out to be new for the Helmholtz operator as well and more simple than
that in [30]. Let us mention that the method for computing the scattering ma-
trix of the Helmholtz operator in n-dimensional waveguides was described with
detailed proof by Baskin et al. [5].

We apply the methods of the elliptic theory described in the two preceding
paragraphs to the elliptic problem (1.1.3)- (1.1.4). Then we clarify specific proper-
ties of the problem coming from the Maxwell system. In particular, we investigate
in detail the operator pencils generated by the elliptic problem (1.1.3)- (1.1.4). Fi-
nally, we derive the information on the Maxwell system (1.1.1)- (1.1.2) from that
obtained about the elliptic problem (1.1.3)- (1.1.4).

The method for approximating the scattering matrix was discussed in [31]
under the condition that the spectral parameter does not coincide with thresh-
olds. When the spectral parameter crosses a threshold, the scattering matrix
changes its size and the method becomes inapplicable. We propose and justify in
Chapter 6 a modification of the method for computing the waveguide scattering
matrix of the Helmholtz equation in a neighborhood of a threshold. The problem
is simpler than that for the Maxwell system from a technical point of view, but it
represents a good illustration how to deal with “threshold effects” in general. We
construct a wave basis being “stable” in a neighbourhood of a threshold and in-
troduce an “augmented scattering matrix”, corresponding to the basis that keeps
its size and depends smoothly on the spectral parameter of the neighbourhood.
We compute the augmented matrix using a modification of the method [31] and
express the ordinary scattering matrix in terms of the augmented one.

Note that the “stable arguments” are not uncommon in asymptotic stud-
ies of various “threshold” situations. In this connection we refer to the work of
Costabel et al. [10] and the work of Maz’ya et al. [23], where the asymptotics
of solutions to elliptic boundary value problems were investigated near singu-
larities of the boundary. In the work of Kamotskii et al. [18], the asymptotics of
the scattering matrix for a two dimensional diffraction grating was justified, in
essence, with the help of a stable basis in the space of waves.

The method for approximating the waveguide scattering matrix, described
in the thesis, has been successfully implemented in real computations. A series
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of papers [2] - [5], [17] is devoted to investigating electron resonant tunneling in
quantum waveguides of variable cross-section. The basic characteristic of reso-
nant tunneling is a “transmission coefficient” which can be expressed in terms of
the waveguide scattering matrix. In [2] - [5] the method was applied for com-
puting the waveguide scattering matrix of the Helmholtz equation as well as
Pauli equation in various geometric situations. In [17] the scattering matrix of the
Helmholtz equation is computed in the case when the spectral parameter is close
to a threshold. To this end the authors apply both the “non-threshold” method
(described in Chapter 3 of the thesis) and the “threshold” method (described in
Chapter 5 of the thesis) and compare the obtained results.

1.2 Review of results

We consider a domain G in a three-dimensional space R3, coinciding outside a
large ball with a union of finitely many non-overlapping semi-cylinders Π1

+ ∪
· · · ∪ ΠT

+, where Π
q
+ = {(yq, tq) : yq ∈ Ωq, tq > 0}, and cross-section Ωq is a

bounded domain in R2.

FIGURE 1 An example of a waveguide, having several cylindrical ends.

Furthermore, in the introduction, for the sake of statement simplicity we
suppose T = 1 and denote the single cylindrical outlet by Π+ = {y ∈ Ω, t > 0}.
The boundary ∂G of the domain G is assumed to be smooth. The Maxwell system
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of equations

i rot u2(x)− ku1(x) = f 1(x), −i div u2(x) = h1(x),

−i rot u1(x)− ku2(x) = f 2(x), i div u1(x) = h2(x), x ∈ G, (1.2.1)

with the boundary conditions

ν(x)× u1(x) = 0, 〈u2(x), ν(x)〉 = 0, x ∈ ∂G, (1.2.2)

describes an electromagnetic field, excited in an empty waveguide G with per-
fectly conductive boundary in the presence of charges and currents. Here u1, u2

are C3-valued functions, which stand for the vectors of electric and magnetic
field, 〈·, ·〉 is an inner product in C3, · × · is a vector product in R3, and ν is
the outward normal to ∂G. The system (1.2.1) is overdetermined (eight equations
and only six indeterminate functions). The compatibility conditions

div f 1(x)− ikh2(x) = 0, x ∈ G,

div f 2(x) + ikh1(x) = 0, x ∈ G, (1.2.3)

〈 f 2(x), ν(x)〉 = 0, x ∈ ∂G

are necessary for the solvability of problem (1.2.1), (1.2.2).
In the Chapter 2, we introduce an elliptic boundary value problem

A(D, k)U (x) = F (x), x ∈ G, B(x)U (x) = G(x), x ∈ ∂G, (1.2.4)

obtained from (1.2.1)- (1.2.2) by means of “orthogonal extension” method [15].
Here

U = (u1, a1, u2, a2), F = ( f 1, h1, f 2, h2), G = (g1, g2, g3, g4),

uj, f j are three-dimensional and aj, hj are scalar functions in G, j = 1, 2, and gl

is a scalar function in ∂G, l = 1, . . . , 4. The differential operator A(D, k) and the
boundary operator B are given by

A(D, k)U =

⎛⎜⎜⎝
i rot u2 + i ∇a2 − ku1

−i div u2 − ka1

−i rot u1 − i ∇a1 − ku2

i div u1 − ka2

⎞⎟⎟⎠ , x ∈ G, (1.2.5)

BU = (−〈u1, τ2〉, 〈u1, τ1〉, 〈u2, ν〉, a2), x ∈ ∂G,

where τ1, τ2, ν is a right-hand triple of orthonormal vectors in R3: ν is an out-
ward normal to ∂G, and τ1, τ2 are tangent vectors. For U ,V ∈ C∞

c (G; C8) and the
boundary operator Q : QU = −i(〈u2, τ1〉, 〈u2, τ2〉, a1,−〈u1, ν〉), x ∈ ∂G, the Green
formula

(A(D, k)U ,V)G + (BU ,QV)∂G = (U ,A(D, k)V)G + (QU ,BV)∂G , (1.2.6)
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holds, where (·, ·)G and (·, ·)∂G are inner products in L2(G; C8) and L2(∂G; C4)
respectively. (In what follows we skip number of components in the notations of
vector function linear spaces.)

Solutions of the homogeneous problem (1.2.4) in the cylinder Π = Ω × R

play the role of waves propagating in the cylindrical outlet Π+ of the waveguide
G. We will seek solutions of the form

Π 
 (y, t) �→ exp(iλt)P(y), t ∈ R, y ∈ Ω.

Here λ and P are an eigenvalue and a corresponding eigenvector of the operator
pencil

A(Dy, λ; k)P(y) = exp(−iλt)A(D, k)(exp(iλt)P(y)), y ∈ Ω, t ∈ R, (1.2.7)

with A(D, k) of the form (1.2.5). In Section 2.2, the spectrum of the operator pencil
is investigated in detail. We describe its eigenvalues, corresponding eigenvectors
and generalized eigenvectors.

In the domain D(A) of the pencil (1.2.7), we include vector functions P =
(ϕ, α, ψ, β) with components ϕ, ψ ∈ C1(Ω; C3) and α, β ∈ C1(Ω; C), satisfying on
∂Ω the boundary conditions ϕ3 = 0, ϕ1ν2 − ϕ2ν1 = 0, ψ1ν1 + ψ2ν2 = 0, β = 0,
where (ν1, ν2) is an outward normal to ∂Ω. A value λ is said to be an eigenvalue
of the pencil A(·, k) if there exists a non-zero vector function P ∈ D(A), such that

A(λ, k)P(y) = 0, y ∈ Ω.

The vector function P is said to be an eigenvector. Its components are smooth
functions in Ω. A restriction of the pencil A(·, k) to D(M) = {P = (ϕ, 0, ψ, 0) ∈
D(A)} is called a Maxwell pencil and denoted by M(·, k). In other words, M(·, k)
is an operator pencil of the form (1.2.7), defined for problem (1.2.1)- (1.2.2). A
value λ is said to be an eigenvalue of the pencil M(·, k), if there exists a non-zero
vector function P ∈ D(M), satisfying the equality A(λ, k)P = 0.

Given k ∈ R, the eigenvalues of the pencil A(·, k) (M(·, k)) lie on the real
and imaginary axes, symmetrically about the origin (numbers +λ and −λ are
eigenvalues at once and the dimensions of the spaces kerA(λ, k) and kerA(−λ, k)
(kerM(λ, k) and kerM(−λ, k)) are equal). The real axis contains finitely many
eigenvalues. If for some k ∈ R \ {0} we have an eigenvalue λ = 0 for the pen-
cil A (M), then for any corresponding eigenvector P ∈ D(A) (P ∈ D(M)) there
exists a generalized eigenvector in D(A) (D(M)) (an exact definition of general-
ized eigenvectors see in Section 2.2.2). The corresponding value of k is called a
threshold of problem (1.2.4). There are no generalized eigenvectors for λ �= 0.
Thresholds are located symmetrically relative to zero and can accumulate only at
infinity.

For a given eigenvalue λ of the pencil M(·, k) we fix a basis set of eigenvec-
tors {PM,j} in the space kerM(λ, k). Furthermore, the set is augmented by vectors
{P∇,l} up to a basis of the space kerA(λ, k). The basis eigenvectors {PM,j}, {P∇,l}
and corresponding generalized eigenvectors (if they arise) are chosen in a specific
way.
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In the second part of Chapter 2 (Sections 2.3-2.5), we investigate problem
(1.2.4) in G, describe its continuous spectrum, introduce a unitary scattering ma-
trix and justify a “radiation principle” (a well-posed statement of the problem
with intrinsic radiation conditions). To this end, we apply the scheme for in-
vestigating elliptic boundary value problems in domains with cylindrical ends
proposed in Nazarov and Plamenevskii [25].

If for a number k there exists a solution U to the homogeneous problem
(1.2.4) that satisfies U (x) = O(|x|) for |x| → ∞ and does not belong to L2(G),
then the k is said to be a point in the continuous spectrum and the U is said
to be a corresponding continuous spectrum eigenfunction (CSE). We denote the
linear hull of CSEs by E(k). A number k is said to be an eigenvalue of problem
(1.2.4), if there exists a solution in L2(G). Eigenvalues can not accumulate at a
finite distance. For the sake of simplicity, we assume in the introduction that k is
distinct from zero and eigenvalues of problem (1.2.4) (in the thesis we deal with
general case).

We first assume, that k is fixed, k > 0, and does not coincide within a thresh-
old. The asymptotics of CSEs is described in terms of incoming and outgoing
waves. For every real eigenvalue λ of the operator pencil A(·, k) and every eigen-
vector P in the set {PM,j}, {P∇,l}, corresponding to λ, we introduce a function u
given at Π+ ∩ G by the equality

u(y, t; k) = exp(iλt)P(y; k), y ∈ Ω, t > T (1.2.8)

for a sufficiently large T and extended smoothly to the rest of G. The obtained
functions satisfy the homogeneous problem (1.2.4) for a large |x| and are called
waves. If λ is negative (positive), then the corresponding wave u of the form
(1.2.8) is said to be incoming (outgoing) and is denoted by u+ (u−). Since the
spectra of the pencils A(·, k) and M(·, k) are symmetric about the origin, the num-
ber of waves in the sets {u+} and {u−} are equal. We enumerate both sets with
the index j = 1, . . . , Υ. The linear hull of the functions u+

1 , . . . , u+
Υ

, u−
1 , . . . , u−

Υ
is

called the space of waves and is denoted by W(k).
According to the elliptic theory [25], in the space E(k) there exists the basis

of CSEs Y+
1 , . . . , Y+

Υ
, subjected to the relations

Y+
j (·, k) = u+

j (·, k) +
Υ

∑
l=1

Sjl(k)u
−
l (·, k) + O(exp(−δ|x|)), j = 1, . . . , Υ (1.2.9)

for a large |x| and δ < δ0(k) (where δ0(k) = min |Im λ| over imaginary eigenval-
ues λ of the pencil A(·, k)). The dimension Υ(k) of E(k) is called the multiplicity of
continuous spectrum at k. The matrix S(k) of the size Υ(k) × Υ(k) with elements
Sjl(k) is unitary and is called the scattering matrix.

Let us describe a radiation principle of the elliptic problem. To this end, we
introduce a weighted Sobolev space Hl

β(G), l ≥ 0 with the norm

‖u; Hl
β(G)‖ := ‖ρβu; Hl(G)‖ =

⎛⎝ l

∑
|α|=0

∫
G
|Dα(ρβu)|2 dx

⎞⎠1/2

,
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where ρβ is a smooth function on G, coinciding on G ∩ Π+ with the map (y, t) �→
exp(βt). Let us denote by Hl+1/2

β (∂G) the space of traces on ∂G of functions in

Hl+1
β (G) (as a rule, we will use the same notations for the spaces of vector func-

tions with components in Hl
β(G) and Hl+1/2

β (∂G)). The operator {A(D, k), B} of
the boundary value problem (1.2.4) implements a continuous mapping

Lβ : Hl+1
β (G) → Hl

β(G)× Hl+1/2
β (∂G) =: Hl

β(G) (1.2.10)

for any β ∈ R and l = 0, 1, . . . . The operator (1.2.10) is a Fredholm operator if and
only if the line {λ ∈ C : Im λ = β} is free from the spectrum of the pencil A(·, k),
the number k being fixed. Recall that an operator is called a Fredholm operator
if its range is closed and the kernel and cokernel are finite dimensional. Let us
chose 0 < δ < δ0, where δ0 is chosen in (1.2.9).

Proposition 1.2.1. Let {F ,G} belong to the space Hl
δ(G). Then:

1. Problem (1.2.4) has a unique solution U , subject to the radiation conditions

V = U − c1u−
1 − · · · − cΥu−

Υ
∈ Hl+1

δ (G). (1.2.11)

2. The coefficients cj in the asymptotics (1.2.11) are given by

cj = i(F , Y−
j )G + i(G,QY−

j )∂G,

where Y−
j = ∑

Υ
l=1 S−1

jl Y+
l with functions Y+

l from (1.2.9), and Q is the operator from
(1.2.6).
3. The inequality

‖V ; Hl+1
δ (G)‖+ |c1|+ · · ·+ |cΥ| ≤ const‖{F ,G};Hl

δ(G)‖

holds.

Chapter 3 is devoted to formulation and justification of a method for ap-
proximating the scattering matrix S(k). For elliptic boundary value problems
with a semi-bounded operator a method for approximating the scattering matrix
was essentially justified in papers by Plamenevskii, Sarafanov et al. (see [31], [5]).
An operator of problem (1.2.4) is not semi-bounded and a statement, as well as
justification of the method needs an essential modification. Such a modification
is described in this Chapter. We assume here k being distinct from the thresholds.
A method for computing the scattering matrix in a neighbourhood of a threshold
is discussed in Chapter 5.

Let ΠR
+ = {(y, t) ∈ Π : t > R}, GR = G \ ΠR

+ for large R (see FIG. 2). Then
∂GR \ ∂G = ΓR = {(y, t) ∈ Π : t = R}. Introduce a boundary value problem

A(D, k)U (x) = F (x), x ∈ GR,

B(x)U (x) = G(x), x ∈ ∂GR \ ΓR, (1.2.12)

(B(x) + iQ(x))U (x) = H(x), x ∈ ΓR.
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FIGURE 2 A waveguide with truncated cylindrical ends.

The boundary ∂GR contains an edge ∂ΓR. Let r(x) = dist (x, ∂ΓR). We define
spaces V0

1/2(G
R) and V1

1/2(G
R) as the completions of C∞

c (GR \ ∂ΓR), with respect
to norms

‖u; V0
1/2(G

R)‖2 =
∫

GR
r|u|2dx, ‖u; V1

1/2(G
R)‖2 =

∫
GR

(r|∇u|2 + r−1|u|2)dx.

Let V1/2
1/2 (Γ

R) and V1/2
1/2 (∂GR \ ΓR) denote the spaces of traces on ΓR and ∂GR \ ΓR

of functions in V1
1/2(G

R).

Theorem 1.2.2. For any right-hand-side

{F ,G,H} ∈ V0
1/2(G

R)× V1/2
1/2 (∂GR \ ΓR)× V1/2

1/2 (Γ
R),

problem (1.2.12) has a unique solution U ∈ V1
1/2(G

R). If F = 0, G = 0, then the
solution U satisfies the equality ‖U ; L2(Γ

R)‖ = ‖H; L2(Γ
R)‖.

Let XR
l (·, k; a) stand for a solution to the problem (1.2.12) with right-hand-

side

F = 0, G = 0, H =

(
B + iQ

)(
u+

l (·, k) +
Υ

∑
j=1

aju
−
j (·, k)

)
,

where a = (a1, . . . , aΥ) is an arbitrary vector in C
Υ. Introduce a functional

a �→ JR
l (a; k) =

∥∥∥∥Q(
XR

l (·, k; a) − u+
l (·, k)−

Υ

∑
j=1

aju
−
j (·, k)

)
; L2(Γ

R)

∥∥∥∥2

. (1.2.13)
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Let Z±
j,R be a solution to the problem (1.2.12) with right-hand-side F = 0,G =

0,H = (B + iQ)u±
l . We have XR

l = Z+
l,R + ∑ ajZ

−
j,R, and the functional takes the

form

JR
l (a; k) = 〈aER , a〉+ 2Re 〈FR

l , a〉+ GR
l . (1.2.14)

Here ER, FR are square matrices of Υ × Υ, with elements

ER
ij = (Q(Z−

i,R − u−
i ),Q(Z−

j,R − u−
j ))ΓR , FR

ij = (Q(Z+
i,R − u+

i ),Q(Z−
j,R − u−

j ))ΓR ,

FR
l is a row vector with number l of the matrix FR, and GR

l = ‖Q(Z+
l,R − u+

l )‖2
ΓR .

As an approximation to the row (Sl1, . . . , SlΥ) of the scattering matrix S(k), we
take a minimizer a0(R, k) = (a0

1(R, k), . . . , a0
Υ
(R, k)) of the functional (1.2.13). For-

mula (1.2.14) implies the minimizer a0(R, k) to solve the equation

a0(R, k)ER + FR
l = 0.

Hence, a matrix SR, composed of such minimizers, satisfies SRER + FR = 0 and
serves as an approximation to the scattering matrix S.

Theorem 1.2.3. Let an interval [k1, k2] of the continuous spectrum of problem (1.2.4)
contain no thresholds. Then for all k ∈ [k1, k2] and R > R0, where R0 is a sufficiently
large number, there exists a unique minimizer a0(R, k) of the functional (1.2.13) and

|a0
j (R, k)− Slj(k)| ≤ Ce−δR, j = 1, . . . , Υ,

where 0 < δ < min[k1,k2]
δ0(k), δ0(k) is the same as in (1.2.9), and the constant C =

C(δ) is independent of k and R.

Chapter 4 is devoted to coming back from the elliptic problem (1.2.4) to
the original nonaugmented one (1.2.1)- (1.2.2). We start with a description of
the continuous spectrum of the Maxwell system. The space E(k) of continuous
spectrum eigenfunctions of the problem (1.2.4) can be represented as a direct sum
of subspaces (the representation follows directly from the equations (1.1.3))

E(k) = EM(k)� E∇(k).

Here the space EM(k) consists of CSEs of the form (u1, 0, u2, 0). A solution of the
form U = (u1, 0, u2, 0) to the problem A(D, k)U = F , BU = 0 is said to be a
Maxwell-type. Then components u1, u2 of the Maxwell-type solution satisfy the
original problem (1.2.1)- (1.2.2). So, the space E(k) of CSEs of problem (1.2.1)-
(1.2.2) can be identified with the space EM(k) of Maxwell-type CSEs of the prob-
lem (1.2.4). To introduce a scattering matrix for the problem (1.2.1)- (1.2.2), we
have to prove that in the space EM(k) there exists a basis, subject to relations of
the form (1.2.9).

Let us introduce more detailed notations. The waves u±
l , corresponding to

(Maxwell) eigenvectors {PM,j}, are of the form u±
l = (u1, 0, u2, 0). Such waves

are called Maxwell-type waves and are denoted by e±l , l = 1, . . . , υ. The waves
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u±
l corresponding to (non-Maxwell) eigenvectors {P∇,j}, are called gradient-type

and are denoted by γ±
l , l = 1, . . . , Υ − υ. We prove that the scattering matrix

S(k) is block-diagonal S(k) = diag(s(k), σ(k)). In other words, the Maxwell-type
(gradient-type) incoming waves e+j (γ+

j ) are scattered only on the Maxwell-type
(gradient-type) outgoing waves e−l (γ−

l ). Let us denote by E+
j the continuous

spectrum eigenfunction, with the asymptotics (1.2.9) that contains the wave e+j ,

j = 1, . . . , υ. The functions E+
j , j = 1, . . . , υ, form a basis in the space EM(k). After

introducing new notations we come to the following theorem

Theorem 1.2.4. In the space E(k) of problem (1.2.1)- (1.2.2) CSEs, there exists a basis
Ê+

1 , . . . , Ê+
υ , subject to the relations

Ê+
j (·, k) = ê+j (·, k) +

υ

∑
l=1

sjl(k)ê
−
l (·, k) + O(exp(−δ|x|)), j = 1, . . . , υ. (1.2.15)

Here the functions Ê+
j and ê±j are obtained from E+

j and e±j by crossing of

(zero) components a1, a2. The matrix s is unitary and by definition, is a scattering
matrix of the problem (1.2.1)- (1.2.2).

Furthermore, from the elliptic problem radiation principle (Proposition 1.2.1),
we derive a radiation principle for problem (1.2.1)- (1.2.2). Let U = (u1, a1, u2, a2)
be a solution to the problem (1.2.4) with the radiation conditions (1.2.11) and a
right-hand-side {F , 0}, subject to compatibility conditions (1.2.3). Then the com-
ponent a1 (a2) of the solution solves the homogeneous Neumann (Dirichlet) prob-
lem for the Helmholtz equation with intrinsic radiation conditions. By virtue
of uniqueness theorem, such a solution must be zero. Hence, the solution U is
Maxwell-type, that is, is of the form U = (u1, 0, u2, 0). The obtained assertion is
still not completely satisfactory for our purpose (the return to the Maxwell system
(1.2.1)- (1.2.2)), since the statement of Proposition 1.2.1 contains other reminders
of the elliptic problem: the radiation conditions include the gradient-type waves
and the coefficients in (1.2.11) are calculated by means of elliptic CSEs. However
if compatibility conditions (1.2.3) hold, then the gradient-type waves appear in
(1.2.11) with zero coefficients and the radiation conditions include the Maxwell-
type waves e−j only. Since the scattering matrix S(k) is block diagonal, the coeffi-
cients of the Maxwell-type waves e−j are calculated by means of the Maxwell-type

CSEs E−
j = ∑

υ
l=1 s−1

jl E+
l . After introducing new notations we get

Theorem 1.2.5. Let δ satisfy 0 < δ < δ0 and F = ( f 1, h1, f 2, h2) in Hl
δ(G; C

8) be
subjected to compatibility conditions (1.2.3). Then:
1. Problem (1.2.1)- (1.2.2) has a unique solution U = (u1, u2), subject to the radiation
conditions

V = U − c1ê−1 − · · · − cυ ê−υ ∈ Hl+1
δ (G; C

6). (1.2.16)

2. The coefficients cj in asymptotics (1.2.16) are given by cj = i ( f , Ê−
j )G, where f =

( f 1, f 2) and Ê−
j = ∑

υ
l=1 s−1

jl Ê+
l with Ê+

l from (1.2.15).
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3. The inequality

‖V; Hl+1
δ (G; C

6)‖+ |c1|+ · · ·+ |cυ| ≤ const‖F ; Hl
δ(G; C

8)‖

holds.

Finally, in Chapter 5 we modify arguments of Chapter 3 and propose a
method for computing the scattering matrix in a neighbourhood of a threshold
(such a modification was developed in [33]). Instead of the Maxwell system, we
consider the Helmholtz equation with Dirichlet boundary conditions. The prob-
lem is simpler than that for the Maxwell system from a technical point of view,
but it represents a good illustration how to deal with “threshold effects” in gen-
eral. We have already justified analogous results for the Maxwell system, and a
paper on the topic is being prepared for the press.

The waveguide is described by the Dirichlet problem for the operator −Δ −
μ, where μ is a spectral parameter and Δ is the Laplace operator. The continuous
spectrum of the problem coincides with the semiaxis {μ ∈ R : τ1 ≤ μ}, the τ1
being a positive number. For every point μ ∈ [τ1,+∞) there exist κ(μ) solutions,
κ(μ) < ∞, to the homogeneous problem

−Δu(x)− μu(x) = 0, x ∈ G, (1.2.17)

u(x) = 0, x ∈ ∂G,

satisfying |u(x)| ≤ Const(1 + |x|) in G and linearly independent modulo L2(G).
Such solutions are called the continuous spectrum eigenfunctions and the num-
ber κ(μ) is called the multiplicity of the continuous spectrum. The threshold
values (thresholds) form a sequence τ1 < τ2, . . . , τn → +∞. The multiplicity
κ(μ) is constant on every interval [μ′, μ′′] of the continuous spectrum containing
no threshold. The function μ �→ κ(μ) has discontinuity at every threshold be-
ing continuous from the right. This is an increasing function, so κ(μ) → +∞ as
μ → +∞. It is known [25] that, for every μ ∈ [τ1,+∞] in the space of continu-
ous spectrum eigenfunctions, there exists a basis Y1(·, μ), . . . , Y

κ(μ)(·, μ) modulo
L2(G), such that

Yj(x, μ) = u+
j (x, μ) +

κ(μ)

∑
k=1

Sjk(μ)u
−
k (x, μ) + O(e−ε|x|) (1.2.18)

for |x| → ∞ and j = 1, . . . ,κ(μ). Here ε is a sufficiently small number, u+
j (·, μ)

is an "incoming" wave, and u−
j (·, μ) is an "outgoing" one (precise definitions see

in Section 5.1). The matrix S(μ) = ‖Sjk(μ)‖ is unitary; it is called the scattering
matrix. Plamenevskii et al. [30], [31] discusses a method for approximating the
matrix S(μ), under the condition that μ varies on an interval [μ′, μ′′] of the contin-
uous spectrum containing no thresholds. In a neighbourhood of a threshold the
method turns out to be inapplicable and needs an essential modification. Such a
modification is described in this Chapter.

Let τ′ < τ < τ′′ be three succeeding thresholds. On the interval (τ, τ′′),
one can choose a basis of incoming waves w+

1 (·, μ), . . . , w+
κ
(·, μ) and outgoing
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waves w−
1 (·, μ), . . . , w−

κ
(·, μ) with analytic functions (τ, τ′′) 
 μ �→ w±

j (·, μ),
which admit the analytic continuation to (τ′, τ′′), where κ = κ(μ′′) (recall that
κ(μ) = const for μ ∈ [τ, τ′′)). Such a basis is called stable at the threshold τ. For
μ ∈ (τ′, τ), some incoming waves and the same number of outgoing waves turn
out to be exponentially growing as x → ∞. On the interval (τ, τ′′), in the space
of continuous spectrum eigenfunctions, there exists a basis Y1(·, μ), . . . ,Yκ(·, μ)
satisfying the conditions

Yj(x, μ) = w+
j (x, μ)−

M

∑
k=1

Sjk(μ)w
−
k (x, μ) + O(e−ε|x|). (1.2.19)

The functions μ �→ Yj(·, μ) and μ �→ Sjk(μ) are analytic and admit the analytic
continuation to (τ′, τ′′). In contrast to S(μ), the new matrix S(μ) = ‖Sjk(μ)‖
keeps its size on the interval, the matrix is unitary for all μ ∈ (τ′, τ′′). The entries
of S(μ) can be expressed in terms only related to the matrix S(μ). In particular,
this enables us to prove the existence of finite limits lim S(μ) as μ → τ ± 0, to
calculate the limits, and in essence to reduce the approximation of the matrix S(μ)
with μ ∈ [μ′, μ′′] to that of the augmented matrix S(μ). As an approximation to a
row of S(μ), we take a minimizer of a quadratic functional J R(·, μ). To construct
such a functional we use a boundary value problem in the bounded domain GR

obtained from G by cutting off the cylindrical ends at a distance R. We set

Π
r,R
+ = {(yr, tr) ∈ Πr : tr > R}, GR = G \ ∪T

r=1Π
r,R
+ ,

∂GR \ ∂G = ΓR = ∪rΓr,R, Γr,R = {(yr, tr) ∈ Πr : tr = R}

for a large R and introduce the boundary value problem

−ΔX R
j − μX R

j = 0, x ∈ GR;

X R
j = 0 x ∈ ∂GR \ ΓR;

(−∂n + iζ)X R
j = (−∂n + iζ)(w+

j +∑
M
k=1 akw−

k ), x ∈ ΓR,

where w±
j is a stable basis in the space of waves, ζ ∈ R \ {0} is an arbitrary

fixed number, and ak are complex numbers. As an approximation to the row
(Sj1(μ), . . . ,SjM(μ), we take the minimizer a0(R, μ) = (a0

1(R, μ), . . . , a0
M(R, μ)) of

the functional

J R
j (a1, . . . , aM) = ‖X R

j (·, μ)− w+
j (·, μ)−

M

∑
k=1

akw−
k (·, μ); L2(Γ

R)‖2,

where X R
j (·, μ) is a solution to the boundary value problem. If τ ∈ [μ′, μ′′] ⊂

(τ′, τ′′), then the inequality

‖a(R, μ) −Sj(μ)‖ � C(Λ)e−ΛR

holds for all μ ∈ [μ′, μ′′] and R � R0 with positive constants Λ and C(Λ) inde-
pendent of μ and R.



2 ELLIPTIC EXTENSION OF THE MAXWELL
SYSTEM. THE SCATTERING MATRIX AND THE
RADIATION PRINCIPLE

In this Chapter we introduce an extended (elliptic) Maxwell system and specify
the results established by Nazarov et al. [25] for the general elliptic problems,
self-adjoint with respect to a Green formula.

The extended Maxwell system and the boundary value problem for the sys-
tem in the domain G are introduced in Section 2.1. In Section 2.2 we consider the
problem in a cylinder Ω × R and associate with the problem an operator pencil
C 
 λ �→ A(λ) on functions in Ω, where Ω is a bounded domain in R2 with
smooth boundary. Here we investigate in detail spectral properties of the pencil
and make up Jordan chains of eigenvectors and generalized eigenvectors, which
satisfy special orthogonality and normalization conditions. Moreover, in Sections
2.3 and 2.4 we introduce the space of waves, describe the continuous spectrum
eigenfunctions, and define the unitary scattering matrix. Finally, we present a
well-posed problem with intrinsic radiation conditions in Section 2.5.

2.1 Extended Maxwell system

The system (1.2.1) is overdetermined. The compatibility conditions needed for
the solvability of problem (1.2.1), (1.2.2) are described by Proposition 2.1.1. Let us
recall the formulas

(rot u, v)G = −(u, ν × v)∂G + (u, rot v)G, (2.1.1)

(∇α, u)G = (α, 〈u, ν〉)∂G − (α, div u)G, (2.1.2)

where α is a scalar function, u and v are three dimensional vector functions, while
(·, ·)G and (·, ·)∂G in (2.1.1) and (2.1.2) on the left denote the inner products on
L2(G, C3) and L2(∂G, C3), and on the right hand-side of (2.1.2) is the inner prod-
uct on L2(G, C) and L2(∂G, C). As a rule, we further denote by (·, ·)G and (·, ·)∂G
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the inner products on L2(G, Cp) and L2(∂G, Cp) for various p ; the context ex-
cludes misunderstanding.

Proposition 2.1.1. Assume that (1.2.1) and (1.2.2) hold for some sufficiently smooth
functions uj, f j, hj, j = 1, 2. Then

div f 1(x)− ikh2(x) = 0, x ∈ G, (2.1.3)

div f 2(x) + ikh1(x) = 0, x ∈ G, (2.1.4)

〈 f 2(x), ν(x)〉 = 0, x ∈ ∂G. (2.1.5)

Proof. We apply div to the first equality (1.2.1) and obtain div f 1 + k div u1 = 0.
Since i div u1 = h2, we arrive at (2.1.3). In a similar way, we can establish (2.1.4).
For (2.1.5), it suffices to verify ( f 2,∇ψ)G = −(div f 2, ψ)G for all ψ ∈ C∞

c (G) (see
(2.1.2)). We have

( f 2,∇ψ)G = −i(rot u1,∇ψ)G − k(u2,∇ψ)G. (2.1.6)

From (1.2.2) and (2.1.2), it follows that

(u2,∇ψ)G = −(div u2, ψ)G.

Moreover, (2.1.1) and boundary condition (1.2.2) lead to

(rot u1,∇ψ)G = (u1, rot∇ψ)G + (∇ψ, ν × u1)∂G = 0.

Therefore, (2.1.6) implies

( f 2,∇ψ)G = k(div u2, ψ)G = −(div f 2, ψ)G. �

We now pass on to the "orthogonal extension" of system (1.2.1) (cf [15]). Namely,
in the domain G we introduce the boundary value problem for the "augmented
Maxwell system":

i rot u2(x) + i ∇a2(x)− ku1(x) = f 1(x),

−i div u2(x)− ka1(x) = h1(x), (2.1.7)

−i rot u1(x)− i ∇a1(x)− ku2(x) = f 2(x),

i div u1(x)− ka2(x) = h2(x)

with boundary conditions

−〈u1(x), τ2(x)〉 = g1(x), 〈u1(x), τ1(x)〉 = g2(x),

〈u2(x), ν(x)〉 = g3(x), a2(x) = g4(x), x ∈ ∂G; (2.1.8)

where u1 and u2 are three dimensional vector-valued functions, a1, a2 are for
scalar functions in G. Moreover, τ1(x), τ2(x) are tangent vectors and ν(x) is out-
ward normal to ∂G, the vectors τ1(x), τ2(x), ν(x) form a right-hand triple. The
next assertion can be verified by immediate calculation.

Proposition 2.1.2. Problem (2.1.7), (2.1.8) is elliptic.
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Rewrite (2.1.7), (2.1.8) in the form

A(D, k)U (x) = F (x), x ∈ G, (2.1.9)

BU (x) = G(x), x ∈ ∂G,

where D = (D1, D2, D3), Dj = −i∂/∂xj, U = (u1, a1, u2, a2). The next proposition
follows from (2.1.1) and (2.1.2).

Proposition 2.1.3. The Green formula holds for

(A(D, k)U ,V)G + (BU ,QV)∂G = (U ,A(D, k)V)G + (QU ,BV)∂G (2.1.10)

with U = (u1, a1, u2, a2), V = (v1, b1, v2, b2), where aj, bj are in C∞
c (Ḡ; C), uj, vj are

in C∞
c (Ḡ; C3), and

BU = (−〈u1, τ2〉, 〈u1, τ1〉, 〈u2, ν〉, a2),

QV = −i(〈v2, τ1〉, 〈v2, τ2〉, b1,−〈v1, ν〉). (2.1.11)

The operator of problem (2.1.9) is self-adjoint, with respect to Green formula (2.1.10).

Since k remains fixed, we will frequently drop it from future notations.

2.2 Elliptic and Maxwell operator pencils

Let us consider the operator {A(D),B} of problem (2.1.9) in the cylinder Ω×R =
{x = (x1, x2, x3) : (x1, x2) ∈ Ω, x3 ∈ R}, where Ω is a bounded domain in R2 with
a smooth boundary ∂Ω. Assume that Φ = (ϕ, α, ψ, β) with components ϕ, ψ from
C∞(Ω̄; C3) and α, β in C∞(Ω̄; C) satisfies the boundary condition

BΦ = (ν × ϕ, 〈ψ, ν〉, β) = 0 (2.2.1)

on ∂Ω, where ν is the outward normal to ∂Ω. We consider that ν is a three di-
mensional vector of the form (ν1, ν2, 0). Denoting by uτ and uν the tangent and
normal components of u on ∂Ω, we rewrite (2.2.1) in the form

ϕτ = 0, ψν = 0, β|∂Ω = 0.

For the vectors Φ with above properties, we introduce the operator pencil C 

λ �→ A(λ) by

A(λ)Φ(x1, x2) = exp (−iλx3)A(D)(exp (iλx3)Φ(x1, x2)). (2.2.2)

For the usual operators ∇, rot, div, and Δ in Ω × R, let us define in Ω the opera-
tors ∇(λ), rot(λ), div(λ), Δ(λ) by

∇(λ)α(x1, x2) = exp (−iλx3)∇ (exp (iλx3)α(x1, x2)),

rot(λ)ϕ(x1, x2) = exp (−iλx3)rot (exp (iλx3)ϕ(x1, x2)),
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etc. The formulas for the usual operators can immediately be extended to the
operations with parameter. For instance, from the equality rot rot = ∇ div − Δ it
follows that rot(λ) rot(λ) = ∇(λ)div(λ)− Δ(λ). For ϕ, ψ in C∞(Ω̄; C3) and α in
C∞(Ω̄; C), we have

(∇(λ)α, ϕ)Ω = (α, 〈ϕ, ν〉)∂Ω − (α, div(λ̄)ϕ)Ω, (2.2.3)

(rot(λ)ϕ, ψ)Ω = (ϕ, ψ × ν)∂Ω + (ϕ, rot(λ̄)ψ)Ω, (2.2.4)

ν being the outward normal to ∂Ω.
Denote by Hl(Ω; C8), l = 0, 1, . . . the space of vectors with eight compo-

nents in the Sobolev space Hl(Ω; C) of complex functions in Ω. The elements
Φ ∈ Hl(Ω; C8) will be written as Φ = (ϕ, α, ψ, β), where ϕ, ψ ∈ Hl(Ω; C3) and
α, β ∈ Hl(Ω; C). For l = 1, 2, . . . we set

DHl(Ω) = {Φ ∈ Hl(Ω; C
8) : ϕτ = 0, ψν = 0, β|∂Ω = 0}. (2.2.5)

Let us consider the operator A(λ) given by (2.2.2) on the domain DHl(Ω). Ac-
cording to the general theory of elliptic operator pencils (see [1]), for λ ∈ C except
some isolated points the mapping A(λ) : DHl(Ω) → Hl−1(Ω; C8) is an isomor-
phism. The mentioned isolated values are the eigenvalues of the pencil λ �→ A(λ)
of finite algebraic multiplicity. The components of eigenvectors and generalized
eigenvectors are smooth functions in Ω. For U = (ϕ, α, ψ, β) ∈ DHl(Ω), from
(2.1.7) and (2.2.2) it follows that

A(λ) :

⎛⎜⎜⎝
ϕ

α

ψ

β

⎞⎟⎟⎠ �→

⎛⎜⎜⎝
i rot(λ)ψ + i ∇(λ)β − kϕ

−i div(λ)ψ − kα

−i rot(λ) ϕ − i ∇(λ)α − kψ

i div(λ) ϕ − kβ

⎞⎟⎟⎠ . (2.2.6)

The pencil A is called elliptic and its restriction to the set {U ∈ DHl(Ω) : U =
(ϕ, 0, ψ, 0)} is called Maxwell and denoted by M. In other words, M is the oper-
ator pencil defined for the problem (1.2.1), (1.2.2). The pencils A and M depend
on the two parameters k and λ. In what follows k remains fixed while λ plays the
role of a spectral parameter. A number λ0 is an eigenvalue of the pencil M(·, k) if
there exists a smooth nonzero vector Φ = (ϕ, 0, ψ, 0), that is subject to the bound-
ary conditions ϕτ = 0, ψν = 0 on ∂Ω and satisfies the equation M(λ0, k)Φ = 0
(and therefore the equation A(λ0, k)Φ = 0).

2.2.1 Eigenvalues and eigenvectors of the pencils A and M

In this Section, when describing the eigenvalues and eigenvectors of the elliptic
pencil A, we modify the approach known for the Maxwell pencil M (for example
see [37]). In the domain Ω we consider the system

i rot(λ)ψ + i ∇(λ)β − kϕ = 0,

−i div(λ)ψ − kα = 0, (2.2.7)

−i rot(λ) ϕ − i ∇(λ)α − kψ = 0,

i div(λ) ϕ − kβ = 0.
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Apply rot(λ) to the rot-equations in (2.2.7). Since rot(λ)rot(λ) = ∇(λ)div(λ) −
Δ(λ), we obtain

i ∇(λ)div(λ)ψ − i Δ(λ)ψ = k rot(λ)ϕ, (2.2.8)

−i ∇(λ)div(λ)ϕ + i Δ(λ)ϕ = k rot(λ)ψ. (2.2.9)

Taking account of the second and the third equations (2.2.7), rewrite (2.2.8) in the
form of

Δ(λ)ψ + k2ψ = 0. (2.2.10)

From (2.2.9), the first and the fourth equations in (2.2.7) it follows that

Δ(λ)ϕ + k2 ϕ = 0. (2.2.11)

Let us turn to α and β. Applying div(λ) to the first equation in (2.2.7), we obtain

i div(λ)∇(λ)β − k div(λ)ϕ = 0.

By virtue of the fourth equation in (2.2.7), the last equation can be rewritten as

Δ(λ)β + k2β = 0. (2.2.12)

In a similar way, we derive
Δ(λ)α + k2α = 0. (2.2.13)

Denote by ϕj and ψj the components of ϕ and ψ respectively, j = 1, 2, 3, and write
down the rot-equations (2.2.7) through their projections onto the coordinate axes.
From the resulting equations we choose two pairs in order to form two linear
algebraic systems. In one of the system

kψ1 + λϕ2 = −i∂2ϕ3 − i∂1α,

λψ1 + kϕ2 = −i∂1ψ3 + i∂2β, (2.2.14)

where ∂q = ∂/∂xq, the role of unknowns is played by ψ1 and ϕ2. In the other
system

λψ2 − kϕ1 = −i∂2ψ3 − i∂1β,

kψ2 − λϕ1 = i∂1ϕ3 − i∂2α, (2.2.15)

we take ψ2 and ϕ1 as unknowns. Assuming that k2 − λ2 �= 0 and solving both of
these systems, we obtain on Ω the relations

ϕ1 = (k2 − λ2)−1[iλ∂1 ϕ3 + ik∂2ψ3 − iλ∂2α + ik∂1β],

ϕ2 = (k2 − λ2)−1[iλ∂2 ϕ3 − ik∂1ψ3 + iλ∂1α + ik∂2β], (2.2.16)

ψ1 = (k2 − λ2)−1[−ik∂2 ϕ3 + iλ∂1ψ3 − ik∂1α − iλ∂2β],

ψ2 = (k2 − λ2)−1[ik∂1 ϕ3 + iλ∂2ψ3 − ik∂2α + iλ∂1β].

Thus, if (ϕ, α, ψ, β) satisfies (2.2.7), then every vector-valued function ϕ, ψ, and
every scalar function α, β are solutions to the Helmholtz equation in Ω, see (2.2.10),



27

(2.2.11) and (2.2.12), (2.2.13). Moreover, ϕ1, ϕ2, ψ1, and ψ2 are expressed by
(2.2.16) through ϕ3, ψ3, α, β.

The immediate task is to derive from (2.2.1) (see also (2.2.5)) some boundary
conditions on ∂Ω for the last four functions. Conditions (2.2.1) are equivalent to
the system of the following four equalities on ∂Ω:

ϕ3 = 0, β = 0, (2.2.17)

ν1ϕ2 − ν2ϕ1 = 0, ν1ψ1 + ν2ψ2 = 0. (2.2.18)

Taking into account (2.2.16), we rewrite (2.2.18) in the form

ik[(ν1∂2 − ν2∂1)ϕ3 + (ν1∂1 + ν2∂2)α]− iλ[(ν1∂1 + ν2∂2)ψ3 − (ν1∂2 − ν2∂1)β] = 0,

−iλ[(ν1∂2 − ν2∂1)ϕ3 + (ν1∂1 + ν2∂2)α] + ik[(ν1∂1 + ν2∂2)ψ3 − (ν1∂2 − ν2∂1)β] = 0.

By assumption, k2 − λ2 �= 0. Therefore the two last equalities imply that

(ν1∂2 − ν2∂1)ϕ3 + (ν1∂1 + ν2∂2)α = 0,

(ν1∂1 + ν2∂2)ψ3 − (ν1∂2 − ν2∂1)β = 0.

Besides, in view of (2.2.17)

(ν1∂2 − ν2∂1)ϕ3 = 0, (ν1∂2 − ν2∂1)β = 0.

Therefore, on ∂Ω

∂νψ3 = (ν1∂1 + ν2∂2)ψ3 = 0, ∂να = (ν1∂1 + ν2∂2)α = 0.

We have proved the following

Proposition 2.2.1. Let λ be an eigenvalue of the pencil A(·, k) and (ϕ, α, ψ, β) a cor-
responding eigenvector, ϕ = (ϕ1, ϕ2, ϕ3), ψ = (ψ1, ψ2, ψ3). Moreover, assume that
k2 − λ2 �= 0. Then

Δ(λ)α + k2α = 0 in Ω, ∂να = 0 on ∂Ω, (2.2.19)

Δ(λ)β + k2β = 0 in Ω, β = 0 on ∂Ω, (2.2.20)

Δ(λ)ϕ3 + k2 ϕ3 = 0 in Ω, ϕ3 = 0 on ∂Ω, (2.2.21)

Δ(λ)ψ3 + k2ψ3 = 0 in Ω, ∂νψ3 = 0 on ∂Ω, (2.2.22)

while ϕj, ψj for j = 1, 2 are defined by (2.2.16). Conversely, any nonzero vector (ϕ, α, ψ, β)
whose component satisfy (2.2.19) – (2.2.22) and (2.2.16) is an eigenvector of the pencil
A(·, k) corresponding to λ.

If λ (such that k2 − λ2 �= 0) is an eigenvalue for one of the pencils A(·, k) and
M(·, k), then it is an eigenvalue for the other pencil as well. A number λ turns out to be
an eigenvalue of these pencils if and only if λ is an eigenvalue for at least one of problems
(2.2.19) and (2.2.20). The equalities

κA(λ, k) = 2κM(λ, k) = 2κD(λ, k) + 2κN (λ, k),

hold, where κA(λ, k) and κM(λ, k) are the geometric multiplicities of λ for the pencils
A(·, k) and M(·, k), while κN (λ, k) and κD(λ, k) are those for problems (2.2.19) and
(2.2.20).
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We are now coming to describing the eigenvalues and eigenvectors under
the condition k2 − λ2 = 0. Formulas (2.2.10), (2.2.11), (2.2.12), and (2.2.13) take
the form

Δψ = 0, Δϕ = 0, Δβ = 0, Δα = 0, (2.2.23)

where Δ := Δ(0) = ∂2
1 + ∂2

2. The second and third equalities in (2.2.23), together
with (2.2.17), give us

ϕ3 = 0, β = 0 on Ω. (2.2.24)

In what follows, we consider the cases of λ2 = k2 �= 0 and λ2 = k2 = 0 separately.
First we consider λ2 = k2 �= 0. From (2.2.14) and (2.2.24), we derive ∂1(ψ3 −

(λ/k)α) = 0, while (2.2.15) implies ∂2(ψ3 − (λ/k)α) = 0. That is

ψ3 − (λ/k)α = C0 = const.

Let us show, that C0 = 0. For the function u(x) = exp (iλx3)ϕ(x1, x2), we write
the Stokes formula ∫

Ω
(rot u)n dx1dx2 =

∫
∂Ω

uτ ds, (2.2.25)

where (rot u)n is the projection of rot u onto the vector n = (0, 0, 1), directed along
the axis of the cylinder Ω × R. From (2.2.25), it follows that∫

Ω
(rot(λ) ϕ)n dx1dx2 =

∫
∂Ω

ϕτ ds = 0 (2.2.26)

because ϕτ = 0. We project the second rot-equation (2.2.7) onto the axis x3:

(rot(λ) ϕ)n − ik(ψ3 − (λ/k)α) = 0,

integrate this equality over Ω, take account of (2.2.26), and arrive at C0 = 0. Thus,

ψ3 − (λ/k)α = 0 on Ω. (2.2.27)

Let us obtain the boundary conditions for α. We use the second equation of
(2.2.14) and the first equation of (2.2.15), which in view of (2.2.24) take the form

kψ1 + λϕ2 = −i∂1α, kψ2 − λϕ1 = −i∂2α.

This and (2.2.18) lead to

i∂να = −k(ν1ψ1 + ν2ψ2)− λ(ν1 ϕ2 − ν2ϕ1) = 0 on ∂Ω. (2.2.28)

We now turn to ϕj, ψj, j = 1, 2. Consider the third components of the rot-
equations and the div-equations (2.2.7)

i(∂1ψ2 − ∂2ψ1) + i(iλ)β − kϕ3 = 0, i(∂1ϕ2 − ∂2ϕ1) + i(iλ)α + kψ3 = 0,

−i(∂1ψ1 + ∂2ψ2 + iλψ3)− kα = 0, i(∂1ϕ1 + ∂2ϕ2 + iλϕ3)− kβ = 0,

which, in accordance with (2.2.24) and (2.2.27), take the form

∂1ψ2 − ∂2ψ1 = 0, ∂1ϕ2 − ∂2ϕ1 = 0,

∂1ψ1 + ∂2ψ2 = 0, ∂1ϕ1 + ∂2ϕ2 = 0. (2.2.29)
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We assume that Ω is a 1-connected domain. According to the first and fourth
equalities of (2.2.29), there exist (one-valued) potentials H and G in Ω, such that

ϕ1 = ∂2H, ϕ2 = −∂1H

ψj = ∂jG, j = 1, 2. (2.2.30)

By virtue of the other two equalities in (2.2.29), we have

ΔH = 0, ΔG = 0 on Ω. (2.2.31)

Substituting the expressions (2.2.30) into (2.2.18), we obtain the boundary condi-
tions for H and G:

∂νH = 0, ∂νG = 0 on ∂Ω. (2.2.32)

Therefore H = const and G = const in Ω and in view of (2.2.30)

ϕ1 = ϕ2 = 0, ψ1 = ψ2 = 0 on Ω. (2.2.33)

Now we consider the case λ2 = k2 = 0. From the second equation of (2.2.14)
we obtain ∂1α = 0, while the first equation of (2.2.15) implies ∂2α = 0, that is
α = const. Moreover, according to the first equation of (2.2.14) we get ∂1ψ3 = 0,
and from the second equation of (2.2.15) we get ∂2ψ3 = 0, thus ψ3 = const. As
before, we have (2.2.33).

Summarizing the above discussion on the case k2 − λ2 = 0, we obtain the
following

Proposition 2.2.2. Let Ω be a 1-connected domain. Then the following assertions are
valid:

1. If λ2 = k2 �= 0, then λ is an eigenvalue of the pencil A(·, k). The corresponding
eigenspace is one-dimensional and spanned by the vector Φ = (ϕ, α, ψ, β) with compo-
nents

ϕ = 0, α = const �= 0, ψ1 = ψ2 = 0, ψ3 = (λ/k)α, β = 0.

The vector Φ does not belong to the domain of the pencil M(·, k), and the number λ is
not an eigenvalue of M(·, k).

2. For k = 0 the number λ = 0 is an eigenvalue of A(·, k). The corresponding
eigenspace is spanned by the vectors Φ̂ = (ϕ̂, α̂, ψ̂, β̂) and Φ̃ = (ϕ̃, α̃, ψ̃, β̃), where

ϕ̂ = 0, α̂ = const �= 0, ψ̂ = 0, β̂ = 0,

ϕ̃ = 0, α̃ = 0, ψ̃1 = ψ̃2 = 0, ψ̃3 = const �= 0, β̃ = 0.

The vector Φ̂ does not belong to the domain of M(·, k), while Φ̃ is an eigenvector of
M(·, k). Thus to the eigenvalue λ = 0 of M(·, 0) there corresponds the eigenspace
spanned by the vector Φ̃.
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2.2.2 Generalized eigenvectors

We first recall some definitions in the general theory of operator pencils (e.g. see
[13]). Let λ �→ A(λ) be an elliptic operator pencil. An ordered collection of
vectors Φ0, . . . , Φκ−1 is called a Jordan chain corresponding to an eigenvalue λ0,
if

ν

∑
q=0

1
q!

∂
q
λA(λ0)Φ

ν−q = 0, ν = 0, . . . , κ − 1.

It is clear that Φ0 is an eigenvector. The elements Φ1, . . . , Φκ−1 are called general-
ized eigenvectors and κ is the length of the chain. The rank of an eigenvector Φ0

(rank Φ0) is the maximal length of all Jordan chains, with the same eigenvector
Φ0. Any eigenvalue λ0 is isolated, and dim kerA(λ0) < ∞, and the ranks of all
eigenvectors are finite.

Let J = dim kerA(λ0) and let Φ0,1, . . . , Φ0,J be a system of vectors, such that
rank Φ0,1 is maximal among the ranks of all eigenvectors corresponding to λ0,
and rank Φ0,j, where j = 2, . . . , J, is maximal among the ranks of all eigenvectors
in a direct complement in kerA(λ0) to the linear span L(Φ0,1, . . . , Φ0,j−1). The
numbers κj = rankΦ0,j are called the partial multiplicities of the eigenvalue λ0,
and the sum κ1 + · · · + κJ is called the (total) multiplicity of λ0. If for each j =
1, . . . , J the vectors Φ0,j, Φ1,j, . . . , Φκj−1,j form a Jordan chain, then the system of
vectors {Φ0,j, Φ1,j, . . . , Φκj−1,j : j = 1, . . . , J} is called a canonical system of Jordan
chains corresponding to the eigenvalue λ0.

Generalized eigenvectors of the pencil λ �→ A(λ, k) exist only for some iso-
lated values the parameter k ∈ R. Such values are called the thresholds. In the
present thesis, we use some information about the Jordan chains to define the
scattering matrix and to prove the basic theorems for the thresholds as well. Next
we will describe the generalized eigenvectors of the elliptic pencil λ �→ A(λ, k)
given by (2.2.6). Let Φ0 = (ϕ0, α0, ψ0, β0) be an eigenvector corresponding to an
eigenvalue λ0 of the pencil A(·, k). A generalized eigenvector Φ1 is a solution to
the equation

A(λ0, k)Φ1 + ∂λA(λ0, k)Φ0 = 0. (2.2.34)

If such a solution exists, then it is determined up to adding any eigenvector cor-
responding to λ0. We set Φ1 = (ϕ1, α1, ψ1, β1) and rewrite the equation (2.2.34)
more elaborately

i rot(λ0)ψ1 + i ∇(λ0)β
1 − kϕ1 + i ∂λrot(λ0)ψ0 + i ∂λ∇(λ0)β

0 = 0,

−i div(λ0)ψ1 − kα1 − i ∂λdiv(λ0)ψ0 = 0, (2.2.35)

−i rot(λ0) ϕ1 − i ∇(λ0)α
1 − kψ1 − i ∂λrot(λ0) ϕ0 − i ∂λ∇(λ0)α

0 = 0,

i div(λ0) ϕ1 − kβ1 + i ∂λdiv(λ0) ϕ0 = 0.

Notice that

∂λrot(λ0) ϕ = (−iϕ2, iϕ1, 0),

∂λdiv(λ0) ϕ = iϕ3, (2.2.36)

∂λ∇(λ0)α = (0, 0, iα),
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where ϕ is a vector function with components (ϕ1, ϕ2, ϕ3) and α is a scalar func-
tion. As in the preceding Section, we apply rot(λ0) to the rot-equations in (2.2.35).
Taking into account (2.2.36), (2.2.7), and the second and third equations in (2.2.35),
we obtain

Δ(λ0)ψ
1 + k2ψ1 − 2λ0ψ0 = 0. (2.2.37)

In a similar way we derive

Δ(λ0)ϕ1 + k2 ϕ1 − 2λ0ϕ0 = 0. (2.2.38)

Let us turn to α1 and β1. Applying div(λ0) to the first equation in (2.2.35), we
have

i div(λ0)∇(λ0)β
1 − k div(λ0)ϕ1 + i div(λ0)∂λ∇(λ0)β

0 = 0.

In view of the fourth equation in (2.2.35) and the third equation in (2.2.36), the
last relation can be rewritten in the form

Δ(λ0)β
1 + k2β1 − 2λ0β0 = 0. (2.2.39)

In a like manner we obtain

Δ(λ0)α
1 + k2α1 − 2λ0α0 = 0. (2.2.40)

Let us write the rot-equations through their projections onto the coordinate axes.
From the resulting six equations we choose two pairs in order to form two linear
algebraic systems. In one of the system

kψ1 + λ0ϕ1
2 = −i∂2ϕ1

3 − i∂1α1 − ϕ0
2,

λ0ψ1
1 + kϕ1

2 = −i∂1ψ1
3 + i∂2β1 − ψ0

1, (2.2.41)

the role of unknowns is played by ψ1
1 and ϕ1

2. In the other system

λ0ψ1
2 − kϕ1

1 = −i∂2ψ1
3 − i∂1β1 − ψ0

2,

kψ1
2 − λ0ϕ1

1 = i∂1ϕ1
3 − i∂2α1 + ϕ0

1, (2.2.42)

we take ψ1
2 and ϕ1

1 as unknowns. Assuming that k2 − λ2
0 �= 0 and solving these

systems, we obtain on Ω the relations

ϕ1
1 = (k2 − λ2

0)
−1[iλ0(∂1ϕ1

3 − iϕ1
0) + ik(∂2ψ1

3 − iψ0
2)− iλ0∂2α1 + ik∂1β1],

ϕ1
2 = (k2 − λ2

0)
−1[iλ0(∂2ϕ1

3 − iϕ0
2)− ik(∂1ψ1

3 − iψ0
1) + iλ0∂1α1 + ik∂2β1], (2.2.43)

ψ1
1 = (k2 − λ2

0)
−1[−ik(∂2 ϕ1

3 − iϕ0
2) + iλ0(∂1ψ1

3 − iψ0
1)− ik∂1α1 − iλ0∂2β1],

ψ1
2 = (k2 − λ2

0)
−1[ik(∂1 ϕ1

3 − iϕ0
1) + iλ0(∂2ψ1

3 − iψ0
2)− ik∂2α1 + iλ0∂1β1].

Thus the components of Φ1 are expressed by (2.2.43) through ϕ1
3, ψ1

3, α1, β1. A
generalized eigenvector satisfies the same boundary conditions (2.2.1) as eigen-
vector. From this we derive boundary conditions for ϕ1

3, ψ1
3, α1, β1. Conditions

(2.2.1) are equivalent to the following system on ∂Ω:

ϕ1
3 = 0, β1 = 0, (2.2.44)

ν1ϕ1
2 − ν2ϕ1

1 = 0, ν1ψ1
1 + ν2ψ1

2 = 0. (2.2.45)
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Taking account of (2.2.43), we write (2.2.45) in the form

k[i(ν1∂2 − ν2∂1)ϕ3 + (ν1ϕ0
2 − ν2ϕ0

1) + i(ν1∂1 + ν2∂2)α
1]−

−λ0[i(ν1∂1 + ν2∂2)ψ
1
3 + (ν1ψ0

1 + ν2ψ0
2)− i(ν1∂2 − ν2∂1)β

1] = 0,

−λ0[i(ν1∂2 − ν2∂1)ϕ1
3 + (ν1ϕ0

2 − ν2ϕ0
1) + i(ν1∂1 + ν2∂2)α

1] +

+k[i(ν1∂1 + ν2∂2)ψ
1
3 + (ν1ψ0

1 + ν2ψ0
2)− i(ν1∂2 − ν2∂1)β

1] = 0.

The terms, containing components of the eigenvector, vanish due to the boundary
conditions. Recall that the case k2 − λ2

0 �= 0 is assumed. Therefore the last two
equalities lead to

(ν1∂2 − ν2∂1)ϕ1
3 + (ν1∂1 + ν2∂2)α

1 = 0,

(ν1∂1 + ν2∂2)ψ
1
3 − (ν1∂2 − ν2∂1)β

1 = 0.

Moreover, in view of (2.2.44)

(ν1∂2 − ν2∂1)ϕ1
3 = 0, (ν1∂2 − ν2∂1)β

1 = 0.

Hence on ∂Ω

∂νψ1
3 = (ν1∂1 + ν2∂2)ψ

1
3 = 0, ∂να1 = (ν1∂1 + ν2∂2)α

1 = 0. (2.2.46)

We conclude that each of the pairs (ϕ0
3, ϕ1

3), (β
0, β1) consists of an eigenvector

and a generalized eigenvector corresponding to the eigenvalue λ0 of the Dirichlet
problem for the Helmholtz equation (see (2.2.38), (2.2.44) and (2.2.39), (2.2.44)).
Each pair (ψ0

3, ψ1
3), (α

0, α1) consists of an eigenvector and a generalized vector
corresponding to the eigenvalue λ0 of the Neumann problem for the Helmholtz
equation (see (2.2.37), (2.2.46) and (2.2.40), (2.2.46)). (If λ0 is an eigenvalue of
none of the problems, then the corresponding "eigenvector" vanishes and there
is no generalized eigenvector.) Let us clarify conditions that provide generalized
eigenvectors for the Dirichlet and Neumann problems. For instance, consider the
problem

Δ(λ)X + k2X = 0 in Ω, X = 0 on ∂Ω. (2.2.47)

Let λ0 and X0 be an eigenvalue and an eigenvector of problem (2.2.47). The solv-
ability condition of the problem

Δ(λ0)X1 + k2X1 − 2λ0X0 = 0 in Ω, X1 = 0 on ∂Ω

is 2λ0(X0, X0)Ω = 0, so the Jordan chain X0, X1 exists only for λ0 = 0 (if the
number is an eigenvalue). The same is valid for the Neumann problem.

Thus the pencil λ �→ A(λ, k) given by (2.2.6) can have a generalized eigen-
vector only in the case that 0 is an eigenvalue. Assume that the condition is ful-
filled and there exists a Jordan chain Φ0, Φ1 corresponding to λ0 = 0, where
Φ0 = (ϕ0, α0, ψ0, β0) is an eigenvector. Then (2.2.16) and (2.2.43) imply that a
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generalized vector Φ1 is of the form

Φ1 =
1
k2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i k∂2ψ1
3 + i k∂1β1 + i∂1ϕ0

3 − i∂2α0

−ik∂1ψ1
3 + i k∂2β1 + i∂2ϕ0

3 + i∂1α0

k2 ϕ1
3

k2 α1

−ik∂2 ϕ1
3 − i k∂1α1 + i∂1ψ0

3 − i∂2β0

ik∂1 ϕ1
3 − i k∂2α1 + i∂2ψ0

3 + i∂1β0

k2 ψ1
3

k2 β1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.2.48)

In order to make certain, that a generalized vector exists it suffices to verify by
immediate calculation that a vector Φ1 of the form (2.2.48) turns out to be a gener-
alized eigenvector. Such a vector is determined up to adding an arbitrary eigen-
vector of the pencil A(·, k) corresponding to λ0 = 0.

A chain Φ0, Φ1 is continued by a vector Φ2 if there exists a solution Φ2 to
the equation

A(λ0, k)Φ2 + ∂λA(λ0, k)Φ1 +
1
2

∂2
λA(λ0, k)Φ0 = 0.

Since ∂2
λA(λ, k) ≡ 0, this equation takes the form

A(λ0, k)Φ2 + ∂λA(λ0, k)Φ1 = 0.

Repeating with slight modifications the argument done for the first eigenvec-
tor, we obtain that the components ϕ2

3, α2, ψ2
3, β2 of Φ2 must satisfy the boundary

value problems

Δ(λ0)ϕ2
3 + k2 ϕ2

3 − 2λ0ϕ1
3 − ϕ0

3 = 0 in Ω, ϕ2
3 = 0 on ∂Ω, (2.2.49)

Δ(λ0)α
2 + k2α2 − 2λ0α1 − α0 = 0 in Ω, ∂να2 = 0 on ∂Ω, (2.2.50)

Δ(λ0)ψ
2
3 + k2ψ2

3 − 2λ0ψ1
3 − ψ0

3 = 0 in Ω, ∂νψ2
3 = 0 on ∂Ω, (2.2.51)

Δ(λ0)β
2 + k2β2 − 2λ0β1 − β0 = 0 in Ω, β2 = 0 on ∂Ω. (2.2.52)

Since λ0 = 0, the third term of each equation above vanishes on Ω. The last
(fourth) term of these equations is an eigenfunction of the operator Δ(λ) + k2,
which corresponds to the eigenvalue λ0 and is subject to the Dirichlet boundary
condition (ϕ0

3 and β0), or the Neumann boundary condition (ψ0
3 and α0). There-

fore none of the problems (2.2.49) – (2.2.52) is solvable, so neither chain Φ0, Φ1

admits continuation and any partial multiplicity κ of λ0 = 0 equals 2. Thus we
have proved the following assertion:

Proposition 2.2.3. Let λ0 be an eigenvalue of the pencil A(·, k) with the corresponding
eigenvector (ϕ0, α0, ψ0, β0), ϕ0 = (ϕ0

1, ϕ0
2, ϕ0

3) and ψ0 = (ψ0
1, ψ0

2, ψ0
3). Assume, that

k2 − λ2
0 �= 0. Then in the case λ0 �= 0, there is no generalized eigenvector corresponding

to λ0. If λ0 = 0, then for any eigenvector there exists a generalized eigenvector Φ1
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satisfying (2.2.48) and

Δ(0)ϕ1
3 + k2ϕ1

3 = 0 in Ω, ϕ1
3 = 0 on ∂Ω, (2.2.53)

Δ(0)α1 + k2α1 = 0 in Ω, ∂να1 = 0 on ∂Ω, (2.2.54)

Δ(0)ψ1
3 + k2ψ1

3 = 0 in Ω, ∂νψ1
3 = 0 on ∂Ω, (2.2.55)

Δ(0)β1 + k2β1 = 0 in Ω, β1 = 0 on ∂Ω, (2.2.56)

with Δ(0) = ∂2
1 + ∂2

2. Any partial multiplicity of λ0 = 0 is equal to 2.

The elements ϕ1
3, α1, ψ1

3, and β1 are generalized eigenvectors related to the
eigenvectors ϕ0

3, α0, ψ0
3, and β0 respectively. The generalized eigenvectors can be

chosen up to adding the eigenvectors. In particular, we could choose all elements
ϕ1

3, α1, ψ1
3, and β1 (or some of them) to be zero (see (2.2.53) - (2.2.56)).

Let us see whether generalized eigenvectors exist under the condition k2 −
λ2

0 = 0. The formulas (2.2.37), (2.2.38), (2.2.39), and (2.2.40) take the form of

Δψ1 − 2λ0ψ0 = 0, Δϕ1 − 2λ0ϕ0 = 0, Δβ1 − 2λ0β0 = 0, Δα1 − 2λ0α0 = 0,
(2.2.57)

where Δ := Δ(0) = ∂2
1 + ∂2

2. The second and the third equalities in (2.2.57),
together with (2.2.24) and (2.2.44), mean that

ϕ1
3 = 0, β1 = 0 on Ω. (2.2.58)

Next, we consider the cases λ2
0 = k2 �= 0 and λ2

0 = k2 = 0 separately.
First, we consider the case of λ2

0 = k2 �= 0. From (2.2.41), (2.2.58), and (2.2.33),
we obtain ∂1(ψ

1
3 − (λ0/k)α1) = 0, while (2.2.42) leads to ∂2(ψ

1
3 − (λ0/k)α1) = 0.

That is
ψ1

3 − (λ0/k)α1 = C0 = const.

Repeating the arguments in (2.2.26), we have∫
Ω
(rot(λ0) ϕ1)n dx1dx2 = 0. (2.2.59)

We project the second rot-equation (2.2.35) onto the axis x3, make use of

(−i∂λrot(λ0)ϕ0)n = 0,

and obtain
(rot(λ0) ϕ1)n − ik(ψ1

3 − (λ0/k)α1) = 0.

We now integrate the equality over Ω, taking into account (2.2.59), and conclude
that C0 = 0. Thus,

ψ1
3 − (λ0/k)α1 = 0 on Ω. (2.2.60)

Let us consider the third components of the rot-equations and the div-equations
in (2.2.35)

i(∂1ψ1
2 − ∂2ψ1

1) + i(iλ0)β
1 − kϕ3 − β0 = 0,

i(∂1ϕ1
2 − ∂2ϕ1

1) + i(iλ0)α
1 + kψ1

3 − α0 = 0,

−i(∂1ψ1
1 + ∂2ψ1

2 + iλ0ψ1
3)− kα1 + ψ0

3 = 0,

i(∂1 ϕ1
1 + ∂2ϕ1

2 + iλ0ϕ1
3)− kβ1 − ϕ0

3 = 0,
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which according to (2.2.24), (2.2.58), and (2.2.60) take the form

∂1ψ1
2 − ∂2ψ1

1 = 0, ∂1ϕ1
2 − ∂2ϕ1

1 + iα0 = 0,

∂1ψ1
1 + ∂2ψ1

2 + iψ0
3 = 0, ∂1ϕ1

1 + ∂2ϕ1
2 = 0. (2.2.61)

As before, we assume the domain Ω to be one-connected. According to the first
and the forth equations in (2.2.61), there exist (one-valued) potentials H1 and G1

in Ω, such that

ϕ1 = ∂2H1, ϕ2 = −∂1H1

ψj = ∂jG
1, j = 1, 2. (2.2.62)

In view of the rest two equalities (2.2.61), we have

ΔH1 = iα0, ΔG1 = −iψ0
3 on Ω. (2.2.63)

Substitute (2.2.62) into (2.2.45), which gives us the boundary conditions for the
potentials H1 and G1:

∂νH1 = 0, ∂νG1 = 0 on ∂Ω. (2.2.64)

The solvability of problems (2.2.63) and(2.2.64) necessitates the equalities

(ψ0
3, 1) = 0, (α0, 1) = 0,

which means that ψ0
3 = 0, α0 = 0 since ψ0

3 = const and α0 = const. Therefore,
assuming the existence of a generalized eigenvector, we obtain a contradiction
because an eigenvector cannot be zero.

Now we consider the case of λ2
0 = k2 = 0. As before, we have (2.2.61),(2.2.63),

and (2.2.64). Hence the assumption of a generalized eigenvector existence again
leads to contradiction. We arrive at the following proposition:

Proposition 2.2.4. Let Ω be a one-connected domain and λ0 an eigenvalue of the pencil
(2.2.6), with λ2

0 = k2. Then there is no generalized eigenvector corresponding to λ0.

2.2.3 Canonical systems of Jordan chains

Let λ0 be an eigenvalue of the pencil λ �→ A(λ, k). Next, we construct canonical
systems of Jordan chains in the cases k2 = λ0 and k2 �= λ2

0 separately. 1o. First, we
consider the case k2 − λ2

0 �= 0.
Let JD = JD(λ0) (JN = JN (λ0)) denote the dimension of the kernel of the

Dirichlet problem (Neumann problem) for the operator Δ(λ0) + k2 in Ω. Let

A1, . . . , AJN ; B1, . . . , BJD ; Φ1, . . . , ΦJD ; Ψ1, . . . , ΨJN (2.2.65)

be the basis for kerA(λ0, k). We write every vector in (2.2.65) as (ϕj, αj, ψj, βj),
where ϕj = (ϕ

j
1, ϕ

j
2, ϕ

j
3) and ψj = (ψ

j
1, ψ

j
2, ψ

j
3), and define the vector components

for the vectors of the four collections {Aj}, {Bj}, {Φj}, and {Ψj}.
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For Aj, we choose αj, such that {α1, . . . , αJN } form a basis for the kernel of
the Neumann problem for the operator Δ(λ0) + k2. We set ϕ

j
3 = ψ

j
3 = βj = 0 and

define ϕ
j
1, ϕ

j
2, ψ

j
1, ψ

j
2 according to (2.2.16), and substituting ϕ

j
3 to ϕ3, etc. Then Aj

satisfies

Aj = (k2 − λ2
0)

−1(−iλ0∂2αj, iλ0∂1αj, 0, (k2 − λ2
0)α

j, −ik∂1αj, −ik∂2αj, 0, 0).
(2.2.66)

By Proposition 2.2.1, the vectors Aj are linearly independent in kerA(λ0, k).
The components β1, . . . , βJD of the vectors B1, . . . , BJD form a basis of the

kernel of the Dirichlet problem for the operator Δ(λ0) + k2. Besides, ϕ
j
3 = ψ

j
3 =

αj = 0, and define ϕ
j
1, ϕ

j
2, ψ

j
1, and ψ

j
2 according to (2.2.16), with the new ϕ3 = ϕ

j
3,

etc. Then

Bj = (k2 − λ2
0)

−1(ik∂1βj, ik∂2βj, 0, 0, −iλ0∂2βj, iλ0∂1βj, 0, (k2 − λ2
0)β

j). (2.2.67)

By Proposition 2.2.1, the vectors Bj are linearly independent in kerA(λ0, k).
We now define the vectors Φj. Choose ϕ

j
3, such that ϕ1

3, . . . , ϕJD
3 form a basis

of the kernel of the Dirichlet problem, set ψ
j
3 = αj = βj = 0, and define ϕ

j
1, ϕ

j
2, ψ

j
1,

and ψ
j
2 according to (2.2.16) where ϕ3 = ϕ

j
3, etc., are adjusted again. We have

Φj = (k2 − λ2
0)

−1(iλ0∂1ϕ
j
3, iλ0∂2ϕ

j
3, (k2 − λ2

0)ϕ
j
3, 0, −ik∂2 ϕ

j
3, ik∂1 ϕ

j
3, 0, 0).

(2.2.68)
Finally, we describe the vectors Ψj. We choose ψ

j
3, such that ψ1

3, . . . , ψJN
3 form a

basis for the kernel of the Neumann problem, set ϕ
j
3 = αj = βj = 0 and then

define the rest components according to (2.2.16). As a result, we obtain

Ψj = (k2 − λ2
0)

−1(ik∂2ψ
j
3, −ik∂1ψ

j
3, 0, 0, iλ0∂1ψ

j
3, iλ0∂2ψ

j
3, (k2 − λ2

0)ψ
j
3, 0).

(2.2.69)
Proposition 2.2.1 and the definition of the vectors (2.2.65) lead to

Proposition 2.2.5. Let λ0 be an eigenvalue of the pencil A(·, k), with λ0 �= 0 and k2 −
λ2

0 �= 0. Then the vectors (2.2.65) form a basis for kerA(λ0, k). There are no generalized
eigenvectors. The vectors Φ1, . . . , ΦJD , Ψ1, . . . , ΨJN form a basis for kerM(λ0, k), where
M is the Maxwell pencil.

Assume now, that λ0 = 0 is an eigenvalue of the pencil A(·, k). The vec-
tors (2.2.65), defined by the equalities (2.2.66)-(2.2.69) for λ0 = 0, form a basis for
kerA(0, k). We denote these vectors by A0,j, . . . , Ψ0,j (instead of Aj, . . . , Ψj). Ac-
cording to Proposition 2.2.3, to construct a canonical system of Jordan chains, it
suffices to indicate a generalized eigenvector A1,j, . . . , Ψ1,j for every vector A0,j, ...,
Ψ0,j. Each generalized eigenvector will be written in the form of (2.2.48), with
ϕ

1,j
3 , α1,j, ψ

1,j
3 , β1,j instead of ϕ1

3, α1, ψ1
3, β1, and with ϕ

0,j
3 , α0,j, ψ

0,j
3 , β0,j instead of

ϕ0
3, α0, ψ0

3, β0. Let us define new notations for the four collections of the vectors
{A1,j}, {B1,j}, {Φ1,j}, {Ψ1,j}. We write the eigenvectors A0,j, . . . , Ψ0,j, into the
form of (ϕ0,j, α0,j, ψ0,j, β0,j); it is always clear from the context which vector is
meant.
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We will start with the vectors of the collection A1,j. Recall that the com-
ponent α0,j of A0,j is an eigenvector of the Neumann problem for the operator
Δ(0) + k2 in the domain Ω. As for α1,j, we take a generalized eigenvector ad-
joined to α0,j. Set ϕ

1,j
3 = ψ

1,j
3 = β1,j = 0 and define A1,j according to (2.2.48).

The generalized eigenvectors B1,j, Φ1,j, Ψ1,j are defined with the evident modifi-
cations.

As a result, we obtain the four collections of Jordan chains, each consisting
of two elements:

A0,j, A1,j; B0,j, B1,j; Φ0,j, Φ1,j; Ψ0,j, Ψ1,j (2.2.70)

with

A0,j = k−2(0, 0, 0, k2α0,j, −ik∂1α0,j, −ik∂2α0,j, 0, 0),

A1,j = k−2(−i∂2α0,j, i∂1α0,j, 0, k2α1,j, −ik∂1α1,j, −ik∂2α1,j, 0, 0), (2.2.71)

where j = 1, . . . , JN (0);

B0,j = k−2(ik∂1β0,j, ik∂2β0,j, 0, 0, 0, 0, 0, k2β0,j),

B1,j = k−2(ik∂1β1,j, ik∂2β1,j, 0, 0, −i∂2β0,j, i∂1β0,j, 0, k2β1,j), (2.2.72)

where j = 1, . . . , JD(0);

Φ0,j = k−2(0, 0, k2 ϕ
0,j
3 , 0, −ik∂2 ϕ

0,j
3 , ik∂1ϕ

0,j
3 , 0, 0),

Φ1,j = k−2(i∂1 ϕ
0,j
3 , i∂2ϕ

0,j
3 , k2 ϕ

1,j
3 , 0, −ik∂2 ϕ

1,j
3 , ik∂1 ϕ

1,j
3 , 0, 0), (2.2.73)

where j = 1, . . . , JD(0);

Ψ0,j = k−2(ik∂2ψ
0,j
3 , −ik∂1ψ

0,j
3 , 0, 0, 0, 0, k2ψ

0,j
3 , 0),

Ψ1,j = k−2(ik∂2ψ
1,j
3 , −ik∂1ψ

1,j
3 , 0, 0, i∂1ψ

0,j
3 , i∂2ψ

0,j
3 , k2ψ

1,j
3 , 0), (2.2.74)

where j = 1, . . . , JN (0).

Proposition 2.2.6. Assume that k2 �= 0 and λ0 = 0 is an eigenvalue of the pencil
λ �→ A(λ, k). Then the chains (2.2.70), defined by (2.2.71)–(2.2.74) form a canonical
system of Jordan chains of A, corresponding to the eigenvalue λ0 = 0. The chains (2.2.73)
and (2.2.74) belong to the domain of the Maxwell pencil M(0, k), while the chains (2.2.71)
and (2.2.72) do not.

2.2.4 Special choice of Jordan chains

We use freedom in choosing Jordan chains to form a canonical system of chains
subject to some orthogonality and normalization conditions. For the statement of
problem with radiation conditions and for the definition of the scattering matrix
it suffices to consider only the real eigenvalues of the pencil A(·, k). Therefore in
this Section we discuss Jordan chains with real eigenvalues λ0.
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2.2.4.1 The case of λ0 �= 0

Let λ0 be an eigenvalue of A(·, k), such that λ0 ∈ R \ 0 and k2 − λ2
0 �= 0; then

λ2
0 < k2. Denote by α1, . . . , αJN (β1, . . . , βJD ) an orthogonal basis for the kernel of

the Neumann (Dirichlet) problem for the operator Δ(λ0) + k2. We assume, that

‖αζ ; L2(Ω)‖ = ‖βτ ; L2(Ω)‖ = |2kλ0|−1/2. (2.2.75)

We also assume, that the bases ψ1
3, . . . , ψJN

3 and ϕ1
3, . . . , ϕJD

3 in (2.2.69) and (2.2.68)
coincide, respectively, with the previously defined orthogonal bases α1, . . . , αJN

and β1, . . . , βJD . Let us define

Ψζ = (k2 − λ2
0)

−1/2(ik∂2αζ , −ik∂1αζ , 0, 0, iλ0∂1αζ , iλ0∂2αζ , (k2 − λ2
0)α

ζ , 0),

Aζ = (0, 0, 0, kαζ , −i∂1αζ , −i∂2αζ , λ0αζ , 0), (2.2.76)

and set

Φτ = (k2 − λ2
0)

−1/2(iλ0∂1βτ , iλ0∂2βτ , (k2 − λ2
0)β

τ , 0, −ik∂2βτ , ik∂1βτ , 0, 0),

Bτ = (i∂1βτ , i∂2βτ , −λ0βτ , 0, 0, 0, 0, kβτ). (2.2.77)

Define A
′ := ∂λA(λ, k). From (2.2.6) and (2.2.36), it follows that

A
′Φ = (ψ2,−ψ1,−β, ψ3,−ϕ2, ϕ1, α1,−ϕ3) (2.2.78)

for any λ and for every vector Φ = (ϕ, α, ψ, β), where ϕ = (ϕ1, ϕ2, ϕ3) and ψ =
(ψ1, ψ2, ψ3). In particular, the matrix A′ is symmetric and independent of λ and k.

Proposition 2.2.7. Let λ0 be an eigenvalue of the pencil A(·, k), such that λ0 ∈ R \ 0
and k2 − λ2

0 �= 0. Then the eigenvectors (2.2.76) and (2.2.77) satisfy the orthogonality
and normalization conditions

(A′Aτ, Aζ) = (A′Ψτ , Ψζ) = sgn(kλ0)δτ, ζ , τ, ζ = 1, . . . JN ,

(A′Bτ , Bζ) = (A′Φτ , Φζ) = sgn(kλ0)δτ, ζ , τ, ζ = 1, . . . JD. (2.2.79)

Moreover, for all τ and ζ

(A′Pτ , Rζ) = 0, (2.2.80)

where one may change P and R for any of the letters A, B, Φ, Ψ to obtain a pair of two
distinct letters. In other words, the left-hand-side of (2.2.80), obtained in such a manner,
must differ from those in (2.2.79).

Proof. To explain the definitions (2.2.76) and (2.2.77), we return to (2.2.66)–(2.2.69).
To avoid misunderstanding, the vectors Aj, Bj, Φj and Ψj in these formulas we
will temporarily denote by Ãj, B̃j, Φ̃j and Ψ̃j. The corresponding bases {αj}, {βj},
{ϕ

j
3} and {ψ

j
3} we assume to be orthogonal and, for the time being, introduce no

other requirements. We first take up the eigenvectors

Ãτ = (k2 − λ2
0)

−1(−iλ0∂2ατ, +iλ0∂1ατ, 0, (k2 − λ2
0)α

τ , −ik∂1ατ, −ik∂2ατ , 0, 0),

Ψ̃τ = (k2 − λ2
0)

−1(ik∂2ψτ
3 , −ik∂1ψτ

3 , 0, 0, iλ0∂1ψτ
3 , iλ0∂2ψτ

3 , (k2 − λ2
0)ψ

τ
3 , 0).

(2.2.81)
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A straightforward calculation (using (2.2.78) and integration by parts) leads to

(A′ Ãτ, Ãζ) = 2kλ0(α
τ , αζ)/(k2 − λ2

0),

(A′Ψ̃τ , Ψ̃ζ) = 2kλ0(ψ
τ
3 , ψ

ζ
3)/(k

2 − λ2
0), (2.2.82)

(A′ Ãτ, Ψ̃ζ) = −2λ2
0(α

τ , ψ
ζ
3)/(k

2 − λ2
0),

where τ, ζ = 1, . . . , JN . Moreover,

(A′ Ãτ , B̃ζ) = (A′ Ãτ, Φ̃ζ) = (A′B̃ζ , Ψ̃τ) = (A′Φ̃ζ , Ψ̃τ) = 0 (2.2.83)

for all ζ and τ. We now assume, that the bases α1, . . . , αJN and ψ1
3, . . . , ψJN

3 coincide
and satisfy the normalization condition (2.2.75). Now define Ăτ = (k2 −λ2

0)
1/2 Ãτ

and Ψ̆ζ = (k2 − λ2
0)

1/2Ψ̃ζ . Then (2.2.82) takes the form

(A′ Ăτ, Ăζ) = sgn(kλ0)δτ, ζ ,

(A′Ψ̆τ , Ψ̆ζ) = sgn(kλ0)δτ, ζ , (2.2.84)

(A′ Ăτ, Ψ̆ζ) = −|λ0/k| δτ, ζ .

The formulas for τ = ζ in the third line of (2.2.84) do not correspond to (2.2.80)
and have to be recast. We set Âτ = Ăτ + (λ0/k)Ψ̆τ and obtain

(A′ Âτ , Ψ̆τ) = (A′ Ăτ, Ψ̆τ) +
λ0

k
(A′Ψ̆τ, Ψ̆τ) = −

∣∣∣∣λ0

k

∣∣∣∣+ ∣∣∣∣λ0

k

∣∣∣∣ = 0. (2.2.85)

From (2.2.81) and the equalities ατ = ψτ
3 , it follows that

Âτ =
(k2 − λ2

0)
1/2

k
(0, 0, 0, kατ , −i∂1ατ, −i∂2ατ, λ0ατ, 0). (2.2.86)

In view of (2.2.84),

(A′ Âτ, Âτ) = (A′(Ăτ + (λ0/k)Ψ̆τ), Ăτ + (λ0/k)Ψ̆τ) =

= (A′ Ăτ , Ăτ) + 2
λ0

k
(A′ Ăτ, Ψ̆τ) +

λ2
0

k2 (A
′Ψ̆τ , Ψ̆τ)) =

k2 − λ2
0

k2 sgn(kλ0).

Let us define Aτ as

Aτ := k(k2 − λ2
0)

−1/2Âτ = (0, 0, 0, kατ , −i∂1ατ, −i∂2ατ, λ0ατ, 0)

and set Ψτ := Ψ̆τ; such Aτ and Ψτ coincide with those in the formulation of
Proposition 2.2.7. From the above argument it follows, that

(A′Aτ , Aτ) = sgn(kλ0), (A′Aτ , Ψτ) = 0.

Thus we have obtained (2.2.79) and, moreover, (2.2.83) with Aτ and Ψζ instead
of Ãτ and Ψ̃ζ . The further transformation (going from B̃, Φ̃ to B, Φ) does not
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involve Aτ and Ψζ and does not "spoil" the formulas (2.2.83). We now consider
the eigenvectors

B̃τ = (k2 − λ2
0)

−1(ik∂1βτ , ik∂2βτ , 0, 0, −iλ0∂2βτ , iλ0∂1βτ , 0, (k2 − λ2
0)β

τ),

Φ̃ζ = (k2 − λ2
0)

−1(iλ0∂1ϕ
ζ
3, iλ0∂2ϕ

ζ
3, (k2 − λ2

0)ϕ
ζ
3, 0, −ik∂2 ϕ

ζ
3, ik∂1 ϕ

ζ
3, 0, 0),

(2.2.87)

where τ, ζ = 1, . . . , JD (see (2.2.67 and (2.2.68)). We have

(A′ B̃τ, B̃ζ) = 2kλ0(β
τ , βζ)/(k2 − λ2

0),

(A′Φ̃τ , Φ̃ζ) = 2kλ0(ϕτ
3 , ϕ

ζ
3)/(k

2 − λ2
0), (2.2.88)

(A′ B̃τ, Φ̃ζ) = 2λ2
0(β

τ , ϕ
ζ
3)/(k

2 − λ2
0).

Let us assume that the bases {ϕτ
3} and {βτ} coincide and satisfy (2.2.75). Define

the vectors Φ̆τ = (k2 − λ2
0)

1/2Φ̃τ and B̆ζ = (k2 − λ2
0)

1/2B̃ζ . Then (2.2.88) takes the
form of

(A′ B̆τ, B̆ζ) = sgn(kλ0)δτ, ζ ,

(A′Φ̆τ , Φ̆ζ) = sgn(kλ0)δτ, ζ , (2.2.89)

(A′ B̆τ, Φ̆ζ) = |λ0/k|δτ, ζ .

We set B̂τ := B̆τ − (λ0/k)Φ̆τ . Then (A′ B̂τ, Φ̆τ) = 0 and

B̂τ = (k2 − λ2
0)

1/2/k(i∂1βτ , i∂2βτ , −λ0βτ , 0, 0, 0, 0, kβτ).

From (2.2.89), we get

(A′B̂τ , B̂τ) =
(k2 − λ2

0)

k2 sgn(kλ0).

Define Bτ := k(k2 − λ2
0)

−1/2B̂τ and Φτ := Φ̆τ . Taking into account ϕτ
3 = βτ in

(2.2.87), we obtain

Bτ = (i∂1βτ , i∂2βτ , −λ0βτ , 0, 0, 0, 0, kβτ),

Φτ = (k2 − λ2
0)

−1/2(iλ0∂1βτ , iλ0∂2βτ , (k2 − λ2
0)β

τ , 0, −ik∂2βτ , ik∂1βτ , 0, 0),

with (A′Bτ, Bτ) = sgn(kλ0) and (A′Bτ , Φτ) = 0. �

Proposition 2.2.8. Let Ω be a one-connected domain and λ2 = k2 �= 0. Then λ is an
eigenvalue of the pencil A(·, k). To this eigenvalue, there corresponds a one dimensional
eigenspace, spanned by the vector A = k(ϕ, α, ψ, β), where ϕ = 0, α = const �= 0,
ψ1 = ψ2 = 0, ψ3 = (λ/k)α, and β = 0. The vector A, normalized by 2|λk||α|2 |Ω| =
1, |Ω| being the measure of Ω, satisfies

(A′A, A) = sgn(λk). (2.2.90)

Proof. It suffices to apply Proposition 2.2.2 and take into account (2.2.78). �

Remark 2.2.9. The formula (2.2.76) holds for the vector A in the case of λ2 = k2 �= 0 as
well, however the vectors B, Φ, and Ψ do not exist in the case.
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2.2.4.2 The case of λ0 = 0

We now assume, that λ0 = 0 is an eigenvalue of the pencil A(·, k) and k2 − λ2
0 �=

0. Let α0,1, . . . , α0,JN (β0,1, . . . , β0,JD ) be an orthogonal basis for the kernel of the
Neumann (Dirichlet) problem for the operator Δ+ k2, where Δ := Δ(0) = ∂2

1 + ∂2
2.

The vectors of the bases are normalized by the conditions

‖α0,ζ ; L2(Ω)‖ = ‖β0,τ ; L2(Ω)‖ = |k|−1/2. (2.2.91)

Let the bases ψ0,1
3 , . . . , ψ0,JN

3 and ϕ0,1
3 , . . . , ϕ0,JD

3 coincide respectively with the bases
α0,1, . . . , α0,JN and β0,1, . . . , β0,JD . Moreover, assume that

α1,ζ = ψ
1,ζ
3 = β1,τ = ϕ1,τ

3 = 0, τ = 1, . . . JD, ζ = 1, . . . JN. (2.2.92)

We set

A0,j = (0, 0, 0, kα0,j, −i∂1α0,j, −i∂2α0,j, 0, 0),

A1,j = (0, 0, 0, 0, 0, 0, α0,j, 0), (2.2.93)

where j = 1, . . . , JN (0);

B0,j = (i∂1β0,j, i∂2β0,j, 0, 0, 0, 0, 0, kβ0,j),

B1,j = (0, 0, −β0,j, 0, 0, 0, 0, 0), (2.2.94)

where j = 1, . . . , JD(0);

Φ0,j = (0, 0, kϕ
0,j
3 , 0, −i∂2ϕ

0,j
3 , i∂1ϕ

0,j
3 , 0, 0),

Φ1,j = k−1(i∂1ϕ
0,j
3 , i∂2ϕ

0,j
3 , 0, 0, 0, 0, 0, 0), (2.2.95)

where j = 1, . . . , JD(0);

Ψ0,j = (i∂2ψ
0,j
3 , −i∂1ψ

0,j
3 , 0, 0, 0, 0, kψ

0,j
3 , 0),

Ψ1,j = k−1(0, 0, 0, 0, i∂1ψ
0,j
3 , i∂2ψ

0,j
3 , 0, 0), (2.2.96)

where j = 1, . . . , JN (0).

Proposition 2.2.10. Let λ0 = 0 be an eigenvalue of the pencil A(·, k). Then the Jordan
chains (2.2.93)-(2.2.96) satisfy the orthogonality and normalization conditions

(A′Ai,τ, Aj,ζ) = (A′Ψi,τ, Ψj,ζ) = sgn(k)δτ, ζδi, 1−j, τ, ζ = 1, . . . JN ,

(A′Bi,τ, Bj,ζ) = (A′Φi,τ, Φj,ζ) = sgn(k)δτ, ζδi, 1−j, τ, ζ = 1, . . . JD, (2.2.97)

for any i, j = 0, 1. Moreover, for all τ, ζ and i, j = 0, 1 there holds the equality

(A′Pi,τ, Rj,ζ) = 0, (2.2.98)

where one can change P and R for any of A, B, Φ, and Ψ to obtain a pair consisting of
two distinct letters.
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Proof. We temporarily denote the vectors Ai,ζ , Bi,τ, Φi,τ, and Ψi,ζ in (2.2.71)-
(2.2.74) by Ãi,ζ , B̃i,τ, Φ̃i,τ, and Ψ̃i,ζ , and assume the corresponding bases {α0,ζ},
{β0,τ}, {ϕ0,τ

3 }, and {ψ
0,ζ
3 } to be orthogonal. The generalized eigenvectors {α1,ζ},

{β1,τ}, {ϕ1,τ
3 }, and {ψ

1,ζ
3 } are for the time being arbitrary. Now we have

(A′ Ãi,τ, B̃j,ζ) = (A′ Ãi,τ, Φ̃j,ζ) = (A′B̃j,ζ , Ψ̃i,τ) = (A′Φ̃j,ζ , Ψ̃i,τ) = 0 (2.2.99)

for all τ, ζ with i, j = 0, 1. Therefore, we can discuss the orthogonality (2.2.98) and
normalization (2.2.97) conditions independently for the collections {Ãi,τ}, {Ψ̃i,τ}
and {B̃j,ζ}, {Φ̃j,ζ}. Let us begin with A and Ψ. A straightforward calculation
leads to

(A′Ψ̃0,τ , Ψ̃0,ζ) = 0,

(A′Ψ̃1,τ , Ψ̃0,ζ) = (A′Ψ̃0,τ, Ψ̃1,ζ) = (1/k)(ψ0,τ , ψ0,ζ), τ, ζ = 1, . . . JN, (2.2.100)

(A′Ψ̃1,τ , Ψ̃1,ζ) = (1/k)[(ψ0,τ , ψ1,ζ) + (ψ1,τ , ψ0,ζ)],

(A′ Ã0,τ , Ψ̃0,ζ) = 0,

(A′ Ã1,τ , Ψ̃0,ζ) = (A′ Ã0,τ, Ψ̃1,ζ) = 0, τ, ζ = 1, . . . JN, (2.2.101)

(A′ Ã1,τ , Ψ̃1,ζ) = (−1/k2)(α0,τ , ψ0,ζ),

(A′ Ã0,τ , Ã0,ζ) = 0,

(A′ Ã1,τ , Ã0,ζ) = (A′ Ã0,τ, Ã1,ζ) = (1/k)(α0,τ , α0,ζ), τ, ζ = 1, . . . JN , (2.2.102)

(A′ Ã1,τ , Ã1,ζ) = (1/k)[(α0,τ , α1,ζ) + (α1,τ , α0,ζ)].

We now require that the bases α0,1, . . . , α0,JN and ψ0,1, . . . , ψ0,JN coincide and are
normalized by (2.2.91). We choose the generalized eigenvectors to be zero: α1,ζ =
ψ1,ζ = 0 for ζ = 1, . . . JN (see the paragraph after the formulation of Proposition
2.2.3). As in the case of λ0 �= 0, define the vectors Ăτ = kÃτ and Ψ̆ζ = kΨ̃ζ . Then
(2.2.100) and (2.2.101) take the form

(A′Ψ̆0,τ , Ψ̆0,ζ) = 0,

(A′Ψ̆1,τ , Ψ̆0,ζ) = (A′Ψ̆0,τ, Ψ̆1,ζ) = sgn(k)δτ,ζ , τ, ζ = 1, . . . JN, (2.2.103)

(A′Ψ̆1,τ , Ψ̆1,ζ) = 0,

(A′ Ă0,τ , Ψ̆0,ζ) = 0,

(A′ Ă1,τ , Ψ̆0,ζ) = (A′ Ă0,τ, Ψ̆1,ζ) = 0, τ, ζ = 1, . . . JN. (2.2.104)

(A′ Ă1,τ , Ψ̆1,ζ) = (−1/|k|)δτ,ζ ,

The third equality in (2.2.104) for τ = ζ contradicts the orthogonality condition
(2.2.98) and has to be modified. Set Â0,τ = Ă0,τ and Â1,τ = Ă1,τ + 1/kΨ̆0,τ and
obtain

(A′ Â0,τ , Ψ̆0,ζ) = 0,

(A′ Â1,τ , Ψ̆0,ζ) = (A′ Â0,τ, Ψ̆1,ζ) = 0, τ, ζ = 1, . . . JN, (2.2.105)

(A′ Â1,τ , Ψ̆1,ζ) = 0.
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The vectors Â0,τ, Â1,τ satisfy the conditions (2.2.97):

(A′ Â0,τ , Â0,ζ) = 0,

(A′ Â1,τ , Â0,ζ) = (A′ Â0,τ, Â1,ζ) = sgn(k)δτ,ζ , τ, ζ = 1, . . . JN,

(A′ Â1,τ , Â1,ζ) = 0.

For Ψj,ζ = Ψ̆j,ζ and Ai,τ = Âi,τ the relations (2.2.93),(2.2.96) and (2.2.97),(2.2.98)
hold. The derivation of (2.2.94),(2.2.95) for the chains B and Φ do not involve the
chains A and Ψ. �

2.3 Waves

In the Sections 2.3-2.5 we specify for the problem (2.1.9) the results, established
by Nazarov et al. [25] for the general elliptic problems self-adjoint with respect
to a Green formula. To this end, we use the knowledge of the pencil λ �→ A(λ, k),
obtained in Section 2.2. We introduce the space of waves, describe the continu-
ous spectrum eigenfunctions, define the unitary scattering matrix, and present a
well-posed problem for the augmented Maxwell system with intrinsic radiation
conditions.

First we briefly summarize Section 2.2. Let us consider the problem (2.1.9)
taking as domain G the cylinder

Π = {x = (x1, x2, x3) ∈ R
3 : (x1, x2) ∈ Ω, x3 ∈ R},

where Ω is a one-connected domain with smooth boundary ∂Ω. Assume the pa-
rameter k to be real. Let C 
 λ �→ A(λ, k) be the operator pencil (2.2.6) with
domain DHl(Ω) (see (2.2.5)). From Section 2.2, it follows that for every k ∈ R

there exist real eigenvalues of the pencil A(·, k). They are symmetric about the
origin; the collections of the partial multiplicities of symmetric eigenvalues coin-
cide. The nonzero eigenvalues have no generalized eigenvectors. The number 0
is an eigenvalue of the pencil A(·, k) if and only if k2 is an eigenvalue for at least
one of the boundary value problems

(∂2
1 + ∂2

2)u(x) + k2u(x) = 0, x ∈ Ω, u(x) = 0, x ∈ ∂Ω;

(∂2
1 + ∂2

2)u(x) + k2u(x) = 0, x ∈ Ω, ∂νu(x) = 0, x ∈ ∂Ω. (2.3.1)

If in addition k �= 0, then every partial multiplicity of the eigenvalue 0 is equal to
2. If k = 0, then to the eigenvalue 0 there correspond two linearly independent
eigenvectors of the pencil A(·, 0), while the generalized eigenvectors do not exist.
Thus for each k, the sum of the total multiplicities of all real eigenvalues of the
pencil λ �→ A(λ, k) turns out to be even.

A value k is called a threshold of the pencil A, if k2 is an eigenvalue for at
least one of the problems in (2.3.1). (The first threshold on the semiaxis 0 < k < ∞

is
√

μ2 because μ2 < λ1, where μ2 (λ1) is the second (first) eigenvalue of the Neu-
mann (Dirichlet) problem, see [11] and references there.) Denote by ΣA(k) and
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ΣM(k) the sum of the total multiplicities of all real eigenvalues of the pencils
A(·, k) and M(·, k), respectively. Both functions ΣA and ΣM are even. On the
semiaxis 0 < k < ∞, each of these functions is constant on any open interval
whose ends coincide with neighboring thresholds and step-wise increases at ev-
ery threshold being continuous from the right. There hold the equalities

ΣA(k) = 2 for k ∈ (−√
μ2,

√
μ2), (2.3.2)

ΣM(k) = 0 for k ∈ (−√
μ2,

√
μ2) \ 0, ΣM(0) = 1. (2.3.3)

We first suppose, that a (fixed) number k is not a threshold. Then all eigenvalues
of the pencil A(·, k) are nonzero, the generalized eigenvectors do not exist, and
the chosen bases of eigenvectors are described by Proposition 2.2.7. Denote by P
any vector of such a basis corresponding to an eigenvalue λ0 and introduce the
vector function

Π 
 x �→ P(x) := exp (iλ0x3)P(x1, x2). (2.3.4)

The function P satisfies the problem (2.1.9) in the cylinder Π. Let R be a function
of the same type with any basis vector R in Proposition 2.2.7, that corresponds
possibly to another eigenvalue λ1. Let also χ be a smooth cut-off function, χ ≥ 0,
χ(t) = 0 for t ≤ T − 1 and χ(t) = 1 for t ≥ T. We introduce the bilinear form

qN(χP , χR) := (A(D)χP , χR)Π(N) − (χP ,A(D)χR)Π(N) , (2.3.5)

where Π(N) = {x = (x1, x2, x3) ∈ Π : x3 < N}, while T < N. We have

A(D)(χP) = χA(D)P + [A(D), χ]P = [A(D), χ]P ,

where [A(D), χ] = A(D)χ − χA(D). Therefore the first inner product on the
right remains constant when N is increasing; owing to a similar reason, the sec-
ond product remains constant as well. Hence we can define the form

q(χP , χR) := (A(D)χP , χR)Π − (χP ,A(D)χR)Π . (2.3.6)

Proposition 2.3.1. Assume, that k is not a threshold and let λ0 and λ1 be eigenvalues of
the pencil A(·, k) (the equality λ0 = λ1 is not ruled out). We also assume that

P(x) = exp (iλ0x3)P(x1, x2), R(x) = exp (iλ1x3)R(x1, x2),

where P is a vector in the list (2.2.76), (2.2.77) corresponding to λ0, and R is a vector in
such a list corresponding to λ1. Then

q(χP , χP) = −i sgn (kλ0); q(χR, χR) = −i sgn (kλ1); (2.3.7)

q(χP , χR) = 0 for P �= R. (2.3.8)

Proof. We write down the operator A in the form

A(D1, D2, D3) = A(D1, D2, 0) +A′D3, (2.3.9)



45

where A′ is a numerical matrix and integrate by parts the first term on the right in
(2.3.5). Since the operator of problem (2.1.9) is formally self-adjoint (Proposition
2.1.3), we obtain

qN(χP , χR) = −i exp (i(λ0 − λ1)N)(A′P, R)Ω.

As before, we have qN(χP , χR) = q(χP , χR). On the other hand, from (2.2.2) it
follows that A′ = A′, so

q(χP , χR) = −i exp (i(λ0 − λ1)N)(A′P, R)Ω. (2.3.10)

If the eigenvectors P and R of the pencil A(·, k) correspond to the same eigen-
value, then (2.3.10) and Proposition 2.2.7 provide the equalities (2.3.7). In the case
of λ0 �= λ1, the right-hand-side in (2.3.10) is independent of N only if (A′P, R)Ω =
0, whereas the left-hand-side is always independent of N. Therefore, the equal-
ity (A′P, R)Ω = 0 holds for all eigenvectors P and R corresponding to distinct
eigenvalues of A(·, k), so by virtue of (2.3.10), the equality (2.3.8) holds as well. �

We now suppose that k is a threshold and k �= 0 . The case in which k =
0 is special and we will discuss it separately in Section 4.5. Then all nonzero
eigenvalues of A(·, k) are simple and the corresponding vector functions P are
constructed as in the non-threshold case (see (2.3.4)). The Jordan chains for λ0 = 0
are described by Proposition 2.2.10. Let {P0, P1} be such a chain. Introduce the
vector functions

Π 
 (x1, x2, x3) �→ P±(x1, x2, x3) :=
(ix3 ± 1)P0(x1, x2) + P1(x1, x2)√

2
. (2.3.11)

Proposition 2.3.2. The functions P± satisfy the problem (2.1.9) in the cylinder Π.

Proof. Taking account of (2.3.9), we have

A(D1, D2, D3)P±(x) =
A(D1, D2, 0)P1(x1, x2) +A′P0(x1, x2)√

2
. (2.3.12)

From (2.2.2) it follows that A(0, k) = A(D1, D2, 0) and A′ = A′. The right-hand-
side (2.3.12) vanishes by virtue of (2.2.34). �

For the nonzero eigenvalues of the pencil A(·, k), we define functions P of
the form (2.3.4), and for the eigenvalue 0 introduce the functions (2.3.11). For
functions P and R of such type, corresponding to (possibly, distinct) eigenvalues
of A(·, k), we introduce the form q as before by the formula (2.3.6).

Proposition 2.3.3. Let k be a threshold, k �= 0, and let λ0 and λ1 be eigenvalues of the
pencil A(·, k) (the equality λ0 = λ1 is not ruled out). Assume that P and R are defined
for λ0 and λ1 relatively in the manner above. Then the following equalities hold

q(χP , χP) = −i sgn (kλ0) for λ0 �= 0;

q(χP , χP) = −i sgn (±k) for λ0 = 0, P = P±, (2.3.13)

and those obtained by replacing P and λ0 by R and λ1. Moreover,

q(χP , χR) = 0 for P �= R. (2.3.14)
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Proof. We repeat the argument in the proof of Proposition 2.3.1. Let us write
down the operator A in the form (2.3.9) and integrate by parts the first term in
(2.3.5). Since the operator of problem (2.1.9) is formally self-adjoint, we have

q(χP , χR) = −i(A′P ,R)Ω|x3=N = −i exp (i(λ0 − λ1)N)(a2N2 + a1N + a0),

where a2, a1, a0 are the constants determined by the functions P and R. If λ1 �=
λ0, then the right-hand-side is independent of N only in the case that it vanishes.
Thus q(χP , χR) = 0 for λ1 �= λ0.

Assume now, that the eigenvalues coincide. If λ0 = λ1 �= 0, we repeat
the proof given in the non-threshold situation (Proposition 2.3.1). It remains to
consider the case of λ0 = λ1 = 0. Let P ,R be given by (2.3.11), where P =
Pσ,R = Rτ , and σ, τ take values + and −. Then

q(χPσ , χRτ) = −i/2
(

N2(A′P0, R0)Ω + (A′(σP0 + P1), τR0 + R1)Ω+

+iN
(
(A′P0, τR0 + R1)Ω − (A′(σP0 + P1), R0)Ω

))
(2.3.15)

The right-hand-side is independent of N only if

(A′P0, R0)Ω = 0, (A′P0, R1)Ω − (A′P1, R0)Ω = 0. (2.3.16)

According to Proposition 2.2.10, if the Jordan chains {P0, P1} and {R0, R1} are
distinct and/or σ �= τ, then the right-hand-side of (2.3.15) vanishes. If the chains
coincide and σ = τ (that is R = P = Pσ), the second equality of (2.3.13) holds.
�

Let us return to the domain G with N outlets to infinity (defined at the be-
ginning of Section 2.1). We assume that ρβ is a smooth positive function on G,
given on Π

q
+ ∩ G by ρβ(yq, tq) = exp (βtq), where q = 1, . . . , N, and β is a real

number. For l = 0, 1, . . . we introduce the space Hl
β(G) of functions on G with

the norm

‖u; Hl
β(G)‖ := ‖ρβu; Hl(G)‖ := (

l

∑
|α|=0

∫
G
|Dα(ρβu)|2 dx)1/2. (2.3.17)

Denote by Hl−1/2
β (∂G) for l = 1, 2, . . . the space of traces on ∂G of functions

in Hl
β(G). We will denote the spaces of vector functions with components in

Hl
β(G) and Hl−1/2

β (∂G) in the same manner as their scalar analogues. The opera-
tor {A,B} of problem (2.1.9) implements a continuous mapping

Lβ = {A,B} : Hl
β(G) → Hl−1

β (G)× Hl−1/2
β (∂G) (2.3.18)

for l = 1, 2, . . . and any β ∈ R. The operator (2.3.18) is a Fredholm operator if
and only if the line {λ ∈ C : Imλ = β} is free from the spectrum of every pencil
λ �→ Aq(λ, k) defined for the problem (2.1.9) in the cylinder Πq, q = 1, . . . , N, the
number k being fixed. Recall that an operator is called a Fredholm operator if its
range is closed and the kernel and cokernel are finite dimensional.
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Denote by 2Υ the sum of total multiplicities of all real eigenvalues of the
pencils Aq(·, k), and by δ a small positive number such that the strip {λ ∈ C :
|Imλ| ≤ δ} contains no eigenvalues of the pencils Aq(·, k) except the real ones.

Proposition 2.3.4. There hold the equalities

dim cokerL−δ = dim kerLδ =: d,

dim cokerLδ = dim kerL−δ = d + Υ.

Let us explain these formulas. Since the operator Lδ is Fredholm (as well
as L−δ), the number d is finite. A basis z1, . . . , zd in the space kerLδ consists of
solutions to the homogeneous problem (2.1.9) exponentially vanishing at infin-
ity. One can obtain a basis in kerL−δ by adding to the collection z1, . . . , zd some
solutions ζ1, . . . , ζΥ of the homogeneous problem (2.1.9) in Hl

−δ(G) linearly in-
dependent modulo Hl

δ(G) (a linear combination c1ζ1 + · · ·+ cΥζΥ with constant
coefficients cj belongs to Hl

δ(G) if and only if c1 = · · · = cΥ = 0).
Let k be a threshold of none of the pencils Aq(·, k). We choose a cut-off

function χ ∈ C∞(R), 0 ≤ χ ≤ 1, χ(t) = 1 for t > T and χ(t) = 0 for t < T − 1,
where T is sufficiently large. For every real eigenvalue of Aq(·, k) and all solutions
of the form (2.3.4) to the homogeneous problem (2.1.9) in the cylinder Πq, we
introduce the functions Πq 
 (yq, tq) �→ χ(tq)P(yq , tq). Extend these functions by
zero to the domain G. If k is a threshold of the pencil Aq(·, k), then we in addition
introduce the functions Πq 
 (yq, tq) �→ χ(tq)P(yq , tq) that correspond to the
eigenvalue λ0 = 0 and all solutions of the form (2.3.11). We also extend such
functions by zero to G. As a result, we obtain the 2Υ functions v1, . . . , v2Υ on G.
Denote by N the space spanned by v1, . . . , v2Υ and introduce the quotient space
W = (N� Hl

δ(G))/Hl
δ(G) whose dimension dimW equals 2Υ. The elements of

W are called waves.
By arguments similar to those in the first part of Section 2.3, including Propo-

sition 2.3.1 and its proof, one can verify that for u, v ∈ N� Hl
δ(G) the bilinear

form

qG(u, v) := (Au, v)G + (Bu,Qv)∂G − (u,Av)G − (Qu,Bv)∂G (2.3.19)

takes finite values. If at least one of the elements u, v belongs to Hl
δ(G), then

qG(u, v) = 0 and hence the form qG is defined on W ×W . For any waves U, V ∈
W there holds the equality qG(U, V) = −qG(V, U), so for every wave U ∈ W
the number qG(U, U) is imaginary. A wave U is called by outgoing (incoming), if
iqG(U, U) is a positive (negative) number.

Proposition 2.3.5. 10. In the space W , there exists a basis U+
1 , . . . , U+

Υ
, U−

1 , . . . , U−
Υ

subject to the orthogonality and normalization conditions

qG(U±
j , U∓

k ) = 0 iqG(U±
j , U±

k ) = ∓δjk, j, k = 1, . . . , Υ. (2.3.20)

Thus the waves U−
1 , . . . , U−

Υ
are outgoing and the waves U+

1 , . . . , U+
Υ

are incoming.
20. If a basis W1, . . . , W2Υ consists of incoming and outgoing orthogonal waves,

then it contains Υ ougoing and Υ incoming waves.
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The proof of Proposition 2.3.1 shows that the equalities (2.3.7) remain valid
if we change q for qG and as P and Q take functions from the collection v1, . . . , v2Υ

defined before (2.3.19). Then (possibly, after renumbering) the cosets V1, . . . , V2Υ

of v1, . . . , v2Υ mod Hl
δ(G) form a basis in W satisfying (2.3.20).

2.4 Eigenfunctions of continuous spectrum. Scattering matrix

By definition, k ∈ R belongs to the continuous spectrum of the operator Lδ =
Lδ(k) if there exists a function in kerL−δ(k) that does not belong to H1

δ(G). Such
functions are called the continuous spectrum eigenfunctions of the operator Lδ(k)
(or problem (2.1.9)). To define the scattering matrix related to the (homogeneous)
problem (2.1.9), we need a special basis for the space of continuous spectrum
eigenfunction.

Proposition 2.4.1. Let U+
1 , . . . , U+

Υ
, U−

1 , . . . , U−
Υ

be the basis of W , mentioned in Propo-
sition 2.3.5 (10). Then there exist bases Y+

1 , . . . , Y+
Υ

and Y−
1 , . . . , Y−

Υ
in kerL−δ(k) mod-

ulo H1
δ(G), such that

Ẏ−
j = U−

j +
Υ

∑
l=1

Tj lU
+
l , (2.4.1)

Ẏ+
j = U+

j +
Υ

∑
l=1

Sj lU
−
l , (2.4.2)

where j = 1, . . . , Υ and ẋ is the coset representative of x ∈ N� Hl
δ(G). The Υ × Υ-

matrix S(k) = ‖Sj l(k)‖ that consists of the coefficients in (2.4.2) is unitary , S∗ = S−1.
Moreover, S−1 = T = ‖Tjl‖, where Tjl are the coefficients in (2.4.1).

The matrix S(k) = ‖Sj l(k)‖ is independent of the mentioned coset repre-
sentatives and is called the scattering matrix (recall that U−

1 , . . . , U−
Υ

are outgoing
waves and U+

1 , . . . , U+
Υ

are incoming ones).
From Proposition 2.4.1, formula (2.3.2) and the paragraph in Section 2.3 pre-

ceding this formula, it follows that the continuous spectrum of problem (2.1.9)
covers the whole real axis. The dimension of the space of continuous spectrum
eigenfunction (modulo H1

δ(G)) at a point k is called the multiplicity of continuous
spectrum at k. The multiplicity is equal to

Σ1
A(k)/2 + · · ·+ ΣN

A (k)/2,

where N is the number of the outlets of G to infinity and Σ
j
A
(k) is the sum of the

total multiplicities of the real eigenvalues of the pencil Aj(·, k).
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2.5 Radiation principle

Let U+
1 , . . . , U+

Υ
, U−

1 , . . . , U−
Υ

be the basis in Proposition 2.3.5 (10). We choose any
u−

j ∈ U−
j , j = 1, . . . , Υ, and denote by S the linear hull of the functions u−

1 , . . . , u−
Υ

.

On the space S � Hl
δ(G), we consider the restriction L of L−δ(k), which is a

continuous mapping

L : S� Hl
δ(G) → Hl−1

δ (G)× Hl−1/2
δ (∂G).

Proposition 2.5.1. Let z1, . . . , zd be a basis in kerLδ(k) and {F ,G} ∈ Hl−1
δ (G) ×

Hl−1/2
δ (∂G) with

(F , zj)G + (G,Qzj)∂G = 0, j = 1, . . . , d,

where Q is the operator in the Green formula (2.1.10). Then
10. There exists a solution U ∈ S� Hl

δ(G) to LU = {F ,G} determined up to an
arbitrary term in kerLδ(k).

20. The inclusion

V := U − c1u−
1 − · · · − cΥu−

Υ ∈ Hl
δ(G), (2.5.1)

holds with
cj = i(F , Y−

j )G + i(G,QY−
j )∂G, j = 1, . . . , Υ, (2.5.2)

where ζ1, . . . , ζΥ are elements in kerL−δ(k) satisfying (2.4.1).
30. For such a solution U there holds the inequality

‖V ; Hl
δ(G)‖+ |c1|+ · · ·+ |cΥ| (2.5.3)

≤ const(‖F ; Hl−1
δ (G)‖+ ‖G; Hl−1/2

δ ∂G‖+ ‖ρδV ; L2(G)‖).

A solution U 0 that satisfies the additional conditions (U 0, zj)G = 0, j = 1, . . . , d, is
unique and subject to the estimate (2.5.3) with the right-hand-side replaced by
const(‖F ; Hl−1

δ (G)‖+ ‖G; Hl−1/2
δ ∂G‖).

The inclusion (2.5.1) involves only representatives of outgoing waves. Such
an inclusion is called an intrinsic radiation condition. Then Proposition 2.5.1 is
entitled as the “radiation principle”.

Remark 2.5.2. Proposition 2.5.1 remains valid if the incoming and outgoing waves ex-
change their roles. A radiation condition involving only incoming waves will also be
named intrinsic. If required, we will explain what kind of intrinsic radiation is meant,
"incoming" or "outgoing".



3 METHOD FOR COMPUTING THE SCATTERING
MATRIX BETWEEN THRESHOLDS

In this Chapter, we propose and justify a method for approximating the scattering
matrix under the condition, that the spectral parameter k belongs to an interval
of the continuous spectrum containing no thresholds. A minimizer of a quadratic
functional JR

l (·) serves as an approximation to a row Sl of the scattering matrix S.
To construct such a functional, we solve an auxiliary boundary value problem in
the bounded domain GR, which is obtained by cutting off the cylindrical ends of
the domain G from a distance R,(see FIG. 2). The auxiliary problem is proved to
have a unique solution. As R approaches infinity, the minimizer approaches Sl at
an exponential rate uniformly with respect to the spectral parameter.

In Section 3.1, we outline the description of the method. In Section 3.2 we
prove that the auxiliary problem has a unique solution in a function class. Section
3.3 is devoted to justification of the method, where we prove the existence of the
functional minimizer and establish a convergence estimate.

3.1 Description of the method

For approximating the scattering matrix S of elliptic problem (2.1.9) we will use
the scheme given in [31]. We set

Π
q,R
+ = {(yq, tq) ∈ Πq : tq

> R}, GR = G \ ∪T
q=1Π

q,R
+ (3.1.1)

for a sufficiently large R; then ∂GR \ ∂G = ΓR = ∪T
q=1Γq,R, where Γq,R = {(yq, tq) ∈

Πq : tq = R}. We are going to calculate the line (Sl1, . . . , SlΥ), l = 1, . . . , Υ,
of the matrix S. As an approximation to this line, we take a minimizer a0 =
(a0

1, . . . , a0
Υ
) ∈ CΥ of the quadratic functional

JR
l (a1, . . . , aΥ) = ‖Q(XR

l (·; a)− u+
l −

Υ

∑
j=1

aju
−
j ); L2(Γ

R)‖2. (3.1.2)
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Here XR
l (·; a) is a solution to the problem

A(D, k)U (x) = F (x), x ∈ GR,

B(x)U (x) = G(x), x ∈ ∂GR \ ΓR, (3.1.3)

(B(x) + iQ(x))U (x) = H(x), x ∈ ΓR,

with right-hand-side

F = 0, G = 0, H =

(
B + iQ

)(
u+

l (·, k) +
Υ

∑
j=1

aju
−
j (·, k)

)
. (3.1.4)

Let Z±
j,R be a solution to the problem (3.1.3) with F = 0, G = 0, and H =

(
B +

iQ
)
u±

j (·, k). We have XR
l = Z+

l,R + ∑ ajZ−
j,R and can write the functional in the

form

JR
l (a; k) = 〈aER , a〉+ 2Re 〈FR

l , a〉+ GR
l , (3.1.5)

where ER and FR are Υ × Υ-matrices with entries

ER
ij = (Q(Z−

i,R − u−
i ),Q(Z−

j,R − u−
j ))ΓR ,

FR
ij = (Q(Z+

i,R − u+
i ),Q(Z−

j,R − u−
j ))ΓR .

FR
l is the row with number l of the matrix FR, and GR

l = ‖Q(Z+
l,R − u+

l )‖2
ΓR . A

minimizer a0(R) of functional (3.1.5) satisfies

a0(R)ER + FR
l = 0. (3.1.6)

The following theorem is a basic result of Chapter 3.

Theorem 3.1.1. Let an interval [k1, k2] in the continuous spectrum of problem (2.1.9)
be free from thresholds. Then for all k ∈ [k1, k2] and R > R0, R0 being a sufficiently
large number, there exists a unique minimizer a0(R, k) = (a0

1(R, k), . . . , a0
Υ
(R, k)) of the

functional JR
l (·, k) in (3.1.2). The inequalities

|a0
j (R, k)− Slj(k)| ≤ Ce−δR, j = 1, . . . , Υ, (3.1.7)

hold with the same δ as in (2.4.1) and a constant C independent of k and R.

3.2 Solvability of auxiliary problem in GR

The boundary ∂GR of GR contains the edges ∂Γq,R. We set ΓR = ∪T
q=1∂Γq,R and

denote by r a smooth positive function on GR \ ∂ΓR coinciding, near ∂ΓR, with
the distance dist (x, ∂ΓR). Let Vl

β(G
R), l = 0, 1, be the closure of C∞

c (GR \ ∂ΓR) in
the norm

‖u; Vl
β(G

R)‖ =

(
∑
|α|≤l

∫
GR

r(x)2(β−l+|α|)|Dα
xu(x)|2dx

)1/2
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amd let V1/2
β (ΓR) and V1/2

β (∂GR \ ΓR) be the space of traces of the functions in

V1
β (G

R) on ΓR and ∂GR \ ΓR respectively.

Theorem 3.2.1. For a sufficiently small ε > 0, β ∈ (1/2 − ε, 1/2 + ε), and any

{F ,G,H} ∈ V0
β (G

R)× V1/2
β (∂GR \ ΓR)× V1/2

β (ΓR),

there exists a unique solution U ∈ V1
β (G

R) to problem (3.1.3).

To prove Theorem 3.2.1, we make use of a scheme in the theory of elliptic
boundary value problems in domains with piecewise smooth boundary (e.g. see
[25], Chapter 8, and references therein).

Let K = {(x1, x2) : x1, x2 > 0}, O = (0, 0), and ∂Kj = {(x1, x2) ∈ ∂K : xj >

0}, where j = 1, 2. In the wedge D = K ×R with edge M = O×R, we consider
the problem

A0(D1, D2, D3)U (x) = F (x), x ∈ D = K × R,

B1U (x) = G(x), x ∈ ∂D1 = ∂K1 × R, (3.2.1)

(B2 + iQ2)U (x) = H(x), x ∈ ∂D2 = ∂K2 × R;

here A0(D) = A(D; 0) denotes the principal part of the differential operator
A(D; k), while Bj = B(x)|(x ∈ ∂D j) and Qj = Q(x)|(x ∈ ∂D j) are boundary
operators with constant coefficients

B1U = (−u1
3, u1

1,−u2
2, a2), Q1U = −i(u2

1, u2
3, a1, u1

2),

B2U = (−u1
2, u1

3,−u2
1, a2), Q2U = −i(u2

3, u2
2, a1, u1

1). (3.2.2)

Problem (3.2.1) reduces to the problem

A0(Dη , ω)U(η, ξ) = F(η, ξ), η ∈ K,

B1U(η, ξ) = G(η, ξ), η ∈ ∂K1, (3.2.3)

(B2 + iQ2)U(η, ξ) = H(η, ξ), η ∈ ∂K2,

in the angle K by means of the Fourier transform F = Fx3→ξ and the change of
variables

η = (η1, η2) = |ξ|(x1, x2), Dη = (Dη1 , Dη2), ω = ξ/|ξ|, (3.2.4)

U(η, ξ) = (FU )(η/|ξ|, ξ), F(η, ξ) = |ξ|−1(FF )(η/|ξ|, ξ), (3.2.5)

H(η, ξ) = (FH)(η/|ξ|, ξ), G(η, ξ) = (FG)(η/|ξ|, ξ). (3.2.6)

According to Theorem 8.3.1 in [25], the operator of problem (3.1.3)

Lβ = {A(D; k),B,B + iQ} : V1
β (G

R) → V0
β (G

R)× V1/2
β (∂GR \ ΓR)× V1/2

β (ΓR)

(3.2.7)

is Fredholm if and only if the operator of problem (3.2.3)

Lβ(ω) = {A0(Dη, ω),B1,B2 + iQ2} : E1
β(K) → E0

β(K)× E1/2
β (∂K1)× E1/2

β (∂K2)

(3.2.8)
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implements an isomorphism for ω = ±1. Here El
β(K), l ≥ 0, is the completion of

the set C∞
c (K \ O) in the norm

‖u; El
β(K)‖2 = ∑

k1+k2≤l

∫
K

|η|2β(1 + |η|2(k1+k2−l))|Dk1
η1 Dk2

η2u(η1, η2)|2dη1dη2

(3.2.9)

and E1/2
β (∂Kj) is the space of traces on ∂Kj of the functions in E1

β(K).
Let us find the values of β for which operator (3.2.8) implements an isomor-

phism. We introduce polar coordinates (r, ϕ) in K, r ∈ (0,+∞), ϕ ∈ (0, π/2), and
define, on the space C1[0, π, 2], the operator pencil L(λ) = {C(Dϕ, λ),B1,B2 +
iQ2}, where

C(Dϕ, λ)Φ(ϕ) = r1−iλA0(D1, D2, 0)(riλΦ(ϕ)), (3.2.10)

Bj and Qj are given by (3.2.2), and

C(Dϕ, λ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 cos ϕ − sin ϕ

0 0 0 0 0 0 sin ϕ cos ϕ

0 0 0 0 − cos ϕ − sin ϕ 0 0
0 0 0 0 sin ϕ − cos ϕ 0 0
0 0 − cos ϕ sin ϕ 0 0 0 0
0 0 − sin ϕ − cos ϕ 0 0 0 0

cos ϕ sin ϕ 0 0 0 0 0 0
− sin ϕ cos ϕ 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

i∂ϕ λ 0 0 0 0 0 0
−λ i∂ϕ 0 0 0 0 0 0
0 0 i∂ϕ −λ 0 0 0 0
0 0 λ i∂ϕ 0 0 0 0
0 0 0 0 i∂ϕ λ 0 0
0 0 0 0 −λ i∂ϕ 0 0
0 0 0 0 0 0 i∂ϕ −λ

0 0 0 0 0 0 λ i∂ϕ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.2.11)

A number λ ∈ C is called an eigenvalue of the pencil L, if there exists a nonzero
function Φ ∈ C1[0, π/2], satisfying

C(Dϕ, λ)Φ(ϕ) = 0, ϕ ∈ (0, π/2), (3.2.12)

B1Φ(0) = 0, (B2 + iQ2)Φ(π/2) = 0. (3.2.13)

Proposition 3.2.2. There exist constant β∗ and β∗ such that β∗ < 1/2 < β∗ and the
strip {λ ∈ C : β∗ < Im λ < β∗} is free of the eigenvalues of the pencil L.

Proof. We first show that the line Im λ = 1/2 contains no eigenvalues of L. We
will use the Green formula

0 = (C(Dϕ, λ)Φ, Ψ)(0,π/2)+〈B1Φ(0),Q1Ψ(0)〉+ 〈B2Φ(π/2),Q2Ψ(π/2)〉−
−(Φ,C∗(Dϕ, λ̄)Ψ)(0,π/2)−〈Q1Φ(0),B1Ψ(0)〉 − 〈Q2Φ(π/2),B2Ψ(π/2)〉,

(3.2.14)
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where

C
∗(Dϕ, λ)Φ(ϕ) = r2−iλA0(Dx1 , Dx2, 0)(riλ−1Φ(ϕ)) = C(Dϕ, λ + i)Φ(ϕ).

(3.2.15)

Let us assume, that there is an eigenvalue λ of the pencil L with Im λ = 1/2 and
let Φ be a corresponding eigenvector. Then λ̄ + i = λ and, in view of (3.2.15) and
(3.2.12),

C
∗(Dϕ, λ̄)Φ(ϕ) = C(Dϕ, λ̄ + 1)Φ(ϕ) = C(Dϕ, λ)Φ(ϕ) = 0. (3.2.16)

According to (3.2.12), (3.2.13) and (3.2.16), equality (3.2.14) for Ψ = Φ reduces to

0 = 〈B2Φ(π/2),Q2Φ(π/2)〉 − 〈Q2Φ(π/2),B2Φ(π/2)〉.

From this, taking into account the second condition of (3.2.13), we obtain

0 = 〈Q2Φ(π/2),Q2Φ(π/2)〉 = 〈B2Φ(π/2),B2Φ(π/2)〉. (3.2.17)

Together with (3.2.2), these equalities mean that

Φ(π/2) = 0. (3.2.18)

Equation (3.2.12) consists of the four independent ordinary differential equation
systems

Φ′
2j(ϕ) = (−1)jiλ Φ2j−1(ϕ), Φ′

2j−1(ϕ) = (−1)j+1iλ Φ2j(ϕ), (3.2.19)

where j = 1, 2, 3, 4 and Φk is the k-th component of Φ. From (3.2.18) and (3.2.19)
it follows that

Φ′′
2j(ϕ) = (−1)jiλΦ′

2j−1(ϕ) = λ2 Φ2j(ϕ), ϕ ∈ (0, π/2), (3.2.20)

Φ′
2j(π/2) = (−1)jiλ Φ2j−1(π/2) = 0. (3.2.21)

In a similar way, we obtain

Φ′′
k (ϕ)− λ2Φk(ϕ) = 0, ϕ ∈ (0, π/2), (3.2.22)

Φk(π/2) = 0, Φ′
k(π/2) = 0. (3.2.23)

for k = 1, . . . , 8. The general solution to the equation (3.2.22) is of the form
Φk(ϕ) = c0ch(λϕ) + c1sh(λϕ). In view of conditions, (3.2.23) the constants c0
and c1 are equal to zero.

Thus, the vector function Φ is identically 0 and the line Im λ = 1/2 contains
no eigenvalues of the pencil L. From the ellipticity of problem (3.1.3) it follows
that for any N > 0 in the strip {λ ∈ C : |Im λ| < N}, there are at most finitely
many eigenvalues of the pencil L. Let λ∗ and λ∗ be the eigenvalues nearest to
the line Im λ = 1/2 satisfying Im λ∗ < 1/2 < Im λ∗; we set β∗ = Im λ∗ and
β∗ = Im λ∗.
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Proposition 3.2.3. The operator (3.2.8) implements an isomorphism for ω = ±1 and
all β, such that |β − 1/2| < ε = min(β∗ − 1/2, 1/2 − β∗).

Proof. Here we only consider the case ω = +1. The case ω = −1 can be handled
in a similar fashion as the case ω = +1. By Proposition 3.2.2 and Theorem 8.2.3
[25], the operator Lβ(ω) is Fredholm for β ∈ (β∗, β∗). It remains to verify, that
the kernel and cokernel of Lβ(ω) are trivial. We begin with proving the triviality
of the kernel and will assume that β = 1/2. The known inequality (see Section
4.3 from Nazarov et al. [25])

‖η �→ |η|β−1/2v(η); L2(∂K)‖ ≤ c ‖v; V1/2
β (∂K)‖ (3.2.24)

provides the continuity of the embedding

E1/2
1/2(∂K) ⊂ V1/2

1/2 (∂K) ⊂ L2(∂K). (3.2.25)

Here Vl
β(K) stands for the space, which is defined like Vl

β(G
R) with the change

of GR, x, and r(x) for K, η, and |η|, respectively. V1/2
β (∂K) is the space of traces

on ∂K of the functions in V1
β (K). The maps

A0(Dη, ω) :E1
1/2(K) → E0

1/2(K) = V0
1/2(K),

E1
1/2(K) ⊂ E0

−1/2(K) = V0
−1/2(K), (3.2.26)

Bj,Qj :E1
1/2(K) → E1/2

1/2(∂Kj) ⊂ L2(∂Kj)

are continuous due to the continuity of operator (3.2.8) and embedding (3.2.25).
Therefore, the Green formula

(A0(Dη , ω)U, V)K + (B1U,Q1V)∂K1 + (B2U,Q2V)∂K2 =

= (U,A0(Dη, ω)V)K + (Q1U,B1V)∂K1 + (Q2U,B2V)∂K2 (3.2.27)

makes sense for U and V in E1
1/2(K).

Now we assume, that V = U ∈ kerL1/2(ω), where L1/2(ω) is operator
(3.2.8) for β = 1/2. Since U belongs to ∈ E1

1/2(K) and satisfies homogeneous
problem (3.2.3), from (3.2.27) it follows, that

0 = (B2U,Q2U)∂K2 − (Q2U,B2U)∂K2 = −2i(Q2U,Q2U)∂K2 = 2i(B2U,B2U)∂K2 .
(3.2.28)

Hence Q2U = B2U = 0 on ∂K2; taking into account (3.2.2), we obtain

U(η) = 0, η ∈ ∂K2. (3.2.29)

Being subject to the condition (3.2.29), a solution U to homogeneous prob-
lem (3.2.3) is trivial. To show this, we will verify that the components of such
a vector U satisfy the homogeneous Helmholtz equation in K and the homoge-
neous Dirichlet and Neumann conditions on ∂K2. Then, according to the unique
continuation theorem (e.g., see [6]), the function U is identically 0 on K.
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We first note, that the function U is smooth on K \ {O} because U is a solu-
tion to homogeneous elliptic problem (3.2.3). Applying A0(Dη , ω) to the equality

A0(Dη , ω)U(η) = 0, η ∈ K
ρ, (3.2.30)

we obtain

−(Δ2 − 1)U(η) = 0, η ∈ K
ρ. (3.2.31)

Here Δ2 = ∂2
1 + ∂2

2, ∂j = ∂/∂ηj, and j = 1, 2. Let V = A0(Dη , ω)W, where
W = (W1, . . . , W8) is an arbitrary vector-valued function in C∞

c (K ∪ ∂K2). Then
the Green formula (3.2.27) and (3.2.29) implies, that

(A0(Dη, ω)U,A0(Dη, ω)W)K = (U,A0(Dη, ω)A0(Dη , ω)W)K = (3.2.32)

= −(U, (Δ2 − 1)W)K . (3.2.33)

From (3.2.30), (3.2.31), and (3.2.32), we get

−((Δ2 − 1)U, W)K = 0 = −(U, (Δ2 − 1)W)K . (3.2.34)

Now we set Wj = 0 for j = 2, . . . , 8 in (3.2.34). In view of the Green formula
for the Laplacian, the obtained equality (Δ2U1, W1)K = (U1, Δ2W1)K takes the
form of (∂νU1, W1)∂K = (U1, ∂νW1)∂K. This and (3.2.29) lead to (∂νU1, W1)∂K = 0.
Since W1 is an arbitrary function in C∞

c (K ∪ ∂K2), we have

∂νU1(x) = 0, x ∈ ∂K2. (3.2.35)

Thus, U1 satisfies homogeneous elliptic equation (3.2.31) and Cauchy data (3.2.29)
and (3.2.35). Therefore, by the unique continuation theorem, U1 ≡ 0 in K. The
relations Uj ≡ 0 in K for j = 2, . . . , 8 can be verified like that for j = 1. Hence the
kernel of operator (3.2.8) is trivial for β = 1/2. Since the strip {λ : β∗ < Im λ <

β∗} is free of the spectrum of the pencil L, the kernel of operator (3.2.8) is trivial
for all β ∈ (β∗, β∗).

Cokernel of the operator Lβ(ω) coincides with the kernel of the adjoint op-
erator

Lβ(ω)∗ : E0
β(K)∗ × E1/2

β (∂K1)
∗ × E1/2

β (∂K2)
∗ → E1

β(K)∗. (3.2.36)

Arguing in the same way as in the proof of Proposition 4.3.8 [25] and using Propo-
sition 8.2.6 [25], we obtain

{u, v, w} ∈ E1
1−β(K)× E1/2

1−β(∂K1)× E1/2
1−β(∂K2) (3.2.37)

for any element {u, v, w} in the kernel of operator (3.2.36). The function u satisfies
the homogeneous problem (3.2.3) with B2 + iQ2 changed for B2 − iQ2 in the third
equation,

v(x) = Q1u(x), x ∈ ∂K1, and w(x) = Q2u(x), x ∈ ∂K2. (3.2.38)

As in the first part of the proof, with β and B2 + iQ2 replaced by 1 − β and B2 −
iQ2 respectively, we find v ≡ 0. Thus, the kernel and cokernel of operator (3.2.8)
are trivial for β ∈ (β∗, β∗) ∩ (1 − β∗, 1 − β∗).
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Let us return to problem (3.1.3) in the domain GR. In view of Proposition
3.2.3, operator (3.2.7) is Fredholm (see Theorem 8.3.1 [25]). When proving the
triviality of its kernel and cokernel, we will use the following lemma.

Lemma 3.2.4. Let β ≤ 1/2. Then:
1. The Green formula

(A(D, k)U ,V)GR + (BU ,QV)∂GR\ΓR − (U ,A(D, k)V)GR − (QU ,BV)∂GR\ΓR =

= −(BU ,QV)ΓR + (QU ,BV)ΓR (3.2.39)

holds for any U and V in V1
β (G

R).

2. If U0 belongs to V1
β (G

R) and satisfies (3.1.3) for F = 0 and G = 0, then

‖U0; L2(Γ
R; C

8)‖2 = ‖BU0; L2(Γ
R; C

4)‖2 + ‖QU0; L2(Γ
R; C

4)‖2 =

= ‖(B + iQ)U0; L2(Γ
R; C

4)‖2. (3.2.40)

3. If U0 belongs to V1
β (G

R) and satisfies (3.1.3) for H = 0, then

‖BU0; L2(Γ
R; C

4)‖2 = ‖QU0; L2(Γ
R; C

4)‖2 = ‖U0; L2(Γ
R; C

8)‖2/2. (3.2.41)

Proof. For β < γ the space V1
β (G

R) is continuously embedded into V1
γ(G

R), there-
fore, it suffices to verify the lemma for β = 1/2. We first prove the continuity of
the embedding

V1/2
1/2 (∂GR) ⊂ L2(∂GR). (3.2.42)

In view of (3.2.24), for v ∈ C∞
c (∂D \ M) and u ∈ C∞

c (D \ M), such that u|∂D = v,
the inequality

‖v(·, x3); L2(∂K)‖2 ≤ c2‖v(·, x3); V1/2
1/2 (∂K)‖2 ≤ c2‖u(·, x3); V1

1/2(K)‖2 =

= c2
∫
K

dx1dx2

{
|x2

1 + x2
2|−1/2|u(x1, x2, x3)|2 + |x2

1 + x2
2|1/2 ∑

j=1,2
|Dju(x1, x2, x3)|2

}

≤ c2
∫
K

dx1dx2

{
|x2

1 + x2
2|−1/2|u(x1, x2, x3)|2 + |x2

1 + x2
2|1/2 ∑

j=1,2,3
|Dju(x1, x2, x3)|2

}
(3.2.43)

holds with constant c independent of x3 and u. Integrating over x3 ∈ R, we have

‖v; L2(∂D)‖2 ≤ c2‖u; V1
1/2(D)‖2. (3.2.44)

We extend, by continuity, this inequality to all u ∈ V1
1/2(D) and obtain

‖v; L2(∂D)‖2 ≤ c2‖v; V1/2
1/2 (∂D)‖2 (3.2.45)

because the norm on the right is equal to inf‖u; V1
1/2(D)‖ for u : u|∂D = v. Using

a partition of unity, we arrive at (3.2.42).
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The continuity of operator (3.2.7) and embedding (3.2.42) imply that of the
maps

A(D, k) :V1
1/2(G

R) → V0
1/2(G

R),

V1
1/2(G

R) ⊂ V0
−1/2(G

R), (3.2.46)

B,Q :V1
1/2(G

R) → L2(∂GR),

which allows to extend the Green formula

(A(D, k)U ,V)GR + (BU ,QV)∂GR − (U ,A(D, k)V)GR − (QU ,BV)∂GR = 0
(3.2.47)

to the functions U and V in V1
1/2(G

R).
Let us prove item 2. According to the identity

((B + iQ)U , (B + iQ)V)ΓR =(BU ,BV)ΓR + (QU ,QV)ΓR−
−i(BU ,QV)ΓR + i(QU ,BV)ΓR , (3.2.48)

the right-hand-side of (3.2.39) can be written in the form

−i {((B + iQ)U , (B + iQ)V)ΓR − (BU ,BV)ΓR − (QU ,QV)ΓR} . (3.2.49)

The left-hand-side of (3.2.39) vanishes for V = U = U0 and

‖(B + iQ)U0; L2(Γ
R)‖2 − ‖BU0; L2(Γ

R)‖2 − ‖QU0; L2(Γ
R)‖2 = 0. (3.2.50)

It remains to take account of the equality

‖U0; L2(Γ
R; C

8)‖2 = ‖BU0; L2(Γ
R; C

4)‖2 + ‖QU0; L2(Γ
R; C

4)‖2, (3.2.51)

which follows from (2.1.11).
Item 3 immediately follows from the third equation in (3.1.3) and (3.2.51).

Now we are ready to complete the proof of Theorem 3.2.1. We use the same
scheme as in the proof of Proposition 3.2.3 and outline some basic steps. By
Theorem 8.3.1 [25], the operator (3.2.7) is Fredholm. Let us show that the ker-
nel and cokernel of this operator are trivial. We first assume that β = 1/2 and
U ∈ V1

1/2(G
R) is a solution to homogeneous problem (3.1.3). From item 2 of

Lemma 3.2.4, it follows that

U (x) = 0, x ∈ ΓR. (3.2.52)

The function U is smooth on GR \ ∂ΓR. Applying A(D,−k) to the equality

A(D, k)U (x) = 0, x ∈ GR, (3.2.53)

we obtain

−(Δ + k2)U (x) = 0, x ∈ GR. (3.2.54)
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Let us verify that the components Uj, j = 1, . . . , 8, of U satisfy the homogeneous
Neumann condition on ΓR. By virtue of (3.2.53), (3.2.54), and (3.2.39),

(ΔU ,V)GR = (U , ΔV)GR (3.2.55)

for an arbitrary V = (V1, . . . ,V8) ∈ C∞
c (GR ∪ ΓR). We set Vj = 0 for j = 2, . . . , 8;

then (3.2.55) and (3.2.52) lead to

∂νU1(x) = 0, x ∈ ΓR. (3.2.56)

By the unique continuation theorem, U1 = 0 in GR. The equalities Uj = 0 in GR

for j = 2, . . . , 8 are obtained like that for U1. Thus, the kernel of operator (3.2.7)
is trivial for β = 1/2. According to the Theorem 8.3.2 [25], the kernel of operator
(3.2.7) is trivial for all β ∈ (1/2− ε, 1/2+ ε). The triviality of the cokernel follows
from Theorem 8.3.3 [25] in a similar way.

3.3 Justification of the method

To complete the proof of Theorem 3.1.1, it remains to verify that the matrix ER

in (3.1.5) is non-singular and to establish estimate (3.1.7). All inequalities of this
Section are uniform with respect to k ∈ [k1, k2]. Furthermore, we consider func-
tions belonging to the space L2(Γ

R; C8), the values of operators B and Q on such
functions are in the space L2(Γ

R; C
4). To simplify formulae as a rule we do not

indicate the spaces in notations of inner products and norms. We set

ϕl(x, a) = u+
l (x) +

Υ

∑
j=1

aju
−
j (x), (3.3.1)

where a = (a1, . . . , aΥ) is an arbitrary vector in CΥ and x ∈ GR. From item 3 of
Lemma 3.2.4, the functional (3.1.2) takes the form of

JR
l (a) = 1/2‖XR

l (·; a)− ϕl(·, a); L2(Γ
R; C

8)‖2 (3.3.2)

and the entries of the matrices ER and FR can be written as

ER
ij = 1/2((Z−

i,R − u−
i ), (Z

−
j,R − u−

j )), (3.3.3)

FR
ij = 1/2((Z+

i,R − u+
i ), (Z

−
j,R − u−

j )), (3.3.4)

where (·, ·) denotes the inner product in L2(Γ
R; C8).

Lemma 3.3.1. Let u±
j , j = 1, . . . , Υ, be incoming and outgoing waves subject to

iqG(u±
j , u∓

l ) = 0, iqG(u±
j , u±

l ) = ∓δjl, j, l = 1, . . . , Υ. (3.3.5)

Then for large R and j, l = 1, . . . , Υ

(u±
j , u±

l )− ((B + iQ)u±
j , (B + iQ)u±

l ) = ∓δjl, (3.3.6)

(u±
j , u∓

l )− ((B + iQ)u±
j , (B + iQ)u∓

l ) = 0. (3.3.7)
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Proof. We rearrange the right-hand-side of Green formula (3.2.39) like in the proof
of Lemma 3.2.4. For U ,V ∈ W(k), the left-hand-side of (3.2.39) coincides with
definition (2.3.5) of the form qG(·, ·). We have

iqG(U ,V) = (U ,V)− ((B + iQ)U , (B + iQ)V). (3.3.8)

It remains to take into account (3.3.5).

Proposition 3.3.2. The matrix ER with entries (3.3.3) is non-singular for all R ≥ R0,
where R0 is a sufficiently large number.

Proof. Assume to the contrary, that for any R0 there exist a number R > R0 and a
vector c = (c1, . . . , cΥ), such that |c| = 1 and ERc = 0. Then, in view of (3.3.3), the
functions U = ∑j cju−

j and V = ∑j cjZ−
j,R satisfy

U = V on ΓR. (3.3.9)

From item 2 of Lemma 3.2.4, it follows that

‖V‖2 − ‖(B + iQ)V‖2 = 0. (3.3.10)

Taking into account (3.3.9) and Lemma 3.3.1, we obtain

0 = ‖U‖2 − ‖(B + iQ)U‖2 = ∑
j
|cj|2 = 1, (3.3.11)

which is a contradiction, q.e.d.

Embedding theorems and the definition (2.3.17) of the space H1
β(G) implies

the following Lemma.

Lemma 3.3.3. For every function U ∈ H1
β(G) the inequality

‖U ; L2(Γ
R)‖ ≤ Ce−βR‖U ; H1

β(G)‖,

holds, where the constant C is independent of R, β and U .

Proof. The described result is local, so we firstly prove an analogous inequality
in a cylinder domain and then, using a partition of unity, we turn to the domain
with cylindrical ends. Let Πq = Ωq × R = {(y, t) : y ∈ Ωq, t ∈ R}, and Γq,R =
{(y, t) : y ∈ Ωq, t = R}. Then by an embedding theorem, for every u ∈ H1(Πq)
the inequality

‖u; L2(Γ
q,R)‖ ≤ C‖u; H1(Πq)‖ (3.3.12)

holds with the constant C = C(Ωq), independent of R and u. Substituting the
function u(y, t) = exp(βt)v(y, t) into the inequality, we obtain

eβR‖v; L2(Γ
q,R)‖ ≤ C‖v; H1

β(Π
q)‖, (3.3.13)
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for every v ∈ H1
β(Π

q), where H1
β(Π

q) is a closure of the lineal C∞
c (Πq) by the

norm
‖v; H1

β(Π
q)‖ = ‖(y, t) �→ exp(βt)v(y, t); H1(Πq)‖.

Let T be a sufficiently large number and χq : G → [0, 1] be a smooth cutting

function supported in G ∩ Π
q,T
+ , such that χq(x) = 1 for x ∈ G ∩ Π

q,T+1
+ , where

Π
q,T
+ = {(yq, tq) ∈ Πq : tq > T}. For U ∈ H1

β(G), we introduce a function Uq in
Πq

Uq(x) = χq(x)U (x), x ∈ Π
q,T
+ , Uq(x) = 0, x ∈ Πq \ Π

q,T
+ .

The function Uq belongs to the space H1
β(Π

q) and ‖Uq; H1
β(Π

q)‖ = ‖χqU ; H1
β(G)‖.

Using inequality (3.3.13) for Uq and R > T + 1, we have

‖U ; L2(Γ
q,R)‖ ≤ C(Ωq)e−βR‖χqU ; H1

β(G)‖.

Summing up the inequalities over q = 1, . . . , T , we come to

‖U ; L2(Γ
R)‖ ≤ Ce−βR‖U ; H1

β(G)‖, (3.3.14)

where C = max C(Ωq).

Proposition 3.3.4. Let a0(R) = (a0
1(R), . . . , a0

Υ
(R)) be a minimizer of the functional

JR
l (a) in (3.1.2). Then

JR
l (a

0(R)) = O(e−2δR) as R → ∞, (3.3.15)

where δ is the number in (2.4.1). For all R ≥ R0 the componenents of a0(R) are uni-
formly bounded,

|a0
j (R)| ≤ const < ∞, j = 1, . . . , Υ. (3.3.16)

Proof. We set

N(R) := ‖Y+
l − ϕl(Sl); L2(Γ

R; C
8)‖, (3.3.17)

where ϕl(Sl) is the function x �→ ϕl(x, Sl) in (3.3.1) for a = Sl = (Sl1, . . . , SlΥ),
and Slj are the entries of the scattering matrix S of problem (2.1.9). According to
Lemma 3.3.3 the equation (2.4.1) implies N(R) ≤ Ce−δR, where the constant C is
independent of R. Let XR

l (Sl) be a solution to problem (3.1.3) with right-hand-
side (3.1.4) for a = Sl . We have

‖(B + iQ)(XR
l (Sl)− Y+

l )‖2 = ‖(B + iQ)(ϕl(Sl)− Y+
l )‖2 ≤ const N(R)2.

Here const stands for an universal constant. From item 2 of Lemma 3.2.4, we
obtain

‖XR
l (Sl)− Y+

l ‖2 = ‖(B + iQ)(XR
l (Sl)− Y+

l )‖2 ≤ constN(R)2.
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From the previous estimate, (3.3.17), and (3.3.2), we get

JR
l (Sl) = 1/2‖XR

l (Sl)− ϕl(Sl)‖2 ≤ constN(R)2.

To obtain (3.3.15), it remains to take into account the inequality JR
l (a

0(R)) ≤
JR
l (Sl).

To justify an uniform boundedness of the minimizer a0(R) we show that the
value ||a0(R)| − 1| decays at exponential rate as R → ∞. By virtue Lemma 3.3.1

|a0|2 − 1 =
Υ

∑
j=1

|a0
j |2 − 1 = ‖ϕl(a

0)‖2 − ‖(B + iQ)ϕl(a
0)‖2. (3.3.18)

Let us figure the right-hand-side of (3.3.18) in the form of(
‖ϕl(a

0)‖ − ‖(B + iQ)ϕl(a
0)‖

) (
‖ϕl(a

0)‖+ ‖(B + iQ)ϕl(a
0)‖

)
(3.3.19)

Taking into account the definition of XR
l (a

0) and item 2 of Lemma 3.2.4, we have

‖(B + iQ)ϕl(a
0)‖2 = ‖(B + iQ)XR

l (a
0)‖2 = ‖XR

l (a
0)‖2. (3.3.20)

Making use of (3.3.20) and (3.3.2), we estimate the first factor of (3.3.19)∣∣∣‖ϕl(a
0)‖ − ‖(B + iQ)ϕl(a

0)‖
∣∣∣ = ∣∣∣‖ϕl(a

0)‖ − ‖XR
l (a

0)‖
∣∣∣ ≤

≤ ‖ϕl(a
0)− XR

l (a
0)‖ = (2JR

l (a
0))1/2.

Let us majorize the second factor of (3.3.19) by const‖ϕl(a0)‖. Furthermore,

‖ϕl(a
0)‖ = ‖u+

l +∑ aju
−
j ‖ ≤ const(max ‖u±

j ‖)(1 + |a0|). (3.3.21)

Taking into account the estimate for JR
l (a

0), we obtain∣∣∣|a0(R)| − 1
∣∣∣ ≤ constN1N(R),

where the constant N1 = max ‖u±
j ‖ = max(k/λj)

1/2 is independent of R and δ

and N(R) ≤ C(δ)e−δR.

Proof. (of Theorem 3.1.1). Let ϕl(a0) and ϕl(Sl) be defined as before by equali-
ties (3.3.1), and XR

l (a
0) and XR

l (Sl) be the corresponding solutions to the problem
(3.1.3). We will use the same arguments as in the proof of the previous proposi-
tion. From Lemma 3.3.1, we have

|a0 − Sl |2 =
Υ

∑
j=1

|a0
j (R)− Slj|2 = ‖ϕl(a

0)− ϕl(Sl)‖2 − ‖(B + iQ)(ϕl(a
0)− ϕl(Sl))‖2,

(3.3.22)

and from Lemma 3.2.4, we obtain

‖(B + iQ)(ϕl(a
0)− ϕl(Sl))‖2 = ‖XR

l (a
0)− XR

l (Sl)‖2. (3.3.23)
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The right-hand-side of (3.3.22) we figure as(
‖ϕl(a

0)− ϕl(Sl)‖ − ‖(B + iQ)(ϕl(a
0)− ϕl(Sl))‖

)
×

×
(
|‖ϕl(a

0)− ϕl(Sl)‖+ ‖(B + iQ)(ϕl(a
0)− ϕl(Sl))‖

)
.

The first factor is majorized by

‖(ϕl(a
0)− XR

l (a
0))− (ϕl(Sl)− XR

l (Sl))‖ ≤ (2JR
l (a

0))1/2 + (2JR
l (Sl))

1/2 ≤
≤ constN(R),

and the second factor by const‖ϕl(a0)− ϕl(Sl)‖, while

‖ϕl(a
0)− ϕl(Sl)‖ ≤ constN1|a0 − Sl |.

Then

|a0 − Sl |2 ≤ constN1N(R)|a0 − Sl |, (3.3.24)

where the constant N1 = max(k/λj)
1/2 is independent of R and δ and N(R) ≤

C(δ)e−δR.



4 THE MAXWELL SYSTEM IN A WAVEGUIDE

Here we derive corollaries for the (non-augmented) Maxwell system from the
results of Chapter 2 on the elliptic system. We describe the continuous spec-
trum eigenfunctions; define the scattering matrix and establish that it is unitary
(Section 4.3); state the problem with intrinsic radiation conditions and prove its
well-posedness (Section 4.4). Sections 4.1 and 4.2 are devoted to preparations for
going from the elliptic system to the Maxwell system. The problems for the aug-
mented and non-augmented Maxwell systems are considered for k = 0 (statics)
in Section 4.5.

4.1 On radiation properties of the elliptic problem with right-hand-
side subject to compatibility conditions

We introduce notations more detailed than those in 2.3-2.5. First assume that the
domain G has only one outlet to infinity. We fix a real k �= 0 and let λ0 be a real
eigenvalue of the pencil A(·, k) such that k2 − λ2

0 �= 0.
Consider the case kλ0 > 0. The vectors Aζ , Ψζ (ζ = 1, . . . JN (λ0)) and Bτ,

Φτ (τ = 1, . . . , JD(λ0)) given by (2.2.76) and (2.2.77) define a basis for the kernel
kerA(λ0, k). These vectors satisfy (2.2.79) and (2.2.80). We denote by E−

j the

waves, each being determined by one of the vectors Φτ or Ψζ , j = 1, . . . , JD(λ0) +
JN (λ0) (see the definition of waves before (2.3.19)); the waves E−

j are enumerated
in arbitrary order. Similarly, let Γ−

j be the waves corresponding to vectors of the

form Aζ or Bτ .
For every eigenvalue λq of the pencil A(·, k), such that kλq > 0, we construct

similar collections {E−
j } and {Γ−

j }, numbering each collection (individually) with
one index. Thus we have composed the sets

{E−
j }

J
j=1, {Γ−

j }
J
j=1, where J = ∑

q
(JD(λq) + JN (λq)), (4.1.1)

where the summation is taken over all real eigenvalues of the pencil A(·, k), sub-
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ject to kλq > 0 and k2 − λ2
q �= 0.

The waves E−
j correspond to the eigenvectors of A(·, k) in the domain of the

pencil M(·, k), whereas the waves Γ−
j are generated by the eigenvectors that do

not belong to the domain of M(·, k); all of these waves, E−
j and Γ−

j , are outgoing.
When composing the collections (4.1.1), we did not take into account the

wave related to the eigenvalue λ = k of the pencil A(·, k) (see Remark 2.2.9). The
eigenvector A does not belong to the domain of M(·, k), so we include the wave
in the collection {Γ−

j }, which now has one element more than {E−
j }.

Recall, that the real spectrum of the pencil A(·, k) is symmetric about the
coordinate origin. If the wave E−

j is generated by an eigenvector of the form Φ (Ψ)
corresponding to an eigenvalue λ0, then E+

j will stand for the wave generated by
the vector Φ (Ψ), corresponding to the eigenvalue −λ0. According to the same
rule, we define the waves in {E+

j } and {Γ+
j }; all of these waves, E+

j and Γ+
j , are

incoming.
If k is a thershold, then λ = 0 turns out to be an eigenvalue of the pencil

A(·, k). To define the waves corresponding to that eigenvalue, we make use of
the solutions (2.3.11) of the homogeneous problem in the cylinder Π. If such
a solution is generated by a Jordan chain in the domain of the Maxwell pencil
M(·, k), then we include the related incoming (outgoing) wave in the collection
E+ (E−). If the chain is not Maxwell, we send the wave to Γ+ (Γ−).

Let us finally turn to the domain G that has a total N outlets to infinity and
assume that a (fixed) k coincides with none of the threshold values of the pencils
A1(·, k), . . . ,AN(·, k). We combine the collections of waves defined for all outlets
into the four collections

E± := {E±
j }υ

j=1, Γ± := {Γ±
j }υ+N

j=1 , (4.1.2)

numbering each collection (individually) by one index and keeping the above
correspondence between E+

j and E−
j as well as between Γ+

j and Γ−
j . Taken to-

gether, the collections (4.1.2 ) form a basis in the wave space W satisfying

iqG(E
+
j , E+

j ) = −1, iqG(E
−
j , E−

j ) = 1 for j = 1, . . . , υ, (4.1.3)

iqG(Γ
+
j , Γ+

j ) = −1, iqG(Γ
−
j , Γ−

j ) = 1 for j = 1, . . . , υ + N, (4.1.4)

qG(P, R) = 0; (4.1.5)

in (4.1.5), the symbols P, R each can take any of the values E±
j , Γ±

j to form a pair
distinct from those in (4.1.3) and (4.1.4).

Let us consider the system (2.1.7) with homogeneous boundary conditions
(2.1.8), where g1, g2, and g3 are equal to zero. If the right-hand-side ( f 1, h1, f 2, h2)
of (2.1.7) is in Hl−1

δ (G) for l ≥ 2, then the compatibility conditions (2.1.3)-(2.1.5)
are immediately understandable. We explain how to interpret these conditions in
the case l = 1. Introduce the space

Hδ(div, G) = { f ∈ H0
δ(G) : div f ∈ H0

δ(G)}
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of functions G 
 x �→ f (x) ∈ C3 with the norm

‖ f ; Hδ(div, G)‖ = (‖ f ; H0
δ (G)‖2 + ‖div f ; H0

δ(G)‖2)1/2.

We denote by Wδ, 0(div, G) the closed subspace in Hδ(div, G) whose elements
satisfy

( f ,∇ψ)G = (div f , ψ)G (4.1.6)

for all ψ ∈ C∞
c (G). With f ∈ Hl−1

δ (G) for l ≥ 2, the relation (4.1.6) is equivalent
to

〈 f (x), ν(x)〉 = 0 for x ∈ G; (4.1.7)

for l = 1, the equality (4.1.7) has to be replaced by (4.1.6). Thus for l = 1 the
compatibility conditions mean, that

f 1 ∈ Hδ(div, G), f 2 ∈ Wδ, 0(div, G), h1, h2 ∈ H0
δ(G), (4.1.8)

div f 1(x)− ikh2(x) = 0, div f 2(x)− ikh1(x) = 0, x ∈ G.

Proposition 4.1.1. Assume that k is a real number, distinct from zero, and a vector
F = ( f 1, h1, f 2, h2) in Hl−1

δ (G), which satisfies the compatibility conditions (2.1.3)-
(2.1.5) for l ≥ 2 or (4.1.8) for l = 1. Let also U = (u1, a1, u2, a2) be a solution to
LU = {F , 0} satisfying the intrinsic radiation conditions (2.5.1). Then the component
a1 is a solution to the boundary value problem

(Δ + k2)a1(x) = 0, x ∈ G, ∂νa1(x) = 0, x ∈ ∂G, (4.1.9)

being subject to the intrinsic radiation conditions defined for the problem (4.1.9), whereas
a2 is a solution to the problem

(Δ + k2)a2(x) = 0, x ∈ G, a2(x) = 0, x ∈ ∂G, (4.1.10)

that is subject to the intrinsic radiation conditions defined for the problem (4.1.10). There-
fore, a1 (a2) is distinct from zero if and only if it turns out to be an eigenfunction of the
problem (4.1.9) (problem (4.1.10)).

Proof. We first show that a2 is a solution to problem (4.1.10). The components of
U satisfy

i rot u2(x) + i ∇a2(x)− ku1(x) = f 1(x),

−i div u2(x)− ka1(x) = h1(x), (4.1.11)

−i rot u1(x)− i ∇a1(x)− ku2(x) = f 2(x),

i div u1(x)− ka2(x) = h2(x)

with boundary conditions

ν(x)× u1(x) = 0, 〈u2(x), ν(x)〉 = 0, a2(x) = 0, x ∈ ∂G. (4.1.12)

Multiply the first equation in (4.1.11) by ∇ζ and the forth equation by ikζ, where
ζ ∈ C∞

c (G). Now we have

i(rot u2,∇ζ)G + i(∇a2,∇ζ)G − k(u1,∇ζ)G = ( f 1,∇ ζ)G,

−k(div u1, ζ)G − ik2(a2, ζ)G = ik(h2, ζ)G .
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Let us integrate by part all terms in the first line and add the result to the second
line:

−i(Δa2 + k2a2, ζ)G = (−div f 1 + ikh2, ζ)G .

Since the right-hand-side vanishes due to the compatibility conditions, we obtain
the problem (4.1.10) for a2.

We shall take up the component a1. Let η ∈ C∞
c (G) with ∂νη|∂G = 0. Let us

multiply the third equation in (4.1.11) by ∇η and the second equation by ikη. We
have

−i(rot u1,∇η)G − i(∇a1,∇η)G − k(u2,∇η)G = ( f 2,∇η)G,

k(div u2, η)G − ik2(a1, η)G = ik(h1, η)G. (4.1.13)

Taking into account the boundary conditions (4.1.12) and the corresponding
compatibility condition, we integrate by parts all terms in the first line, then

i(a1, Δη)G + k(div u2, η)G = −(div f 2, η)G.

Now we subtract this equality from the second equation of (4.1.13) and obtain

−(a1, Δη + k2η)G = (div f 2 + ikh1, η)G.

According to the compatibility condition, it follows that

(a1, Δη + k2η)G = 0 (4.1.14)

for all η ∈ C∞
c (G) such that

∂νη(x) = 0 for x ∈ G. (4.1.15)

The equality (4.1.14) remains valid for all η ∈ H2
δ(G), subject to the condition

(4.1.15). We introduce the operator

AN (δ) : η �→ Δη + k2η, AN (δ) : D(AN (δ)) → H0
δ(G)

with domain

D(AN (δ)) = {η ∈ H2
δ(G) : ∂νη = 0 on ∂G}.

The equalities (4.1.14) and (4.1.15) mean that a1 ∈ cokerAN (δ). It follows (e.g.
see [21] (Ch.2, 5.2, 5.3) and [25], (Theorem 5.1.4)), that a1 belongs to Hl

−δ(G) with
any l = 1, 2, . . . and satisfies (4.1.9).

Let us consider the radiation conditions for a1 and a2. Given the new nota-
tion, (2.5.1) takes the form of

U −
υ

∑
j=1

cje
−
j −

υ+N

∑
j=1

djγ
−
j ∈ Hl

δ(G). (4.1.16)

Here e−j and γ−
j are representatives of the waves E−

j and Γ−
j , whereas cj and dj

are constant coefficients. Specifically,

U = (u1, a1, u2, a2) = (u1
1, u1

2, u1
3, a1, u2

1, u2
2, u2

3, a2).
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We first consider the nonthreshold case. Each function e−j is generated by one

of the vectors Ψζ in (2.2.76) or Φτ in (2.2.77) (see the definition of waves before
(2.3.19)). The forth and eighth components of such functions are equal to zero, so
the functions e−j contribute neither in the asymptotics of a1 nor in that of a2. It

is also clear that the asymptotics of a1 is independent of γ−
j generated by vectors

of the form Bτ in (2.2.77), whereas the asymptotics of a2 is independent of γ−
j

generated by vectors of the form Aζ in (2.2.76). Therefore, from (4.1.16) it follows
that

a1 −∑
A

djγ
−
j, 4 ∈ Hl

δ(G), a2 −∑
B

djγ
−
j, 8 ∈ Hl

δ(G), (4.1.17)

where the sums ∑A and ∑B contain all the γ−
j corresponding to vectors of the

form Aζ and Bτ, while γ−
j, m stands for the m-th component of the vector function

γ−
j .

We show that the relations (4.1.17) are the intrinsic radiation conditions for
the solutions a1 and a2 of problems (4.1.9) and (4.1.10). Let us consider the first of
relations (4.1.17) (containing a1). Each functions γ−

j,4 in the sum ∑A is generated

by a vector of the form Aζ with

(A′(λ0)Aζ , Aζ) = sgn(kλ0),

where λ0 is an eigenvalue of the pencil A, corresponding to Aζ (Proposition 2.2.7)
(it is not excluded that λ0 = k, see Remark 2.2.9). Since (4.1.16) contains only
outgoing waves, the expressions iq(γ−

j , γ−
j ) for all terms in ∑A are numbers of

the same sign. In problem (4.1.9), the function γ−
j,4 is a representative of incoming

or outgoing wave according to the sign of iqN (γ−
j,4, γ−

j,4), where

qN (u, v) = ((Δ + k2)u, v)G − (∂νu, v)∂G − (u, (Δ + k2)v)G + (u, ∂νv)∂G.

Let λ �→ AN (λ) be the operator pencil corresponding to the problem (4.1.9) in the
same domain Ω where has been given the pencil A. The pencil AN is defined by
the equality

AN (λ)u = (∂2
1 + ∂2

2 − λ2 + k2)u

on the set of smooth functions in Ω satisfying ∂νu = 0. Since αζ and Aζ are
connected by (2.2.76), we have

−k(A′
N (λ0)α

ζ , αζ) = (A′(λ0)Aζ , Aζ). (4.1.18)

Considering (2.3.10), we derive from (4.1.18), that

−ikqN (γ−
j,4, γ−

j,4) = iq(γ−
j , γ−

j ). (4.1.19)

Therefore all the expressions iqN (γ−
j,4, γ−

j,4) are numbers of the same sign. This
means, that the first of the relations (4.1.17) turns out to be an intrinsic radiation
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condition for the solution a1 to problem (4.1.9). For the second relation (4.1.17),
the required relation can be proved in a similar way.

We now assume, that k coincides within a threshold. Let us consider for
instance the first of the relations (4.1.17) (containing a1). Each function γ−

j in
the sum ∑A corresponds to a real eigenvalue of the pencil A(·, k). If such an
eigenvalue λ0 differs from zero, then one can again obtain (4.1.19) by repeating
word for word the argument given for the non-threshold case. If λ0 = 0, then
γ−

j is a function of the form χA±
ζ , where A±

ζ has been defined by (2.3.11) for the

Jordan chain {A0, ζ , A1, ζ},

A±
ζ (x) :=

(ix3 ± 1)A0, ζ(x1, x2) + A1, ζ(x1, x2)√
2

.

As before, let λ �→ AN (λ) be the operator pencil of problem (4.1.9). Incoming
and outgoing waves α±

ζ corresponding to problem (4.1.9) are of the form

α±
ζ (x) :=

(ix3 ± 1)α0, ζ(x1, x2) + α1, ζ(x1, x2)√
2

,

where {α0, ζ , α1, ζ} is the Jordan chain for the pencil AN connected with {A0, ζ , A1, ζ}
by (2.2.71). From Proposition 2.2.10, we get

(A′A0, τ, A0, ζ) = 0,

(A′A1, τ, A0, ζ) = (A′A0, τ, A1, ζ) = k(α0, τ, α0, ζ),

(A′A1, τ, A1, ζ) = k[(α0, τ, α1, ζ) + (α1, τ, α0, ζ)], τ, ζ = 1, . . . JN. (4.1.20)

It follows that
−ikqN (χα±

ζ , χα±
ζ ) = iq(χA±

ζ , χA±
ζ ). (4.1.21)

To verify this equality, it suffices to fulfil for the Helmholtz operator the calcula-
tions similar to the proof of Proposition 2.3.3 and to make use of (4.1.20). Thus
intrinsic radiation conditions (4.1.16) imply the intrinsic radiation conditions for
a1 in the sense of problem (4.1.9). �

Corollary 4.1.2. Let the hypotheses of Proposition 4.1.1 be fulfilled. Then

U −
υ

∑
j=1

cje
−
j ∈ Hl

δ(G), (4.1.22)

so the coefficients dj, j = 1, . . . , γ + N, vanish in (4.1.16).

Proof. Since a1 satisfies the homogeneous problem (4.1.9), we have either a1 ≡ 0
(if k2 is not an eigenvalue of the problem) or a1 ∈ Hl

δ(G) (if a1 is an eigenfunc-
tion). In both cases, all coefficients dj vanish from the sum ∑A (see (4.1.17)). The
coefficients dj in the sum ∑B vanish for the same reason. Therefore (4.1.16) takes
the form (4.1.22). �

The representatives e−j of the waves E−
j are generated by eigenvectors of the

pencil M(·, k), so one can choose them to be "Maxwell" whose components e−j, 4
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and e−j, 8 vanish. However the inclusion (4.1.22) is still not completely satisfactory
for our purpose (the return to the Maxwell system), because the coefficients cj
are defined in the terms of the elliptic problem. Moreover, if k turns out to be
an eigenvalue of the elliptic problem, then, for the existence of a solution U , the
right-hand-side must be orthogonal to the eigenvectors of the problem. Finally,
in this case the elliptic problem reminds of itself also by the fact that a solution U
is determined up to adding its arbitrary eigenvector corresponding to the eigen-
value k.

4.2 Decomposing an eigenfunction of the elliptic problem into the
solenoidal and gradient terms

Proposition 4.2.1. Let U = (u1, a1, u2, a2) be an eigenvector of problem (2.1.9) that
corresponds to an eigenvalue k �= 0 and belongs to the space Hl

δ(G) with l = 1 (and,
consequently, with any l = 2, 3, . . . ). Then U = V + W, where

V = ((i/k)∇a2 , a1,−(i/k)∇a1, a2),

W = ((i/k)rot u2, 0,−(i/k)rot u1, 0),

so at least one of the vectors V and W is nonzero. If V(W) is a nonzero vector, then it is
an eigenvector of the problem (2.1.9). The vectors V and W are orthogonal in L2(G).

Proof. The vector U satisfies the homogeneous system in the domain G

i rot u2(x) + i ∇a2(x)− ku1(x) = 0,

−i div u2(x)− ka1(x) = 0, (4.2.1)

−i rot u1(x)− i ∇a1(x)− ku2(x) = 0,

i div u1(x)− ka2(x) = 0

with boundary conditions

u1
τ(x) = 0, u2

ν(x) = 0, a2(x) = 0, x ∈ ∂G. (4.2.2)

The representations U = V +W immediately follows from (4.2.1). As in the proof
of Proposition 4.1.1, we find out that a1 satisfies the problem

(Δ + k2)a1(x) = 0, x ∈ G, ∂νa1(x) = 0, x ∈ ∂G. (4.2.3)

This time a1 ∈ Hl
δ(G), so either a1 is an eigenfunction of this problem or a1 = 0.

In a similar way, we obtain that a2 vanishes or turns out to be an eigenfunction of
the problem

(Δ + k2)a2(x) = 0, x ∈ G, a2(x) = 0, x ∈ ∂G. (4.2.4)

Let us show that V and W satisfy the boundary conditions (4.2.2). We have to
verify the equalities on ∂G for V

(∇a2)τ = 0, (∇a1)ν = 0, a2 = 0, (4.2.5)
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and also the equalities for W on ∂G

(rot u2)τ = 0, (rot u1)ν = 0. (4.2.6)

From a2(x) = 0 on ∂G (see (4.2.2)), it follows, that (∇a2)τ = 0. This, the condition
u1

τ = 0, and the first equation of the system (4.2.1) imply that (rot u2)τ = 0. The
equalities u2

ν = 0 in (4.2.2), (∇a1)ν = 0 in (4.2.3), and the third equation in (4.2.1)
lead to (rot u1)ν = 0. Thus all conditions (4.2.5) and (4.2.6) are fulfilled.

We now show, that each of the vectors V and W is a solution to the system
(4.2.1). As before, denoting the operator of the system by A(D), we have

A(D)V = (0, −(1/k)Δa1 − ka1, 0, −(1/k)Δa2 − ka2).

Hence A(D)V = 0is obtained (4.2.3) and (4.2.4). Therefore if V �= 0, then V is an
eigenvector of problem (2.1.9).

We apply rot to the rot-equations of the system (4.2.2) and obtain

i rot rot u2 − k rot u1 = 0, −i rot rot u1 − k rot u2 = 0. (4.2.7)

Since

A(D)W = ((1/k)rot rot u1 − i rot u2, 0 , (1/k) rot rot u2 + i rot u1, 0),

we arrive at A(D)W = 0. If the vector W is nonzero, then it is an eigenvector of
problem (2.1.9). The orthogonality of V and W can be verified by integration by
parts. �

Corollary 4.2.2. 1. A number k is an eigenvalue of the elliptic problem (4.2.1), (4.2.2) if
and only if at least one of the three conditions holds: (i) k is an eigenvalue of the problem
(1.2.1), (1.2.2) for the Maxwell system; (ii) k2 is an eigenvalue of the Neumann problem
(4.2.3) for the Helmholtz equation; (iii) k2 is an eigenvalue of the Dirichlet problem (4.2.4)
for the Helmholtz equation.

2. An eigenvalue k of elliptic problem (4.2.1), (4.2.2) turns out to be an eigenvalue
of problem (1.2.1), (1.2.2) as well only when at least one of the eigenvectors of the elliptic
problem corresponding to k has a solenoidal projection distinct from zero.

The notations in Proposition 4.2.3 are the same as those in Proposition 4.2.1.

Proposition 4.2.3. Let k2 be an eigenvalue of at least one of the problems (4.2.3) and
(4.2.4) and let V = ((i/k)∇a2 , a1,−(i/k)∇a1, a2) be an eigenvector of problem (4.2.1),
(4.2.2), corresponding to the eigenvalue k. If a vector F = ( f 1, h1, f 2, h2) satisfies the
compatibility conditions (2.1.3) - (2.1.5), then (F, V)G = 0.

To verify this assertion it suffices to substitute in (F, V)G the expressions of
the vector projections and then integrate by parts.
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4.3 The continuous spectrum eigenfunctions of the Maxwell sys-
tem. The scattering matrix

Let δ be a small positive number, such that the strip {λ ∈ C : |Imλ| ≤ δ} con-
tains no eigenvalues of the pencils Mq(·, k), q = 1, . . . , N, except the real eigenval-
ues. The functions in H1

−δ(G) satisfying the homogeneous problems (1.2.1), (1.2.2)
and not belonging to H1

δ(G) are called eigenfunctions continuous spectrum of the
Maxwell system. By Mδ(k) we denote the operator of the system (1.2.1) defined
on the functions in H1

δ(G) satisfying the boundary conditions (1.2.2).
We set μM = min{μ1

2, . . . , μN
2 }, where μ

j
2 is the second eigenvalue of the

Neumann problem (2.3.1) in the domain Ωj which is the cross-section of the cylin-
drical outlet Π

j
+). For μM ≤ k2, there exist continuous spectrum eigenfunctions

of the Maxwell system. In the Section, we show that the wave E+
j in the elliptic

system is scattered only into the waves E−
q , q = 1, . . . , υ. Therefore the elliptic

system has a solenoidal continuous spectrum eigenfunction whose asymptotics
is a linear combination of representatives of the waves E+

j , E−
1 , . . . , E−

υ up to a

term in Hl
δ(G). Such functions form a basis in the space of the continuous spec-

trum eigenfunctions of the Maxwell system. Moreover the gradient wave Γ+
l can

be scattered only into the waves Γ−
m , m = 1, . . . , υ + N. Therefore the scatter-

ing matrix of elliptic system is block diagonal with two blocks ("solenoidal" and
"gradient") on the principal diagonal. Since this matrix is unitary, each of the
mentioned blocks turns out to be unitary.

If 0 < k2 < μM, then the Maxwell waves do not exist, so there are no the
continuous spectrum eigenfunctions of the Maxwell system. In Section 4.5, we
show that for k = 0, there is no a Maxwell wave transporting energy. The scatter-
ing matrix for the (homogeneous) problem (1.2.1), (1.2.2) is defined only on the
set {k ∈ R : k2 ≥ μM}, which we call the continuous spectrum of the aforemen-
tioned problem. The multiplicity of the continuous spectrum at a point k is equal
to the sum

Σ1
M(k)/2 + · · ·+ ΣN

M(k)/2.

The next Proposition 4.3.1 describes a basis in the space of continuous spectrum
eigenfunctions of the Maxwell system.

Proposition 4.3.1. Let e+j and e−j be representatives of the waves E+
j and E−

j respec-

tively. Then there exists a solution E+
j to the homogeneous problem (1.2.1), (1.2.2), such

that

E+
j (·, k)− e+j (·, k)−

υ

∑
q=1

sjq(k)e
−
q (·, k) ∈ H1

δ(G) (4.3.1)

for j = 1, . . . , υ. If k is not an eigenvalue of problem (1.2.1), (1.2.2) for the Maxwell sys-
tem (that is the homogeneous problem with given k has no nonzero solutions in H1

δ(G)),
then the solution E+

j is unique. The functions E+
1 (·, k), . . . , E+

υ (·, k) form a basis in the
space of continuous spectrum eigenfunctions of the Maxwell system corresponding to the
number k. In the case that k is an eigenvalue for the problem (1.2.1), (1.2.2), the solution
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E+
j (·, k) is determined up to a term in kerMδ(k), whereas E+

j (·, k), . . . , E+
υ (·, k) form

a basis modulo kerMδ(k).

Proof. We restrict ourselves to verifying the proposition under the condition that
k is not an eigenvalue for the problem (1.2.1), (1.2.2). Assume, that χ ∈ C∞(R),
χ ≥ 0, χ(t) = 0 for t ≤ T − 1 and χ(t) = 1 for t ≥ T. Moreover let e+j coincide
with the mapping (yq, tq) �→ χ(tq)P(yq, tq) in one of the cylindrical outlets of
the waveguide and be extended by zero to G. Here P is a solution of the homo-
geneous problem for the Maxwell system in the cylinder, generated by a vector
Φτ or Ψζ in (2.2.77) and (2.2.76)(or by Jordan chains {Φ0,τ , Φ1,τ}, {Ψ0,ζ , Ψ1,ζ} in
(2.2.95), (2.2.96)) (see the definition of waves before (2.3.19)). We have

A(D)e+j (x) = [A(D), χ]P(x), x ∈ G, (4.3.2)

Be+j (x) = 0, x ∈ ∂G.

The fourth and the eighth components of the vector function e+j vanish, so in
accordance with Proposition 2.1.1, the right-hand-side of (4.3.2) satisfies the com-
patibility conditions (2.1.3) -(2.1.5).

Let us consider the problem

A(D)U (x) = [A(D), χ]P(x), x ∈ G, BU (x) = 0, x ∈ ∂G. (4.3.3)

We first discuss the case that not only k differs from the eigenvalues of the Maxwell
system, but also k2 is not an eigenvalue for the problems (4.1.9) and (4.1.10). From
Proposition 2.5.1 and 4.1.1, there exists a unique solution U of problem (4.3.3)
with intrinsic radiation conditions, whereas the fourth and the eighth compo-
nents of U are equal to zero. We set E+

j := e+j − U and check that E+
j has the

required properties. From (4.3.2) and (4.3.3), it follows that E+
j is a solution to the

homogeneous problem (1.2.1), (1.2.2). The properties of U just indicated lead to

U =
υ

∑
q=1

cqe−q + v,

where v ∈ H1
δ(G). Therefore the equality E+

j = e+j − U implies (4.3.1) with con-
stants sjq.

We now drop the additional assumption on k2, that is we assume, that k2 is
an eigenvalue at least one of the two problems (4.1.9) and (4.1.10). Then k is an
eigenvalue of the elliptic problem (4.2.1), (4.2.2) with "gradient" eigenvectors of
the form

V = ((i/k)∇a2 , a1,−(i/k)∇a1, a2) (4.3.4)

(see Proposition 4.2.1). From (4.3.2) it follows, that

([A(D), χ]P), V)G = (A(D)e+j , V)G = (e+j , (A(D)V)G = 0

(the second equality can be obtained by integration by parts in view of the in-
clusion V ∈ H1

δ(G)). Hence there exists a solution U to problem (4.3.3) with
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intrinsic radiation conditions. This time such a solution has been determined
up to a term of the form (4.3.4) in kerLδ(k). As before, we set E+

j := e+j − U ;
for any choice of U , the function E+

j satisfies the homogeneous elliptic problem
(4.2.1), (4.2.2). We make use of the arbitrariness in the definition of U in order
to provide the orthogonality of E+

j to kerLδ(k). Let us show that then E+
j is a

unique solution to the homogeneous problem (1.2.1), (1.2.2), which satisfies the
inclusion (4.3.1). We write down E+

j = (u1, a1, u2, a2) and obtain, as in the proof
of Proposition 4.2.1, that E+

j = V + W, where V and W are defined by the same
formulas as in Proposition 4.2.1. Each of the vectors V and W is a solution to
(4.2.1) with boundary conditions (4.2.5) and (4.2.6). This, in particular, implies
that V ∈ kerLδ(k), so (E+

j , V)G = 0 and moreover (V, W)G = 0. Therefore
(V, V)G = (E+

j , V)G − (W, V)G = 0 and finally E+
j = W.

It remains to verify that E+
j , j = 1, . . . , υ, make up a basis in the space of

continuous spectrum eigenfunctions. Let E be any continuous spectrum eigen-
function of the Maxwell system corresponding to k. Then

E −
υ

∑
j=1

αje
+
j −

υ

∑
j=1

β je
−
j ∈ H1

δ(G),

where αj and β j are certain constants. Therefore U := E − ∑
υ
j=1 αjE+

j satisfies

U −
υ

∑
j=1

dje
−
j ∈ H1

δ(G)

with constant coefficients dj. This means that U is a solution to the homogeneous
elliptic problem (4.2.1), (4.2.2), which is subject to intrinsic radiation conditions
and orthogonal to kerLδ(k) (in the case that the lineal is nonzero, it consists of
the gradient eigenvectors V, see Proposition 4.2.1). Therefore U = 0 and E =

∑
υ
j=1 αjE+

j . �

Proposition 4.3.2. Let γ+
j and γ−

j be representatives of the gradient waves Γ+
j and Γ−

j

respectively. Then there exists a solution G+
j to the elliptic problem (4.2.1), (4.2.2), such

that

G+
j − γ+

j −
υ+N

∑
p=1

σjpγ−
p ∈ H1

δ(G) (4.3.5)

for j = 1, . . . , υ + N. If k2 is an eigenvalue neither of the Neumann problem (4.1.9)
nor of the Dirichlet problem (4.1.10), then the solution G+

j is unique; the functions

G+
1 , . . . ,G+

υ+N make up the basis in the space of gradient continuous spectrum eigen-
functions of the elliptic problem corresponding to k. In the case, that k2 is an eigenvalue
of at least one of the problems (4.1.9) and (4.1.10), then kerLδ(k) contains a nonzero
subspace V of gradient vectors and the solution G+

j is defined up to arbitrary term in V ,

whereas G+
1 , . . . ,G+

υ+N constitute a basis modulo V .
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Proof: The proof is similar to the proof of Proposition 4.3.1; let us outline the
proof. Assume, that the wave Γ+

j corresponds to λ0 �= 0, generated, for example,
by a vector of the form

B = (i∂1βτ , i∂2βτ , −λ0βτ , 0, 0, 0, 0, kβτ)

in (2.2.77). When proving Proposition 4.3.1, we chose for the solenoid wave E+
j a

"special" representative e+j with fouth and eighth components being zero. Deal-
ing now with the gradient wave Γ+

j , we take a "special " gradient representative
γ+

j which coincides in one of the cylindrical waveguide outlets with the mapping

(y, t) �→ (i∇(χ(t) exp (iλ0t)βτ(y)), 0, 0, 0, 0, kχ(t) exp (iλ0t)βτ(y)),

and vanishes in the rest part of G . Applying the operator of problem (2.1.9) to
γ+

j , we obtain

A(D, k)γ+
j = (0, . . . , 0, i div i∇(χ exp (iλ0t)βτ)− k2χ exp (iλ0t)βτ), (4.3.6)

Bγ+
j = 0.

Let us denote the right-hand-side of (4.3.6) by F, and consider

A(D, k)U (x) = F(x), x ∈ G; BU (x) = 0, x ∈ ∂G. (4.3.7)

For simplicity, we assume that k is not an eigenvalue for the problem, that is,
kerLδ(k)=0. According to Proposition 2.5.1, there exists a unique solution U to
the problem (4.3.7) with intrinsic radiation conditions

U −∑ cje
−
j −∑ dpγ−

p ∈ H1
δ(G),

where cj = (F, E−
j )G and E−

j are continuous spectrum eigenfunctions satisfying
(4.3.8) (E−

j are defined like E+
j but the roles of the incoming and outgoing waves

are interchanged). The fourth and the eighth components of every function E−
j

vanish, whereas all components of F, except the eighth component, are equal to
zero. Therefore cj = 0 for all j and we can set G+

j := γ+
j − U .

If k is a threshold, then for a gradient wave corresponding to the eigenvalue
λ0 = 0, we choose a "special" representative which coincides with the mapping

(y, t) �→ (i∇(χ(t)(it + 1)β0,τ(y)), 0, 0, 0, 0, kχ(t)(it + 1)β0,τ(y))√
2

,

in one of the cylindrical outlets and vanishes in the rest part of G. �
The next assertion is justified by Propositions 2.4.1, 4.3.1, and 4.3.2.

Proposition 4.3.3. The scattering matrix S(k) of the elliptic problem (for the augmented
Maxwell system) is block diagonal, S(k) = (s(k), σ(k)). In the basis (4.1.2) the expan-
sions (4.3.1) and (4.3.5) hold, so the υ × υ-block s(k) = ‖sjq‖ consists of the coefficients
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in (4.3.1), while the (υ + N) × (υ + N)-block σ(k) = ‖σjq(k)‖ consists of those in
(4.3.5). Each of the blocks is unitary. Moreover

E−
j (·, k)− e−j (·, k)−

υ

∑
q=1

tjq(k)e
+
q (·, k) ∈ H1

δ(G) (4.3.8)

with t = s−1, where t = ‖tjq‖.

The block s(k) is called the scattering matrix of the homogeneous problem
(1.2.1), (1.2.2). In essence, Proposition 4.3.3 coincides with Theorem 1.2.4.

Remark 4.3.4. Applying Theorem 3.1.1, we compute an approximation SR to the scatter-
ing matrix S of the elliptic system. The matrix is block-diagonal S = diag(s, σ). Hence,
as an approach to the matrix s serves the corresponding block of SR.

4.4 The radiation principle for the Maxwell system

A correct boundary value problem with intrinsic radiation conditions is called the
radiation principle. We are now in a position to derive the radiation principle for
the Maxwell system from that of the elliptic problem (Proposition 2.5.1). Using
the results of Sections 4.1 - 4.3, we first adapt for the purpose the statement of the
radiation principle of the elliptic problem.

Let E+
1 , . . . , E+

υ be incoming waves and E−
1 , . . . , E−

υ outgoing waves in (4.1.2).
For the waves E±

j we choose representatives e±j which coincide with the function
(y, t) �→ χ(t)P(y, t) in one of the cylindrical outlets and vanish elsewhere in G.
Here P(y, t) is the solution of the homogeneous problem (2.1.9) in cylinder given
by (2.3.4) (by (2.3.11))(see 2.3). Such e±j has the fourth and the eighth components
equal to zero in G, and satisfy the boundary conditions Be±j = 0 on ∂G. As be-
fore, let δ be a small positive number, such that the strip {λ ∈ C : |Imλ| < δ}
contains no eigenvalues of the pencils λ �→ Aq(λ, k), q = 1, . . . , N, except the real
ones. If the space kerLδ(k) is nonzero, we represent every element as the sum of
orthogonal solenoidal and gradient eigenvectors of problem (4.2.1), (4.2.2); such a
possibility is provided by Proposition 4.2.1. Let ker⊥Lδ(k) denote the linear hull
of the solenoid eigenvectors in kerLδ(k).

Theorem 4.4.1. Let Z1, . . . ,Zm be a basis in ker⊥Lδ(k) and F = ( f 1, h1, f 2, h2) a
vector in Hl−1

δ (G) subject to the compatibility conditions (2.1.3) - (2.1.5) and the or-
thogonality conditions (F ,Zj) = 0 for j = 1, . . . , m. Then:

1. If k2 ≥ μM (that is, k belongs to the continuous spectrum of the Maxwell
system), then there exists a solution to the problem

A(D, k)U (x) = F (x), x ∈ G, BU (x) = 0, x ∈ ∂G, (4.4.1)

with radiation conditions

V := U − c1e−1 − · · · − cυe−υ ∈ Hl
δ(G)
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and with zero fourth and eighth components. Here cj = (F , E−
j ) with E−

j satisfying the
homogeneous problem (4.4.1) and the inclusion (4.3.8). Such a solution U is determined
up to an arbitrary term in ker⊥Lδ(k) and

‖V ; Hl
δ(G)‖+ |c1|+ · · ·+ |cυ| ≤ const(‖F ; Hl−1

δ (G)‖+ ‖ρδV ; L2(G)‖). (4.4.2)

A solution U 0, satisfying the additional conditions (U 0,Zj)G = 0, is unique and the
estimate (4.4.2) holds with right-hand-side replaced by const‖F ; Hl−1

δ (G)‖.
2. If 0 < k2 < μM, then there exists a solution to problem (4.4.1) satisfying

U ∈ Hl
δ(G) and having the fourth and the eighth components equal to zero. Such a

solution U is determined up to an arbitrary term in ker⊥Lδ(k) and

‖U ; Hl
δ(G)‖ ≤ const(‖F ; Hl−1

δ (G)‖+ ‖ρδU ; L2(G)‖). (4.4.3)

A solution U 0, satisfying the additional conditions (U 0,Zj)G = 0, is unique and the
estimate (4.4.3) holds with right-hand-side replaced by const‖F ; Hl−1

δ (G)‖.

Proof. 1. Since F satisfies the compatibility conditions, the equalities (F , V)G = 0
hold for all gradient vectors V ∈ kerLδ(k) (Proposition 4.2.3). Thus the vector F
is orthogonal to kerLδ(k). According to Proposition 2.5.1, there exists a solution
U to problem (4.4.1) subject to the intrinsic radiation conditions, which in view of
Corollary 4.1.2 take the form of

U − c1e−1 − · · · − cυe−υ ∈ Hl
δ(G).

Again using Proposition 2.5.1, we obtain cj = (F , E−
j )G. Such a solution U is

determined up to an arbitrary term in kerLδ(k). Let us choose a special solu-
tion U′ and write down the general solution U = U′ + V + W with gradient
V and solenoidal W vectors in kerLδ(k). Proposition 4.1.1 implies that U′ =
(u1, a1, u2, a2), a1 and a2 being eigenfunctions of problems (4.1.9) and (4.1.10) re-
spectively. Hence there exists a unique gradient vector V ′, such that U′ + V ′ +
W = (v1, 0, v2, 0) for all W ∈ ker⊥Lδ(k). Finally choose a vector W ′ so that the
solution U 0 := U′ + V ′ + W ′ satisfies (U 0,Zj)G = 0 with j = 1, . . . , m. Then U 0
is uniquely determined and the estimate holds given in the formulation of the
theorem.

2. If 0 < k2 < μM, then the real axis is free from the eigenvalues of the
pencils Mj(·, k). Therefore the functions E−

j , e−j are absent as well as the corre-
sponding radiation conditions. It remains to repeat with evident modifications
the argument in the first part of the proof. �

In order to get a radiation principle directly for problem (1.2.1), (1.2.2), we
have to somewhat change the notation in Theorem 4.4.1. Namely, the domain
of the operator of problem (4.4.1) consists of vectors with eight components,
whereas the fourth and the eighth components are equal to zero. Crossing out
these zero components, we replace the 8-vectors by the "Maxwell" 6-vectors and
obtain problem (1.2.1), (1.2.2) instead of (4.4.1). When going from (4.4.1) to (1.2.1),
(1.2.2), we change the notation U , e±j , E±

j , L for U, ê±j , Ê±
j , M, respectively. More-

over, in the notation of the spaces of vector functions we explicitly indicate the
number of components, e. g., Hl

δ(G, C6). Then Theorem 4.4.1 in essence coincides
with Theorem 1.2.5.
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4.5 Statics: k = 0

In this Section we show that for k = 0 the Maxwell operator has N linearly in-
dependent waves participating in a well-posed boundary value problem, N be-
ing the number of cylindrical ends of the domain G. The waves do not transfer
electromagnetic energy. The operator of the boundary value problem describes
a closed system without energy dissipation. For k = 0 there are no nontrivial
solutions to the homogeneous problem exponentially decaying at infinity. There-
fore for any right-hand-side subject to the compatibility conditions the boundary
value problem is uniquely solvable. In the absence of magnetic monopolies, the
right-hand-side F = ( f 1, h1, f 2, h2) of (1.2.1) satisfies f 2 = 0 and h1 = 0. Then
the statement of the well-posed boundary problem contains no aforementioned
waves.

In what follows we assume that the domain G and all the cross-sections Ωq

are one-connected while the boundary ∂G is connected.

4.5.1 Waves

Let λ �→ A(λ, 0)(= A(λ, 0)) be the operator pencil of the augmented (elliptic)
Maxwell system for k = 0 in a one-connected domain Ω. The number λ0 = 0 is a
unique real eigenvalue of the pencil. The eigenspace is spanned by the vectors

Φ± = (2 |Ω|)−1/2(0, 0, 0, 1, 0, 0,±1, 0) (4.5.1)

with orthogonality and normalization conditions

(A′Φ±, Φ∓) = 0, (A′Φ±, Φ±) = ±1. (4.5.2)

There are no generalized eigenvectors (see Propositions 2.2.2 and 2.2.4). In G, the
dimension of the wave space is equal to 2N, N being the number of cylindrical
ends of the domain G. In the wave space we choose a basis V1, . . . , V2N with
representatives v1, . . . , v2N . The supports of vq, vq+N belong to G ∩ Π

q
+; on the

supports, the functions are given by

vq(yq, tq) = χ(tq)Φ
q
+, vq+N(yq, tq) = χ(tq)Φ

q
− , q = 1, .., N,

where χ is a cut-off function, 0 ≤ χ ≤ 1, χ(t) = 0 for t ≤ T − 1, and χ(t) = 1 for
t ≥ T; the vectors Φ

q
± are defined by (4.5.1) on Ωq. According to the argument

after Proposition 2.3.5, the basis V1, . . . , V2N in the wave space W satisfies (2.3.20).
Note that the forth and the seventh components of the outgoing V1, . . . , VN

and incoming VN+1, . . . , V2N waves are nonzero. However there exist N linearly
independent Maxwell waves Wj = (Vj − Vj+N), j = 1, . . . , N. The waves do not
transfer energy, that is, qG(Wj, Wk) = 0, j, k = 1, ..., N.

4.5.2 Continuous spectrum eigenfunctions. Scattering matrix

Recall, that the elements in kerL−δ not belonging to H1
δ(G) are called the contin-

uous spectrum eigenfunctions (CSE) of the operator Lδ = Lδ(0). The number
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of CSE linearly independent modulo H1
δ(G) is half of the wave space dimension

(see Proposition) 2.4.1) and is equal to N. In this Section we describe CSE in more
detail and calculate the scattering matrix.

Proposition 4.5.1. Let U = (u1, a1, u2, a2) ∈ kerL−δ(0), where as usual u1, u2 are
three dimensional vector functions and a1, a2 are scalar functions. Then

u1 = 0, a1 = const, u2 = ∇ω, a2 = 0, (4.5.3)

while ω belongs to Hl
−δ(G), l = 2, 3, . . . , and

Δω(x) = 0, x ∈ G; ∂νω(x) = 0, x ∈ ∂G. (4.5.4)

Proof. The waves V1, . . . , V2N form a basis for the space of waves, so

U − c1v1 − · · · − c2Nv2N ∈ Hl
δ(G) (4.5.5)

with certain constant c1, . . . , c2N. It follows, that

a1 − χ1(c1 + cN)(2|Ω1|)−1/2 − · · · − χN(cN + c2N)(2|Ω|N)−1/2 ∈ Hl
δ(G), (4.5.6)

a2 ∈ Hl
δ(G),(4.5.7)

where χj is a cut-off function with support in G ∩Π
j
+, equal to 1 near infinity. The

function U satisfies the homogeneous problem (2.1.7),(2.1.8). Applying div to the
rot-equations in (2.1.7) and taking account of (2.1.8), we obtain the problems for
a1 and a2:

Δa1(x) = 0, x ∈ G, ∂νa1(x) = 0, x ∈ ∂G, (4.5.8)

Δa2(x) = 0, x ∈ G, a2(x) = 0, x ∈ ∂G. (4.5.9)

We integrate (Δa1, a1)G and (Δa2, a2)G by parts, making use of (4.5.6), (4.5.7) and
(4.5.8), (4.5.9). As a result, we obtain

0 = (Δaj, aj)G = −(∇aj,∇aj)G, j = 1, 2,

so a1 = const and a2 = 0 in G. Now from (2.1.7) it follows, that

rot u1 = 0, div u1 = 0; rot u2 = 0, divu2 = 0.

Since the domain G is one-connected, we have u1 = ∇τ and u2 = ∇ω, where ω

and τ are harmonic functions in G. In view of (2.1.8), we obtain the problems

Δ ω(x) = 0, x ∈ G, ∂νω(x) = 0, x ∈ ∂G, (4.5.10)

Δ τ(x) = 0, x ∈ G, τ(x) = const, x ∈ ∂G. (4.5.11)

The set ∂G is one-connected, so "const" in (4.5.11) stands for the same constant
everywhere on ∂G. The change τ for τ − const has no effect on u1, and one can
assume that const = 0 in (4.5.11). Therefore τ = 0 and u1 = 0 in G. �

Proposition 4.5.2. There holds the equality kerLδ(0) = 0.
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Proof. Let U ∈ H1
δ(G) and U = (u1, a1, u2, a2). Since kerLδ(0) ⊂ kerL−δ(0),

the conclusion of Proposition 4.5.1 holds for uj and aj. This time a1 ∈ H1
δ(G), so

a1 = 0. Being subject to ∇ω ∈ H1
δ(G), a solution ω of (4.5.4) admits asymptotics

of the form ω(y, t) = cj + O(exp (−δt)) with cj = const on every set G ∩ Π
j
+ as

t → +∞. Now we can integrate (Δω, ω)G by parts and obtain ‖∇ω; L2(G)‖ = 0.
Thus u2 = ∇ω = 0. �

Proposition 4.5.3. Let ζ1, . . . , ζN be the basis for the space of CSE, subject to (2.4.1).
The vectors of the basis are of the form ζ j = (�0, a1

j ,∇ωj, 0), where�0 stands for the three-
functions component vector (0, 0, 0). Then:

1. The vector functions ηj = (�0, a1
j ,−∇ωj, 0) satisfy (2.4.2).

2. The scattering matrix s in Proposition 2.4.1 is self-adjoint with entries

sjk =

{
2/dj − 1, k = j,

2/
√

djdk, k �= j,
(4.5.12)

where

dj =
∑

N
l=1 |Ωl|∣∣Ωj

∣∣ . (4.5.13)

3. There holds the equality

a1
j =

√
2
∣∣Ωj

∣∣
∑

N
l=1 |Ωl|

. (4.5.14)

Proof. The formulas (2.4.1) for the eigenfunctions ζ j = (�0, a1
j ,∇ωj, 0) are equiva-

lent to (2.4.2) for the eigenfunctions ηj = (�0, a1
j ,−∇ωj, 0) with matrix s = t = s∗.

Therefore the unitary matrix s turns out to be self-adjoint (see 2.4). This and the
equalities g1

j = const lead to (4.5.12), while a1
j can be obtained from (4.5.12) and

(2.4.1). �

Remark 4.5.4. We set Y := (�0, 1,�0, 0). It is clear, that Y ∈ kerLδ(0), so Y turns
out to be a CSE for Lδ(G). The forth component of each ζ j is constant (and equal to
a1

j ). Therefore the fourth and the eighth components of any Zj := ζ j − a1
j Y vanish, and

Zj satisfies the homogeneous problem (1.2.1), (1.2.2). Among the functions Z1, . . . , ZN
there are N − 1 linearly independent functions, because the linear hull of Y, Z1, . . . , ZN
coincides with kerLδ(0). Thus in the space kerLδ(0) there exists a basis consisting of
N − 1 solenoidal functions and one gradient function Y.

4.5.3 Radiation principle for the augmented Maxwell system

We are now in a position to specify Proposition 2.5.1. Let V1, . . . , V2N be the basis
as in Proposition 2.3.5 (10). We choose the wave representatives v1, . . . , v2N in the
same way as in 4.5.2. Denote by S the linear hull of v1, . . . , vN. On the space S�

Hl
δ(G) we consider the restriction L of L−δ(0), which is a continuous mapping

L : S� Hl
δ(G) → Hl−1

δ (G)× Hl−1/2
δ (∂G).
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Theorem 4.5.5. Let {F ,G} ∈ Hl−1
δ (G)× Hl−1/2

δ (∂G) l and let the compatibility con-
ditions (2.1.3)-(2.1.5) be fulfilled. Then:

1. There exists a unique solution U = (u1, a1, u2, a2) ∈ S� Hl
δ(G) to the equation

LU = {F ,G}.

2. There holds the equalities

a1 = const, a2 = 0. (4.5.15)

Moreover, if G = 0 then

a1 =
i(h1, 1)G

∑
N
l=1 |Ωl|

(4.5.16)

3. The vector (u1, u2) satisfies (1.2.1), (1.2.2) (for the non-augmented Maxwell sys-
tem) and

w2 := u2 − a1
N

∑
l=1

χl(0, 0, 1) ∈ Hl
δ(G), w1 := u1 ∈ Hl

δ(G).

4. For the solution (u1, u2) of (1.2.1), (1.2.2) there is valid the estimate

‖w1; Hl
δ(G)‖+ ‖w2; Hl

δ(G)‖+ |a1 | ≤ const(‖F ; Hl−1
δ (G)‖+ ‖G; Hl−1/2

δ ∂G‖).
(4.5.17)

Proof. The existence and uniqueness of solutions follow from Proposition 2.5.1
and the triviality of the kernel kerLδ(0). Let us verify (4.5.15). Applying div to
the rot-equations in (2.1.7), and taking into account the compatibility conditions
(2.1.3), (2.1.4), we arrive at Δa1 = Δa2 = 0 in G. By virtue of (1.2.2) and (2.1.5)
we have ∂νa1 = a2 = 0 on ∂G. The inclusions (4.5.6) and (4.5.7) follow from
Proposition 2.5.1 (20). As in Proposition 4.5.1, we can now derive a1 = const and
a2 = 0. It remains to calculate the constant a1. To this end, it suffices to find its
asymptotics in one of the cylindrical outlets. According to (2.5.1) and (2.5.2),

a1 = (i(F , ζ j)G + i(G,Qζ j)∂G)/
√

2
∣∣Ωj

∣∣. (4.5.18)

The expressions with ∇ω1
j vanish after integrating by parts. For G = 0 we have

a1 =
i(h1, a1

j )G√
2
∣∣Ωj

∣∣ =
i(h1, 1)G

∑
N
l=1 |Ωl|

. (4.5.19)

Since a1 = const and a2 = 0, the vector (u1, u2) satisfies (1.2.1), (1.2.2). The
asymptotcs for u1, u2 follows from (2.5.1), while (4.5.17) can be obtained from
(2.5.3). �
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4.5.4 Radiation principle for the Maxwell operator

Denote by LM,−δ(0) the operator of boundary value problem (1.2.1), (1.2.2) for
k = 0 with domain Hl

−δ(G). Let SM be the space spanned by the function
∑

N
l=1 χl(0, 0, 0, 0, 0, 1). We consider the restriction LM of LM,−δ(0) to SM� Hl

δ(G);
the mapping

LM : SM � Hl
δ(G) → Hl−1

δ (G)× Hl−1/2
δ (∂G).

is continuous. The next assertion immediately follows from Theorem 4.5.5.

Theorem 4.5.6. Let F ∈ Hl−1
δ (G) and let the compatibility conditions (2.1.3)-(2.1.5)

be fulfilled. Then there exists a unique solution (u1, u2) ∈ SM � Hl
δ(G) of the equation

LM(u1, u2) = {F , 0}.

The vector (u1, u2) satisfies

w2 := u2 − a1
N

∑
l=1

χl(0, 0, 1) ∈ Hl
δ(G), w1 := u1 ∈ Hl

δ(G),

where a1 = i(h1, 1)G/∑
N
l=1 |Ωl |. The solution (u1, u2) admits the estimate

‖w1; Hl
δ(G)‖+ ‖w2; Hl

δ(G)‖+ |a1| ≤ const‖F ; Hl−1
δ (G)‖.�

Formula (4.5.16) shows that for the right-hand-side of (1.2.1) with f 2 = 0
and h1 = 0, the constant a1 equals zero. In other words, in the absence of magnetic
monopolies, for any k ∈ (−k0, k0), there exists a unique solution to the problem
(1.2.1), (1.2.2), which decays exponentially at infinity.



5 METHOD FOR COMPUTING THE SCATTERING
MATRIX IN A NEIGHBOURHOOD OF A
THRESHOLD

In this Chapter, we consider a waveguide described by the Dirichlet problem for
the Helmholtz equation

−Δu(x)− μu(x) = 0, x ∈ G, (5.0.20)

u(x) = 0, x ∈ ∂G.

The waveguide scattering matrix S(μ) changes its size when spectral parame-
ter μ crosses a threshold. To calculate S(μ) in a neighborhood of a threshold,
we introduce an "augmented" scattering matrix S(μ) that keeps its size near the
threshold, where the matrix S(μ) is analytic in μ. A minimizer of a quadratic
functional J R(·, μ) serves as an approximation to a row of the matrix S(μ). To
construct such a functional, we solve an auxiliary boundary value problem in the
bounded domain obtained by cutting off, at a distance R, the waveguide outlets
to infinity. As R → ∞, the minimizer a(R, μ) at exponential rate tends to the
corresponding row of S(μ) uniformly, with respect to μ in a neighborhood of the
threshold. Finally, we express the elements of the “ordinary”, scattering matrix
S(μ) through those of the augmented matrix S(μ).

Section 5.1 is devoted to constructing a stable basis of waves in a neighbor-
hood of a threshold for the waveguide in the domain G. The continuous spectrum
eigenfunctions and the scattering matrices S(μ) and S(μ) are introduced in Sec-
tion 5.2; here we also prove the analyticity of the matrices on the corresponding
intervals of the continuous spectrum. We describe the connections between the
matrices S(μ) and S(μ) and calculate the one-sided limits of S(μ) at a threshold
in Section 5.3. The last Section 5.4 contains the statement and justification of the
method for approximating of the scattering matrices.
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5.1 Augmented space of waves

5.1.1 The waves in a cylinder

In the cylinder Π = {(y, t) : y = (y1, . . . , yn) ∈ Ω, t ∈ R}, we consider the
problem

(−Δ − μ)u(y, t) = 0, (y, t) ∈ Π,

u(y, t) = 0 (y, t) ∈ ∂Π, (5.1.1)

where

Δ = Δy + ∂2
t , Δy =

n

∑
j=1

∂2
j , ∂j = ∂/∂yj.

Let us connect with problem (5.1.1) an operator pencil C 
 λ �→ A(λ, μ), by
setting

A(λ, μ)v(y) = (−Δy + λ2 − μ)v(y), y ∈ Ω; v|∂Ω = 0. (5.1.2)

We also consider the problem

(−Δy − μ)v(y) = 0, y ∈ Ω,

v(y) = 0, y ∈ ∂Ω. (5.1.3)

The eigenvalues of problem (5.1.3) are called the thresholds of problem (5.1.1).
The thresholds form a positive sequence τ1 < τ2 < . . . , which strictly increases
to infinity. Let us introduce the nondecreasing sequence {μk}∞

k=1 of the eigen-
values of problem (5.1.3), counted according to their multiplicity (generally, the
numbering of τl and that of μk are different; every μk coincides with one of the
thresholds τl). We assume, that the corresponding eigenvectors ϕk are orthogonal
and normalized by the condition∫

Ω
ϕk(y)ϕk(y) dy = 1. (5.1.4)

The spectrum of the operator pencil (for every fixed μ ∈ R) consists of isolated
eigenvalues on the axes of complex plane. For any μ the eigenvalues λ±

k of the
pencil λ �→ A(λ, μ) are defined by λ±

k = ±(μ − μk)
1/2. If λ±

k �= 0, to the eigenval-
ues λ±

k there corresponds the same eigenvector ϕk, which is also an eigenvector
of problem (5.1.3), corresponding to the eigenvalue μk. There is no generalized
eigenvector in this case. If μk−1 < μ < μk, then λ±

k , λ±
k+1, . . . are imaginary and

λ±
1 , . . . , λ±

k−1 are real. In the case of μ = μk, to the eigenvalue 0 = λ+
k = λ−

k ,
there corresponds a Jordan chain ϕ0, ϕ1

k, where ϕ0
k is an eigenvector and ϕ1

k is a
generalized eigenvector.

We fix a real μ �= μk, k = 1, 2, . . . , that is, the μ is not a threshold, and
introduce the linear complex space spanned by the functions

(y, t) �→ exp(iλ±
k t)ϕk(y) (5.1.5)
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with real λ±
k = ±(μ − μk)

1/2; the functions (5.1.5) satisfy (5.1.1). We denote the
space by W(μ) and will call it the space of waves. Its dimension is equal to the
doubled number of μk (counted according to their multiplicities), such that μk <

μ. The functions

u±
k (y, t; μ) = (2|λ∓

k |)−1/2 exp(iλ∓
k t)ϕk(y) (5.1.6)

form a basis in W(μ). We call u+
k (·, μ) a wave incoming from +∞, and u−

k (·, μ) a
wave outgoing to +∞.

Assume now, that μ = τ is a threshold and, consequently, μ is an eigenvalue
of (5.1.3) with multiplicity κ ≥ 1. Then κ numbers μl satisfy μl = τ. For each l
the functions exp(iλ+

l t)ϕl(y) and exp(iλ−
l t)ϕl(y) coincide. Therefore the number

of linearly independent functions of the form (5.1.5) for μ = τ is κ less than the
number of such functions for μ satisfying τ < μ < τ + β with small β > 0.
However for a more general notion of the waves, the dimension of the space
W(μ) is continuous from the right at the threshold. In such a case, the definition
of incoming and outgoing waves is based on energy reasons as in the Sommerfeld
and Mandelstamm principles.

For the definition we introduce the form

qN(u, v) := ((−Δ − μ)u, v)Π(N) + (u,−∂νv)∂Π(N)∩∂Π

−(u, (−Δ − μ)v)Π(N) − (−∂νu, v)∂Π(N)∩∂Π, (5.1.7)

where Π(N) = {(y, t) ∈ Π : t < N}, the number μ ∈ R is for the time being
not a threshold, u = χ f and v = χg, while f and g are any of the functions
(5.1.6), corresponding to real λ±

k (μ) (possibly with distinct indices); χ stands for
a smooth cut-off function, χ(t) = 0 for t < T − 1 and χ(t) = 1 for t > T with
T < N. Integrating by parts, we see that

iqN(χu±
k , χu∓

l ) = 0 for all k, l, (5.1.8)

iqN(χu±
k , χu±

l ) = ∓δkl , (5.1.9)

so the result is independent of N and χ; in what follows we drop N but keep
χ. We name the wave u+

k (u
−
k ) incoming (outgoing) for −(+) on the right in

(5.1.9) and obtain the definition of incoming (outgoing) waves equivalent to the
old definition.

We are going to consruct a basis in the (augmented) space of waves "stable
at a threshold". Let μ ∈ R be a regular value of the spectral paremeter of problem
(5.1.3) and μm the eigenvalue with the greatest number satisfying μm < μ. We
also assume that μl < μl+1 = · · · = μm. Then the numbers τ′ := μl, τ := μl+1 =
· · · = μm, and τ′′ := μm+1 turn out to be three successive thresholds τ′ < τ < τ′′

of problem (5.1.1) in the cylinder Π. (We discuss the general situation; the cases
l + 1 = m, m = 1 (and so on) can be considered with evident simplifications.)
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We set

w±
k (y, t; μ) = 2−1/2

(
eit

√
μ−μk + e−it

√
μ−μk

2
∓ eit

√
μ−μk − e−it

√
μ−μk

2
√

μ − μk

)
ϕk(y),

(5.1.10)

w±
p (y, t; μ) = u±

p (y, t; μ), (5.1.11)

where k = l + 1, . . . , m, p = 1, . . . , l, and u±
p are defined in (5.1.6).

Proposition 5.1.1. The functions μ �→ w±
k (y, t; μ), k = l + 1, . . . , m, admit the analytic

continuation to the whole complex plane. These analytic functions smoothly depend on
the parameters y ∈ Ω̄ and t ∈ R (i.e., any derivatives in y and t are analytic functions
as well).

The functions μ �→ w±
p (y, t; μ) are analytic on the complex plane with cut along

the ray {μ ∈ R : −∞ < μ ≤ μp}, p = 1, . . . , l; they smoothly depend on y and t.
All the functions w±

k , k = 1, . . . , m, are solutions to problem (5.1.1). For every
μ in (τ′ < μ < +∞) the functions (5.1.10), (5.1.11) satisfy the orthogonality and
normalization conditions

iq(χw±
r (· ; μ), χw∓

s (· ; μ)) = 0 for all r, s = 1, . . . , m, (5.1.12)

iq(χw±
r (· ; μ), χw±

s (· ; μ)) = ∓δrs. (5.1.13)

Proof. The first and second expression inside the parentheses in (5.1.10) can be
decomposed in the series

∑
l≥0

(μk − μ)l t2l

(2l)!
and it ∑

l≥0

(μk − μ)l t2l

(2l + 1)!
, (5.1.14)

which are absolutely and uniformly convergent on any compact K ⊂ {(μ, t) :
μ ∈ C, t ∈ R}. This implies the analyticity properties of w±

k (y, t; μ) for k =
l + 1, . . . , m. The corresponding assertions about w±

p (y, t; μ) with p = 1, . . . , l are
evident.

It remains to verify the orthogonality and normalization conditions. We
first assume that μ > τ and consider, for instance, (5.1.13). If r and s are dis-
tinct, then the equalities in (5.1.13) follow from the orthogonality of ϕr and ϕs (as
well as (5.1.8)and (5.1.9)). In the case r = s ≤ l, (5.1.9) contains the needed for-
mula. Finally assume that r = s > l and substitute the expressions (5.1.10) into
q(χw±

r , χw±
s ). Setting λ :=

√
μ − τ, we obtain

iq(χw±
s , χw±

s ) = λ−2((λ ± 1) (λ ∓ 1)iq+− + (λ ∓ 1) (λ ± 1)iq−+

+ (λ ∓ 1)2 iq++ + (λ ± 1)2 iq−−), (5.1.15)

where, for example, q+− = 2−3q(χeitλ ϕs, χe−itλϕs), and so on. Taking account of
(5.1.6), (5.1.8), and (5.1.9), we arrive at (5.1.13).

We now consider the function

C 
 μ �→ qN(u, v; μ) := ((−Δ − μ)u, v)Π(N) + (u,−∂νv)∂Π(N)∩∂Π

−(u, (−Δ − μ̄)v)Π(N) − (−∂νu, v)∂Π(N)∩∂Π, (5.1.16)
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where Π(N), N, and χ are the same as in (5.1.7), u = χw±
r (· ; μ), and v =

χw∓
s (· ; μ̄)). Since u and v̄ are analytic, the function μ �→ qN(u, v; μ) is analytic

as well. Therefore, the equalities (5.1.13) (with r = s > l) are valid for all μ ∈ C.
�

From (5.1.10) it follows that w±
k (y, t; τ) = 2−1/2(1∓ it)ϕk(y), k = l + 1, . . . , m,

and, in the case μ < τ, the amplitudes of the waves exponentially grow as t → ∞.
The space spanned by the waves (5.1.10) and (5.1.11) is called the augmented
space of waves for τ′ < μ < τ and denoted by Wa(μ). Let W(μ) denote the linear
hull of the functions (5.1.10) and (5.1.11) for τ ≤ μ < τ′′ and the linear hull of the
functions (5.1.11) for τ′ < μ < τ. The lineal W(μ) is called the space of waves.
An element w ∈ Wa(μ) (or W(μ)) is called a wave incoming from +∞ (outgoing
to +∞), if iq(χw, χw) < 0 (iq(χw, χw) > 0).

The collection of waves {w±}m
k=1 defined by (5.1.10) and (5.1.11) is called a

basis of waves stable in a neighborhood of the threshold τ. A basis of waves of
the form (5.1.6) is by definition stable on (μ′, μ′′) if the interval [μ′, μ′′] contains
no thresholds.

5.1.2 Waves in the domain G

Let G be a domain in R
n+1 with smooth boundary ∂G coinciding, outside a large

ball, with the union Π1
+ ∪ · · · ∪ ΠT

+ of finitely many nonoverlapping semicylin-
ders

Πr
+ = {(yr, tr) : yr ∈ Ωr, tr

> 0},

where (yr, tr) are local coordinates in Πr
+ and Ωr is a bounded domain in Rn.

We introduce the problem

−Δu(x) − μu(x) = 0, x ∈ G,

u(x) = 0, x ∈ ∂G. (5.1.17)

With every Πr
+ we associate a problem of the form (5.1.1) in the cylinder Πr =

{(yr, tr) : yr ∈ Ωr, tr ∈ R}. Let χ ∈ C∞(R) be a cut-off function, χ(t) = 0 for
t < 0 and χ(t) = 1 for t > 1. Each wave in Πr we multiply by the function
t �→ χ(tr − tr

0) with a certain tr
0 > 0 and then extend it by zero to the domain G.

All functions (for all Πr), obtained in such a way, we call waves in G. A number
τ is called a threshold for problem (5.1.17) if the τ is a threshold at least for one
of problems of the form (5.1.1) in Πr, r = 1, . . . , T . Let τ′ < τ < τ′′ be three
successive thresholds for problem (5.1.17); then the intervals (τ′, τ) and (τ, τ′′)
are free from the thresholds.

For μ ∈ (τ′, τ) we introduce the augmented space Wa(μ, G) of waves in
G as the union of the waves in G corresponding to the waves in Wa(μ) for Πr,
r = 1, . . . , T ; if a space Wa(μ) is not introduced on the interval τ′ < μ < τ for
a certain Πr (which means that the τ is not a threshold for problem (5.1.1) in
such a cylinder), then, from this cylinder, we include into the space Wa(μ, G) the
waves generated by the elements of the corresponding W(μ). By definition, for
μ ∈ (τ′, τ′′) the space W(μ, G) of waves in G is the union of the waves in G that
correspond to the waves in W(μ) for all Πr.
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The bases {u±
j (·, μ)} and {w±

j (·, μ)} of waves in W(μ, G) and Wa(μ, G)

comprise the waves obtained in G from the basis waves in Πr, r = 1, . . . , T . The
basis waves in the spaces W(μ, G) and Wa(μ, G) are subject to orthogonality and
normalization conditions like (5.1.8) and (5.1.9) or (5.1.12) and (5.1.13) with the
form q in a cylinder replaced by the form qG in G:

qG(u, v) := ((−Δ − μ)u, v)G + (u,−∂νv)∂G

−(u, (−Δ − μ)v)G − (−∂νu, v)∂G. (5.1.18)

An element w in Wa(μ, G) (or in W(μ, G)) is called a wave incoming from ∞

(outgoing to ∞), if iqG(χw, χw) < 0 (iqG(χw, χw) > 0).
A basis of waves in G is called stable near a value ν of the spectral parameter

if the basis consists of bases in the cylinders Π1, . . . , ΠT stable near ν.

5.2 Continuous spectrum eigenfunctions. Scattering matrices

Let τ′ < τ < τ′′ be three successive thresholds for problem (5.1.17). For sim-
plicity, we assume that these three numbers are thresholds for a problem of the
form (5.1.1) only in one of the cylinders Π1, . . . , ΠT , for instance in Π1 = Ω1 ×R.
Moreover, we suppose that τ′ = μl , τ = μl+1 = · · · = μm, and τ′′ = μm+1, where
μk are eigenvalues of problem (5.1.3) in Ω1. Thus for Π = Π1 we deal with the
situation considered in 5.1.1.

5.2.1 Intrinsic and expanded radiation principles

We consider the boundary value problem

−Δu(x) − μu(x) = f (x), x ∈ G,

u(x) = g(x), x ∈ ∂G, (5.2.1)

and recall two correct statements of the problem with radiation conditions at in-
finity: the intrinsic and expanded radiation principles. In the first principle, the
intrinsic radiation conditions contain only outgoing waves in the space W(μ, G).
The second (expanded) principle includes the outgoing waves in the augmented
space Wa(μ, G). For the general elliptic problems self-adjoint with respect to the
Green formula, the first statement was discussed by Nazarov et al. [25] and the
second one was considered by Nazarov et al. [26] and Kamotskii et al. [19] (for
various geometric situations). We will apply the intrinsic principle with spectral
parameter outside a neighborhood of the thresholds. In vicinity of a threshold,
we make use of the expanded principle employing the stable basis of waves in
Wa(μ, G) constructed in Section 5.1.

We first define needed function spaces. For integer l ≥ 0 we denote by
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Hl(G) the Sobolev space with the norm

‖v; Hl(G)‖ =

⎛⎝ l

∑
j=0

∫
G

∑
|α|=j

|Dα
xv(x)|2 dx

⎞⎠1/2

,

and let Hl−1/2(∂G) with l ≥ 1 stand for the space of traces on ∂G of the functions
in Hl(G). Assume that ργ is a smooth positive on G function given on Πr

+ by the
equality ργ(yr, tr) = exp(γtr) with γ ∈ R. We also introduce the spaces Hl

γ(G)

and Hl−1/2
γ (∂G) with norms ‖u; Hl

γ(G)‖ = ‖ργu; Hl(G)‖ and ‖v; Hl−1/2
γ (∂G)‖ =

‖ργv; Hl−1/2(∂G)‖. The operator of problem (5.2.1) implements the continuous
mapping

Aγ(μ) : H2
γ(G) → H0

γ(G)× H3/2
γ (∂G). (5.2.2)

As is known, the operator (5.2.2) is Fredholm if and only if the line {λ ∈ C :
Imλ = γ} is free of the eigenvalues of the pencils λ �→ Ar(λ, μ), r = 1, . . . , T ,
where Ar is a pencil of the form (5.1.2) for the problem (5.1.1) in the cylinder Πr.
(An operator is called Fredholm, if its range is closed and the kernel and cokernel
are finite dimensional.)

We now proceed to the intrinsic radiation principle. Assume that μ does
not coincide within a threshold, μ ∈ (τ′, τ′′), and μ �= τ. Let δ denote a small
positive number, such that the strip {λ ∈ C : |Imλ| ≤ δ} contains only real
eigenvalues of the pencils Ar(·, μ), r = 1, . . . , T ; we denote the number of such
eigenvalues (counted with their multiplicities ) by 2M = 2M(μ). There exist
collections of elements {Y+

1 (·, μ), . . . , Y+
M(·, μ)} and {Y−

1 (·, μ), . . . , Y−
M(·, μ)} in the

kernel kerA−δ(μ) of A−δ(μ), such that(
Y+

j (·, μ)− u+
j (·, μ)−

M

∑
k=1

Sjk(μ)u
−
k (·, μ)

)
∈ H2

δ(G), (5.2.3)(
Y−

j (·, μ)− u−
j (·, μ)−

M

∑
k=1

Tjk(μ)u
+
k (·, μ)

)
∈ H2

δ(G), (5.2.4)

where S(μ) = ‖Sjk(μ)‖ is a unitary scattering matrix and S(μ)−1 = T(μ) =

‖Tjk(μ)‖. Every collection {Y+
1 (·, μ), . . . , Y+

M(·, μ)} and {Y−
1 (·, μ), . . . , Y−

M(·, μ)} is
a basis modulo kerAδ(μ) in kerA−δ(μ). This means, that any v ∈ kerA−δ(μ)
is a linear combination of the functions Y+

1 (·, μ), . . . , Y+
M(·, μ) up to a term in

kerAδ(μ). The same is true also for Y−
1 (·, μ), . . . , Y−

M(·, μ). If μ is not an eigen-
value of operator (5.2.2), that is, kerAδ(μ) = 0, every collection {Y+

j } and {Y−
j }

is a basis for the kernel kerA−δ(μ) in the usual sense.
The elements Y(·, μ) in kerA−δ(μ) \ kerAδ(μ) are called the continuous

spectrum eigenfunctions of problem (5.1.17) corresponding to μ.
Denote by N the linear hull L(u−

1 , . . . , u−
M). We define the norm of u =

∑ cju−
j + v ∈ N� H2

δ(G) with cj ∈ C and v ∈ H2
δ(G) by

‖u‖ = ∑ |cj|+ ‖v; H2
δ(G)‖.
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Let A(μ) be the restriction of the operator A−δ(μ) to the space N� H2
δ(G). The

map
A(μ) : N� H2

δ(G) → H0
δ(G)× H3/2

δ (∂G) =: Hδ(G) (5.2.5)

is continuous. The next theorem provides the statement of problem (5.2.1) with
intrinsic radiation conditions at infinity (the numbers μ and δ are supposed to
satisfy the requirements given just before (5.2.3)).

Theorem 5.2.1. Let z1, . . . , zd be a basis in the space kerAδ(μ), { f , g} ∈ Hδ(G) and
( f , zj)G + (g,−∂νzj)∂G = 0, j = 1, . . . , d. Then:

1. There exists a solution u ∈ N � H2
δ(G) of the equation A(μ)u = { f , g}

determined up to an arbitrary term in kerAδ(μ).
2. The inclusion

v ≡ u − c1u−
1 − · · · − cMu−

M ∈ H2
δ(G) (5.2.6)

holds with cj = i( f , Y−
j )G + i(g,−∂νY−

j )∂G.
3. The inequality

‖v; H2
δ(G)‖+ |c1|+ · · ·+ |cM| ≤ const (‖{ f , g};Hδ(G)‖+ ‖ρδv; L2(G)‖) .

(5.2.7)
holds with v and c1, . . . , cM in (5.2.6). A solution u0 that is subject to the additional
conditions (u0, zj)G = 0 for j = 1, . . . , d is unique and satisfies (5.2.7) with right-hand-
side changed for const‖{ f , g};Hδ(G)‖.

4. If { f , g} ∈ Hδ(G) ∩ Hδ′(G) and the strip {λ ∈ C : min{δ, δ′} ≤ Imλ ≤
max{δ, δ′}} contains no eigenvalues of the pencils Ar(·, μ), r = 1, . . . , T , then the
solutions u ∈ N� H2

δ(G) and u′ ∈ N� H2
δ′(G) coincide, while the choice between δ

and δ′ in essence effects only the constant in (5.2.7).

Remark 5.2.2. In Theorem 5.2.1, one can take the numbers δ and "const" in (5.2.7)
invariant for all μ in [μ′, μ′′] ⊂ (τ, τ′′) (in [μ′, μ′′] ⊂ (τ′, τ)). If μ′′ approaches
τ′′ (τ), the δ must tend to zero: an admissible interval for δ has to be narrowed
because the imaginary eigenvalues of the pencils move closer to the real axis; the
constant in (5.2.7) increases. From the proof of Theorem 5.2.1 in [25] one can see
that the constant also increases when μ′ approaches τ (or τ′).

We now turn to the expanded radiation principle in a neihgborhood of τ. To
this end, for problem (5.1.17) we construct a basis of waves stable at the threshold
τ. We make up such a basis from the waves generated by the functions (5.1.10),
(5.1.11) and from the waves corresponding to the real eigenvalues of the pencils
Ar(·, μ), r = 2, . . . , T . According to our assumption (at the beginning of Section
5.2), the interval [τ′, τ′′] contains no threshold for problems of the form (5.1.1) in
the cylinders Π2, . . . , ΠT . Therefore the number of real eigenvalues for every of
the pencils R 
 λ → Ar(λ, μ), r = 2, . . . , T , remains invariant for μ ∈ [τ′, τ′′].
Thus when passing from the cylinder Π1 to the domain G, the dimension of wave
space increases by the same number for all μ ∈ (τ′, τ′′). We set 2L = dimW(μ, G)
for μ ∈ (τ′, τ) and 2M = dimW(μ, G) for μ ∈ (τ, τ′′); then M − L = m − l,
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where m and l are the same as in (5.1.10), (5.1.11), and dimWa(μ, G) = 2M for
μ ∈ (τ′, τ).

We choose the number γ for the operators A±γ(μ) to be proper for all μ

in a neighborhood of the threshold τ = μm. Let us explain such a choice. We
have λ±

k (μ) = ±(μ − μk)
1/2, μl+1 = . . . , μm, so λ±

k (τ) = 0 with k = l + 1, . . . , m.
The interval of the imaginary axis with ends −i(μm+1 − μm)

1/2, i(μm+1 − μm)
1/2

punctured at the coordinate origin is free of the spectra of the pencils Aq(·, μm),
q = 1, . . . , T . If μ a little moves along R, the eigenvalues of the pencils Aq(·, μ)
slightly shift along the coordinate axes. Therefore, for a small α > 0 there exists
β > 0, such that for μ ∈ (μm − β, μm + β) the intervals iI±α := ±i(α, (μm+1 −
μm)

1/2 − α) are free of the spectra of the pencils A
q(·, μ). So the lines {λ ∈ C :

Imλ = ±γ} with γ ∈ Iα do not intersect the spectra of Aq(·, μ), while the strip
{λ ∈ C : |Imλ| ≤ γ} contains only the real eigenvalues of the pencils and the
numbers λ±

k (μ) = ±(μ − μk)
1/2 = ±(μ − μm)1/2 in (5.1.10), k = l + 1, . . . , m.

Let μ ∈ (τ − β, τ + β), γ ∈ Iα, and let {w±
k (·, μ)} be the stable basis of waves

in G described in 5.1.1 and 5.1.2. In the kernel kerA−γ(μ) of A−γ(μ), there ex-
ist collections of elements {Y+

1 (·, μ), . . . ,Y+
M(·, μ)} and {Y−

1 (·, μ), . . . ,Y−
M(·, μ)},

such that (
Y+

j (·, μ)− w+
j (·, μ)−

M

∑
k=1

Sjk(μ)w
−
k (·, μ)

)
∈ H2

γ(G), (5.2.8)(
Y−

j (·, μ)− w−
j (·, μ)−

M

∑
k=1

Tjk(μ)w
+
k (·, μ)

)
∈ H2

γ(G), (5.2.9)

where S(μ) = ‖Sjk(μ)‖ is the unitary matrix and S(μ)−1 = T (μ) = ‖Tjk(μ)‖.
Every collection {Y+

1 (·, μ), . . . ,Y+
M(·, μ)} and {Y−

1 (·, μ), . . . ,Y−
M(·, μ)} is a basis

(modulo kerAγ(μ)) in kerA−γ(μ).
The elements Y(·, μ) in kerA−γ(μ) \ kerAγ(μ) are called the continuous

spectrum eigenfunctions of problem (5.1.17) corresponding to the number μ. The
matrix S(μ) (with μ ∈ (τ − β, τ)) is called the augmented scattering matrix.

Let K denote the linear hull L(w−
1 , . . . , w−

M). We define a norm of w =

∑ cjw
−
j + v ∈ K� H2

γ(G), where cj ∈ C and v ∈ H2
γ(G), by the equality

‖w‖ = ∑ |cj|+ ‖v; H2
γ(G)‖.

Let A(μ) be the restriction of A−γ(μ) to the space K� H2
γ(G); then the mapping

A(μ) : K� H2
γ(G) → H0

γ(G)× H3/2
γ (∂G) =: Hγ(G). (5.2.10)

is continuous.

Theorem 5.2.3. Let μ ∈ (τ − β, τ + β), γ ∈ Iα, and let {w±
k (·, μ)} be the aforemen-

tioned stable basis of waves in G. Assume z1, . . . , zd to be a basis in the space kerAγ(μ),
{ f , g} ∈ Hγ(G) and ( f , zj)G + (g,−∂νzj)∂G = 0, j = 1, . . . , d. Then:

1). There exists a solution w ∈ K� H2
γ(G) to the equation A(μ)w = { f , g}

determined up to an arbitrary term in the lineal L(z1, . . . , zd).
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2). The inclusion

v ≡ w − c1w−
1 − · · · − cMw−

M ∈ H2
γ(G), (5.2.11)

holds with cj = i( f ,Y−
j )G + i(g,−∂νY−

j )∂G.
3). Such a solution w satisfies the inequality

‖v; H2
γ(G)‖+ |c1|+ · · ·+ |cM| ≤ const (‖{ f , g};Hγ(G)‖+ ‖ργv; L2(G)‖) .

(5.2.12)
A solution w0, subject to the conditions (w0, zj)G = 0 for j = 1, . . . , d, is unique and the
estimate (5.2.12) holds with the right-hand-side changed for const‖{ f , g};Hγ(G)‖.

4). If { f , g} ∈ Hγ(G) ∩Hγ′(G) and the strip {λ ∈ C : min{γ, γ′} ≤ Imλ ≤
max{γ, γ′}} contains no eigenvalues of the pencils Ar(·, μ), r = 1, . . . , T , the solutions
w(·, μ) ∈ K� H2

γ(G) and w′(·, μ) ∈ K� H2
γ′(G) of the equation A(μ)w = { f , g} co-

incide, while the choice between γ and γ′, in essence, effects only the constant in (5.2.12).

We would like to extend relations of the form (5.2.8) and (5.2.9) to the inter-
val (τ′, τ′′) with analytic functions μ �→ Y±

j (μ). Unlike the situation in Remark
5.2.2, it is not possible, generally speaking, to extend (5.2.8) and (5.2.9) to any in-
terval [μ′, μ′′] ⊂ (τ′, τ′′) with the same index γ. However, to that purpose, one
can use a finite collection of indices for various parts of [μ′, μ′′]. The following
Lemma explains how to compile such a collection.

Lemma 5.2.4. For any interval [μ′, μ′′] ⊂ (τ′, τ′′) there exists a finite covering {Up}N
p=0

consisting of open intervals and a collection of indices {γp}N
p=0 subject to the following

conditions (with a certain nonnegative number N):
1) μ′ ∈ U0, μ′′ ∈ UN; U0 ∩Up = ∅, p = 2, . . . , N; UN ∩Up = ∅, p =

0, . . . , N − 2; moreover, Up only overlaps Up−1 and Up+1, 1 ≤ p ≤ N − 1.
2) The line {λ ∈ C : Imλ = γp} is free from the spectra of the pencils Ar(·, μ),

r = 1, . . . , T , for all μ ∈ Up ∩ [μ′, μ′′] and p = 0, . . . , N.
3) The strip {λ ∈ C : γp ≤ Imλ ≤ γp+1} is free from the spectra of the pencils

Ar(·, μ), r = 1, . . . , T for all μ ∈ Up ∩ Up+1 and p = 0, . . . , N − 1.
4) The inequality |Im(μ − τ)1/2| < γp holds for μ ∈ Up ∩ [μ′, μ′′] (recall that

±(μ − τ)1/2 are eigenvalues of A1(·, μ), τ = μl+1 = · · · = μm); there are no other
eigenvalues of the pencils Ar(·, μ), r = 1, . . . , T , in the strip {λ ∈ C : |Imλ| ≤ γp}
except the real ones, p = 0, . . . , N.

Proof. Let us consider an interval [μ′, μ′′] and let τ ∈ (μ′, μ′′). Just before formu-
las (5.2.8) and (5.2.9), we have defined the interval (τ − β, τ + β) that can be taken
as an element of the desired covering. It was earlier shown that as an index γ for
such an element one can choose any number in Iα = (α, (μm+1 − μm)1/2 − α) with
small positive α; the number β depends on α.

Let us take some ν ∈ (τ, τ + β). The eigenvalue λm(μ) = (μ − μm)
1/2 of

the pencil A1(·, μ) is real for μ > ν, the eigenvalue λm+1(μ) = i(μm+1 − μ)1/2 of
the pencil tends to zero when μ increases from ν to τ′′ = μm+1, and the interval
{z ∈ C : z = it, 0 < t < (μm+1 − μ′′)1/2} of the imaginary axis remains free
from the spectra of the pencils Ar(·, μ), μ′ ≤ μ ≤ μ′′, r = 1, . . . , T . Therefore
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FIGURE 3 A collection of γp and corresponding Up from Lemma 5.2.4. Here the curves
depict the functions γ = Im λk(μ) = Im (μ − μk)

1/2 with k = l, m, m + 1.

the interval (ν, ν̃) with μ′′ < ν̃ < τ′′ can serve as an element of the covering and
any number γ ∈ (0, (μm+1 − μ′′)1/2) can be an index for the element. Finally
we choose the elements Up to the left of the threshold τ so that the graphs of the
functions Up 
 μ �→ γp = const are located between the graphs of the functions
(τ′, τ) 
 μ �→ Imλk(μ) = (μk − μ)1/2, k = m, m + 1, and the indices form a
decreasing sequence γ0 > γ1 > . . . . �

5.2.2 Analyticity of scattering matrices with respect to spectral parameter

Let us consider the bases {Y+
j } and {Y−

j } for the space of continuous spectrum
eigenfunctions (CSE) defined near the threshold τ (see (5.2.8) and (5.2.9)). We
first show that the functions μ �→ Y±

j (·, μ) admit the analytic extension to the
interval (τ′, τ′′). In what follows by the analyticity of a function on an interval,
we mean the possibility of analytic continuation of the function in a complex
neighborhood of every point in the interval. Then we prove the analyticity of
the scattering matrix μ �→ S(μ) on (τ′, τ′′). The analyticity does not exclude
the existence of eigenvalues of problem (5.1.17) embedded into the continuous
spectrum. However, the analyticity eliminates the arbitrariness in the choice of
CSE. Moreover, we establish the analyticity of the elements μ �→ Y±

j (·, μ) in (5.2.3)
and (5.2.4) as well as the analyticity of the corresponding scattering matrix μ �→
S(μ) on (τ′, τ) and (τ, τ′′).

In a neighborhood of any point of the interval (τ′, τ′′), one can define an
operator Aγ(μ), which is needed for relations like (5.2.8) and (5.2.9). The index γ

has been provided by Lemma 5.2.4: the same number γp can serve for all μ ∈ Up.
Therefore, for μ ∈ Up there exist the families {Y±

j (·, μ)} ⊂ kerA−γp(μ) satisfying
relations like (5.2.8) and (5.2.9) with unitary matrix S(μ), so Theorem 5.2.3 holds
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with μ ∈ Up. Thus, it suffices to prove the analyticity of the "local families"
{Y±

j (·, μ)} and that of the matrix S(μ) on Up and to verify the compatibility of
such families on the intersections of neighborhoods.

We first obtain a representation of the operator A(μ)−1, where A(μ) is oper-
ator (5.2.5) or (5.2.10), in a neighborhood of an eigenvalue of problem (5.1.17). To
this end we recall some facts in the theory of holomorphic operator-valued func-
tions (e. g., see [12]). Let D be a domain in a complex plane, B1 and B2 Banach
spaces, and A a holomorphic operator-valued function D 
 μ �→ A(μ) : B1 →
B2. The spectrum of the function A(·) is the set of points μ ∈ D, such that A(μ) is
a noninvertible operator. A number μ0 is called an eigenvalue of A if there exists
a nonzero vector ϕ0 ∈ B1, such that A(μ0)ϕ0 = 0. Then ϕ0 is called an eigenvec-
tor. Let μ0 and ϕ0 be an eigenvalue and an eigenvector. Elements ϕ1, . . . , ϕm−1
are called generalized eigenvectors, if

n

∑
q=0

1
q!
(∂

q
μA)(μ0)ϕn−q = 0,

where n = 1, . . . , m. A holomorphic function A is said to be Fredholm, if the
operator A(μ) : B1 → B2 is Fredholm for all μ ∈ D and is invertible at least for
one μ. The spectrum of a Fredholm function A consists of isolated eigenvalues of
finite algebraic multiplicity. The holomorphic function A∗ adjoint to A is defined
on the set {μ : μ̄ ∈ D} by the equality A

∗(μ) = (A(μ̄))∗ : B∗
1 → B∗

2 . If one of the
functions A and A∗ is Fredholm, then the other one is also Fredholm. A number
μ0 is an eigenvalue of A if and only if μ̄0 is an eigenvalue of A∗; the algebraic
and geometric multipicities of μ̄0 coincide with those of μ0.

Let us consider the operator-valued function μ �→ A(μ) in (5.2.5) or (5.2.10)
on an interval [μ′, μ′′] that belongs to one of the intervals (τ′, τ) or (τ, τ′′). Taking
account of Remark 5.2.2, we choose the same index δ in (5.2.5) and in Theorem
5.2.1 for all μ ∈ [μ′, μ′′]. When considering the function μ �→ A(μ) in (5.2.10)
on an interval [μ′, μ′′] ⊂ (τ′, τ′′), we suppose the interval to be so small that
Lemma 5.2.4 enables us to take the same γ in (5.2.10) and in Theorem 5.2.3 for
all μ ∈ [μ′, μ′′]. According to Proposition 5.1.1, the waves in the definitions of
operators (5.2.5) and (5.2.10) are holomorphic in a complex neighborhood of the
corresponding interval [μ′, μ′′]. Therefore, the functions μ �→ A(μ) in Theorems
5.2.1 and 5.2.3 are holomorphic in the same neighborhood.

Proposition 5.2.5. 1). Let μ �→ A(μ) be the function in Theorem 5.2.3, μ0 an eigen-
value of operator (5.2.2), and (z1, . . . , zd) a basis for kerAγ(μ0). Then in a punctured
neighborhood of μ0 there holds the representation

A−1(μ){ f , g} = (μ − μ0)
−1P{ f , g}+ R(μ){ f , g}, (5.2.13)

where { f , g} ∈ Hγ(G),

P{ f , g} = −
d

∑
j=1

(
( f , zj)G + (g,−∂νzj)∂G

)
zj, (5.2.14)
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and the function R(μ) : Hγ(G) → K� H2
γ(G) is holomorphic in a neighborhood of μ0.

2). Let μ �→ A(μ) be the operator-valued function in Theorem 5.2.1, μ0 an eigen-
value of operator (5.2.2) in (τ′, τ) or (τ, τ′′), and (z1, . . . , zd) a basis for kerAδ(μ0).
Then in a punctured neighborhood of μ0 there holds representation (5.2.13), where P{ f , g}
is defined by (5.2.14) and the function R(μ) : Hδ(G) → N� H2

δ(G) is holomorphic in
a neighborhood of μ0.

Proof. 1). By Theorem 5.2.3, 1), the operator A(μ) is Fredholm at any μ ∈
[μ′

m, μ′′
m]. We can consider that A(μ) is Fredholm in a neighborhood U (the Fred-

holm property is stable with respect to perturbations that are small in the opera-
tor norm). Moreover, the operator A(μ) is invertible for all μ ∈ [μ′

m, μ′′
m] except

the eigenvalues of operator (3.2), which are real and isolated. Hence the function
μ �→ A(μ) is Fredholm in a neighborhood of μ0 in the complex plane. From Theo-
rem 5.2.3, 4), it follows that the eigenspaces of operators (3.10) and (3.2) coincide,
that is, kerA(μ0) = kerAγ(μ0) ⊂ H2

γ(G). It is easy to verify that the operator-
valued function A has no generalized eigenvectors at μ0. Then the Keldysh theo-
rem on the resolvent of holomorphic operator-valued fuction (see [12]) provides
the equality

A−1(μ){ f , g} = (μ − μ0)
−1T{ f , g}+ R(μ){ f , g}, (5.2.15)

where T{ f , g} = ∑
d
j=1〈{ f , g}, {ψj, χj}〉zj, the duaity 〈·, ·〉 on the pair Hγ(G) ,

Hγ(G)∗ is defined by 〈{ f , g}, {ψ, χ}〉 = ( f , ψ)G + (g, χ)∂G, and (·, ·)G and (·, ·)∂G
are the extensions of the inner products on L2(G) and L2(∂G) to the pairs H0

γ(G),
H0

γ(G)∗ and H3/2
γ (∂G), H3/2

γ (∂G)∗. The elements {ψj, χj} ∈ kerA(μ0)
∗ ⊂ W(G; γ)∗

are subject to the orthogonality and normalization conditions

〈(∂μA)(μ0)zj, {ψk, χk}〉 = δjk, j, k = 1, . . . , d. (5.2.16)

Furthermore, (∂μA)(μ0)zj = {−zj, 0} ∈ W(G; γ). The elements {ψk, χk} can be
interpreted in terms of the Green formula and, in view of (5.2.16), can be rewritten
in the form {ψk, χk} = {−zk, ∂νzk} (e.g., see [25]). Now T{ f , g} coincides with
P{ f , g} in (5.2.14) and (5.2.15) takes the form of (5.2.13).

2). One can repeat with evident modifications the argument in 1). �
We are now ready to discuss the analyticity of bases in the space of the

continuous spectrum eigenfunctions. For instance, we proceed to the basis {Y+
j }

in (5.2.8). From the definition of the wave w+
j in G (see 5.1.2), it follows that the

function G 
 x �→ w+
j (x, μ) is supported by one of the cylindrical ends of G,

−Δw+
j (x, μ)− μw+

j (x, μ) = f j(x, μ), x ∈ G,

w+
j (x, μ) = 0, x ∈ ∂G,

and the support of the function x �→ f j(x, μ) is compact. Let us consider the
equation

A(μ)w(·, μ) = { f j(·, μ), 0} (5.2.17)
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on an interval [μ′, μ′′] ⊂ (τ′, τ′′). We first assume that the interval [μ′, μ′′] is free of
the eigenvalues of the operator-valued function μ �→ A(μ). In view of Theorem
5.2.3, for all μ ∈ [μ′, μ′′] there exists a unique solution w = v+ c1w−

1 + · · ·+ cMw−
M

to equation (5.2.17),

w(·, μ) = {c1(μ), . . . , cM(μ), v(·, μ)} ∈ K� H2
γ(G). (5.2.18)

Since the functions μ �→ A(μ)−1 and μ �→ f j(·, μ) are holomorphic in a com-
plex neighborhood of the interval [μ′, μ′′], the components of the vector-valued
function μ �→ w(·, μ) are holomorphic as well. Therefore, the analyticity of the
function μ �→ Y+

j (·, μ) in the same neighborhood follows from the equality

Y+
j = w+

j − w. (5.2.19)

Assume now that the interval [μ′, μ′′] contains an eigenvalue μ0 of the operator-
valued function μ �→ A(μ). We find the residue P{ f , g} in (5.2.13) for { f , g} =
{ f j, 0} in the right-hand-side of (5.2.17). For z ∈ kerAγ(μ0), we have

( f , z)G + (g,−∂νz)∂G = ( f j, z)G = (−Δw+
j − μw+

j , z)G = (w+
j ,−Δz − μz)G = 0.

Hence P{ f j, 0} = 0 and, by virtue of (5.2.13),

w(·, μ) = A(μ)−1{ f j, 0} = R(μ){ f j , 0},

which means that the function μ �→ w(·, μ) is analytic in a neighborhood of μ0.
This implies the analyticity of the function μ �→ Y+

j (·, μ).
The analyticity of the functions μ �→ Y−

j (·, μ) can be proved in the same
way. When verifying the analyticity of functions of the form μ �→ Y+

j (·, μ) and
μ �→ Y−

j (·, μ) in (5.2.3) and (5.2.4) in a complex neighborhood of the interval
[μ′, μ′′] ⊂ (τ′, τ) or [μ′, μ′′] ⊂ (τ, τ′′), one has to make only evident modification
of the above argument.

Lemma 5.2.4 and Theorem 5.2.3, 4) enable us to extend formulas (5.2.8) and
(5.2.9) to the whole interval (τ′, τ′′) for the analytic families μ �→ Y±

j (·, μ); how-
ever, one index γ has to be replaced by a collection of indices. Nontheless, in a
neighdorhood of any given point μ ∈ (τ′, τ′′), one can do with one index γ. Re-
mark 5.2.2 and Theorem 5.2.1, 4) allow to extend (5.2.3) and (5.2.4) to the intervals
(τ′, τ) and (τ, τ′′) for the analytic families μ �→ Y±

j (·, μ).

Theorem 5.2.6. Let τ′ and τ′′ be thresholds of problem (5.1.17) such that τ′ < τ′′

and the interval (τ′, τ′′) contains the only threshold τ. We also suppose that the three
thresholds relate to the same cylindrical end. Then:

1). On the intervals (τ′, τ) and (τ, τ′′), there exist analytic bases {μ �→ Y±
j (·, μ)}

in the spaces of continuous spectrum eigenfunctions of problem (5.1.17) satisfying (5.2.3)
and (5.2.4) with the scattering matrix μ �→ S(μ) analytic on the mentioned intervals.

2). On the interval (τ′, τ′′) there exist analytic bases {μ �→ Y±
j (·, μ)} in the

spaces of continuous spectrum eigenfunctions of problem (5.1.17) satisfying (5.2.8) and
(5.2.9) with the scattering matrix μ �→ S(μ) analytic on (τ′, τ′′).
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Proof. From the argument in 5.2.2, it suffices to verify the analyticity of the scat-
tering matrices. For example, let us consider the matrix μ �→ S(μ). Equality
(5.2.19), the representation w = v + c1w−

1 + · · · + cMw−
M, and inclusion (5.2.18)

lead to

Y+
j (·, μ) = w+

j (·, μ)−
M

∑
k=1

ck(μ)w
−
k (·, μ) ∈ H2

γ(G).

Therefore, Sjk(μ) = −ck(μ), k = 1, . . . , M. It remains to take into account that the
functions μ �→ ck(μ) are analytic on (τ′, τ′′). �

For the basis {Y+
j (·, μ)}M

j (see Theorem 5.2.6, 2)), we introduce the columns
Y+
(1) = (Y+

1 , . . . ,Y+
L )t and Y+

(2) = (Y+
L+1, . . . ,Y+

M)t and write down the scattering
matrix in the form

S(μ) =
( S(11)(μ) S(12)(μ)

S(21)(μ) S(22)(μ)

)
,

where S(11)(μ) is a block of size L × L and S(22)(μ) is a block of size (M − L) ×
(M − L), while μ ∈ (τ′, τ′′). We also set

D = ((μ − τ)1/2 + 1)/((μ − τ)1/2 − 1)

with (μ − τ)1/2 = i(τ − μ)1/2 for μ ≤ τ and (τ − μ)1/2 ≥ 0. The next assertion
will be of use in Section 5.3.

Lemma 5.2.7. Assume that μ ∈ (τ′, τ] and S(μ) is the scattering matrix in Theorem
5.2.6, 2). Then

ker(D + S(22)(μ)) ⊂ kerS(12)(μ), (5.2.20)

Im(D + S(22)(μ)) ⊃ ImS(21)(μ). (5.2.21)

Therefore the operator S(12)(μ)(D + S(22)(μ))
−1 is defined on Im(D + S(22)(μ)).

Proof. Let us consider (5.2.20). We assume that h ∈ ker(D + S(22)(μ)) and
(0, h)t ∈ CM. Then( S(11)(μ) S(12)(μ)

S(21)(μ) S(22)(μ)

)(
0
h

)
=

(
S(12)(μ)h
−Dh

)
.

Since the matrix S(μ) is unitary and |D| = 1, we have ‖h‖2 = ‖S(12)(μ)h‖2 +

‖h‖2, so S(12)(μ)h = 0 and (5.2.20) is valid. Inclusion (5.2.21) is equivalent to

ker(D + S(22)(μ))
∗ ⊂ kerS(21)(μ)

∗. (5.2.22)

Moreover,

S(μ)∗ =

( S(11)(μ)
∗ S(21)(μ)

∗

S(12)(μ)
∗ S(22)(μ)

∗

)
and the matrix S(μ)∗ is unitary, therefore (5.2.22) may be proven by the same
argument as (5.2.20). �
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5.3 Other properties of the scattering matrices

Here we clarify the connection between the matrices S(μ) and S(μ) on the in-
terval τ′ < μ < τ, prove the existence of the one-side finite limits lim S(μ)
as μ → τ ± 0, and describe the transformation of the scattering matrix under
changes of basis in the space of waves W(μ, G) for μ ∈ (τ, τ′′). We keep the
assumptions introduced at the very beginning of Section 5.2.

5.3.1 The connection between S(μ) and S(μ) for τ′ < μ < τ

Let us recall the description of the stable basis chosen for definition of S(μ). In
the semicylinder Π1

+, we introduce the functions

Π1
+ 
 (y, t) �→ e±k (y, t; μ) := χ(t) exp (±it

√
μ − μk)ϕk(y), (5.3.1)

where k = l + 1, . . . , m (the notation is the same as in (5.1.10); as before, μl+1 =
· · · = μm = τ). We extend the functions by zero to the whole domain G and set

w±
L+j(· ; μ) = 2−1/2

(
e+l+j(· ; μ) + e−l+j(· ; μ)

2
∓

e+l+j(· ; μ)− e−l+j(· ; μ)

2
√

μ − μl+j

)
(5.3.2)

for j = 1, . . . , m− l = M − L (the equality m − l = M − L was explained just after
Remark 5.2.2). All the rest waves with supports in Π1

+ that was obtained from the
functions (5.1.11) and the waves of the same type with supports in Π2

+, . . . , ΠT
+,

we number by one index j = 1, . . . , L and denote by w±
1 (· ; μ), . . . , w±

L (· ; μ). The
obtained collection {w±

1 , . . . , w±
M} is a basis of waves in G stable in a neighbor-

hood of the threshold τ. Finally, we introduce the columns w±
(1) = (w±

1 , . . . , w±
L )

t,

w±
(2) = (w±

L+1, . . . , w±
M)t, and (w±

(1), w±
(2)) = (w±

1 , . . . , w±
M)t, where t stands for

matrix transposing. The components of the vector w±
(1) are bounded, while the

components of w±
(2) exponentially grow at infinity in Π1

+. Let e±
(1) = (e±1 , . . . , e±L )

t

and e±
(2) = (e±L+1, . . . , e±M)t, then

w±
(2) = D∓e+

(2) + D±e−
(2) (5.3.3)

with
D± = ((μ − τ)1/2 ± 1)/2

√
2(μ − τ)1/2.

The following assertion is, in essence, from Nazarov et al. [26].

Proposition 5.3.1. Let μ ∈ (τ′, τ) and let S(μ) and S(μ) be the scattering matrices in
Theorem 5.2.6. Then

S(μ) = S(11)(μ)− S(12)(μ)(D + S(22)(μ))
−1S(21)(μ), (5.3.4)

with
D = D+/D− = ((μ − τ)1/2 + 1)/((μ − τ)1/2 − 1).
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Proof. We verify (5.3.4). Rewrite (5.2.8) in the form

Y+
(1) − w+

(1) − S(11)w
−
(1) − S(12)w

−
(2) ∈ H2

γ(G),

Y+
(2) − w+

(2) −S(21)w
−
(1) −S(22)w

−
(2) ∈ H2

γ(G). (5.3.5)

Recall, that γ > 0 has been chosen according to Lemma 5.2.4, so the strip {λ ∈ C :
|Imλ| < γ} contains the eigenvalues ±(μ − τ)1/2 of the pencil A1(·, μ). We take
δ > 0, such that the strip {λ ∈ C : |Imλ| < δ} contains only the real eigenvalues
of the pencils Ar(·, μ), r = 1, . . . , T . Then δ < γ and H2

γ(G) ⊂ H2
δ(G). Instead of

w±
(2), we substitute into (5.3.5) their expressions in (5.3.3). For the aforementioned

δ the vector-valued function e+
(2) belongs to H2

δ(G). As a result we obtain

Y+
(1) = w+

(1) + S(11)w
−
(1) + S(12)D

−e−
(2) +�(1), (5.3.6)

Y+
(2) = S(21)w

−
(1) + (D + S(22))D

−e−
(2) +�(2), (5.3.7)

where �(1),�(2) ∈ H2
δ(G). Introduce the orthogonal projector

P : C
M−L → Im(D + S(22)(μ)).

Taking account of (5.2.21) and (5.3.7), we arrive at

PY+
(2) = S(21)w

−
(1) + (D + S(22))D

−e−
(2) + P�(2). (5.3.8)

We apply the operator S(12)(μ)(D + S(22)(μ))
−1 to both sides of (5.3.8) and sub-

tract the resulting equality from (5.3.6). We have

Z = w+
(1) + (S(11)(μ)− S(12)(μ)(D + S(22)(μ))

−1S(21)(μ))w
−
(1) + R, (5.3.9)

where

Z = Y+
(1) − S(12)(μ)(D + S(22)(μ))

−1PY+
(2) , (5.3.10)

R = �(1) − S(12)(μ)(D + S(22)(μ))
−1P�(2). (5.3.11)

The components of the vectors Y+
(1) and Y+

(2) satisfy problem (5.1.17). In view
of (5.3.10), the same is true for the components of the vector Z. Moreover from
�(1),�(2) ∈ H2

δ(G), and (5.3.11) it follows that R ∈ H2
δ(G). Hence the formula

(5.3.9) describes the scattering of the vector w+
(1) of incoming waves in the basis

w+
(1), w−

(1) as well as (5.2.3), so we obtain (5.3.4).�

5.3.2 The connection between S(μ) and S(μ) for τ < μ < τ′′

We consider two bases for the wave space W(μ, G) for τ < μ < τ′′. One of the
bases consists of the waves in G corresponding to functions of the form u±

q (·, μ)
in (5.1.6), while the other one consists of the waves generated by the functions
w±

q (·, μ) (see (5.1.10), (5.1.11)). As before, the scattering matrices defined in these
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bases are denoted by S(μ) and S(μ) (see Theorem 5.2.6); this time, that is, for
μ ∈ (τ, τ′′), the matrices are of the same size M × M.

The scattering matrices are independent of the choice of the cut-off function
χ in the definition of the space W(μ, G). Identifying "equivalent" waves, one can
omit such a cut-off function from consideration. To this end we introduce the
quotient space

Ẇ(μ, G) := (W(μ, G)+̇H2
γ(G))/H2

γ(G).

Let v̇ stand for the class in Ẇ(μ, G), with representative v ∈ W(μ, G). In what fol-
lows, waves of the form χu±

q (·, μ) and χw±
q (·, μ) in G are denoted by u±

q (·, μ) and
w±

q (·, μ). The collections {u̇±
q (·, μ)}M

j=1 and {ẇ±
k (·, μ)}M

k=1 are bases for the space

Ẇ(μ, G), so dim Ẇ(μ, G) = 2M. The form qG(u, v) in (5.1.18) is independent of
the choice of representatives in u̇ and v̇; hence it is defined on Ẇ(μ, G)×Ẇ (μ, G).
From (5.1.8) and (5.1.9) it follows that

iqG(u̇
±
k (· ; μ), u̇∓

l (· ; μ)) = 0 for all k, l = 1, . . . , M, (5.3.12)

iqG(u̇±
k (· ; μ), u̇±

l (· ; μ)) = ∓δkl, (5.3.13)

while (5.1.12) and (5.1.13) lead to

iqG(ẇ±
r (· ; μ), ẇ∓

s (· ; μ)) = 0 for all r, s = 1, . . . , M, (5.3.14)

iqG(ẇ
±
r (· ; μ), ẇ±

s (· ; μ)) = ∓δrs. (5.3.15)

Thus Ẇ(μ, G) turns out to be a 2M-dimensional complex space with indefinite
inner product < u̇, v̇ >:= −iqG(u̇, v̇). The projection

π : W(μ, G)+̇H2
γ(G) → Ẇ(μ, G) (5.3.16)

maps the space of continuous spectrum eigenfunctions onto a subspace in Ẇ(μ, G)
of dimension M; denote the subspace by E(μ).

Let V1, . . . , V2M be a basis for Ẇ(μ, G), subject to the orthogonality and nor-
malization conditions

< Vj, Vl >= δj l , < Vj+M, Vl+M >= −δj l for j, l = 1, . . . , M. (5.3.17)

The elements V1, . . . , VM are called incoming waves while the elements VM+1, . . . ,
V2M are called outgoing waves. Assume that X1, . . . , XM is a basis of E(μ) that
defines, in the basis of waves V1, . . . , V2M, the scattering matrix S(μ) of size M ×
M (compare with (5.2.3)). We represent the vectors Xj as coordinate rows and
form the M × 2M-matrix X = (X1, . . . , XM)t (which is a column of the letters
X1, . . . , XM). Finally, let I stand for the unit matrix of size M × M. Then a relation
of the form (5.2.3) leads to

X = (I,S(μ))V, (5.3.18)

where V is the 2M × 2M-matrix (V1, . . . , V2M)t consisting of the coordinate rows
of the vectors Vj and (I,S(μ)) is a matrix of size M × 2M.
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Assume that Ṽ1, . . . , Ṽ2M is another basis of waves subject to conditions of
the form (5.3.17), X̃1, . . . , X̃M is a basis of E(μ), and S̃(μ) is the corresponding
scattering matrix, such that

X̃ = (I, S̃(μ))Ṽ . (5.3.19)

Assume, that Ṽ = TV and write down the 2M × 2M-matrix T as T = (T(k l))
2
k, l=1

with blocks T(k l) of size M × M.

Lemma 5.3.2. The matrices T(1 1) + S̃(μ)T(2 1) and T(1 2) + S̃(μ)T(2 2) are invertible
and

S(μ) = (T(1 1) + S̃(μ)T(2 1))
−1(T(1 2) + S̃(μ)T(2 2)). (5.3.20)

Proof. For the bases X1, . . . , XM and X̃1, . . . , X̃M there exists a nonsingular M ×
M-matrix B, such that X̃ = BX. Therefore, from (5.3.19), we have

BX = (I, S̃(μ))TV.

Taking into account (5.3.18), we obtain B(I,S(μ))V = (I, S̃(μ))TV, so

B(I,S(μ)) = (I, S̃(μ))T.

Let us write this equality in the form of

(B, BS(μ)) = (T(1 1) + S̃(μ)T(2 1),T(1 2) + S̃(μ)T(2 2)).

Now the assertions of Lemma are evident. �
We intend to make use of (5.3.20) taking as Ṽ the image, under canonical

projection (5.3.16), of the stable basis of W(μ, G) in (5.2.8) and as V the image
of the wave basis in (5.2.3). As S̃(μ) and S(μ), we choose S(μ) and S(μ) re-
spectively. We proceed to computing the matrix T in the equality Ṽ = TV. In
doing so, instead of Ṽ and V we can consider their just mentioned preimages in
W(μ, G). We set

uj := u+
j , uj+M := u−

j , j = 1, . . . , M, (5.3.21)

where u±
j are the waves in W(μ, G), generated by the functions of the form (5.1.6).

We also introduce

wj := w+
j = u+

j , wj+M := w−
j = u−

j , j = 1, . . . , L, (5.3.22)

wp := w+
p , wp+M := w−

p , p = L + 1, . . . , M,

where w±
p are the waves in W(μ, G), generated by the functions (5.1.10). For the

matrix T, the equality w = Tu holds with the columns w = (w1, . . . , w2M)t and
u = (u1, . . . , u2M)t. For convenience, we will here denote functions (5.1.10) in the
same way as the waves w±

p ; let us write down functions in the form

w±
p (μ) = 2−1/2((eitλ + e−itλ)/2)∓ (eitλ − e−itλ)/2λ)ϕp ,
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where λ =
√

μ − τ and τ is a threshold; we also write the functions (5.1.6) in the
form

u±
p (μ) = (2λ)−1/2e∓itλϕp.

Then we have

w±
p = (1/2)(u+

p (λ
1/2 ± λ−1/2) + u−

p (λ
1/2 ∓ λ−1/2)), p = L + 1, . . . , M;

here by w±
p and u±

p one can mean the functions in the cylinder and the corre-
sponding waves in the domain G alike. Together with (5.3.21) and (5.3.22), this
leads to the following description of the blocks Tij of the matrix T.

Lemma 5.3.3. Each of the matrices T(ij) consists of four blocks and is block-diagonal.
The equalities

T(11)(μ) = T(22)(μ) = diag{IL, 2−1(λ(1/2) + λ(−1/2))IM−L}, (5.3.23)

T(21)(μ) = T(12)(μ) = diag{OL, 2−1(λ1/2 − λ−1/2)IM−L} (5.3.24)

hold, where IK is the unit matrix of size K × K, OL is the zero matrix of size L × L, and
λ =

√
μ − τ with μ ∈ (τ, τ′′).

We return to (5.3.20) with S and S instead of S̃ and S. Let us divide the
matrix S into four blocks with S(11) of size L × L and S(22) of size (M − L) ×
(M − L). We also set d± = 2−1(λ1/2 ± λ−1/2). Then

T(11) + ST(21) =

(
IL S(12)d

−

O S(22)d
− + IM−Ld+

)
. (5.3.25)

According to Lemma 5.3.2, the matrix T(11) + ST(21) is invertible, so the matrix
S(22)d

− + IM−Ld+ is invertible as well, therefore

(T(11) + ST(21))
−1 =

(
IL −S(12)d

−(S(22)d
− + IM−Ld+)−1

O (S(22)d
− + IM−Ld+)−1

)
. (5.3.26)

In view of (5.3.20), we obtain

Proposition 5.3.4. For μ ∈ (τ, τ′′) the blocks S(ij) of the scattering matrix

S(μ) = (T(11) + S(μ)T(21))
−1(T(12) + S(μ)T(22))

admit the representations

S(11) = S(11) − S(12)d
−(S(22)d

− + IM−Ld+)−1S(21), (5.3.27)

S(12) = S(12)d
+ − S(12)d

−(S(22)d
− + IM−Ld+)−1(S(22)d

+ + IM−Ld−), (5.3.28)

S(21) = (S(22)d
− + IM−Ld+)−1S(21), (5.3.29)

S(22) = (S(22)d
− + IM−Ld+)−1(S(22)d

+ + IM−Ld−). (5.3.30)
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5.3.3 The limits of S(μ) as μ → τ ± 0

To calculate the one-sided limits of S(μ), we make use of (5.3.4) as μ → τ − 0 and
apply (5.3.27) – (5.3.30) as μ → τ + 0. The computation procedure depends on
whether the number 1 is an eigenvalue of the matrix S22(τ).

5.3.3.1 The limits of S(μ) as μ → τ ± 0 provided 1 is not an eigenvalue of
S(22)(τ)

Recall, that the functions μ �→ S(kl)(μ) are analytic in a neighborhood of μ = τ.
Therefore from (5.3.4) it immediately follows, that

lim
μ→τ−0

S(μ) = S(11)(τ)−S(12)(τ)(S(22)(τ)− 1)−1S(21)(τ). (5.3.31)

Let us proceed to compute lim S(μ) as μ → τ+ 0. By virtue of (5.3.27) and (5.3.31),

lim
μ→τ+0

S(11)(μ) = lim
μ→τ+0

(S(11)(μ)−S(12)(μ)(S(22) (μ) + d+(μ)/d−(μ))−1S(21)(μ))

=S(11)(τ)− S(12)(τ)(S(22)(τ)− 1)−1S(21)(τ) = lim
μ→τ−0

S(μ). (5.3.32)

According to (5.3.30),

lim
μ→τ+0

S(22)(μ) = lim
μ→τ+0

(S(22) + d+/d−)−1(S(22)d
+/d− + 1) =

= (S(22)(τ)− 1)−1(−S(22)(τ) + 1) = −IM−L. (5.3.33)

It follows from (5.3.29), that

S(21)(μ) = (S(22) + d+/d−)−1S(21)/d−.

Since d−(μ) = 2−1((μ − τ)1/2 − 1)/(μ − τ)1/4, we arrive at

S(21)(μ) = O((μ − τ)1/4) → 0 for μ → τ + 0. (5.3.34)

Finally, consider S(12)(μ). We rewrite (5.3.28) in the form

S(12) = S(12)d
+(1 − (S(22) + d+/d−)−1(S(22) + d−/d+)) =

= S(12)d
+(S(22) + d+/d−)−1(d+/d− − d−/d+).

In view of

d+(μ)(d+/d− − d−/d+) = 2(μ − τ)1/4/((μ − τ)1/2 − 1),

we obtain

S(12)(μ) = O((μ − τ)1/4) → 0 for μ → τ + 0. (5.3.35)
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5.3.3.2 The limits of S(μ) as μ → τ ± 0 provided 1 is an eigenvaue of S(22)(τ)

We set λ =
√

μ − τ with μ = τ + λ2 and consider the function λ �→ Φ(λ) :
CM−L → CM−L,

Φ(λ) := S(22)(μ) + d+(μ)/d−(μ) = S(22)(τ + λ2) + (λ + 1)/(λ − 1). (5.3.36)

The number λ = 0 is an eigenvalue of the function λ �→ Φ(λ), if and only if 1 is
an eigenvalue of the matrix S(22)(τ); in such a case, ker (S(22)(τ)− 1) = ker Φ(0).
To calculate the limits of S(μ) as μ → τ ± 0, we need a knowledge of the resolvent
λ �→ Φ(λ)−1 in a neighborhood of λ = 0. Propositions 5.3.5 and 5.3.6 provide the
required information.

Proposition 5.3.5. There holds the equality

ker (S(22)(τ)− 1) = ker (S(22)(τ)
∗ − 1). (5.3.37)

Proof. Assume that h ∈ ker (S(22)(τ) − 1). Then, as shown in the proof of
Lemma 5.2.7, the vector (0, h)t ∈ C

M belongs to ker (S(τ)− 1) and S(12)(τ)h = 0.
The same argument with S(τ)∗ instead of S(τ) shows that the inclusion g ∈
ker (S(22)(τ)

∗ − 1) implies (0, g)t ∈ ker (S(τ)∗ − 1) and S(21)(τ)
∗g = 0. Since

S(τ)∗ = S(τ)−1, we have

ker (S(τ)− 1) = ker (S(τ)∗ − 1). (5.3.38)

Let h1, . . . , hκ be a basis of ker (S(22)(τ)− 1) and g1, . . . , gκ the basis of
ker (S(22)(τ)

∗ − 1). We set h̃j = (0, hj)
t and g̃j = (0, gj)

t. Then (5.3.38) implies

h̃j, g̃j ∈ ker (S(τ)− 1) = ker (S(τ)∗ − 1), j = 1, . . . ,κ.

Therefore, any vector of the collection h1, . . . , hκ is a linear combination of the
vectors g1, . . . , gκ and vice versa. �

Proposition 5.3.6. Let Φ be the matrix function in (5.3.36) and dim ker Φ(0) = κ >

0. Then, in a punctured neighborhood of λ = 0, the resolvent λ �→ Φ(λ)−1 admits the
representation

Φ(λ)−1 = −(2λ)−1
κ

∑
j=1

{·, hj}hj + Γ(λ); (5.3.39)

here h1, . . . , hκ is an orthonormal basis of ker (S(22)(τ)− 1), {u, v} is the inner product
on the space CM−L, and λ �→ Γ(λ) : CM−L → CM−L is a matrix function holomorphic
in a neighborhood of λ = 0.

Proof. It is known (e.g., see [12],[13]) that, under certain conditions, the resolvent
A(λ)−1 of a holomorphic operator function λ �→ A(λ) in a punctured neighbor-
hood of an isolated eigenvalue λ0 admits the representation

A(λ)−1 = (λ − λ0)
−1

κ

∑
j=1

(·, ψj)φj + Γ(λ), (5.3.40)
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where φ1, . . . , φκ and ψ1, . . . , ψκ are bases for the spaces kerA(λ0) and kerA(λ0)
∗

satisfying the orthogonality and normalization conditions

(∂λA(λ0)φj, ψk) = δjk, j, k = 1, . . . ,κ, (5.3.41)

and Γ is an operator function holomorphic in a neighborhood of λ0. Formula
(5.3.40) is related to the case where the operator function λ �→ A(λ) has no gener-
alized eigenvectors at the point λ0. To justify (5.3.39), we have to show that there
are no generalized eigenvectors of the function λ �→ Φ(λ) at the point λ = 0 and
to verify agreement between (5.3.39) and (5.3.40).

We first take up the generalized eigenvectors. Assume that 0 �= h0 ∈
ker Φ(0). The equation Φ(0)h1 + (∂λΦ)(0)h0 = 0 for a generalized eigenvector
h1 is of the form

(S(22)(τ)− 1)h1 = 2h0.

The orthogonality of h0 to the lineal ker (S(22)(τ)
∗ − 1) = ker (S(22)(τ)− 1) is nec-

essary for the solvability of this equation (see (5.3.37)). Since 0 �= h0 ∈ ker Φ(0) =
ker (S(22)(τ) − 1), the solvability condition is not fulfilled, so the generalized
eigenvectors do not exist.

Let us compare (5.3.39) and (5.3.40). We have (∂λΦ)(0) = −2IM−L. More-
over, in view of (5.3.37), the bases φ1, . . . , φκ and ψ1, . . . , ψκ in (5.3.40) can be
chosen to satisfy φj = −ψj = hj/

√
2 and as h1, . . . , hκ there can be taken an or-

thonormal basis of ker (S22(τ)− 1). Then

{(∂λΦ)(0)φj, ψk} = δjk, j, k = 1, . . . ,κ,

and the representation (5.3.40) takes the form of (5.3.39). �
Let us calculate lim S(μ) as μ → τ − 0 . According to Lemma 5.2.7,

Im(S(22)(τ)− 1) ⊃ ImS(21)(τ).

Therefore, Proposition 5.3.5 leads to the equalities {S(21)(τ) f , hj} = 0 for any
f ∈ CL and h1, . . . , hκ in (5.3.39). Because the function μ → S(21)(μ) is analytic,
we have S(21)(μ) = S(21)(τ) + O(|μ − τ|); recall that |μ − τ| = |λ|2. Applying
(5.3.39), we obtain

(S(22)(μ) + D(μ))−1S(21)(μ) = Γ(λ)S(21)(μ) + O(|λ|). (5.3.42)

Now from (5.3.4) it follows, that

lim
μ→τ−0

S(μ) = S(11)(τ)−S(12)(τ)Γ(0)S(21) (τ); (5.3.43)

Lemma 5.2.7 allows to treat the right-hand-side as the operator

S(11)(τ)− S(12)(τ)(S(22)(τ)− 1)−1S(21)(τ)

(see (5.3.31)). For μ → τ − 0 there holds the estimate

S(μ)− (S(11)(τ)−S(12)(τ)Γ(0)S(21) (τ)) = O(|μ − τ|(1/2)). (5.3.44)
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Let us proceed to computing the limits as μ → τ + 0. Compute limμ→τ+0 S(11)(μ)
in the same way as limμ→τ−0 S(μ) and obtain

lim
μ→τ+0

S(11)(μ) = lim
μ→τ−0

S(μ). (5.3.45)

In view of (5.3.30),

S(22)(μ) =
(
S(22)(μ) + d+/d−

)−1 (
S(22)(μ) + d−/d+

)
d+/d−

= d+/d− +
(
S(22)(μ) + d+/d−

)−1 (
d−/d+ − d+/d−

)
d+/d−.

Applying resolvent representation (5.3.39), we write the last equality in the form
of

S(22)(μ) =
λ + 1
λ − 1

(
I +

2
λ2 − 1

κ

∑
j=1

(·, hj)hj −
4λ

λ2 − 1
Γ(λ)

)
. (5.3.46)

Hence

lim
μ→τ+0

S(22)(μ) = 2
κ

∑
j=1

(·, hj)hj − I = P − Q, (5.3.47)

where P = ∑
κ

j=1(·, hj)hj is the orthogonal projector C
M−L onto ker (S(22)(τ)− 1)

and Q = I − P. Moreover, for μ → τ + 0, it follows from (5.3.46), that

S(22)(μ)− P + Q = O(|μ − τ|1/2). (5.3.48)

In accordance with (5.3.29),

S(21)(μ) = (S22(μ) + IM−Ld+/d−)−1S(21)/d−.

Taking account of (5.3.42) and of d− = (λ − 1)/2
√

λ, we obtain

S(21)(μ) =
(

Γ(λ)S(21) (μ) + O(|λ|)
)

2
√

λ/(λ − 1).

Consequently,

S(21)(μ) = O(|μ − τ|1/4) → 0 for μ → τ + 0. (5.3.49)

It remains to find the limit of S(12)(μ). By virtue of (5.3.28),

S(12)(μ) = S(12)(μ)d
+
(

I − (S(22)(μ) + d+/d−)−1(S(22)(μ) + d−/d+)
)

.

Since

(S(22)(μ) + d+/d−)−1(S(22)(μ) + d−/d+) = I − 4λ

λ2 − 1
(S(22)(μ) + d+/d−)−1,

we arrive at

S(12)(μ) =
2
√

λ

λ − 1
S(12)(μ)

(
− 1

2λ ∑(·, hj)hj + Γ(λ)

)
.

Recall that hj ∈ ker(S22(τ)− 1) ⊂ kerS12(τ) (see (5.2.20)), S(12)(μ) = S(12)(τ) +

O(|μ − τ|), and μ − τ = λ2. Therefore, as μ → τ + 0 we have

S(12)(μ) = O(|μ − τ|1/4) → 0. (5.3.50)
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5.4 Method for computing the scattering matrix

We first recall the method for the scattering matrix S(μ) in Theorem 5.2.6, 1) with
μ′ � μ � μ′′, where [μ′, μ′′] ⊂ (τ′, τ) or [μ′, μ′′] ⊂ (τ, τ′′). The interval [μ′, μ′′]
may contain eigenvalues of the operator (5.2.5). The method was justified for the
Laplace operator by Plamenevskii et al. [30] and generalized for elliptic systems
by Plamenevskii et al. [31]. We set

Π
r,R
+ = {(yr, tr) ∈ Πr : tr > R}, GR = G \ ∪T

r=1Π
r,R
+ ,

∂GR \ ∂G = ΓR = ∪rΓr,R, Γr,R = {(yr, tr) ∈ Πr : tr = R}

for large R and introduce the boundary value problem

−ΔXR
j (x, μ)− μXR

j (x, μ) = 0, x ∈ GR;

XR
j (x, μ) = 0 x ∈ ∂GR \ ΓR; (5.4.1)

(−∂n + iζ)XR
j (x, μ) = (−∂n + iζ)

(
u+

j (x, μ) +∑
M
k=1 aku−

k (x, μ)
)

, x ∈ ΓR,

where ζ ∈ R \ {0} is an arbitrary fixed number, ak are complex numbers, and
u±

j are the waves in (5.1.6). As an approximation to the row (Sj1, . . . , SjM) there

serves a minimizer a0(R, μ) = (a0
1(R, μ), . . . , a0

M(R, μ)) of the functional

JR
j (a1, . . . , aM; μ) = ‖XR

j (·, μ)− u+
j (·, μ)−

M

∑
k=1

aku−
k (·, μ); L2(Γ

R)‖2, (5.4.2)

where XR
j is a solution to problem (5.4.1). To clarify the dependence of XR

j on the
parameters a1, . . . , aM, we consider the problems

−Δv±j − μv±j = 0, x ∈ GR,

v±j = 0, x ∈ ∂GR \ ΓR; (5.4.3)

(−∂n + iζ)v±j = (−∂n + iζ)u±
j , x ∈ ΓR, j = 1, . . . , M;

we have XR
j = v+j,R + ∑k akv−k,R. Let us introduce the M × M-matrices with entries

ER
jk =

(
v−j − u−

j , v−k − u−
k

)
ΓR

,

FR
jk =

(
v+j − u+

j , v−k − u−
k

)
ΓR

.

We also set
GR

j =
(

v+j − u+
j , v+j − u+

j

)
ΓR

.

Now functional (5.4.2) can be written in the form

JR
j (a) = 〈aER , a〉+ 2Re 〈FR

j , a〉+ GR
j ,

where FR
j is the j-th row of the matrix FR and 〈·, ·〉 is the inner product on CM. The

minimizer a0(R, μ) satisfies a0(R, μ)ER + FR
j = 0; the matrix ER is non-singular.
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It was shown by Plamenevskii et al. [30] that the minimizer a0(R, μ) tends
to the row (Sj1, . . . , SjM) as R → +∞ at exponential rate. More precisely, the
estimate

M

∑
k=1

|Sjk(μ)− a0
k(R, μ)| � Ce−δR

holds for any R � R0, where δ is the number in (5.2.3), R0 is a sufficiently large
positive number, and the constant C is independent of R and μ ∈ [μ′, μ′′].

We now proceed to calculating the matrix S(μ) in Theorem 5.2.6, 2) with
μ ∈ [μ′, μ′′] ⊂ (τ′, τ′′). The interval [μ′, μ′′] may contain the threshold τ as well as
some eigenvalues of the operator (5.2.10). Introduce the boundary value problem

−ΔX R
j − μX R

j = 0, x ∈ GR;

X R
j = 0 x ∈ ∂GR \ ΓR;

(−∂n + iζ)X R
j = (−∂n + iζ)(w+

j +∑
M
k=1 akw−

k ), x ∈ ΓR, (5.4.4)

where w±
j is a stable basis (5.1.10), (5.1.11) for the space of waves, ζ ∈ R \ {0}, and

ak ∈ C. As an approximation to the row (Sj1, . . . ,SjM), we suggest a minimizer
a0(R) = (a0

1(R), . . . , a0
M(R)) of the functional

J R
j (a1, . . . , aM) = ‖X R

j − w+
j −

M

∑
k=1

akw−
k ; L2(Γ

R)‖2, (5.4.5)

where X R
j is a solution of problem (5.4.4). Let us consider the problems

−Δz±j − μz±j = 0, x ∈ GR;

z±j = 0, x ∈ ∂GR \ ΓR;

(−∂n + iζ)z±j = (−∂n + iζ)w±
j , x ∈ ΓR; j = 1, . . . , M,

set

ER
jk =

(
z−j − w−

j , z−k − w−
k

)
ΓR

, (5.4.6)

FR
jk =

(
z+j − w+

j , z−k − w−
k

)
ΓR

,

GR
j =

(
z+j − w+

j , z+j − w+
j

)
ΓR

,

and rewrite functional (5.4.5) into the form of

J R
j (a) = 〈aER , a〉+ 2Re 〈FR

j , a〉+ GR
j ,

where FR
j is the j-th row of the matrix FR. Thus the minimizer a0(R) is a solution

to the system a0(R)ER +FR
j = 0.

The justification of the method is similar to the justification by Plamenevskii
et al. [31]. The following Propositions 5.4.1 and 5.4.2 can be verified in the same
way as the analogous assertions in [31].
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Proposition 5.4.1. The matrix ER(μ) with entries (5.4.6) is non-singular for all μ ∈
[μ′, μ′′] and R � R0, where R0 is sufficiently large number.

Proposition 5.4.2. Let u be a solution to the problem

−Δu − μu = 0, x ∈ GR,

u = 0 x ∈ ∂GR \ ΓR,

(−∂n + iζ)u = h, x ∈ ΓR,

with h ∈ L2(Γ
R). Then

‖u; L2(Γ
R)‖ �

1
|ζ| ‖h; L2(Γ

R)‖. (5.4.7)

Proposition 5.4.3. Let a0(R, μ) = (a0
1(R, μ), . . . , a0

M(R, μ)) be a minimizer of the func-
tional J R

l in (5.4.5). Then

J R
l

(
a0(R, μ)

)
� Ce−2γR for R → ∞, (5.4.8)

where the constant C is independent of R � R0, μ ∈ [μ′, μ′′], and γ = γ(μ) is the
piecewise constant index described in Lemma 5.2.4. For all R � R0 and μ ∈ [μ′, μ′′] the
components of the vector a0(R, μ) are uniformly bounded,

|a0
j (R, μ)| � const < ∞, j = 1, . . . , M.

Proof. Relation (5.4.8) has been obtained in the same manner as in [31]. Let us
verify the uniform boundedness of the minimizer a0(R, μ). According to Lemma
5.2.4, for [μ′, μ′′] there exists a finite covering Ip such that for each interval Ip one
can choose a number γ(μ) in (5.2.8) (and consequently in (5.4.8)) independent of
μ. Moreover, maxμ∈IpRe

√
τ − μ < γ < minμ∈IpRe

√
τ′′ − μ. We consider that μ

runs through one of the covering intervals. Denote by ZR
l the solution of problem

(5.4.4) corresponding to a0(R, μ) = (a0
1(R, μ), . . . , a0

M(R, μ)). Setting u = v = ZR
l

in the Green formula, we obtain

(−∂νZR
l , ZR

l )ΓR − (ZR
l ,−∂νZR

l )ΓR = 0. (5.4.9)

By virtue of (5.4.8),

‖ZR
l − (w+

l +
M

∑
j=1

aj(R, μ)w−
j ); L2(Γ

R)‖ = O(e−γR), R → ∞, (5.4.10)

uniformly with respect to μ. Since

(−∂ν + iζ)ZR
l |ΓR = (−∂ν + iζ)(w+

l +
M

∑
j=1

a0
j (R)w

−
j )|ΓR ,

from (5.4.9) it follows, that

‖ − ∂ν(ZR
l − (w+

l +
M

∑
j=1

a0
j (R)w

−
j )); L2(Γ

R)‖ = O(e−γR), R → ∞. (5.4.11)
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Recall, that for μ > τ, the waves w±
l are bounded functions; for μ < τ the waves

w±
l with L < l � M defined by (5.3.2) grow at infinity as O(e

√
τ−μ |x|) and as

O(|x|) for μ = τ. We use (5.4.10) and (5.4.11) to reduce (5.4.9) to the form

(−∂ν ϕl , ϕl)ΓR − (ϕl ,−∂νϕl)ΓR = |a0(R)|O(e−(γ−√
τ−μ−ε)R),

where ϕl = w+
l + ∑ a0

j (R)w
−
j ; as before,

√
τ − μ = i

√
μ − τ for μ > τ, ε being an

arbitrary small positive number. In view of (5.1.12) and (5.1.13), the left-hand-side
is equal to −i(1 − ∑ |a0

j (R)|2). Therefore,

|a0(R)|2 = 1 + o(|a0(R)|),

which leads to |a0(R)| = 1 + o(1). Looking over all elements of the covering, we
obtain the desired estimate everywhere on [μ′, μ′′]. �

Theorem 5.4.4. For all R � R0, where R0 is a sufficiently large number, and for all
μ ∈ [μ′, μ′′] ⊂ (τ′, τ′′) there exists a unique minimizer a0(R, μ) = (a0

1(R, μ), . . . ,
a0

M(R, μ)) of the functional J R
l in (5.4.2). The estimates

M

∑
k=1

|Sjk(μ)− a0
k(R, μ)| � Ce−ΛR (5.4.12)

hold for all R � R0, μ ∈ [μ′, μ′′], and 0 < Λ < minμ∈[μ′,μ′′]Re (
√

τ′′ − μ −√
τ − μ),

where
√

τ − μ = i
√

μ − τ for μ > τ and the constant C = C(Λ) is independent of R
and μ.

Proof. As in the proof of the previous assertion, we assume that μ runs through
an interval Ip of the covering of [μ′, μ′′] in Lemma 5.2.4, so the number γ in
(5.2.8), (5.4.10) and (5.4.11) is independent of μ, while maxμ∈IpRe

√
τ − μ < γ <

minμ∈IpRe
√

τ′′ − μ.
Let YR

l be a solution to problem (5.4.4), where aj, j = 1, . . . , M, are taken to be
the entries Sl j of the scattering matrix S , and let ZR

l and (a0
1(R, μ), . . . , a0

M(R, μ))

be the same as in Proposition 5.4.3. We substitute u = v = Ul := Yl − ZR
l into the

Green formula. Since Ul satisfies the first two equations in (5.4.4), we have

(−∂νUl, Ul)ΓR − (Ul,−∂νUl)ΓR = 0. (5.4.13)

Setting

ϕl = w+
l +

M

∑
j=1

a0
j (R, μ)w−

j , ψl = w+
l +

M

∑
j=1

Slj(μ)w
−
j , (5.4.14)

we write down Ul in the form

Ul = Yl − ZR
l = (Yl − ψl) + (ψl − ϕl) + (ϕl − ZR

l ).
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Note that (Yl − ψl)|ΓR = O(e−γR) by virtue (5.2.8). Moreover, by Proposition
5.4.3, the components of the minimizer aj(R, μ) are uniformly bounded. In view
of (5.4.10)and (5.4.11), this leads from (5.4.13) to the relation

(−∂ν(ψl − ϕl), (ψl − ϕl))ΓR − ((ψl − ϕl),−∂ν(ψl − ϕl))ΓR = O(e−(γ−√
τ−μ−ε)R),

(5.4.15)
where ε is an arbitrary small positive number. Straightforward calculation shows
that the left-hand-side is equal to i ∑

M
j=1 |a0

j (R, μ) − Sl j(μ)|2 (it suffices to use
(5.4.13), (5.1.12), and (5.1.13)). Hence

M

∑
j=1

|a0
j (R, μ)−Sl j(μ)|2 = O(e−(γ−√

τ−μ−ε)R)

and we arrive at (5.4.12) for μ ∈ Ip and Λ � minμ∈Ip(γ − Re
√

τ − μ − ε)/2.
We now prove that the inequality

M

∑
j=1

|aj(R, μ)− Sl j(μ)|2 = O(e−2(γ−√
τ−μ−ε)(1−2−N)R) (5.4.16)

holds for any positive integer N. For N = 1 the inequality has been obtained, so
it suffices to derive from (5.4.16) the same estimate with N + 1 instead of N. We
have

ψl − ϕl =
M

∑
j=1

(Sl j(μ)− aj(R, μ))w−
j = O(e−[(γ−√

τ−μ)(1−2−N)−√
τ−μ−ε]R).

So we can go from (5.4.13) to (5.4.15) with right-hand-side replaced by O(ez) with
z = −[(γ−√

τ − μ− ε)(1− 2−N)−√
τ − μ− ε+γ]R = −2(γ−√

τ − μ− ε)(1−
2−N−1)R. Again calculating the left hand-side of (5.4.15), we obtain

M

∑
j=1

|aj(R, μ)−Sl j(μ)|2 = O(e−2(γ−√
τ−μ−ε)(1−2−N−1)R).

Hence we have proved (5.4.12) for any positive integer N with μ ∈ Ip and Λ �

minμ∈Ip(γ − Re
√

τ − μ − ε)(1 − 2−N) . Increasing N and decreasing ε, we can
take Λ to be arbitrarily close to γ − Re

√
τ − μ. Looking over all intervals Ip of

the covering, we obtain the needed estimate everywhere on [μ′, μ′′] with Λ <

minμ∈[μ′,μ′′](γ(μ) − Re
√

τ − μ). Finally, for the difference between γ(μ) and
Re

√
τ′′ − μ to be so small as needed, it suffices to refine the covering of [μ′, μ′′].

�

In a neighborhood of the threshold τ, the matrix S(μ) can be calculated by
the method presented in this paper. Since the limits of S(μ) as μ → τ ± 0 are
finite, the connection between S(μ) and S(μ) allows to calculate S(μ) for μ in
vicinity of τ.
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5.5 Examples of the method application

The method for approximating the waveguide scattering matrix, described in
Chapters 3 and 5, has been successfully implemented in real-life computational
applications. A series of papers [2] - [5], [17] is devoted to the resonant tunnel-
ing in quantum waveguides. The authors consider the Dirichlet problem for the
Helmholtz equation or for the Pauli equation in cylindrical waveguides, having
two narrows of small diameter. The narrows play the role of effective potential
barriers and the waveguide part between the narrows plays the role of a res-
onator. So, there arise conditions for resonant tunneling of electrons. The phe-
nomenon consists in the fact that, for electron with energy E (E stands for the
spectral parameter), the probability T(E) of passing from one part of the waveg-
uide to the other through the resonator has a sharp peak at a “resonant energy”
Eres. The probability T(E) is called a transmission coefficient.

In [2] - [5] the method, analogous to that in Chapter 3, was applied for com-
puting the transmission coefficient T(E). With a kind permission of the authors
we reproduce here some plots computed by means of the method. Suppose E
belonging to an interval between the first and the second threshold. Then the
scattering matrix S(E) is of size 2 × 2 and the transmission coefficient T1(E) is
equal to |S12(E)|2. Its dependence on E is presented in the FIG. 4.
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FIGURE 4 The transmission coefficient dependence on the spectral parameter E belong-
ing to an interval between first and second thresholds. The plot is computed
by the method, analogous to that in Chapter 3 [2], [4], [5].

If E is higher than the second threshold, then there arise several incoming
and outgoing waves and we deal with multichannel scattering. Let u−

1 , . . . , u−
n be

the outgoing waves propagating in the first cylindrical end and u−
n+1, . . . , u−

2n be
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the outgoing waves propagating in the second cylindrical end, while n = n(E).
Then the total transmission coefficient of the incoming wave u+

1 is equal to

T1(E) =
2n

∑
j=n+1

|S1j(E)|2. (5.5.1)

Its dependence on E is presented in the FIG. 5.
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FIGURE 5 The total transmission coefficient dependence on the spectral parameter E
in the case of multichannel scattering. The plot is computed by the method,
analogous to that in Chapter 3 [4], [5].

In [17] the scattering matrix is computed near thresholds. To this end the
authors apply both the “non-threshold” method of Chapter 3 and the “threshold”
method of Chapter 5 and compare the obtained results. It turns out that, when
E is close to the threshold τ and E > τ, the methods show good agreement in
accuracy. When E is close to the threshold and E < τ, the method of Chapter 5
converges much faster as R tends to infinity, than the method of Chapter 3 (see
FIG. 6), as it was expected from theoretical prerequisites. But the advantage in
accuracy of the “threshold” method becomes negligible for energies not too far
from the threshold τ − E = 1 � 0.03τ (see FIG. 7). Far from thresholds the “non-
threshold” method of Chapter 3 is preferrable, because the number of auxiliary
boundary value problems to be solved is less than that, needed for the method of
Chapter 5, and the accuracy is the same.
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FIGURE 6 A comparison of convergence rate for the method of Chapter 3 and the
method of Chapter 5. The computed transmission coefficient T1

12 := |S12|2
(1) using the method of Chapter 3, (2) using the method of Chapter 5, (3) the
computed difference for τ − E = 10−7 [17].
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FIGURE 7 A comparison of convergence rate for the method of Chapter 3 and the
method of Chapter 5. The computed transmission coefficient T1

12 := |S12|2
(1) using the method of Chapter 3, (2) using the method of Chapter 5, (3) the
computed difference for τ − E = 1 [17].



6 CONCLUSIONS

In the thesis, we use an original method that allows us to extend significantly the
class of electromagnetic waveguides, admitting mathematically exact investiga-
tion. Namely, we associate with the Maxwell system an elliptic boundary value
problem. The problem is investigated by means of waveguide theory for elliptic
systems. Finally, we derive the information about the Maxwell system from that,
obtained for the elliptic one.

The elliptization of the Maxwell system provides all the advantages of an el-
liptic case, in particular, possibility of localization, a freedom in choosing waveg-
uide geometry and filling medium. In the present thesis, we relax the restrictions
of the geometry. We consider waveguides having finitely many cylindrical out-
lets to infinity. A waveguide is supposed to be empty, i.e. dielectric and magnetic
permittivity are identity matrices, and the waveguide boundary is supposed to
be perfectly conductive. The proposed method can be used to advance the de-
veloped theory, particularly, to study waveguides with non-homogeneous filling
medium, with dissipation etc.

Main results of the work:

1. We propose and justify a well-posed problem statement with intrinsic radia-
tion conditions, the “radiation principle”. The intrinsic radiation conditions
mean, that the principal part of solution asymptotics at infinity consists of
outgoing waves only. A problem with the radiation conditions has a unique
solution that depends continuously on right-hand-side.

2. We describe the waveguide continuous spectrum, introduce a scattering
matrix, defined on the continuous spectrum, and study its properties. The
matrix is unitary and has a finite size that is called the continuous spectrum
multiplicity. The continuous spectrum multiplicity depends on the spec-
tral parameter, the function is even, piecewise constant, and increasing on
the positive semiaxis; the discontinuity points of the function are called the
thresholds. The positive thresholds form a sequence increasing to infinity.

3. We propose and justify a method for approximating the scattering matrix
under condition, that the spectral parameter belongs to an interval, con-
taining no thresholds. A minimizer of a quadratic functional serves as an
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approximation to the scattering matrix row. To construct the functional, we
solve an auxiliary problem in a bounded domain, obtained from the waveg-
uide by cutting off the cylindrical ends. The minimizer tends to the scatter-
ing matrix row at an exponential rate as the domain size tends to infinity.

We also investigate the threshold behaviour of the waveguide scattering
matrix for the Helmholtz equation with Dirichlet boundary conditions and
obtain the following results:

4. We prove that the scattering matrix depends analytically on the spectral pa-
rameter in any continuous spectrum interval, containing no thresholds. In
a neighbourhood of a threshold, we introduce an augmented scattering ma-
trix that keeps its size and depends analytically on the spectral parameter in
the neighbourhood. Threshold behaviour of the (ordinary) scattering ma-
trix is described in terms of the augmented one. Particularly, we show the
scattering matrix to have finite left and right one-sided limits at thresholds.

5. We propose and justify a method for approximating the augmented scatter-
ing matrix in the neighbourhood of the threshold. The ordinary scattering
matrix can be computed by way of computing the augmented scattering
matrix.

6. Numerical simulations show that, in a neighbourhood of a threshold, the
method of Chapter 5 converges much faster, than the method of Chapter
3. Far from the thresholds, the method of Chapter 3 is preferrable, since
the methods have the same accuracy, but the method of Chapter 5 needs a
larger amount of computational operations.

The results of 4 and 5 on the Helmholtz equation are generalized for
the Maxwell system as well, and a paper on the topic is being prepared for
the press.
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YHTEENVETO (FINNISH SUMMARY)

Tutkimme sähkömagneettisia aallonjohtimia, joissa on useita sylinterimäisiä päi-
tä. Aallonjohdin oletetaan tyhjäksi ja sen reuna täydellisen johtavaksi. Tutkimme
varausten ja sähkövirran luomaa sähkömagneettista kenttää aallonjohtimen lähei-
syydessä. Sähkökenttä määräytyy Maxwellin yhtälöiden mukaan. Tarkasteltava-
ssa systeemissä oletetaan johtavat reunaehdot ja säteilyehdot äärettömyydessä.
Todistamme matemaattisen ongelman olevan hyvin asetettu. Sähkömagneettisen
kentän värähtelyä aallonjohtimessa esittää erityinen sirontamatriisi. Tutkimuk-
sessa esitellään sirontamatriisi kaikille spektraaliparametreille k aallonjohtimen
jatkuvassa spektrissä ja tutkitaan sen ominaisuuksia. Lisäksi esitämme numeeri-
sen menetelmän, jolla sirontamatriisia voidaan approksimoida. Menetelmä ei ole
riippuvainen aallonjohtimen ominaisarvoista.

Väitöskirjan tulokset laajentavat sähkömagneettisen aallonjohtimen teoriaa.
Väitöskirjassa esitellyt asymptoottinen analyysi ja numeeriset menetelmät mah-
dollistavat esimerkiksi monimutkaisten aallonjohdinten resonaattoreiden ja SHF
jakajien tarkastelun. Matemaattinen tarkastelu perustuu ylimääräytyvän Maxwe-
llin systeemin laajentamiseen elliptiseksi ongelmaksi.
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