This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Author(s):
Ganesamoorthy, Chelladurai; Balakrishna, Maravanji; Mague, Joel; Tuononen, Heikki

```
Title: New Tetraphosphane Ligands {(X2P)2NC6H4N(PX2)2} (X = Cl, F, OMe, OC6H4OMe-o):
    Synthesis, Derivatization, Group }10\mathrm{ and 11 Metal Complexes and Catalytic
    Investigations. DFT Calculations on Intermolecular P...P Interactions in Halo-
    Phosnhines
Year: 2008
```

Version:

Please cite the original version:

Ganesamoorthy, C., Balakrishna, M., Mague, J., \& Tuononen, H. (2008). New Tetraphosphane Ligands \{(X2P)2NC6H4N(PX2)2\} (X = Cl, F, OMe, OC6H4OMe-o): Synthesis, Derivatization, Group 10 and 11 Metal Complexes and Catalytic Investigations. DFT Calculations on Intermolecular P...P Interactions in HaloPhosphines. Inorganic Chemistry, 47(15), 7035-7047. https://doi.org/10.1021/ic800724u

All material supplied via JYX is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

New Tetraphosphane Ligands $\left\{\left(\mathbf{X}_{2} \mathbf{P}\right)_{2} \mathbf{N C}_{6} \mathbf{H}_{4} \mathbf{N}\left(\mathrm{PX}_{2}\right)_{2}\right\}(\mathbf{X}=\mathbf{C l}$, F, OMe, OC6H4OMe-o): Synthesis, Derivatization, Group 10 and 11 Metal Complexes and Catalytic Investigations. DFT Calculations on Intermolecular P...P Interactions in HaloPhosphines

Chelladurai Ganesamoorthy ${ }^{\text {a }}$, Maravanji S. Balakrishna ${ }^{\text {a* }}$, Joel T. Mague ${ }^{\text {b }}$ and Heikki M. Tuononen ${ }^{\text {c }}$
${ }^{a}$ Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
${ }^{b}$ Department of Chemistry, Tulane University, New Orleans, Lousiana 70118, USA.
${ }^{c}$ Department of Chemistry, P.O. Box 35, FI-40014 University of Jyväskylä, Finland.

The reaction of p-phenylenediamine with excess PCl_{3} in the presence of pyridine affords $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left(\mathrm{PCl}_{2}\right)_{2}\right]_{2}$ (1) in good yield. Fluorination of $\mathbf{1}$ with SbF_{3} produces p $\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left(\mathrm{PF}_{2}\right)_{2}\right]_{2}$ (2). The aminotetra(phosphonites), $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left\{\mathrm{P}\left(\mathrm{OC} 6 \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right\}_{2}\right]_{2}$ (3) and $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left\{\mathrm{P}(\mathrm{OMe})_{2}\right\}_{2}\right]_{2}$ (4) have been prepared by reacting $\mathbf{1}$ with appropriate amount of 2-(methoxy)phenol or methanol, respectively, in presence of triethylamine. The reactions of $\mathbf{3}$ and $\mathbf{4}$ with $\mathrm{H}_{2} \mathrm{O}_{2}$, elemental sulfur or selenium afforded the tetrachalcogenides, $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left\{\mathrm{P}(\mathrm{O})\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right\}_{2}\right]_{2}(5), p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left\{\mathrm{P}(\mathrm{S})(\mathrm{OMe})_{2}\right\}_{2}\right]_{2}$ (6) and $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left\{\mathrm{P}(\mathrm{Se})(\mathrm{OMe})_{2}\right\}_{2}\right]_{2}(7)$ in good yield. Reactions of $\mathbf{3}$ with $\left[\mathrm{M}(\mathrm{COD}) \mathrm{Cl}_{2}\right]$

[^0]$(\mathrm{M}=\mathrm{Pd}$ or Pt$)(\mathrm{COD}=$ cycloocta-1,5-diene $)$ resulted in the formation of the chelate complexes, $\left[\mathrm{M}_{2} \mathrm{Cl}_{4}-p-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{~N}\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right\}_{2}\right\}_{2}\right](\mathbf{8}, \mathrm{M}=\mathrm{Pd}$ and $\mathbf{9}, \mathrm{M}=\mathrm{Pt})$. The reactions of 3 with four equivalents of $\mathrm{CuX}(\mathrm{X}=\mathrm{Br}$ and I$)$ produce the tetranuclear complexes, $\left[\mathrm{Cu}_{4}\left(\mu_{2}-\mathrm{X}\right)_{4}\left(\mathrm{NCCH}_{3}\right)_{4}-p-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{~N}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}\right\}_{2}\right](\mathbf{1 0}, \mathrm{X}=\mathrm{Br} ; \mathbf{1 1}, \mathrm{X}=$ I). The molecular structures of $\mathbf{1}-\mathbf{3}, \mathbf{6}, \mathbf{7}, \mathbf{9}-\mathbf{1 1}$ are confirmed by single crystal X-ray diffraction studies. The weak intermolecular P...P interactions observed in $\mathbf{1}$ leads to the formation of a 2-D sheet like structure which is also examined by DFT calculations. The catalytic activity of the $\mathrm{Pd}^{\mathrm{II}}$ complex $\mathbf{8}$ has been investigated in Suzuki-Miyaura crosscoupling reactions.

Introduction

The design and synthesis of polyphosphine ligands has been an active field of research over several years ${ }^{1,2}$ as their metal complexes show structural diversity, high thermal stability and unique physical properties. ${ }^{3-5}$ Pre-organized ligands of this class may readily form di-, tetra- and/or polynuclear metal complexes with metals in close proximity to each other, thereby giving rise to strong cooperativity effects in catalytic reactions. ${ }^{6}$ Incorporation of other group 5 and/or group 6 donor atoms in to these system results in "mixed-multidentate" phosphines which can offer unusual coordination geometry with remarkable chemical behavior at the metal center. ${ }^{7}$ The conformationally rigid polyphosphines of good π-acceptor ligands are potential candidates for designing conducting polymers for effective electronic coupling through ligands. ${ }^{8}$ In addition, their chalcogenide derivatives are more efficient cavitands for the separation of trivalent lanthanides and actinides by solvent extraction processes compared to the most commonly used dithiophosphinic acids. ${ }^{9}$ However, the methods available for the synthesis of conformationally rigid polyphosphines are mostly multi-step and/or low yielding. ${ }^{10}$ One of the most commonly known polyphosphine is the tripod ligand $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PR}_{2}\right)_{3},(\mathrm{R}=\mathrm{Me}, \mathrm{Ph}$ or cyclohexyl) whose coordination behavior has been extensively studied. ${ }^{11,2 b}$ The polyphosphines containing non-carbon spacers are less extensive. The discovery of bis(dihalophosphino) amines, $\mathrm{C}_{2} \mathrm{P}-\mathrm{N}(\mathrm{R})-\mathrm{PC} 1_{2}(\mathrm{R}=$ alkyl or aryl) has resulted in the development of a large number of functionalized bis(phosphino)amines of the general formula $\mathrm{R}^{\prime}{ }_{2} \mathrm{P}-\mathrm{N}(\mathrm{R})-\mathrm{PR}^{\prime}{ }_{2}\left(\mathrm{R}^{\prime}=\right.$ alkoxide or amine $) .{ }^{12}$ However, the same synthetic methodology is not efficient for the preparation of analogous tetra- and poly(dihalophosphino)amines from aromatic polyamines. The only
known tetra(dihalophosphino)amine is $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left(\mathrm{PCl}_{2}\right)_{2}\right]_{2}$ (1) which was first synthesized in very low yield (13\%) by Haszeldine et al. in 1973 and there is no subsequent followup either on its derivatization or its transition metal chemistry. ${ }^{13}$ Interestingly, the compounds of the type $\mathbf{1}$ can adopt several conformations depending upon the orientation of the P-N-P skeleton with respect to the phenylene ring. Three major idealized possibilities are: (I) both phenylene and P-N-P skeletons can be coplanar; (II) the phenylene ring can be perpendicular to the P-N-P skeletons; (III) the phenylene and one P-N-P skeleton can be in one plane and orthogonal to the other P-N-P skeleton. Further, the P-N-P moieties in each conformation can adopt $C_{2 V}, C_{2 V^{\prime}}$ and C_{S} conformations depending on the mutual orientation of phosphorus lone pairs with respect to the P substituents as shown in Chart 1^{14} so there is a total of 18 possible conformations.

I

II

III

$C_{2 v}$

$C_{2 v}{ }^{\prime}$

C_{s}

Chart 1

These conformations can lead to the formation of different types of oligomers and polymers such as linear sheets, twisted chains or cyclic structures with metals and the nature of which will depend on the coordination geometry of the transition metals and the possible conformations of the ligand. Further, compound $\mathbf{1}$ can also serve as a molecular synthon for producing novel ligands with desired steric and electronic attributes at the
phosphorus centers which may find applications in homogeneous catalysis in addition to interesting coordination chemistry. As a part of our interest in phosphorus based ligands ${ }^{15}$ and their catalytic applications, ${ }^{16}$ we describe herein the high-yield synthesis and structural characterization of $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left(\mathrm{PCl}_{2}\right)_{2}\right]_{2}(\mathbf{1})$, its reactivity and Group 10 and 11 metal complexes of one of its derivatives $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left\{\mathrm{P}\left(\mathrm{OC} 6 \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right\}_{2}\right]_{2}$ (3). The utility of the palladium complex $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}-p-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{~N}\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right\}_{2}\right\}_{2}\right]$ (8) in Suzuki-Miyaura cross-coupling reactions is also described. The bispalladium complex $\mathbf{8}$ promotes one-pot multiple carbon-carbon coupling reactions very efficiently.

Results and discussion

Tetraphosphanes

Scheme 1

The reaction of p-phenylenediamine with phosphorus trichloride in the presence of two equivalents of pyridine affords the tetraphosphine, $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left(\mathrm{PCl}_{2}\right)_{2}\right]_{2}(\mathbf{1})$ in 75% yield. The fluorination of $\mathbf{1}$ with antimony trifluoride produces the fluoro analogue, p $\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left(\mathrm{PF}_{2}\right)_{2}\right]_{2}(\mathbf{2})$ in 69% yield. Compounds $\mathbf{1}$ and $\mathbf{2}$ are white crystalline solids which readily decompose when exposed to air or moisture. Compound 2 is volatile under reduced pressure even at $30^{\circ} \mathrm{C}$. The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{1}$ consists of a single peak at
153.6 ppm , whereas $\mathbf{2}$ shows the A portion of an $\mathrm{AA}^{\prime} \mathrm{X}_{2} \mathrm{X}_{2}{ }^{\prime}$ multiplet centered at 129.7 ppm with ${ }^{1} J_{\mathrm{PF}},{ }^{3} J_{\mathrm{PF}}$ and ${ }^{2} J_{\mathrm{PP}}$ couplings of 1248,123 and 392 Hz , respectively. ${ }^{14 \mathrm{c}, 17}$ The tetraphosphine 1 reacts smoothly with the appropriate amount of 2-(methoxy)phenol or methanol in the presence of triethylamine to afford the corresponding tetraphosphonites, $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left\{\mathrm{P}\left(\mathrm{OC} 6 \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right\}_{2}\right]_{2}$ (3) and $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left\{\mathrm{P}(\mathrm{OMe})_{2}\right\}_{2}\right]_{2}$ (4). Treatment of $\mathbf{1}$ with the sodium salt of 2-(methoxy)phenol in THF also produces $\mathbf{3}$ in 76% yield as shown in Scheme 1. Compound $\mathbf{3}$ is an air stable white crystalline solid while $\mathbf{4}$ is a white solid with a pungent smell and is moderately stable towards air. The ${ }^{31} \mathrm{P}$ NMR spectra of compounds $\mathbf{3}$ and $\mathbf{4}$ exhibit single resonances at 132.1 and 134.7 ppm , respectively. The ${ }^{1} \mathrm{H}$ NMR spectra of the compounds $\mathbf{1 - 4}$ show singlets in the range 7.03-7.79 ppm corresponding to the protons of the bridging phenylene group. The omethoxy protons in $\mathbf{3}$ show a singlet at 3.60 ppm , whereas those in $\mathbf{4}$ resonate as a sharp triplet at 3.51 ppm with a ${ }^{3} J_{\mathrm{PH}}$ coupling of 12.6 Hz . The (EI) mass spectra of the compounds $\mathbf{3}$ and $\mathbf{4}$ display the molecular ion peaks at $\mathrm{m} / \mathrm{z} 1214.47(\mathrm{M}+1)$ and 477.98 $(M+1)$, respectively. The elemental analyses support the compositions of $\mathbf{1}-\mathbf{4}$ and the structures of compounds $\mathbf{1}-\mathbf{3}$ were confirmed by X-ray structure determination.

Chalcogenide derivatives

Treatment of 3 with aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(30 \% \mathrm{w} / \mathrm{v})$ at $-78{ }^{\circ} \mathrm{C}$ gives the tetra(oxide) derivative, $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left\{\mathrm{P}(\mathrm{O})\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right\}_{2}\right]_{2}$, (5). A similar oxidation reaction of 3 with S_{8} or gray selenium does not proceed even under refluxing conditions in toluene. However, the tetraphosphonite, $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left\{\mathrm{P}(\mathrm{OMe})_{2}\right\}_{2}\right]_{2}$ (4), reacts smoothly with four equivalents of S_{8} or gray selenium in toluene under refluxing conditions (32 h) to give the corresponding tetra(sulfide), $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left\{\mathrm{P}(\mathrm{S})(\mathrm{OMe})_{2}\right\}_{2}\right]_{2}$ (6), or tetra(selenide) derivative, $p-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left\{\mathrm{P}(\mathrm{Se})(\mathrm{OMe})_{2}\right\}_{2}\right]_{2}$ (7). This difference in reactivity may be due to the steric congestion in and the less basic nature of $\mathbf{3}$ when compared to $\mathbf{4}$. However, the reaction of 4 with aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(30 \% \mathrm{w} / \mathrm{v})$ resulted in the hydrolysis of $\mathrm{P}-\mathrm{N}$ bonds. The ${ }^{31} \mathrm{P}$ NMR spectra of the chalcogenide derivatives $\mathbf{5}-\mathbf{7}$ show singlets at $-12.5,68.8$ and 73.4 ppm, respectively. The selenide derivative 7 shows characteristic selenium satellites with $a^{1} J_{\text {PSe }}$ coupling of 945 Hz . In contrast to 4 , the proton NMR spectra of compounds $\mathbf{6}$ and 7 show broad doublets for the O-methyl groups at 3.51 and 3.72 ppm with ${ }^{3} J_{\mathrm{PH}}$ couplings of 14.4 and 14.7 Hz , respectively. The (EI) mass spectra of compounds $\mathbf{5}-\mathbf{7}$ display the molecular ion peaks at $\mathrm{m} / \mathrm{z} 1278.87(\mathrm{M}+1), 605.15(\mathrm{M}+1)$ and $794.62(\mathrm{M}+2)$, respectively, with appropriate isotopic patterns. The structure and compositions of compounds 5-7 are consistent with the analytical, ${ }^{1} \mathrm{H}$ NMR and mass spectrometric data. The molecular structures of 6 and 7 were confirmed by single crystal X-ray structure determinations.

Group 10 and 11 metal derivatives

The compounds 2-4 are potential tetradentate ligands and it would be interesting to explore their coordination behavior with various transition metal salts. The air- and moisture-stable ligand $\mathbf{3}$ has been used for the preparation of Group 10 and 11 metal
complexes. The reactions of $\mathbf{3}$ with two equivalents of $\left[\mathrm{M}(\mathrm{COD}) \mathrm{Cl}_{2}\right](\mathrm{M}=\mathrm{Pd}$ or Pt$)$ $(\mathrm{COD}=$ cycloocta-1,5-diene $)$ in dichloromethane yielded the chelate complexes, $\left[\mathrm{M}_{2} \mathrm{Cl}_{4-}\right.$ $\left.p-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{~N}\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right\}_{2}\right\}_{2}\right](\mathbf{8}, \mathrm{M}=\mathrm{Pd}$ and $\mathbf{9}, \mathrm{M}=\mathrm{Pt})$. The ${ }^{31} \mathrm{P}$ NMR spectra of complexes $\mathbf{8}$ and $\mathbf{9}$ consist of single resonances at 64.4 and 35.0 ppm , respectively, which are considerably shielded compared to that of the free ligand. The coordination shifts for $\mathbf{8}$ and $\mathbf{9}$ are 67.7 and 97.1 ppm , respectively, and the platinum complex exhibits a large ${ }^{1} J_{\mathrm{PtP}}$ coupling of 5072 Hz , which is consistent with the proposed cis geometry around the platinum center. ${ }^{18}$ The ${ }^{1} \mathrm{H}$ NMR spectra of complexes $\mathbf{8}$ and $\mathbf{9}$ show single resonances around 3.60 ppm corresponding to the o-methoxy groups attached to the phenyl rings. Further evidence for the molecular composition of complexes $\mathbf{8}$ and $\mathbf{9}$ come from the elemental analyses, ${ }^{1} \mathrm{H}$ NMR data and the single-crystal X-ray structure of the platinum derivative 9. The reactions of $\mathbf{3}$ with four equivalents of $\mathrm{CuX}(\mathrm{X}=\mathrm{Br}$ and I$)$ in acetonitrile lead to the formation of tetranuclear complexes, $\left[\mathrm{Cu}_{4}\left(\mu_{2}-\mathrm{X}\right)_{4}\left(\mathrm{NCCH}_{3}\right)_{4}-p\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{~N}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}\right\}_{2}\right](\mathbf{1 0}, \mathrm{X}=\mathrm{Br} ; \mathbf{1 1}, \mathrm{X}=\mathrm{I})($ Scheme 3). Compounds 10 and 11 are colorless, air stable, crystalline solids and moderately soluble in organic solvents. The ${ }^{31} \mathrm{P}$ NMR spectra of complexes $\mathbf{1 0}$ and $\mathbf{1 1}$ show single resonances at 103.8 and 102.6 ppm, respectively. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 0}$ and $\mathbf{1 1}$ shows single resonances at 2.07 ppm and 3.56 ppm , respectively, for coordinated $\mathrm{CH}_{3} \mathrm{CN}$ and ortho-methoxy groups present in the phenyl rings. The analytical data are consistent with the proposed structures and the molecular structures of $\mathbf{1 0}$ and $\mathbf{1 1}$ are confirmed by the single crystal X-ray diffraction studies. The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectral data for compounds $\mathbf{1} \mathbf{- 1 1}$ are given in Table 1.

The crystal and molecular structures of $1-3,6,7$ and $9-11$
Perspective views of the molecular structures of compounds $\mathbf{1}-\mathbf{3}, \mathbf{6}, \mathbf{7}$ and $\mathbf{9}-\mathbf{1 1}$ with atom numbering schemes are shown in Figures $1-8$, respectively. Crystal data and the details of the structure determinations are given in Table 2 while selected bond lengths and bond angles are given in Tables $3-5$. The molecular structures of compounds $\mathbf{1}-\mathbf{3}$ consist of discrete $\mathrm{X}_{2} \mathrm{P}-\mathrm{N}(\mathrm{R})-\mathrm{PX}_{2}(\mathbf{1}, \mathrm{X}=\mathrm{Cl} ; \mathbf{2}, \mathrm{X}=\mathrm{F}$ and $\mathbf{3}, \mathrm{X}=\mathrm{O})$ skeletons having crystallographically-imposed centrosymmetry with the $C_{2 V}$ conformation. In 2, there are two independent half molecules in the asymmetric unit which differ only slightly in geometry and conformation. In the $\mathrm{X}_{2} \mathrm{P}-\mathrm{N}(\mathrm{R})-\mathrm{PX} 2(\mathbf{1}, \mathrm{X}=$ $\mathrm{Cl} ; \mathbf{2}, \mathrm{X}=\mathrm{F}$ and $\mathbf{3}, \mathrm{X}=\mathrm{O}$) skeletons, the X atoms are disposed approximately equally above and below the P-N-P plane while there is a distorted pyramidal geometry about the phosphorus centers and a planar environment around the nitrogen centers with the sum of the angles around nitrogen almost 360° in all cases. The observed P-N bond lengths in $\mathbf{1}$ - $\mathbf{3}$ vary from $1.686(2)$ to $1.707(2) \AA$ and are comparable with those found in the amino bis(phosphine) derivatives, ${ }^{i} \operatorname{PrN}\left(\mathrm{PPh}_{2}\right)_{2}(1.710 \AA),{ }^{14 \mathrm{c}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\left\{\mathrm{P}(\mathrm{NHPh})_{2}\right\}_{2}(1.690 \AA),{ }^{19}$
$\mathrm{CH}_{3} \mathrm{~N}\left\{\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{4}\right)_{2}\right\}_{2}\left(1.685(1)-1.699(1) \AA{ }^{\circ}\right),{ }^{20} \operatorname{EtN}\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3}{ }^{i} \mathrm{Pr}_{2}-2,6\right)_{2}\right\}_{2}$ (1.674(5) $\left.\AA\right)$, $\operatorname{EtN}\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right)_{2}\right\}_{2}(1.693(2) \AA),{ }^{21} \mathrm{MeN}\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right)_{2}\right\}_{2}(1.672(1) \AA),{ }^{22}$ and shorter than those in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\left(\mathrm{PPh}_{2}\right)_{2}$, (1.732(2) $\left.\AA\right)$, $p-\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{PPh}_{2}\right)_{2}(1.723(3)-1.732$ (3) \AA), $m-\mathrm{CNC}_{6} \mathrm{H}_{4} \mathrm{~N}\left(\mathrm{PPh}_{2}\right)_{2}(1.746(2) \AA) .{ }^{23}$ In 1, the $\mathrm{P}-\mathrm{Cl}$ bond distances vary from 2.042(1) to $2.057(1) \AA .{ }^{24}$ The P-N-P angle $\left(109.47(6)^{\circ}\right)$ subtended in $\mathbf{1}$ is smaller than those of $\mathbf{2}$ $\left(115.43(8)^{\circ}\right)$ and $\mathbf{3}\left(115.25(9)^{\circ}\right)$. In $\mathbf{1}-\mathbf{3}$ the bridging phenylene rings are almost perpendicular to the plane of the P-N-P skeletons with dihedral angles of $88.58(16)^{\circ}(\mathrm{P} 2-$ $\mathrm{N}-\mathrm{P} 1$ vs $\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$ for $\left.\mathbf{1}\right), 89.73(66)^{\circ}$ and $87.31(66)^{\circ}\left(\mathrm{P} 2-\mathrm{N} 1-\mathrm{P} 1\right.$ vs $\mathrm{C} 1-\mathrm{C} 3^{\mathrm{i}}$ and $\mathrm{P} 3-\mathrm{N} 2-\mathrm{P} 4$ vs C4-C6 ${ }^{\text {i }}$ for 2) and $78.37(19)^{\circ}$ ($\mathrm{P} 1-\mathrm{N}-\mathrm{P} 2$ vs C29-C31 ${ }^{\mathrm{i}}$ for 3), respectively. In addition, compound 1 shows all phosphorus atoms to have intermolecular P...P contacts of $3.539(1) \AA$ which is $0.061 \AA$ less than the sum of the van der Waals radii and serves to generate a slightly undulating 2-D sheet structure parallel to $\{1,0,0\}$. Although, Lewis acid-base acceptor-donor adducts between simple phosphines are known, ${ }^{25}$ a search of the current Cambridge Crystallographic Database shows only one example ${ }^{25 a}$ of a close $(3.372 \AA) \mathrm{P} . . . \mathrm{P}$ contact in any of the 51 structures containing $\left\{\mathrm{A}^{-}-\mathrm{PX}_{2}\right\}(\mathrm{A}=\mathrm{N}, \mathrm{C} ; \mathrm{X}=$ halogen) moieties. A slightly shorter P...P separation is seen in the solid state structure of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ but here the interactions associate the molecules into discrete pairs. ${ }^{25 d}$ It is noteworthy that no discussion is given on the observed interactions -which are of van der Waals in nature- and that only 54 examples of close $\mathrm{P} . . . \mathrm{P}$ contacts between two tricoordinate phosphorus atoms are found in the current version of the Cambridge Crystallographic Database.

In contrast to $\mathbf{1}$, no close $\mathrm{P} . . \mathrm{P}$ contacts are observed in its fluoro analogue $\mathbf{2}$. Hence, as weak P...P contacts do not appear to be a general feature of the solid state
structures of phosphines bearing electronegative substituents on phosphorus, their occurrence suggests that a fine tuning of the electronic structure is necessary for this effect to be present. To investigate the phenomenon deeper, theoretical calculations were performed for molecules $\mathbf{1}$ and 2 as well as for some simplified model systems (see below).

The packing of $\mathbf{3}$ in the solid state is surprisingly efficient given the bulk of the o methoxyphenoxy substituents and is aided by C-H... π and C-H...O interactions. Thus H5 is situated $2.92 \AA$ from the center (Cg) of the phenyl ring C15-C20 located at $2-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}$ with a C-H...Cg angle of 144° while H12 is $3.28 \AA$ from Cg of the ring C1-C6 located at $-0.5+\mathrm{x}, \mathrm{y}, 1.5-\mathrm{z}$ with a $\mathrm{C} 12-\mathrm{H} 12 \ldots \mathrm{Cg}$ angle of 166°. Additionally, O 4 makes an $\mathrm{O} \ldots \mathrm{H}-\mathrm{C}$ hydrogen bond with H28a located at $1.5-\mathrm{x}, 0.5+\mathrm{y}, \mathrm{z}(\mathrm{O} 4 \ldots \mathrm{H} 28 \mathrm{a}=2.56 \AA ; \mathrm{O} 4 \ldots \mathrm{H} 28 \mathrm{a}-$ $\left.\mathrm{C} 28=139^{\circ}\right)$, O5 makes one with H 28 c located at $0.5+\mathrm{x}, 0.5-\mathrm{y}, 1-\mathrm{z}(\mathrm{O} 5 \ldots \mathrm{H} 28 \mathrm{c}=2.72 \AA$; O5... $\mathrm{H} 28 \mathrm{c}-\mathrm{C} 28=155^{\circ}$) and H 21 c makes one with O 7 located at $0.5+\mathrm{x}, 0.5-\mathrm{y}, 1-\mathrm{z}$ $\left(\mathrm{O} 7 \ldots \mathrm{H} 21 \mathrm{c}=2.50 \AA ; \mathrm{O} 7 \ldots \mathrm{H} 21 \mathrm{c}-\mathrm{C} 21=162^{\circ}\right)$.

Compounds 6 and 7 are isomorphous and virtually isostructural with crystallographically-imposed centrosymmetry. As observed in analogous derivatives, the molecules 6 and 7 adopt twisted conformations with the $\mathrm{P}=\mathrm{E}(\mathrm{E}=\mathrm{S}, \mathrm{Se})$ vectors making an angle of $107.6(1)^{\circ}$ with one another. ${ }^{26}$ The two independent $\mathrm{P}=\mathrm{E}$ bonds are virtually same [1.9191(5) Å, 1.9191(6) Å for $\mathbf{6}$ and 2.0720(4) Å, 2.0718(4) A for 7]. The observed $\mathrm{P}=\mathrm{Se}$ bond distances are longer than those found in compound, $\mathrm{PhN}\left\{\mathrm{P}(\mathrm{Se})\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right.\right.$ $\left.o)_{2}\right\}_{2}(2.058(6) \AA)$ and is reflected in the relatively low ${ }^{1} J_{\text {Se-P }}$ coupling of $7 .{ }^{27}$ The P-N bond distances vary from $1.677(1)$ to $1.687(1) \AA$ in both cases. The P-N-P angles in 6 and 7 are $127.64(8)^{\circ}$ and $127.00(6)^{\circ}$, respectively, and are larger than in the free ligands
of the type $\operatorname{PhN}\left\{\mathrm{P}(\mathrm{OR})_{2}\right\}_{2}(\mathrm{R}=$ alkyl or aryl groups $) .{ }^{12 \mathrm{j}}$ Here again, the bridging phenylene rings are almost perpendicular to the plane of the P-N-P skeletons of 6 and 7 with the dihedral angles of $89.18(14)^{\circ}(\mathrm{P} 2-\mathrm{N}-\mathrm{C} 5-\mathrm{C} 6)$ and $92.16(12)^{\circ}(\mathrm{P} 2-\mathrm{N}-\mathrm{C} 5-\mathrm{C} 7)$, respectively. For both compounds, the molecules pack in sheets parallel to $\{1,0,0\}$ with the sheets assembled through C-H...O hydrogen bonding. In 6 this involves C6-H6...O4 (O4 at $\left.0.5-\mathrm{x}, 0.5+\mathrm{y}, 0.5-\mathrm{z} ; \mathrm{O} 4 \ldots \mathrm{H} 6=2.39 \AA ̊ ; \mathrm{C} 6-\mathrm{H} 6 \ldots \mathrm{O} 4=159^{\circ}\right)$ and $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~b} \ldots \mathrm{O} 2(\mathrm{O} 2$ at $0.5-\mathrm{x},-0.5+\mathrm{y}, 0.5-\mathrm{z} ; \mathrm{O} 2 \ldots \mathrm{H} 4 \mathrm{~b}=2.67 \AA$ © $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~b} \ldots \mathrm{O} 2=156^{\circ}$) while in 7 the interactions are C6-H6 ..O3 (O3 at $0.5-\mathrm{x},-0.5+\mathrm{y}, 0.5-\mathrm{z}$; O3 $\ldots \mathrm{H} 6=2.44 \AA$; C6-H6 $\ldots \mathrm{O} 3$ $\left.=160^{\circ}\right)$ and the weaker, bifurcated hydrogen bond $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~b} \ldots \mathrm{O} 1, \mathrm{O} 4(\mathrm{O} 1$ and O 4 at $0.5-\mathrm{x}$, $0.5+\mathrm{y}, 0.5-\mathrm{z}) ; \mathrm{O} 1 \ldots \mathrm{H} 3 \mathrm{~b}=2.66 \AA ; \mathrm{O} 4 \ldots \mathrm{H} 3 \mathrm{~b}=2.64 \AA ; \mathrm{C} 3-\mathrm{H} 3 \mathrm{~b} \ldots \mathrm{O} 1=145^{\circ} ; \mathrm{C} 3-$ $\mathrm{H} 3 \mathrm{~b} . . . \mathrm{O} 4=142^{\circ}$).

The asymmetric unit of $\mathbf{9}$ contains half a molecule of the metal complex and one molecule of chloroform. The platinum adopts an approximate square planar geometry, with the corners occupied by two chlorines and two phosphorus atoms of tetraphosphazane 3. In the molecular structure of 9 , the two independent $\mathrm{P}-\mathrm{N}[\mathrm{P} 1-\mathrm{N}=$ $1.684(2) \AA$ and $\mathrm{P} 2-\mathrm{N}=1.686(2) \AA]$ and $\mathrm{P}-\mathrm{Pt}[\mathrm{P} 1-\mathrm{Pt}=2.177(1) \AA$ and $\mathrm{P} 2-\mathrm{Pt}=2.179(1)$ \AA A] distances are virtually the same while the P-N-P angle shrinks from $115.25(9)$ to $97.46(9)^{\circ}$ due to the formation of a strained four-membered chelate ring. The P1-Pt-P2, $\mathrm{Cl} 1-\mathrm{Pt}-\mathrm{Cl} 2, \mathrm{Cl} 1-\mathrm{Pt}-\mathrm{P} 1$ and $\mathrm{Cl} 2-\mathrm{Pt}-\mathrm{P} 2$ bond angles are $71.12(2)^{\circ}, 90.92(2)^{\circ}, 97.75(2)^{\circ}$ and $100.22(2)^{\circ}$, respectively, which show the distortion in the square planar geometry. In contrast to the molecular structures of $\mathbf{1 - 3 , 6}$ and 7, the bridging phenylene ring is almost parallel to the plane produced by P1-N-P2 skeleton with the dihedral angle of $0.7(3)^{\circ}$ (P2-N-C30-C21). Molecules of 9 appear to be associated via C-H...O hydrogen
bonding involving one phenoxy group on each side of the ligand viz. $\mathrm{C} 24-\mathrm{H} 24 \ldots \mathrm{O} 1$ and $\mathrm{C} 25-\mathrm{H} 25 \ldots \mathrm{O} 2$ (O 1 and O 2 at $1+\mathrm{x}, \mathrm{y}, \mathrm{z} ; \mathrm{H} 24 \ldots \mathrm{O} 1=2.70 \AA$; C24-H24 $\ldots \mathrm{O} 1=176^{\circ}$; $\left.\mathrm{H} 25 \ldots \mathrm{O} 2=2.71 \AA \AA^{\circ} \mathrm{C} 25-\mathrm{H} 25 \ldots \mathrm{O} 2=130^{\circ}\right)$.

The molecular structures of compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ consist of discrete $\mathrm{Cu}_{2} \mathrm{X}_{2}$ core (10, $X=\operatorname{Br}$ and 11, $X=I)$ having crystallographically-imposed centrosymmetry. In 11, there are two independent half molecules in the asymmetric unit which differ only slightly in geometry and conformation with both the molecules has been held together by weak C-H...I and C-H...C interactions. All the copper(I) centers are tetrahedrally coordinated to a phosphorus atom, two bridging halides and a solvent molecule. As observed in complexes $\mathrm{Cu}_{2}\left(\mu_{2}-\mathrm{I}\right)_{2}\left(\mathrm{NCCH}_{3}\right)_{2}\left\{\mu-\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}\right\}$ and $\mathrm{Cu}_{2}\left(\mu_{2}-\right.$ I) $)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left\{\mu-\mathrm{PhN}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right)_{2}\right\},{ }^{28}$ the $\mathrm{Cu}_{2} \mathrm{X}_{2}$ core adopts a butterfly shape with the halide atoms at the wingtips. The four $\mathrm{Cu}-\mathrm{X}$ bond lengths differ significantly from one another but can be seen (Table 5) to fall roughly into a "longer" pair and a "shorter" pair with each copper atom forming a "long" and a "short" $\mathrm{Cu}-\mathrm{X}$ bond. The distance between the two copper centers in $\mathbf{1 0}$ and $\mathbf{1 1}$ are $2.742 \AA$ and $2.700 \AA(2.730 \AA$ for another half of molecule in the asymmetric unit of 11), respectively, which indicate the presence of ligand supported $\mathrm{Cu} . . \mathrm{Cu}$ interactions. ${ }^{28}$ In the molecular structures of $\mathbf{1 0}$ and 11, the two independent $\mathrm{Cu}-\mathrm{P}$ distances differ only slightly $(\mathrm{Cu} 1-\mathrm{P} 1=2.191(4) \AA$ and $\mathrm{Cu} 2-\mathrm{P} 2=2.179(4) \AA$ for 10 and $\mathrm{Cu} 1-\mathrm{P} 1=2.194(3) \AA$ and $\mathrm{Cu} 2-\mathrm{P} 2=2.215(3) \AA$ for 11) while the $\mathrm{X}-\mathrm{Cu}-\mathrm{X}$ angles $\left(\mathrm{Br} 1-\mathrm{Cu} 1-\mathrm{Br} 2=100.08(9)^{\circ}\right.$ and $\mathrm{Br} 1-\mathrm{Cu} 2-\mathrm{Br} 2=101.74(9)^{\circ}$ for 10; $\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{I} 2=106.08(5)^{\circ}$ and $\mathrm{I} 1-\mathrm{Cu} 2-\mathrm{I} 2=107.59(5)^{\circ}$ for 11$)$ show the distortion in the tetrahedral environment around copper atoms. The angles about the halide atoms $\left(\mathrm{Cu} 1-\mathrm{Br} 1-\mathrm{Cu} 2=64.93(7)^{\circ}\right.$ and $\mathrm{Cu} 1-\mathrm{Br} 2-\mathrm{Cu} 2=66.63(8)^{\circ}$ for $10 ; \mathrm{Cu} 1-\mathrm{I} 1-\mathrm{Cu} 2=59.07(4)^{\circ}$
and $\mathrm{Cu} 1-\mathrm{I} 2-\mathrm{Cu} 2=61.17(4)^{\circ}$ for 11$)$ are considerably smaller. The torsion angles observed between bridging phenylene ring with P-N-P plane are $80.0(17)^{\circ}(\mathrm{P} 1-\mathrm{N}-\mathrm{P} 2$ vs $\mathrm{C} 34-\mathrm{C} 35)$ for $\mathbf{1 0}$ and 77.4(10) ${ }^{\circ}$ (P1-N-P2 vs C15-C16) for $\mathbf{1 1 .}$

DFT Calculations on P...P Interactions in 1 and 2

DFT calculations were first performed for dimers of $\mathbf{1}$ and $\mathbf{2}$ at the PBE1PBE/TZVP level of theory. The geometries were fully optimized within $C_{2 \mathrm{~h}}$ symmetry and the resulting metrical parameters are in excellent agreement with their experimental counterparts. Selected average bond lengths and bond angles are 1: $r(\mathrm{P}-\mathrm{Cl})$ $=2.081 \AA, r(\mathrm{P}-\mathrm{N})=1.726 \AA, r(\mathrm{~N}-\mathrm{C})=1.429 \AA, \angle \mathrm{PNP}=109.6^{\circ}, \mathbf{2}: r(\mathrm{P}-\mathrm{F})=1.612 \AA$, $r(\mathrm{P}-\mathrm{N})=1.714 \AA, r(\mathrm{~N}-\mathrm{C})=1.436 \AA, \angle \mathrm{PNP}=115.0^{\circ}$. The calculated intermolecular P $\ldots . \mathrm{P}$ contact is $3.591 \AA$ and $3.774 \AA$ in $\mathbf{1}$ and $\mathbf{2}$, respectively. The calculated interaction energy (including counterpoise correction) is only $-2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathbf{1}$ and virtually non-existent for 2.

Taking into account the known difficulties of the standard density functionals in modeling weak interactions and van der Waals forces in particular, ${ }^{29}$ the geometries and energies obtained for $\mathbf{1}$ and $\mathbf{2}$ should be compared with data from calculations employing correlated wave function methods such as Möller-Plesset perturbation theory (MP) or coupled cluster (CC). Unfortunately the systems under study are somewhat large to be treated at either above levels of theory which makes accurate calculations time consuming. Hence, we carried out MP2 calculations only for model systems for which we used the weakly bonded PX_{3} dimers $(\mathrm{X}=\mathrm{F}, \mathrm{Cl})$ in $C_{2 \mathrm{~h}}$ symmetry. The smaller size of the molecules facilitates the usage of considerably larger basis sets, which in turn helps to remove computational errors arising from basis set incompleteness (basis set
superposition error, BSSE). Since MP2 is more prone to BSSE than DFT, counterpoise correction was applied throughout the MP2 geometry optimizations. For comparison purposes, the model systems were also calculated with DFT using the PBE1PBE functional in combination with the aug-cc-pVTZ basis sets.

At the MP2/aug-cc-pVTZ level of theory, the predicted P...P distance for $\mathrm{Cl}_{3} \mathrm{P} \ldots \mathrm{PCl}_{3}$ is $3.266 \AA$ i.e. $0.334 \AA$ shorter than the sum of van der Waals radii. In contrast, the $C_{2 \mathrm{~h}}$ symmetric structure for the fluoro derivative has a considerably longer P...P separation of $3.887 \AA$ which indicates the absence of any bonding interaction. Concurringly, the calculated MP2 interaction energies (with counterpoise correction) are $-15 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-1 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ for $\mathrm{Cl}_{3} \mathrm{P} \ldots \mathrm{PCl}_{3}$ and $\mathrm{F}_{3} \mathrm{P} \ldots \mathrm{PF}_{3}$, respectively. DFT calculations for the model systems yielded intermolecular P...P contacts of $3.580 \AA$ and $3.736 \AA$ and interaction energies of $-2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the chloro and fluoro derivatives, respectively. This data is in excellent agreement with the values obtained for systems 1 and 2 (see above). Interestingly, the $C_{2 h}$ symmetric structure of $\mathrm{F}_{3} \mathrm{P} \ldots \mathrm{PF}_{3}$ is not a minimum on the potential energy hypersurface but a first order transition state. Subsequent optimization following the transition state vector gives a true minimum (all frequencies real) which is C_{2} symmetric and has an even longer P...P separation of 3.801 \AA. An analogous C_{2} symmetric structure with a P...P distance of $3.888 \AA$ could also be located using the MP2/aug-cc-pVTZ Hamiltonian. However, the energy of the C_{2} conformer is on par with the $C_{2 \mathrm{~h}}$ structure at both DFT and MP2 levels of theory. Hence, we conclude that the two monomers in the van der Waals dimer $\mathrm{F}_{3} \mathrm{P} \ldots \mathrm{PF}_{3}$ are practically non-interacting.

Taken as a whole, the computational results not only confirm the presence of weak van der Waals interactions between two $\mathrm{N}-\mathrm{PX}_{2}$ moieties but also demonstrate that the interaction strength is dependent on the identity of the atoms attached to the nuclei. The interactions are practically absent in the fluoro compound $\mathbf{2}$, whereas their presence in the analogous chloro derivative $\mathbf{1}$ suffices to create an ordered supramolecular assembly of molecules in the crystal lattice. The calculated DFT and MP2 results represent upper and lower limits for the interaction energy, respectively. Thus, the binding energy in $\mathrm{Cl}_{3} \mathrm{P} \ldots \mathrm{PCl}_{3}$ is approximated to be around $5-10 \mathrm{~kJ} \mathrm{~mol}^{-1}$. We note that analogous short (less than sum of van der Waals radii) contacts between tricoordinate group 15 atoms have been observed previously e.g. in $\mathrm{Cp}^{*} \mathrm{AsI}_{2}{ }^{30}$ and in the 2:1 complex between SbCl_{3} and 1,3,5-triacetylbenzene. ${ }^{31}$ In addition, spectroscopic studies of liquid and solid PBr_{3} have indicated the formation of ethane-like dimers " $\mathrm{Br}_{3} \mathrm{P}=\mathrm{PBr}_{3}$ " on transition to crystalline state. ${ }^{32}$ Hence, a more exhaustive study of the nature of bonding interactions in $\mathrm{X}_{3} \mathrm{E} . . . \mathrm{EX}_{3}$ systems $(\mathrm{E}=$ pnictogen, $\mathrm{X}=$ halogen $)$ using highly accurate wave functions seems warranted. ${ }^{33}$ A full report on the conducted computational investigations will be given in due course. ${ }^{34}$

Suzuki-Miyaura cross-coupling reactions

The palladium catalyzed Suzuki-Miyaura cross-coupling reaction is one of the efficient methods for forming symmetric and nonsymmetric biaryl compounds in organic synthesis. ${ }^{35}$ The $\mathrm{Pd}^{\text {II }}$ complex $\mathbf{8}$ effectively catalyzes the Suzuki-Miyaura cross-coupling reactions of a variety of aryl halides with phenylboronic acid to afford the desired biaryls in remarkably high yields (Table 6). These reactions were studied systematically to find the optimal conditions to afford biaryls in good yield. It is important to achieve good
yields using minimum amounts of catalyst, therefore we examined the effect of catalyst loading on the coupling between 4-bromobenzonitrile and phenylboronic acid. Complete conversion of the starting materials into biphenyl-4-carbonitrile was achieved with 0.5 $\mathrm{mol} \%$ of catalyst in 1 h or $0.2 \mathrm{~mol} \%$ in 4 h , therefore a concentration of $0.2 \mathrm{~mol} \%$ was selected as the optimal concentration for catalytic loading. The Suzuki-Miyaura crosscoupling reaction is strongly influenced by the solvent and base. While the reactions proceed with various bases $\left(\mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{KF}, \mathrm{Et}_{3} \mathrm{~N}\right.$, etc.) or solvents (THF, DCM, toluene), the best results were obtained with either potassium carbonate or cesium carbonate as the base and methanol as the solvent. Therefore, the catalytic reactions have been carried out in methanol (5 mL) with potassium carbonate as a base. For example, bromo- or iodobenzene and phenylboronic acid in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ shows 97% conversion in methanol at room temperature with $0.2 \mathrm{~mol} \%$ of catalyst within 1-2 h (Table 6 , entries 1 and 2). Complex $\mathbf{8}$ proved to be an active catalyst for both the 'easy to couple' substrate 4-bromoacetophenone and the more challenging, electronically deactivated substrate 4 bromoanisole. Higher conversion rates were realized when activated aryl bromides were used as substrates (Table 6, entries 3 and 4). Even though good conversions were observed with deactivated and sterically bulky aryl bromides (Table 6, entries 7 and 8) low catalytic conversions were observed with heterocyclic bromides (Table 6, entries 911). In addition, the cross-coupling reactions of a number of di- and tri-bromobenzenes with phenylboronic acid were examined. As shown in Table 6, the dibromobenzenes including those with sterically bulky aryl bromides gave high di-/monsubstituted product ratios (entries 12-16). Coupling reactions performed with 1,3- and 1,4-dibromobenzene yielded 98% of disubstituted terphenyls and 2% of monosubstituted bromobiphenyls after

2-4 h with the complete consumption of the dibromobenzenes. A gradual increase in the yield of terphenyl was observed with time and a maximum of 99.6% conversion into $1,1^{\prime}: 3^{\prime}, 1^{\prime \prime}$-terphenyl was achieved after 12 h (Table 6 , entry 13). In the case of coupling reactions with 4,4'-dibromobiphenyl and 9,10-dibromoanthracene, 60/17 and 95/0.2 ratios of di-/monosubstituted derivatives were obtained with in a period of 24 h with a small amount of unreacted starting materials. The rate of conversion of 9,10dibromoanthracene is faster than 4,4'-dibromobiphenyl and no improvement in the conversions have been observed in both the cases after attaining a particular period of time. Also due to solubility problem the reactions were carried out in toluene (Table 6, entries 15 and 16).

The catalytic activity of $\mathbf{8}$ towards aryl chlorides was also examined and found to be relatively unreactive toward the less expensive aryl chlorides at room temperature with low catalyst loading. For example, the coupling reaction of chlorobenzene with phenylboronic acid afforded only 5% of the conversion product with $0.2 \mathrm{~mol} \%$ of catalyst at room temperature. However, complete conversion of chlorobenzene into biphenyl was observed at reflux temperature with $1 \mathrm{~mol} \%$ catalyst loading (Table 6, entry 17). In the case of activated and deactivated aryl chlorides, the catalytic system becomes inactive over time (30-35\% conversion) and the deposition of palladium particles is seen.

Poisoning experiments were carried out with metallic mercury to test for the presence of a palladium colloid. ${ }^{36}$ When a drop of Hg^{0} was added to the coupling reaction of 4-bromoacetophenone with phenylboronic acid at the start, the catalytic activity was not suppressed. This shows the homogeneous nature of the catalyst, since heterogeneous catalysts would form an amalgam, there by poisoning it.

Conclusion

The aminotetra(phosphines) $\mathbf{1 - 4}$ have been prepared in moderate to good yield from p-phenylenediamine. The compound 1 can serve as a molecular synthon for producing large number of tetra- and multidentate phosphines with different steric and electronic properties based on the choice of nucleophiles. The chloro derivative $\mathbf{1}$ shows intermolecular P...P interactions whose strength is estimated to be around -5 to -10 kJ mol^{-1} using computational methods. In agreement with the calculated data, similar interactions are virtually absent in the fluoro derivative 2. Hence, the results of this study indicate that when using appropriate substituents, P...P interactions -in spite of their weakness- can be utilized e.g. in building supramolecular assemblies or in crystal engineering. The oxidation behavior of $\mathbf{3}$ and $\mathbf{4}$ towards chalcogens differ due to the difference in steric and Lewis basic nature of the phosphorus centers. The Group 10 and $\mathbf{1 1}$ metal complexes are moderately stable towards air and moisture. The $\mathrm{Pd}^{\mathrm{II}}$ complex $\mathbf{8}$ is an efficient catalyst for the coupling of several activated and deactivated aryl bromides and chlorides with phenylboronic acid and also for the one-pot multiple carbon-carbon couplings at room temperature. The tetraphosphanes can show up to 18 conformational isomers. It would be interesting to analyze the relative stabilities of these conformers and to explore their potential ability to form complexes with various transition metal derivatives. Further organometallic chemistry and catalytic reactions with this system is under active investigation in our laboratory.

Acknowledgements

We are grateful to the Department of Science and Technology (DST), New Delhi, for financial support of this work through grant SR/S1/IC-02/007. C. G thanks CSIR,

New Delhi for Senior Research Fellowship (SRF). We also thank SAIF, Mumbai, Department of Chemistry Instrumentation Facilities, Bombay, for spectral and analytical data and J. T. M thanks the Louisiana Board of Regents through grant LEQSF(2002-03)-ENH-TR-67 for purchase of the CCD diffractometer and the Chemistry Department of Tulane University for support of the X-ray laboratory. H. M. T. thanks the Academy of Finland and the University of Jyväskylä for their generous financial support.

Supporting Information Available: X-ray crystallographic files in CIF format for the structure determinations of $\mathbf{1}-\mathbf{3}, \mathbf{6}, \mathbf{7}$, and $\mathbf{9 - 1 1}$. This material is available free of charge via the internet at http://pubs.acs.org.

Experimental Section

General Procedures. All manipulations were performed under rigorously anaerobic conditions using Schlenk techniques. All the solvents were purified by conventional procedures and distilled prior to use. ${ }^{37}$ The compounds $\left[\mathrm{M}(\mathrm{COD}) \mathrm{Cl}_{2}\right](\mathrm{M}=$ Pd and Pt$)^{38 \mathrm{a}}$ and $\mathrm{CuBr}^{38 \mathrm{~b}}$ were prepared according to the published procedures. Pyrazine, phenylboronic acid, 2-bromo-6-methoxynaphthalene, 9,10-dibromoanthracene, 1,3-dibromobenzene, 1,4-dibromobenzene, 4,4'-dibromobiphenyl, 1,3,5-tribromobenzene and 2,5-dibromothiophene were purchased from Aldrich chemicals and used as such. Other chemicals were obtained from commercial sources and purified prior to use.

Instrumentation. The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ in ppm) spectra were recorded using Varian VXR 300 or VXR 400 spectrometer operating at the appropriate frequencies using TMS and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as internal and external references, respectively. The microanalyses were performed using Carlo Erba Model 1112 elemental analyzer. Electro-spray ionization (EI) mass spectrometry experiments were carried out using

Waters Q-Tof micro-YA-105. GC analyses were performed on a Perkin Elmer Clarus 500 GC fitted with packed column. The melting points were observed in capillary tubes and are uncorrected.

Synthesis of $\boldsymbol{p}-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathbf{N}\left(\mathrm{PCl}_{2}\right)_{2}\right]_{2}(\mathbf{1})$

Pyridine ($5.85 \mathrm{~g}, 0.074 \mathrm{~mol}$) was added dropwise to a mixture of p phenylenediamine $(4.0 \mathrm{~g}, 0.037 \mathrm{~mol})$ and $\mathrm{PCl}_{3}(75 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ with constant stirring. The resultant suspension was slowly warmed to room temperature, refluxed for 2 days and filtered through a frit. The insoluble residue was extracted with hot $\mathrm{PCl}_{3}(2 \times 15$ $\mathrm{mL})$. The combined extracts were concentrated to half and kept at $-30^{\circ} \mathrm{C}$ for 1 day to give analytically pure product of $\mathbf{1}$ as white crystals. Yield: $75 \%(14.2 \mathrm{~g}) . \mathrm{Mp}: 118-120$ ${ }^{\circ} \mathrm{C}$ (dec). Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{8} \mathrm{~N}_{2} \mathrm{P}_{4}$: C, $14.08 ; \mathrm{H}, 0.79 ; \mathrm{N}, 5.48$. Found: C, 14.14; H, 0.77 ; N, 5.44\%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38$ (s, Ph, 4H). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.6$ (s).

Synthesis of $\boldsymbol{p}-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathbf{N}\left(\mathrm{PF}_{2}\right)_{2}\right]_{2}(2)$

A mixture of $\mathbf{1}(1.288 \mathrm{~g}, 2.517 \mathrm{mmol})$ and $\mathrm{SbF}_{3}(1.350 \mathrm{~g}, 7.551 \mathrm{mmol})$ was heated to reflux in toluene $(30 \mathrm{~mL})$ for 24 h . It was then cooled to room temperature, filtered, and the solvent was removed under reduced pressure to give a sticky residue. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 7 \mathrm{~mL})$ and the combined extracts were concentrated to 5 mL . The solution was layered with 1 ml of n -hexane and stored at $-30^{\circ} \mathrm{C}$ for 2 days to afford 2 as a white crystalline material. The crystals suitable for X-ray diffraction analysis were grown by subliming a small quantity of $\mathbf{2}$ in a thin capillary tube at $50-52$ ${ }^{\circ} \mathrm{C}$ under reduced pressure $(0.05 \mathrm{~mm} \mathrm{Hg})$. Yield: $69 \%(0.660 \mathrm{~g})$. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{8} \mathrm{~N}_{2} \mathrm{P}_{4}: \mathrm{C}, 18.96 ; \mathrm{H}, 1.06 ; \mathrm{N}, 7.37$. Found: C, $19.01 ; \mathrm{H}, 1.14 ; \mathrm{N}, 7.42 \%$. ${ }^{1} \mathrm{H}$ NMR
(400 MHz, CDCl_{3}): $\delta 7.38(\mathrm{~s}, \mathrm{Ph}, 4 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 129.7(\mathrm{~m}$, ${ }^{1} J_{\mathrm{PF}}=1248 \mathrm{~Hz},{ }^{3} J_{\mathrm{PF}}=123 \mathrm{~Hz}$ and $\left.{ }^{2} J_{\mathrm{PP}}=392 \mathrm{~Hz}\right)$.

Synthesis of $\boldsymbol{p}-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathbf{N}\left\{\mathbf{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-\boldsymbol{o}\right)_{2}\right\}_{2}\right]_{2}(3)$

Method 1: A mixture of o-methoxyphenol ($6.92 \mathrm{~g}, 6.2 \mathrm{~mL}, 0.056 \mathrm{~mol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ $(5.64 \mathrm{~g}, 7.8 \mathrm{~mL}, 0.056 \mathrm{~mol})$ in 20 mL of toluene was added dropwise over 15 min to a well-stirred toluene solution (100 mL) of $\mathbf{1}(3.58 \mathrm{~g}, 0.007 \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 12 h at room temperature and refluxed for 4 h . The hot solution was filtered through a heated frit and then stored at room temperature for a day to afford 3 as white crystals. Additional product could be separated from the amine hydrochloride by washing the filter cake successively with water, methanol and diethylether (10 mL each). Yield: $84 \%(7.13 \mathrm{~g})$.

Method 2: Freshly distilled o-methoxyphenol ($7.06 \mathrm{~g}, 6.3 \mathrm{~mL}, 0.057 \mathrm{~mol}$) and sodium ($1.31 \mathrm{~g}, 0.057 \mathrm{~mol}$) were taken in 50 mL of THF in a two-necked flask topped with a reflux condenser and a dropping funnel. The reaction mixture was refluxed for 6 h and then allowed to cool to room temperature. A solution of $1(3.64 \mathrm{~g}, 0.007 \mathrm{~mol})$ in THF (60 mL) was transferred to the dropping funnel through a cannula and was added dropwise to the reaction mixture at $0^{\circ} \mathrm{C}$. The reaction mixture was further stirred for 12 h at room temperature and then filtered through a frit. The filtrate was concentrated to 30 mL under reduced pressure and stored at $-30^{\circ} \mathrm{C}$ to afford analytically pure product of $\mathbf{3}$ as a white crystalline material. Yield: $76 \%(6.55 \mathrm{~g}) . \mathrm{Mp}: 128-130^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{62} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{P}_{4}: \mathrm{C}, 61.39 ; \mathrm{H}, 4.98 ; \mathrm{N}, 2.31$. Found: C, 61.31; H, 4.99; N, 2.30\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.57-6.69(\mathrm{~m}, P h, 36 \mathrm{H}), 3.60\left(\mathrm{~s}, O C H_{3}, 24 \mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 132.1(\mathrm{~s}) . \mathrm{MS}(\mathrm{EI}): 1214.47(\mathrm{~m} / \mathrm{z}+1)$.

Synthesis of $\boldsymbol{p}-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left\{\mathrm{P}(\mathrm{OMe})_{2}\right\}_{2}\right]_{2}(4)$

A mixture of methanol $(1.01 \mathrm{~g}, 1.3 \mathrm{~mL}, 0.031 \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(3.17 \mathrm{~g}, 4.4 \mathrm{~mL}$, 0.031 mol) in 20 mL of toluene was added dropwise over 15 min to a well-stirred toluene solution (40 mL) of $\mathbf{1}(1.95 \mathrm{~g}, 3.82 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 24 h at room temperature. The amine hydrochloride was removed by filtration through a frit and the filtrate was concentrated to 10 mL under reduced pressure and stored at -30 ${ }^{\circ} \mathrm{C}$ to afford $\mathbf{4}$ as a white crystalline material. Yield: $52 \%(0.946 \mathrm{~g}) . \mathrm{Mp}: 96-98{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}_{4}$: C, 35.30; H, 5.92; N, 5.88. Found: C, 35.31; H, 5.99; N, $5.80 \% .^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.03(\mathrm{~s}, P h, 4 \mathrm{H}), 3.51\left(\mathrm{t}, O C H_{3},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=12.6 \mathrm{~Hz}\right.$, 24H). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 134.7$ (s). MS (EI): $477.98(\mathrm{~m} / \mathrm{z}+1)$.

Synthesis of $\boldsymbol{p}-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left\{\mathrm{P}(\mathrm{O})\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-\boldsymbol{o}\right)_{2}\right\}_{2}\right]_{2}(5)$

A 30% aqueous solution of $\mathrm{H}_{2} \mathrm{O}_{2}(0.022 \mathrm{~g}, 0.07 \mathrm{~mL}, 0.654 \mathrm{mmol})$ in THF $(7 \mathrm{~mL})$ was added dropwise to a well-stirred THF solution $(10 \mathrm{~mL})$ of $\mathbf{3}(0.189 \mathrm{~g}, 0.156 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed to room temperature and stirred for 5 h. The solvent was removed under reduced pressure to give a sticky residue. The residue was dissolved in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, layered with 1 ml of n -hexane and kept at $-30^{\circ} \mathrm{C}$ to afford 5 as an analytically pure brown crystalline product. Yield: 70% (0.139 g). Mp: 194-196 ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{62} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{20} \mathrm{P}_{4}$: C, 58.31 ; H, 4.74; N, 2.19. Found: C, $58.25 ; \mathrm{H}, 4.79 ; \mathrm{N}, 2.20 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79-6.70$ (m, $\mathrm{Ph}, 36 \mathrm{H}$), 3.57 $\left(\mathrm{s}, \mathrm{OCH}_{3}, 24 \mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-12.5(\mathrm{~s}) . \mathrm{MS}(\mathrm{EI}): 1278.87(\mathrm{~m} / \mathrm{z}$ $+1)$.

A mixture of $4(0.105 \mathrm{~g}, 0.222 \mathrm{mmol})$ and elemental sulfur $(0.030 \mathrm{~g}, 0.930 \mathrm{mmol})$ in 15 mL of toluene was refluxed for 30 h . The solution was cooled to room temperature and filtered to remove unreacted sulfur. The solvent was removed under reduced pressure to give a white residue. The residue was dissolved in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, layered with 1 ml of n-hexane and stored at $-30^{\circ} \mathrm{C}$ for 2 days to afford analytically pure white crystals of 6 . Yield: 77% (0.103 g). Mp: $164-166{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{~S}_{4}: \mathrm{C}, 27.81 ; \mathrm{H}$, 4.67; N, 4.63; S, 21.22. Found: C, 27.75; H, 4.63; N, 4.58; S, 21.20\%. ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.34(\mathrm{~s}, \mathrm{Ph}, 4 \mathrm{H}), 3.51\left(\mathrm{~d}, O C H_{3},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=14.4 \mathrm{~Hz}, 24 \mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (162 MHz, CDCl_{3}): $\delta 68.8(\mathrm{~s}) . \mathrm{MS}(\mathrm{EI}): 605.15(\mathrm{~m} / z+1)$.

Synthesis of $\boldsymbol{p}-\mathrm{C}_{6} \mathrm{H}_{4}\left[\mathrm{~N}\left\{\mathrm{P}(\mathrm{Se})(\mathrm{OMe})_{2}\right\}_{2}\right]_{2}$ (7)

This was synthesized by a procedure similar to that of 6 using $4(0.106 \mathrm{~g}, 0.224$ $\mathrm{mmol})$ and elemental selenium ($0.074 \mathrm{~g}, 0.941 \mathrm{mmol}$). Yield: $82 \%(0.146 \mathrm{~g}) . \mathrm{Mp}: 168-$ $170{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Se}_{4}: \mathrm{C}, 21.23 ; \mathrm{H}, 3.56$; N, 3.54. Found: C, 21.20; $\mathrm{H}, 3.47 ; \mathrm{N}, 3.60 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38(\mathrm{~s}, \mathrm{Ph}, 4 \mathrm{H}), 3.72\left(\mathrm{~d}, O C H_{3},{ }^{3} J_{\mathrm{PH}}\right.$ $=14.7 \mathrm{~Hz}, 24 \mathrm{H}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 73.4\left(\mathrm{~s},{ }^{1} \mathrm{~J}_{\mathrm{PSe}}=945 \mathrm{~Hz}\right) . \mathrm{MS}(\mathrm{EI}):$ $794.62(m / z+2)$.

Synthesis of $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}-p-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathbf{N}\left\{\mathbf{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-\sigma\right)_{2}\right\}_{2}\right\}_{2}\right]$ (8)

A solution of $\left[\mathrm{Pd}(\mathrm{COD}) \mathrm{Cl}_{2}\right](0.040 \mathrm{~g}, 0.139 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise to a solution of $3(0.084 \mathrm{~g}, 0.069 \mathrm{mmol})$ also in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$. The reaction mixture was allowed to stir at room temperature for 5 h to give clear yellow solution. The solution was concentrated to 5 mL , saturated with 3 mL of n -hexane and stored at $-30{ }^{\circ} \mathrm{C}$ for 1 day to give an analytically pure yellow crystalline product $\mathbf{8}$. Yield: 70% (0.076 g). Mp: $186-188{ }^{\circ} \mathrm{C}$ (dec). Anal. Calcd for $\mathrm{C}_{62} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{Cl}_{4}$: C,
47.50; H, 3.86; N, 1.79. Found: C, 47.56; H, 3.79; N, 1.72\%. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.02-6.78(\mathrm{~m}, \mathrm{Ph}, 36 \mathrm{H}), 3.62\left(\mathrm{~s}, O C H_{3}, 24 \mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 64.4(\mathrm{~s})$.

Synthesis of $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}-p-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathbf{N}\left\{\mathbf{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-o\right)_{2}\right\}_{2}\right\}_{2}\right](9)$

This was synthesized by a procedure similar to that of $\mathbf{8}$ using $\left[\mathrm{Pt}(\mathrm{COD}) \mathrm{Cl}_{2}\right]$ $(0.025 \mathrm{~g}, 0.067 \mathrm{mmol})$ and $\mathbf{3}(0.042 \mathrm{~g}, 0.033 \mathrm{mmol})$. Yield: $81 \%(0.047 \mathrm{~g}) . \mathrm{Mp:} \mathrm{240-244}$ ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{62} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{P}_{4} \mathrm{Pt}_{2} \mathrm{Cl}_{4}: \mathrm{C}, 42.67 ; \mathrm{H}, 3.47 ; \mathrm{N}, 1.60$. Found: C, 42.59; H, 3.44; N, 1.69\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03-6.83(\mathrm{~m}, P h, 36 \mathrm{H}), 3.60(\mathrm{~s}$, OCH $\left._{3}, 24 \mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 35.0\left(\mathrm{~s},{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=5072 \mathrm{~Hz}\right)$.

Synthesis of $\left[\mathrm{Cu}_{4}\left(\mu_{2}-\mathrm{Br}\right)_{4}\left(\mathrm{NCCH}_{3}\right) 4-p-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{~N}\left(\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-\boldsymbol{o}\right)_{2}\right)_{2}\right\}_{2}\right](10)$

A solution of cuprous bromide $(0.029 \mathrm{~g}, 0.205 \mathrm{mmol})$ in acetonitrile (5 mL) was added dropwise to a solution of $\mathbf{3}(0.062 \mathrm{~g}, 0.051 \mathrm{mmol})$ also in acetonitrile $(5 \mathrm{~mL})$. After stirring for 4 h , the solvent was concentrated under vacuum and kept at room temperature over night to give analytically pure white crystals of 10. Yield: 79\% (0.079 g). $\mathrm{Mp}:>240{ }^{\circ} \mathrm{C}(\mathrm{dec})$. Anal. Calcd for $\mathrm{C}_{70} \mathrm{H}_{72} \mathrm{~N}_{6} \mathrm{O}_{16} \mathrm{P}_{4} \mathrm{Cu}_{4} \mathrm{Br}_{4}: \mathrm{C}, 43.09 ; \mathrm{H}, 3.72$; N , 4.31. Found: C, $43.02 ; \mathrm{H}, 3.70 ; \mathrm{N}, 4.40 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66-6.75$ (m, $\mathrm{Ph}, 36 \mathrm{H}), 3.57\left(\mathrm{~s}, \mathrm{OCH}_{3}, 24 \mathrm{H}\right), 2.07\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{CN}, 12 \mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(121 \mathrm{MHz}$, CDCl_{3}): $\delta 103.8$ (br s).

Synthesis of $\left[\mathrm{Cu}_{4}\left(\mu_{2}-\mathrm{I}\right)_{4}\left(\mathrm{NCCH}_{3}\right)_{4}-p-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathbf{N}\left(\mathbf{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe} \boldsymbol{O}\right)_{2}\right)_{2}\right\}_{2}\right](11)$

This was synthesized by a procedure similar to that of $\mathbf{1 0}$ using $\mathbf{3}(0.030 \mathrm{~g}, 0.025$ $\mathrm{mmol})$ and cuprous iodide $(0.019 \mathrm{~g}, 0.099 \mathrm{mmol})$. Yield: $82 \%(0.044 \mathrm{~g}) . \mathrm{Mp}: 210-212$ ${ }^{\circ} \mathrm{C}$ (dec). Anal. Calcd for $\mathrm{C}_{70} \mathrm{H}_{72} \mathrm{~N}_{6} \mathrm{O}_{16} \mathrm{P}_{4} \mathrm{Cu}_{4} \mathrm{I}_{4}: \mathrm{C}, 39.30 ; \mathrm{H}, 3.39$; N, 3.93. Found: C, 39.19; H, 3.30; N, 3.96\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74-6.75$ (m, $\mathrm{Ph}, 36 \mathrm{H}$), 3.55
(s, $O C H_{3}, 24 \mathrm{H}$), $2.07\left(\mathrm{~s}, \mathrm{CH}_{3} C N, 12 \mathrm{H}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 102.6$ (br s).

General procedure for the Suzuki-Miyaura cross-coupling reactions of aryl halides with phenylboronic acid

In a two-necked round bottom flask under an atmosphere of nitrogen were placed the appropriate amounts of aryl halides (0.5 mmol), phenylboronic acid (0.75 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol})$ and 5 mL of methanol. After stirring for 2 minutes, $0.2 \mathrm{~mol} \%$ of the catalyst $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}-p-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{~N}\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{o}\right)_{2}\right\}_{2}\right\}_{2}\right]$ (8) was added. The mixture was stirred at room temperature or refluxed under an atmosphere of nitrogen and the course of the reaction was monitored by GC analysis. After completion of the reaction, the solvent was removed under reduced pressure. The residual mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ (10 $\mathrm{mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ or toluene $(2 \times 6 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, stripped of the solvent under vacuum and the residue was redissolved in 5 mL of dichloromethane. An aliquot was taken with a syringe and subjected to GC analysis. Conversions were calculated versus aryl halides as an internal standard.

X-ray crystallography

A crystal of each of the compounds $\mathbf{1}-\mathbf{3}, \mathbf{6}, \mathbf{7}$ and $\mathbf{9 - 1 1}$ suitable for X-ray crystal analysis was mounted in a Cryoloop ${ }^{\mathrm{TM}}$ with a drop of Paratone oil and placed in the cold nitrogen stream of the Kryoflex $^{\text {TM }}$ attachment of the Bruker APEX CCD diffractometer. Full spheres of data were collected using a combination of three sets of 400 scans in $\omega\left(0.5^{\circ}\right.$ per scan $)$ at $\varphi=0,90$ and 180° plus two sets of 800 scans in $\varphi\left(0.45^{\circ}\right.$ per scan) at $\omega=-30$ and 210° under the control of the SMART software package ${ }^{39 a}(\mathbf{1}, \mathbf{3}$,
$\mathbf{6}, \mathbf{7}, \mathbf{9}$) or the APEX2 program suite ${ }^{39 \mathrm{~b}}(\mathbf{2})$. The crystals of 2 and 7 used for the structure determinations proved to be twinned, the former by a 180° rotation about the a axis and the latter by a 180° rotation about the c axis (CELL_NOW ${ }^{40}$). The raw data were reduced to F^{2} values using the SAINT+ software ${ }^{41}$ and global refinements of unit cell parameters using 3036-9392 reflections chosen from the full data sets were performed. Multiple measurements of equivalent reflections provided the basis for empirical absorption corrections as well as corrections for any crystal deterioration during the data collection $\left(S_{A D A B S}{ }^{42 a}\right.$ for $\mathbf{1}, \mathbf{3}, \mathbf{6}, 9$ and TWINABS ${ }^{42 b}$ for 2, 7). The structures were solved by direct methods (for $\mathbf{1}-\mathbf{3}, \mathbf{6}, \mathbf{7}$ and $\mathbf{9}$) or the positions of the heavy atoms were obtained from a sharpened Patterson function (for 10 and 11). All structures were refined by fullmatrix least-squares procedures using the SHELXTL program package. ${ }^{43}$ Hydrogen atoms were placed in calculated positions and included as riding contributions with isotropic displacement parameters tied to those of the attached non-hydrogen atoms.

Computational Details

The molecular structures of dimers of $\mathbf{1}$ and $\mathbf{2}$ were fully optimized using DFT. The calculations were performed in $C_{2 \mathrm{~h}}$ symmetry employing the PBE1PBE functional ${ }^{44}$ in combination with the TZVP basis sets. ${ }^{45}$ Full geometry optimizations were also performed for the $C_{2 \mathrm{~h}}$ symmetric model dimers $\mathrm{Cl}_{3} \mathrm{P} . . . \mathrm{PCl}_{3}$ and $\mathrm{F}_{3} \mathrm{P} . . . \mathrm{PF}_{3}$ at PBE1PBE and MP2 ${ }^{46}$ levels of theory using Dunning's triple- ξ quality basis sets augmented with polarization and diffuse functions (aug-cc-pVTZ) for all atoms. ${ }^{47}$ Frequency calculations for the model systems were done only at the DFT level of theory. The correction of the basis set superposition error was done via the counterpoise procedure ${ }^{48}$ which was applied during geometry optimizations (MP2) and calculating binding energies (both

DFT and MP2). All calculations were performed with the Gaussian 03 program package. ${ }^{49}$

References

(1) a) Pei, Y.; Brule, E.; Moberg, C. Org. Biomol. Chem. 2006, 4, 544-550. b) Kongprakaiwoot, N.; Luck, R. L.; Urnezius, E. J. Organomet. Chem. 2004, 689, 3350-3356. c) Hierso, J.-C.; Fihri, A.; Ivanov, V. V.; Hanquet, B.; Pirio, N.; Donnadieu, B.; Rebiere, B.; Amardeil, R.; Meunier, P. J. Am. Chem. Soc. 2004, 126, 11077-11087. d) Hierso, J.-C.; Amardeil, R.; Bentabet, E.; Broussier, R.; Gautheron, B.; Meunier, P.; Kalck, P. Coord. Chem. Rev. 2003, 236, 143-206. e) Gaw, K. G.; Smith, M. B.; Steed, J. W. J. Organomet. Chem. 2002, 664, 294-297. f) Kuang, S.-M.; Zhang, Z.-Z.; Wang, Q.-G.; Mak, T. C. W. Inorg. Chem. 1998, 37, 6090-6092.
(2) a) Airey, A. L.; Swiegers, G. F.; Willis, A. C.; Wild, S. B. J. Chem. Soc. Chem. Commun. 1995, 695-696. b) Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Zanobini, F. Coord. Chem. Rev. 1992, 120, 193-208. c) Cotton, F. A.; Hong, B. Prog. Inorg. Chem. 1992, 40, 179-289. d) Caminade, A. M.; Majoral, J. P.; Mathieu, R. Chem. Rev. 1991, 91, 575-612. e) Barendt, J. M.; Haltiwanger, R. C.; Squier, C. A.; Norman, A. D. Inorg. Chem. 1991, 30, 2342-2349. f) Meek, D. W.; DuBois, D. L.; Tiethof, J. Adv. Chem. Ser. 1976, 150, 335-357.
(3) a) Morisaki, Y.; Ouchi, Y.; Naka, K.; Chujo, Y. Chem. Asian J. 2007, 2, 11661173. b) Menozzi, E.; Busi, M.; Massera, C.; Ugozzoli, F.; Zuccaccia, D.; Macchioni, A.; Dalcanale, E. J. Org. Chem. 2006, 71, 2617-2624. c) Kohl, S. W.; Heinemann, F. W.; Hummert, M.; Bauer, W.; Grohmann, A. Dalton Trans. 2006,

5583-5592. d) Kohl, S. W.; Heinemann, F. W.; Hummert, M.; Bauer, W.; Grohmann, A. Chem. Eur. J. 2006, 12, 4313-4320. e) Schrauzer, G. N. Transition Metals in Homogeneous Catalysis, Marcel Dekker, New York, 1971. f) Hierso, J.C.; Beauperin, M.; Meunier, P. Eur. J. Inorg. Chem. 2007, 3767-3780.
(4) a) Bianchini, C.; Jimenez, M. V.; Meli, A.; Moneti, S.; Vizza, F.; Herrera, V.; Sanchez-Delgado, R. A. Organometallics 1995, 14, 2342-2352. b) Bianchini, C.; Meli, A.; Peruzzini, M.; Vizza, F.; Moneti, S.; Herrera, V.; Sanchez-Delgado, R. A. J. Am. Chem. Soc. 1994, 116, 4370-4381.
(5) a) Bruce, D. W. Adv. Mater. 1994, 6, 699-701. b) Bruce, D. W.; Holbrey, J. D.; Tajbakhsh, A. R.; Tiddy, G. J. T. J. Mater. Chem. 1993, 905-906.
(6) a) Aubry, D. A.; Laneman, S. A.; Fronczek, F. R.; Stanley, G. G. Inorg. Chem. 2001, 40, 5036-5041. b) Oro, L. A.; Ciriano, M. A.; Perez-Torrente, J.; Villarroya, B. E. Coord. Chem. Rev. 1999, 193-195, 941-975. c) Jiang, H.; Xu, Y.; Liao, S.; Yu, D.; Chen, H.; Li, X. J. Mol. Catal. A: Chem. 1999, 142, 147-152. d) Peng, W.-J.; Train, S. G.; Howell, D. K.; Fronczek, F. R.; Stanley, G. G. Chem. Commun. 1996, 2607-2608. e) Suss-Fink, G. Angew. Chem. Int. Ed. Engl. 1994, 33, 67-69. f) Broussard, M. E.; Juma, B.; Train, S. G.; Peng, W.-J.; Laneman, S. A.; Stanley, G. G. Science 1993, 260, 1784-1788.
a) Stossel, P.; Heins, W.; Mayer, H. A.; Fawzi, R.; Steimann, M. Organometallics 1996, 15, 3393-3403. b) Uriarte, R.; Mazanec, T. J.; Tau, K. D.; Meek, D. W. Inorg. Chem. 1980, 19, 79-85.
(8) a) Zahavy, E.; Fox, M. A. Chem. Eur. J. 1998, 4, 1647-1652. b) Wang, P.-W.; Fox, M. A. Inorg. Chem. 1995, 34, 36-41. c) Wang, P.-W.; Fox, M. A. Inorg.

Chem. 1994, 33, 2938-2945. d) Wang, P.-W.; Fox, M. A. Inorg. Chim. Acta 1994, 225, 15-22.
(9) a) Boerrigter, H.; Tomasberger, T.; Verboom, W.; Reinhoudt, D. N. Eur. J. Org. Chem. 1999, 665-674. b) Boerrigter, H.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem. 1997, 62, 7148-7155. c) Lobana, T. S. The Chemistry of Organophosphorus Compounds, F.R. Hartley (Ed.), vol. 2, Wiley, New York, 1992, p. 1409.
a) Gagliardo, M.; Amijs, C. H. M.; Lutz, M.; Spek, A. L.; Havenith, R. W. A.; Hartl, F.; van Klink, G. P. M.; van Koten, G. Inorg. Chem. 2007, 46, 1113311144. b) Yan, Y.; Zhang, X.; Zhang, X. Adv. Synth. Catal. 2007, 349, 15821586. c) Kondolff, I.; Feuerstein, M.; Doucet, H.; Santelli, M. Tetrahedron 2007, 63, 9514-9521. d) Reiter, S. A.; Nogai, S. D.; Schmidbaur, H. Z. Anorg. Allg. Chem. 2005, 631, 2595-2600. e) Kim, S.; Kim, J. S.; Kim, S. K.; Suh, I.-H.; Kang, S. O.; Ko, J. Inorg. Chem. 2005, 44, 1846-1851. f) Butler, I. R.; Drew, M. G. B.; Caballero, A. G.; Gerner, P.; Greenwell, C. H. J. Organomet. Chem. 2003, 679, 59-64. g) Chatterjee, S.; Doyle, R.; Hockless, D. C. R.; Salem, G.; Willis, A. C. J. Chem. Soc. Dalton Trans. 2000, 1829-1830. h) Steenwinkel, P.; Kolmschot, S.; Gossage, R. A.; Dani, P.; Veldman, N.; Spek, A. L.; van Koten, G. Eur. J. Inorg. Chem. 1998, 477-483. i) Barney, A. A.; Fanwick, P. E.; Kubiak, C. P. Organometallics 1997, 16, 1793-1796. j) Fourmigue, M.; Uzelmeier, C. E.; Boubekeur, K.; Bartley, S. L.; Dunbar, K. R.; J. Organomet. Chem. 1997, 529, 343-350. k) Dieleman, C.; Loeber, C.; Matt, D.; De Cian, A.; Fischer, J. J. Chem.

Soc. Dalton Trans. 1995, 3097-3100. 1) Christina, H.; McFarlane, E.; McFarlane, W. Polyhedron 1988, 7, 1875-1879 and references therein.
(11) a) Field, L. D.; Messerle, B. A.; Smernik, R. J.; Hambley, T. W.; Turner, P. Inorg. Chem. 1997, 36, 2884-2892. b) Heinekey, D. M.; van Roon, M. J. Am. Chem. Soc. 1996, 118, 12134-12140. c) Mayer, H. A.; Kaska, W. C. Chem. Rev. 1994, 94, 1239-1272. d) Jia, G.; Drouin, S. D.; Jessop, P. G.; Lough, A. J.; Morris, R. H. Organometallics 1993, 12, 906-916. e) Bampos, N.; Field, L. D.; Messerle, B. A.; Smernik, R. J. Inorg. Chem. 1993, 32, 4084-4088. f) Bianchini, C. Pure Appl. Chem. 1991, 63, 829-834. g) Bampos, N.; Field, L. D. Inorg. Chem. 1990, 29, 587-588.
a) Mandal, S. K.; Venkatakrishnan, T. S.; Sarkar, A.; Krishnamurthy, S. S. J. Organomet. Chem. 2006, 691, 2969-2977. b) Veige, A. S.; Gray, T. G.; Nocera, D. G. Inorg. Chem. 2005, 44, 17-26. c) Venkatakrishnan, T. S.; Krishnamurthy, S. S.; Nethaji, M. J. Organomet. Chem. 2005, 690, 4001-4017. d) Ganesan, M.; Krishnamurthy, S. S.; Nethaji, M. J. Organomet. Chem. 2005, 690, 1080-1091. e) Heyduk, A. F.; Nocera, D. G. J. Am. Chem. Soc. 2000, 122, 9415-9426. f) Field, J. S.; Haines, R. J.; Stewart, M. W.; Woollam, S. F. J. Chem. Soc. Dalton Trans. 1996, 1031-1037. g) Edwards, K. J.; Field, J. S.; Haines, R. J.; Homann, B. D.; Stewart, M. W.; Sundermeyer, J.; Woollam, S. F. J. Chem. Soc. Dalton Trans. 1996, 4171-4181. h) Mague, J. T. Inorg. Chim. Acta 1995, 229, 17-25. i) Reddy, V. S.; Katti, K. V.; Barnes, C. L. Inorg. Chem. 1995, 34, 1273-1277 j) Balakrishna, M. S.; Reddy, S. V.; Krishnamurthy, S. S.; Nixon, J. F.; St. Laurent,
J. C. T. R. B. Coord. Chem. Rev. 1994, 129, 1-90. k) King, R. B. Acc. Chem. Res. 1980, 13, 243-248.
(13)

Davies, A. R.; Dronsfield, A. T.; Haszeldine, R. N.; Taylor, D. R. J. Chem. Soc. Perkin Trans. I 1973, 379-385.
14) a) Cross, R. J.; Green, T. H.; Keat, R. J. Chem. Soc. Dalton Trans. 1976, 14241428. b) Colquhoun, I. J.; McFarlane, W. J. Chem. Soc. Dalton Trans. 1977, 1674-1679. c) Keat, R.; Manojlovic-Muir, L.; Muir, K. W.; Rycroft, D. S. J. Chem. Soc. Dalton Trans. 1981, 2192-2198. d) Prout, T. R.; Imiolczyk, T. W. ; Barthelemy, F. ; Young, S. M.; Haltiwanger, R. C.; Norman, A. D. Inorg. Chem. 1994, 33, 1783-1790. e) Schmidbaur, H.; Milewski-Mahrla, B.; Muller, G.; Kruger, C. Organometallics 1984, 3, 38-43. f) Schmidbaur, H.; Schier, A.; Lauteschlager, S.; Riede, J.; Muller, G. Organometallics 1984, 3, 1906-1909.
a) Venkateswaran, R.; Balakrishna, M. S.; Mobin, S. M.; Tuononen, H. M. Inorg. Chem. 2007, 46, 6535-6541. b) Ganesamoorthy, C.; Balakrishna, M. S.; Mague, J. T.; Tuononen, H. M. Inorg. Chem. 2008, 47, 2764-2776. c) Ganesamoorthy, C.; Mague, J. T.; Balakrishna, M. S. J. Organomet. Chem. 2007, 692, 3400-3408. d) Suresh, D.; Balakrishna, M. S.; Mague, J. T. Tetrahedron Lett. 2007, 48, 22832285. e) Balakrishna, M. S.; Mague, J. T. Organometallics 2007, 26, 4677-4679. f) Chandrasekaran, P.; Mague, J. T.; Balakrishna, M. S. Inorg. Chem. 2006, 45, 5893-5897. g) Chandrasekaran, P.; Mague, J. T.; Balakrishna, M. S. Organometallics 2005, 24, 3780-3783.
(16)
a) Mohanty, S.; Suresh, D.; Balakrishna, M. S.; Mague, J. T. Tetrahedron 2008, 64, 240-247. b) Punji, B.; Mague, J. T.; Balakrishna, M. S. Inorg. Chem. 2007,

46, 11316-11327. c) Venkateswaran, R.; Mague, J. T.; Balakrishna, M. S. Inorg. Chem. 2007, 46, 809-817. d) Venkateswaran, R.; Balakrishna, M. S.; Mobin, S. M. Eur. J. Inorg. Chem. 2007, 1930-1938. e) Punji, B.; Ganesamoorthy, C.; Balakrishna, M. S. J. Mol. Catal. A: Chem. 2006, 259, 78-83. f) Punji, B.; Mague, J. T.; Balakrishna, M. S. Dalton Trans. 2006, 1322-1330.
a) King, R. B.; Gimeno, J. Inorg. Chem. 1978, 17, 2390-2395. b) Nixon, J. F. J. Chem. Soc. A 1969, 1087-1089.
(18) Balakrishna, M. S.; Santarsiero, B. D.; Cavell, R. G. Inorg. Chem. 1994, 33, 3079-3084.
(19) Tarassoli, A.; Haltiwanger, R. C.; Norman, A. D. Inorg. Chem. 1982, 21, 26842690.
(20) Gimbert, Y.; Robert, F.; Durif, A.; Averbuch, M.-T.; Kann, N.; Greene, A. E. J. Org. Chem. 1999, 64, 3492-3497.
(21) Prabusankar, G.; Palanisami, N.; Murugavel, R.; Butcher, R. J. Dalton Trans. 2006, 2140-2146.
(22) Venkatakrishnan, T. S.; Mandal, S. K.; Kannan, R.; Krishnamurthy, S. S.; Nethaji, M. J. Organomet. Chem. 2007, 692, 1875-1891.
(23) Fei, Z.; Scopelliti, R.; Dyson, P. J. Dalton Trans. 2003, 2772-2779.
(24) Chen, H. J.; Barendt, J. M.; Haltiwanger, R. C.; Hill, T. G.; Norman, A. D. Phosphorus Sulfur 1986, 26, 155-162.
(25) a) Kuhn, N.; Fawzi, R.; Steimann, M.; Wiethoff, J. Chem. Ber. 1996, 129, 479. b) Holmes, R. R.; Bertaut, E. F. J. Am. Chem. Soc. 1958, 80, 2980-2983. c) Müller, G.; Matheus, H.-J.; Winkler, M. Z. Naturforsch. 2001, 56b, 1155-1162. d) Marr,
A. C.; Nieuwenhuyzen, M.; Pollock, C. L.; Saunders, G. C. Organometallics 2007, 26, 2659-2671.
(26) Hitchcock, P. B.; Nixon, J. F.; Silaghi-Dumitrescu, I.; Haiduc, I. Inorg. Chim. Acta 1985, 96, 77-80.
(27) Balakrishna, M. S.; George, P. P.; Mague, J. T. J. Organomet. Chem. 2004, 689, 3388-3394.
(28) Ganesamoorthy, C.; Balakrishna, M. S.; George, P. P.; Mague, J. T. Inorg. Chem. 2007, 46, 848-858.
(29) See, for example: Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory, VCH: Weinheim 2001.
(30) Avtomonov, E. V.; Megges, K.; Wocadlo, S.; Lorberth, J. J. Organomet. Chem.1996, 524, 253-261.
(31) Baker, W. A.; Williams, D. E. Acta Cryst. Sect. B. 1978, 34, 3739-3741.
(32) Kozulin, A. T.; Gogolev, A. V.; Karmanov, V. I.; Murtsovkin, V. A. USSR. Opt. Spektrosk. 1973, 34, 1218.
(33) We are aware of only three theoretical publications discussing weak P...P interactions in phosphine dimers: a) Del Bene, J. E.; Frisch, M. J.; Pople, J. A. J. Phys. Chem. 1985, 89, 3669-3674. b) Altmann, J. A.; Govender, M. G.; Ford, T. A. Mol. Phys. 2005, 103, 949-961. c) Wang, W.; Zheng, W.; Pu, X.; Wong, N.B.; Tian, A. J. Mol. Struct. (THEOCHEM) 2003, 625, 25-30.
(34) Tuononen, H. M.; Balakrishna, M. S. Manuscript in preparation.
a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483. b) Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew. Chem. Int. Ed. 2001, 40, 4544-4568. c)

Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359-1469. d) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633-9695. e) Littke, A. F.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 41764211. f) Zapf, A.; Beller, M. Chem. Commun. 2005, 431-440. g) Phan, N. T. S.; Sluys, M. V. D.; Jones, C. W. Adv. Synth. Catal. 2006, 348, 609-679. h) Weng, Z.; Teo, S.; Hor, T. S. A. Acc. Chem. Res. 2007, 40, 676-684.
a) Widegren, J. A.; Bennett, M. A.; Finke, R. G. J. Am. Chem. Soc. 2003, 125, 10301-10310. b) Widegren, J. A.; Finke, R. G. J. Mol. Catal. A: Chem. 2003, 198, 317-341.
(37) Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, 4th ed.; Butterworth-Heinemann: Linacre House, Jordan Hill, Oxford, U.K., 1996.
(38) a) Drew, D.; Doyle, J. R. Inorg. Synth. 1990, 28, 346. b) Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. Vogel's Textbook of Practical Organic Chemistry, 5th ed.; ELBS: England 1989; pp 428-429.
a) SMART, version 5.625; Bruker-AXS: Madison, WI, 2000. b) APEX2, Version 2.1-4; Bruker-AXS: Madison, WI, 2007.
(40) Sheldrick, G. M. CELL_NOW, University of Göttingen: Göttingen, Germany, 2005.
(41) SAINT+, versions 6.35A and 7.34A; Bruker-AXS: Madison, WI, 2002, 2006.
(42) a) Sheldrick, G. M. SADABS, version 2.05 and version 2007/2; University of Göttingen: Göttingen, Germany, 2002, 2007.
b) Sheldrick, G. M. TWINABS, version 2007/5; University of Göttingen: Göttingen, Germany, 2007.
(43) a) SHELXTL, version 6.10; Bruker-AXS: Madison, WI, 2000. b) Sheldrick, G. M. SHELXS97 and SHELXL97; University of Göttingen: Göttingen, Germany, 1997.
(44) a) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868. b) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396. c) Perdew, J. P.; Ernzerhof, M.; Burke, K. J. Chem. Phys. 1996, 105, 9982-9985. d) Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 5029-5036.
a) Schaefer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571-2577. b) Schaefer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829-5835.
(46) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618-622.
(47) Kendall, R. A.; Dunning Jr., T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 67966806.
(48) Boys, S. F.; Bernardi, F., Mol. Phys. 1970, 19, 553-566.
(49) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A.
D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision D.02; Gaussian, Inc.: Pittsburgh, PA, 2003.

Table 1. NMR data for compounds $\mathbf{1}$ - 11

Compounds	$\begin{gathered} { }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \text { NMR } \\ \text { (in ppm) } \end{gathered}$	${ }^{1} \mathrm{H}$ NMR (in ppm)		
		$\mathrm{CH}_{3} \mathrm{CN}$	OCH_{3}	Aryl protons
1	153.6 (s)			7.38 (s)
	129.7 (m)			
2	$\begin{aligned} & { }^{1} J_{\mathrm{PF}}=1248 \mathrm{~Hz} \\ & { }^{3} J_{\mathrm{PF}}=123 \mathrm{~Hz} \end{aligned}$			7.38 (s)
	${ }^{2} J_{\mathrm{PP}}=392 \mathrm{~Hz}$			
3	132.1 (s)		3.60 (s)	6.69-7.57 (m)
4	134.7 (s)		$\begin{gathered} 3.51(\mathrm{t}) \\ { }^{3} \mathrm{~J}_{\mathrm{PH}}=12.6 \mathrm{~Hz} \end{gathered}$	7.03 (s)
5	-12.5 (s)		3.57 (s)	6.70-7.79 (m)
6	68.8 (s)		$\begin{gathered} 3.51(\mathrm{~d}) \\ { }^{3} J_{\mathrm{PH}}=14.4 \mathrm{~Hz} \end{gathered}$	7.34 (s)
7	$\begin{gathered} 73.4(\mathrm{~s}) \\ { }^{1} \mathrm{~J}_{\mathrm{PSe}}=945 \mathrm{~Hz} \end{gathered}$		$\begin{gathered} 3.72(\mathrm{~d}) \\ { }^{3} J_{\mathrm{PH}}=14.7 \mathrm{~Hz} \end{gathered}$	7.38 (s)
8	64.4 (s)		3.62 (s)	6.78-8.02 (m)
9	$\begin{gathered} 35.0(\mathrm{~s}) \\ { }^{1} J_{\mathrm{PtP}}=5072 \mathrm{~Hz} \end{gathered}$		3.60 (s)	6.83-8.03 (m)
10	103.8 (br s)	2.07 (s)	3.57 (s)	6.75-7.66 (m)
11	102.6 (br s)	2.07 (s)	3.55 (s)	6.75-7.74 (m)

Table 2. Crystallographic information for compounds 1-2, 6, 7 and 9 - 11.

	1	2	3	6	7	9	10	11
Empirical formula	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{8} \mathrm{~N}_{2} \mathrm{P}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{8} \mathrm{~N}_{2} \mathrm{P}_{4}$	$\begin{aligned} & \mathrm{C}_{62} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{16} \\ & \mathrm{P}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8} \\ & \mathrm{P}_{4} \mathrm{~S}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8} \\ & \mathrm{P}_{4} \mathrm{Se}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{64} \mathrm{H}_{62} \mathrm{Cl}_{10} \\ & \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{P}_{4} \mathrm{Pt}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{74} \mathrm{H}_{78} \mathrm{Br}_{4} \mathrm{Cu}_{4} \\ & \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{P}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{74} \mathrm{H}_{78} \mathrm{Cu}_{4} \mathrm{I}_{4} \\ & \mathrm{~N}_{8} \mathrm{O}_{16} \mathrm{P}_{4} \end{aligned}$
Fw	511.59	379.99	1213.00	604.54	792.10	1983.70	2033.12	2221.13
Cryst.system	Monoclinic	Triclinic	Orthorhombic	Monoclinic	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group	P21/c (No.14)	P-1 (No. 2)	Pbca (No.61)	C2/c (No.15)	C2/c(No.15)	$\mathrm{P} 21 / \mathrm{n}$ (No.14)	P-1(No.2)	P-1(No.2)
a, \AA	6.3127(5)	7.7034(6)	15.611(2)	17.167(1)	17.386(2)	10.589(1)	9.8172(6)	10.120(1)
b, \AA	20.286(2)	8.8807(7)	17.516(2)	10.542(1)	10.552(1)	18.440(1)	13.6523(8)	13.781(1)
c, \AA	7.603(1)	9.9791(8)	21.384(2)	14.584(1)	14.822(2)	19.093(1)	16.417(1)	31.671(3)
α, deg	90	84.503(1)	90	90	90	90	107.528(1)	98.402(1)
β, deg	113.502(1)	88.234(1)	90	93.930(1)	93.753(2)	98.047(1)	98.468(1)	92.990(1)
$\gamma, \operatorname{deg}$	90	88.808(1)	90	90	90	90	97.337(1)	98.442(1)
V, \AA^{3}	892.93(13)	679.11(9)	5847.3(11)	2633.3(3)	2713.4(5)	3691.7(4)	2040.5(2)	4310.0(7)
Z	2	2	4	4	4	2	1	2
$\rho_{\text {calc, }}, \mathrm{g} \mathrm{cm}^{-3}$	1.903	1.858	1.378	1.525	1.939	1.785	1.655	1.712
$\mu(\mathrm{MoK} \alpha), \mathrm{mm}^{-1}$	1.607	0.637	0.202	0.645	5.684	4.299	3.133	2.546
$F(000)$	500	372	2536	1256	1544	1948	1022	2188
T (K)	100	100	100	100	100	100	100	200
2θ range, deg	3.1-28.3	2.3-28.2	2.0-27.1	2.3-28.3	2.3-28.3	2.1-28.3	2.3-28.3	1.3-25.0
Total no. reflns	15494	11932	91509	22671	40527	64668	36417	31953
No. of indep	2220	3309	6471	3266	6839	9168	10031	14276
reflns	[$R_{\text {int }}=0.022$]	[$R_{\text {int }}=0.024$]	[$\left.R_{\text {int }}=0.073\right]$	[$\left.R_{\text {int }}=0.031\right]$	[$R_{\text {int }}=0.054$]	[$\left.R_{\text {int }}=0.034\right]$	[$\left.R_{\text {int }}=0.038\right]$	[$\left.R_{\text {int }}=0.045\right]$
$\operatorname{GOF}\left(F^{2}\right)$	1.091	1.13	1.09	1.06	0.92	1.06	1.04	1.15
$R_{1}{ }^{\text {a }}$	0.0213	0.0263	0.0484	0.0297	0.0385	0.0197	0.0339	0.0501
$w R_{2}{ }^{\text {b }}$	0.0518	0.0730	0.1118	0.0779	0.0947	0.0474	0.0841	0.1179

[^1]Table 3. Selected bond distances and bond angles for compounds $\mathbf{1 - 3}$

1				2				3			
Bond distan	nces (A)	Bond angles (${ }^{\circ}$)		Bond distances (\AA)		Bond angles (${ }^{\circ}$)		Bond distances (A)		Bond angles (${ }^{\circ}$)	
C11-P1	2.0457(5)	Cl1-P1-Cl2	98.51(2)	F1-P1	1.582(1)	F1-P1-F2	94.43(6)	P1-N	1.707(2)	P1-N-P2	115.25(9)
C12-P1	2.0421(5)	$\mathrm{Cl} 3-\mathrm{P} 2-\mathrm{Cl} 4$	98.28(2)	F2-P1	1.586(1)	F3-P2-F4	94.52(7)	P2-N	1.694(2)	O1-P1-N	94.59(7)
C13-P2	2.0574(5)	P1-N-P2	109.47(6)	F3-P2	$1.575(1)$	$\mathrm{P} 1-\mathrm{N}-\mathrm{P} 2$	115.43(8)	P1-O1	1.639(1)	O3-P1-N	101.91(7)
C14-P2	2.0547(5)	Cl1-P1-N	101.53(4)	F4-P2	1.584(1)	F1-P1-N1	99.62(6)	P1-O3	1.642(1)	$\mathrm{O} 5-\mathrm{P} 2-\mathrm{N}$	101.83(7)
P1-N	1.704(1)	C12-P1-N	102.31(4)	P1-N1	$1.689(1)$	F2-P1-N1	98.90(6)	P2-05	1.648(1)	$\mathrm{O} 7-\mathrm{P} 2-\mathrm{N}$	97.02(7)
P2-N	1.703(1)	$\mathrm{Cl} 3-\mathrm{P} 2-\mathrm{N}$	101.69(4)	$\mathrm{P} 2-\mathrm{N} 1$	$1.686(2)$	F3-P2-N1	$99.39(7)$	P2-07	1.636(1)	$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3$	95.43(7)
$\mathrm{N}-\mathrm{C} 1$	1.445(2)	C14-P2-N	101.73(4)	$\mathrm{N}-\mathrm{C} 1$	1.453(2)	F4-P2-N1	99.88(7)	N-C29	$1.445(2)$	O5-P2-O7	95.04(7)
P2...P1_i ${ }_{\text {(inter }}$	3.539(1)	$\mathrm{P} 1-\mathrm{N}-\mathrm{C} 1$	124.69(9)			P1-N1-C1	121.3(1)			P1-N-C29	120.51(1)
P2...P1_i ${ }_{\text {(nintra) }}$	7.620	$\mathrm{P} 2-\mathrm{N}-\mathrm{C} 1$	125.82(9)			P2-N1-C1	123.3(1)			P2-N-C29	124.05(1)
P1...P2	2.781										

Table 4. Selected bond distances and bond angles for compounds 6, 7 and 9

$\mathbf{6}$											

Table 5. Selected bond distances and bond angles for complexes $\mathbf{1 0}$ and $\mathbf{1 1}$

Complex 10				Complex 11			
Bond distances (Å)	Bond angles $\left({ }^{\circ}\right)$			Bond distances (\AA)	Bond angles $\left({ }^{\circ}\right)$		
$\mathrm{P} 1-\mathrm{N} 1$	$1.694(13)$	$\mathrm{P} 1-\mathrm{N} 1-\mathrm{P} 2$	$119.6(7)$	$\mathrm{P} 1-\mathrm{N} 1$	$1.709(8)$	$\mathrm{P} 1-\mathrm{N} 1-\mathrm{P} 2$	$119.0(4)$
$\mathrm{P} 2-\mathrm{N} 1$	$1.687(13)$	$\mathrm{N} 1-\mathrm{P} 1-\mathrm{Cu} 1$	$114.8(5)$	$\mathrm{P} 2-\mathrm{N} 1$	$1.709(8)$	$\mathrm{N} 1-\mathrm{P} 1-\mathrm{Cu} 1$	$116.5(3)$
$\mathrm{P} 1-\mathrm{O} 1$	$1.626(12)$	$\mathrm{N} 1-\mathrm{P} 2-\mathrm{Cu} 2$	$118.6(5)$	$\mathrm{P} 1-\mathrm{O} 1$	$1.626(7)$	$\mathrm{N} 1-\mathrm{P} 2-\mathrm{Cu} 2$	$116.0(3)$
$\mathrm{P} 1-\mathrm{O} 3$	$1.623(11)$	$\mathrm{P} 1-\mathrm{Cu} 1-\mathrm{Br} 1$	$112.60(14)$	$\mathrm{P} 1-\mathrm{O} 3$	$1.610(7)$	$\mathrm{P} 1-\mathrm{Cu} 1-\mathrm{I} 1$	$105.25(7)$
$\mathrm{P} 2-\mathrm{O} 5$	$1.627(11)$	$\mathrm{P} 1-\mathrm{Cu} 1-\mathrm{Br} 2$	$110.15(13)$	$\mathrm{P} 2-\mathrm{O} 5$	$1.614(7)$	$\mathrm{P} 1-\mathrm{Cu} 1-\mathrm{I} 2$	$115.80(8)$
$\mathrm{P} 2-\mathrm{O} 7$	$1.624(12)$	$\mathrm{P} 2-\mathrm{Cu} 2-\mathrm{Br} 1$	$96.97(13)$	$\mathrm{P} 2-\mathrm{O} 7$	$1.635(7)$	$\mathrm{P} 2-\mathrm{Cu} 2-\mathrm{I} 1$	$104.27(8)$
$\mathrm{P} 1-\mathrm{Cu} 1$	$2.191(4)$	$\mathrm{P} 2-\mathrm{Cu} 2-\mathrm{Br} 2$	$121.43(14)$	$\mathrm{P} 1-\mathrm{Cu} 1$	$2.194(3)$	$\mathrm{P} 2-\mathrm{Cu} 2-\mathrm{I} 2$	$116.42(8)$
$\mathrm{P} 2-\mathrm{Cu} 2$	$2.179(4)$	$\mathrm{P} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$124.5(4)$	$\mathrm{P} 2-\mathrm{Cu} 2$	$2.215(3)$	$\mathrm{P} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$120.4(3)$
$\mathrm{Cu} 1-\mathrm{Br} 1$	$2.525(3)$	$\mathrm{P} 2-\mathrm{Cu} 2-\mathrm{N} 2$	$116.2(4)$	$\mathrm{Cu} 1-\mathrm{I} 1$	$2.788(2)$	$\mathrm{P} 2-\mathrm{Cu} 2-\mathrm{N} 3$	$119.7(3)$
$\mathrm{Cu} 1-\mathrm{Br} 2$	$2.554(3)$	$\mathrm{Cu} 1-\mathrm{Br} 1-\mathrm{Cu} 2$	$64.93(7)$	$\mathrm{Cu} 1-\mathrm{I} 2$	$2.629(2)$	$\mathrm{Cu} 1-\mathrm{I} 1-\mathrm{Cu} 2$	$59.07(4)$
$\mathrm{Cu} 2-\mathrm{Br} 1$	$2.582(3)$	$\mathrm{Cu} 1-\mathrm{Br} 2-\mathrm{Cu} 2$	$66.63(8)$	$\mathrm{Cu} 2-\mathrm{I} 1$	$2.688(2)$	$\mathrm{Cu} 1-\mathrm{I} 2-\mathrm{Cu} 2$	$61.17(4)$
$\mathrm{Cu} 2-\mathrm{Br} 2$	$2.435(3)$	$\mathrm{Br} 1-\mathrm{Cu} 1-\mathrm{Br} 2$	$100.08(9)$	$\mathrm{Cu}-\mathrm{-I} 2$	$2.678(2)$	$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{I} 2$	$106.08(5)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$1.995(14)$	$\mathrm{Br} 1-\mathrm{Cu} 2-\mathrm{Br} 2$	$101.74(9)$	$\mathrm{Cu}-\mathrm{N} 2$	$1.980(10)$	$\mathrm{I} 1-\mathrm{Cu} 2-\mathrm{I} 2$	$107.59(5)$
$\mathrm{Cu} 2-\mathrm{N} 2$	$1.991(14)$			$\mathrm{Cu} 2-\mathrm{N} 3$	$2.016(10)$		

Table 6. Suzuki-Miyaura cross-coupling reactions of aryl halides with phenylboronic acid catalyzed by $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}-p-\mathrm{C}_{6} \mathrm{H}_{4}\left\{\mathrm{~N}\left\{\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{o}\right)_{2}\right\}_{2}\right\}_{2}\right]$ (8)

Entry	Aryl Halide	Product	Condition ${ }^{\text {a }}$	Conv. $[\%]^{\mathrm{b}}$	TON ${ }^{\text {c }}$
1			$\begin{aligned} & 0.2 \mathrm{~mol} \% . \\ & \text { R.T., } 1 \mathrm{~h} \end{aligned}$	97	485
2			$\begin{aligned} & 0.2 \mathrm{~mol} \% . \\ & \text { R.T., } 2 \mathrm{~h} \end{aligned}$	96	480
3			$\begin{aligned} & 0.2 \mathrm{~mol} \% . \\ & \text { R.T., } 1 / 2 \mathrm{~h} \end{aligned}$	96	480
4			$\begin{aligned} & 0.2 \mathrm{~mol} \% . \\ & \text { R.T., } 4 \mathrm{~h} \end{aligned}$	99	495
			$\begin{aligned} & 0.2 \mathrm{~mol} \% . \\ & \text { R.T., } 1 \mathrm{~h} \end{aligned}$	85	425
			$0.1 \mathrm{~mol} \%$. Reflux, 1 h	100	1000
6			$\begin{aligned} & 0.2 \mathrm{~mol} \% . \\ & \text { R.T., } 1 \mathrm{~h} \end{aligned}$	86	430
7			$\begin{aligned} & 0.2 \mathrm{~mol} \% . \\ & \text { R.T., } 12 \mathrm{~h} \end{aligned}$	100	500
8			$\begin{aligned} & 0.2 \mathrm{~mol} \% . \\ & \text { R.T., } 4 \mathrm{~h} \end{aligned}$	90	450
9			$\begin{aligned} & 0.5 \mathrm{~mol} \% . \\ & \text { R.T., } 4 \mathrm{~h} \end{aligned}$	41	82

(12)
(2)
${ }^{\text {a }}$ Aryl halide $(0.5 \mathrm{mmol})$, phenylboronic acid $(0.75,1.25$ and 1.75 mmol for mono-, diand tribromo derivatives, respectively), $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{mmol})$, $\mathrm{MeOH}(5 \mathrm{~mL})$. ${ }^{\mathrm{b}}$ Conversion to coupled product determined by GC, based on aryl halides; average of two runs. ${ }^{\text {c }}$ Defined as mol product per mol of catalyst.

Figure Captions

Figure 1. (a) Molecular structure of 1. All hydrogen atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. Symmetry operation $\mathrm{i}=1$ $-x, 1-y, 2-z$.
(b) P...P interaction in 1. All hydrogen atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2. Molecular structure of 2. All hydrogen atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. Symmetry operation $\mathrm{i}=$ $-x,-y, 1-z$.

Figure 3. Molecular structure of 3. All hydrogen atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. Symmetry operation $\mathrm{i}=2$ $-x,-y, 1-z$.

Figure 4. Molecular structure of 6. All hydrogen atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. Symmetry operation $\mathrm{i}=$ $1 / 2-x, 3 / 2-y,-z$.

Figure 5. Molecular structure of 7. All hydrogen atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. Symmetry operation $\mathrm{i}=$ $1 / 2-x, 3 / 2-y,-z$.

Figure 6. Molecular structure of 9. All hydrogen atoms and lattice solvent have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. Symmetry operation $\mathrm{i}=1-x, 2-y,-z$.

Figure 7. Molecular structure of 10. All hydrogen atoms and lattice solvent have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. Symmetry operation $\mathrm{i}=1-\mathrm{x}, 1-\mathrm{y}, 2-\mathrm{z}$.

Figure 8. Molecular structure of 11. All hydrogen atoms and lattice solvent have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level. Symmetry operation $\mathrm{i}=2-\mathrm{x},-\mathrm{y},-\mathrm{z}$; $\mathrm{ii}=1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$.

Figures

Figure 1a

Figure 1b

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

[^0]: *Corresponding author. Tel.:+91 222576 7181; Fax: +91 222576 7152/2572 3480.
 E-mail:krishna@chem.iitb.ac.in (M.S. Balakrishna).

[^1]: ${ }^{a} R=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right| \cdot{ }^{b} R_{w}=\left\{\left[\Sigma \mathrm{W}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right) / \Sigma \mathrm{W}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$

