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ABSTRACT 

Niinivehmas, Sanna 
Computational studies of biomolecular screening and interactions 
Jyväskylä: University of Jyväskylä, 2015, 79 p. 
(Jyväskylä Studies in Biological and Environmental Science 
ISSN 1456-9701; 308) 
ISBN 978-951-39-6381-1 (nid.) 
ISBN 978-951-39-6382-8 (PDF) 
Yhteenveto: Laskennallisia tutkimuksia biomolekyylien seulonnasta ja 
vuorovaikutuksista 
Diss. 
 
 
Computational methods have a crucial role in modern drug discovery and 
design. Virtual screening (VS) is an efficient and cost-effective way to screen 
large molecular databases computationally in the search for novel drug 
candidate molecules. In VS, the commonly used computational methods can be 
categorized into ligand-based and protein structure-based methods. Ligand-
based methods rely on the idea that similar compounds have similar properties, 
while protein structure-based methods utilize information about the target 
protein when ligand binding is predicted. This doctoral thesis continues the 
development of Panther, a promising novel negative image-based VS method. 
This VS method employs chemical and structural information derived from the 
ligand-binding area of the protein in the very rapid screening of molecules. In 
addition, several other computational methods are tested for their ability to be 
used as VS tools and to predict ligand binding. This comparison of the VS 
methods showed differences in their ability to identify active molecules and 
predict binding affinities, which helped to determine the relative advantages 
and limitations of these methods. However, based on these results, it is difficult 
to recommend one method over other methods. 
 
 
Keywords: Binding free energy; computational drug discovery; molecular 
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1 INTRODUCTION 

Prescribed in the diagnosis, treatment, cure, and prevention of diseases, drugs 
are chemical substances that cause therapeutic effects in patients. The most 
commonly active substances in drugs are small organic molecules that act by 
modulating the function of the proteins linked to the metabolic or signaling 
pathways related to diseases. Proteins are large and diverse biological 
macromolecules that are essential in virtually every process occurring within 
cells. For example, enzymes catalyze chemical reactions, and receptor proteins 
convey signals to and from the cell as well as between the cytoplasm and the 
nucleus within the cell. Because of the versatility of proteins, drugs can affect 
them in many different ways. Drugs usually either mimic the action of the 
natural ligand, thereby enhancing the function of the protein (agonist or 
substrate), or they block the function of the natural ligand, thereby preventing 
or reducing the function of the protein (antagonist or inhibitor).  

Launching a new drug in the market is a long and complex process. 
Pharmaceutical research projects typically consist of two parts: discovery and 
development. In the discovery phase, hundreds of thousands of molecules can 
be studied by using a high-throughput screening approach to reveal their 
biological activity in a selected target protein panel. However, only a few of the 
tested compounds are promising enough to enter the development phase in 
which the compounds are assessed and optimized for their efficacy and clinical 
safety. Despite the huge amounts of effort, time, and money invested in 
pharmaceutical research, only about 10% to 15% of the molecules entering 
clinical trials become accepted as drugs. This fact supports the view that 
rational drug discovery requires methods that both speed up and increase the 
effectiveness of the discovery process used to identify potent compounds. 

Virtual screening (VS) is a cost-effective, fast approach to screening huge 
molecular databases computationally in the search for novel drug candidate 
molecules. VS enables experimental testing to focus on the top hit molecules, 
thus offering a way to enhance drug discovery. VS methods can be designed to 
meet specific requirements, depending on the available data, such as the known 
ligands and/or information about the structure of target proteins. VS can be 
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effectively applied not only to the discovery of novel hit and lead compounds 
but also to the prediction of properties of compounds in metabolism and 
toxicity, for example. This doctoral thesis continues the development of the 
promising novel negative image-based VS method Panther.  This method 
utilizes structural and chemical information about the ligand-binding area of 
the protein in the very rapid screening of molecules. In addition, several other 
computational methods are tested for their ability to be used as VS tools and 
predict ligand binding. 



 

 

2 REVIEW OF LITERATURE 

2.1 Virtual screening 

In virtual screening (VS), the aim is to identify bioactive compounds in large 
molecular databases through computational means and to enrich the most 
potent molecules in the top fraction for experimental testing. Because VS is a 
powerful strategy for identifying hit molecules as starting points in medicinal 
chemistry, it has become a standard procedure in drug discovery. For that 
reason, the development of VS approaches has gained attention, and several 
comparative studies of the usability of various methods have been published 
(Sheridan and Kearsley 2002, Warren et al. 2006, McGaughey et al. 2007, Kolb and 
Irwin 2009, von Korff et al. 2009, Krüger and Evers 2010, Venkatraman et al. 2010, 
Plewczynski et al. 2011, Scior et al. 2012, Heikamp and Bajorath 2013, Grinter and 
Zou 2014, Danishuddin and Khan 2015). VS methods comprise of several 
computational techniques that, depending on the utilized information, can be 
classified into two broad categories: ligand-based and protein structure-based. 

Different VS approaches are able to retrieve potent compounds with 
different characteristics (Sheridan and Kearsley 2002, Zhang and Muegge 2006, 
Chen et al. 2009, von Korff et al. 2009, Krüger and Evers 2010, Venkatraman et al. 
2010). Choosing the best-suited method for the VS study depends on many 
factors, such as the availability of high-quality structural data on the target 
protein, existing drugs or known active ligands, accessible computational 
resources, and the size of the database to be screened. However, the question 
concerns not only the method selection but also the tools that can or should be 
used serially or in parallel to screen databases more efficiently (Tan et al. 2008, 
Krüger and Evers 2010, Svensson et al. 2012, Drwal and Griffith 2013). The 
common practice is to utilize different VS methods serially so that first 
computationally more efficient methods are used to screen out the greater part 
of the database molecules; and then the remaining top-ranked compounds are 
screened using more accurate and computationally more strenuous methods 
(Fig. 1). 
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FIGURE 1 Overview of the virtual screening procedure. Typically, the study proceeds 
from the utilization of more approximate methods to the utilization of more 
accurate methods. Ligand-based and protein structure-based methods also can 
be used simultaneously. 

Several studies have reported the successful utilization of VS methods to 
determine lead molecules (Ghosh et al. 2006, Cavasotto et al. 2008, Clark 2008, 
Markt et al. 2008, Ripphausen et al. 2010, Murgueitio et al. 2012, Kumar and 
Zhang 2014, Cerqueira et al. 2015, Noha et al. 2015). However, the methods still 
require improvement in accuracy and computational efficiency (Warren et al. 
2006, Clark 2008, Cheng et al. 2012, Scior et al. 2012, Heikamp and Bajorath 2013, 
Lavecchia and Di Giovanni 2013, Zhu et al. 2013, Cerqueira et al. 2015, Chen 
2015). The principles, strengths, and weaknesses of ligand-based methods, 
molecular docking, pharmacophore modeling, structure-activity relationship 
models, negative image methods, and binding free energy calculation methods 
are discussed in the following sections. 

2.1.1 Ligand-based methods 

Ligand-based methods rely on the idea that similar compounds have similar 
properties, which may lead to similar biological functionality (Johnson et al. 
1989, Patterson et al. 1996). In ligand-based methods, small molecules are 
characterized by molecular descriptors or fingerprints, which are distinctive 
characteristics or unique patterns indicating the properties of the molecules. 
Different molecular descriptors can be categorized for example according to the 
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dimensionality (Table 1). Simple one-dimensional (1D) descriptors typically 
consist of bulky properties such as molecular weight, octanol/water partition 
coefficient, or the number of particular atoms. However, 1D line notations, such 
as SMILES, may contain also structural information. Two-dimensional (2D) 
descriptors utilize the chemical structure of which e.g. substructures, the 
number of bonds or connectivity information can be derived. Three-
dimensional (3D) descriptors, such as shape, volume, solvent accessible surface 
area, and 3D pharmacophore properties, depend on conformers of molecules. 
1D descriptors are used rather to filter molecular databases than screening of 
actual hit molecules, whereas 2D and 3D descriptors are widely used in 
similarity searches in VS (Zhang and Muegge 2006, McGaughey et al. 2007, 
Krüger and Evers 2010, Venkatraman et al. 2010, Hu et al. 2012, Dobi et al. 2014). 

TABLE 1 Molecular descriptors used in similarity searches can be classified by the 
dimensionality. Here a natural ligand 17 -estradiol and an antagonist 
molecule 4-hydroxytamoxifen of estrogen receptor  are shown as examples. 

Molecule and 1D structures 2D structure 3D structure 

17 -estradiol 
 

C18H24O2 
 

C[C@]12CC[C@H]3[C@@H](CCc4cc 
(O)ccc34)[C@@H]1CC[C@@H]2O 

 

  

4-hydroxytamoxifen 
 

C26H29NO2 
 

CC\C(=C(/c1ccc(O)cc1)\c2ccc       
(OCCN(C)C)cc2)\c3ccccc3 

 

 
The most commonly used structural 2D fingerprints (or topological descriptors) 
indicate for example either the presence or the absence of particular 
substructures in the molecule. The most common measure to compare 
similarities of these fingerprints is to calculate the Tanimoto coefficient (Bajusz 
et al. 2015). The benefit of methods that use 2D fingerprints in VS is their 
computational efficiency due to no specific information about conformers is 
needed in the screening process (Sheridan and Kearsley 2002, Venkatraman et al. 
2010, Hu et al. 2012). Another common approach in ligand-based VS is 3D 
screening based on the shape of the molecules. In addition to using the shape of 
the molecules, chemical features, such as pharmacophoric properties or 
electrostatic potentials, can be taken into account. Some commonly used 2D and 
3D software in ligand-based similarity searching are listed in Table 2.  
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TABLE 2 Commonly used software in ligand-based virtual screening. 

Software Application area References 

BCI 2D fingerprints Barnard and Downs 1997 
Canvas 2D fingerprints Duan et al. 2010, Sastry et al. 2010 
ChemAxon Screen 2D fingerprints, 3D shape, 

pharmacophore 
ChemAxon Kft., Budabest, 

Hungary 
Daylight 2D fingerprints Daylight Chemical Information 

Systems Inc., Laguna Niguel, CA 
Discovery Studio 2D fingerprints, 3D similarity, 

pharmacophore, 3D-QSAR 
Accelrys Inc., San Diego, CA 

ECFP  2D fingerprints for structure-
activity modeling 

Rogers and Hahn 2010 

ElectroShape 3D shape and electrostatics Armstrong et al. 2010, Armstrong et 
al. 2011 

LigandScout pharmacophore Wolber and Langer 2005, Wolber et 
al. 2006 

MACCS  2D fingerprints MDL Information Systems Inc., 
San Leandro, CA 

MOE  2D fingerprints, 3D similarity, 
pharmacophore, 3D-QSAR 

Chemical Computing Group, 
Montreal, Canada 

Molprint2D 2D fingerprints Bender et al. 2004 
Open Babel 2D fingerprints O’Boyle et al. 2011 
Phase 3D similarity, pharmacophore, 

3D-QSAR 
Dixon et al. 2006a, Dixon et al. 

2006b 
ROCS 3D shape, pharmacophore Rush et al. 2005 
ShaEP 3D shape and electrostatics Vainio et al. 2009 
SiFT 3D protein-ligand interactions 

as 1D fingerprints 
Deng et al. 2004 

Unity 2D fingerprints, 3D shape, 
pharmacophore 

Tripos Inc., St. Louis, MO 

USR  3D shape Ballester and Richards 2007, 
Ballester et al. 2009, Ballester 2011 

 
In general, ligand-based methods require relatively little computational 
capacity, memory, and data storage. Compared to 2D methods, 
computationally 3D methods are substantially more strenuous because of their 
increased complexity and the demand for handling multiple low-energy 
conformers; however, the processing time per molecule is still reasonable for VS 
(Sheridan and Kearsley 2002, Zhang and Muegge 2006, McGaughey et al. 2007, 
Cortés-Cabrera et al. 2013). The benefit of 3D methods over topological searches 
is that they offer more information about the possible bioactive binding 
conformer, which is crucial in the activity of a compound (Sheridan and 
Kearsley 2002, Zhang and Muegge 2006, Rogers and Hahn 2010). 

Because ligand-based methods depend heavily on the reference structure 
(or multiple queries), the selection of the query greatly influences the success of 
VS (Kirchmair et al. 2009). Exploiting different reference ligands may drastically 
change the effectiveness of ligand-based VS, and thus, the effectiveness of 
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methods used to ligand-based similarity searches can vary in ways that are 
difficult to predict (Sheridan and Kearsley 2002, Ripphausen et al. 2011). The 
application of multiple diverse ligands generally leads to higher scaffold 
hopping and improves the enrichment of potential molecules because 
dissimilar queries tend to select different subsets of active molecules (although 
often analogous to the reference structures) from databases (Sheridan and 
Kearsley 2002, Krüger and Evers 2010, Ripphausen et al. 2011). Utilizing only 
the shape of the molecules variable scaffolds are found efficiently but effective 
interactions with the target protein are neglected. However, this can be 
overcome with the optimization of functional groups of the molecules later. On 
the other hand, topological methods do find active properties, but found 
molecules are not necessarily best fitted to the ligand-binding area of the target 
protein. In any case, the comparison of molecular similarities is one of the 
simplest and most widely used methods in VS, and it has been shown that 
ligand-based screening methods are efficient in finding active molecules (Evers 
et al. 2005, Markt et al. 2008, Mochalkin et al. 2009, Ripphausen et al. 2011, 
Simões et al. 2010, Du-Cuny et al. 2011, Hevener et al. 2012, Dobi et al. 2014). 

2.1.2 Protein structure-based methods 

Protein structure-based methods (Fig. 2), of which the most common is 
molecular docking, have been widely used ever since the early 1980s (Kuntz et 
al. 1982). Consequently, the number of available docking algorithms is very 
large (see Table 5 below).  In molecular docking, the binding mode of a ligand 
within the binding site of a protein is predicted, and an estimation of the 
binding affinity is obtained. This is done by sampling several poses of small 
molecules positioned in the ligand-binding area of the 3D representation of the 
protein structure and then assessing the complementarity of their steric and 
chemical features. Typically, although in docking ligands are treated flexibly 
and the protein structure is fixed, it is also possible to use rigid ligand 
conformers or to let protein structure adapt. In addition to the flexibility of the 
protein-ligand complex, it is also important to consider the water molecules that 
mediate essential interactions. 

Protein conformation can change upon ligand binding and because of that 
docking is sensitive to the protein structure. When docking is performed in a 
fixed protein structure, it may lead into degeneration or even total failure of the 
docking process. The direct modeling of protein binding site flexibility is very 
challenging because of the complex conformational space. Another option for 
modeling protein adaptability is to use an ensemble of rigid protein conformers 
that are either determined experimentally by X-ray crystallography or nuclear 
magnetic resonance (NMR) spectroscopy or are generated computationally via 
molecular dynamics (MD) simulations. Obviously, considering protein 
flexibility increases the amount of computing time required to complete the 
docking process (Ferrara et al. 2004, Sheridan 2008, Totrov and Abagyan 2008, 
Lill 2011, Therrien et al. 2014). 
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FIGURE 2 Protein structure-based virtual screening methods. A) High quality protein 
structures work as a starting point in protein structure-based virtual screening 
studies. Here the estrogen receptor  (ER ) is represented in a secondary 
structure as an example of an X-ray crystal structure (PDB: 3ert, Shiau et al. 
1998). B) Molecular docking, molecular dynamics simulations, and binding free 
energy calculation methods can predict small molecule binding poses. Here is 
a close-up of the ER  ligand-binding area with 4-hydroxytamoxifen from X-ray 
structure (black carbon atoms), docked (dark green carbon atoms), and after 
binding free energy calculations (light green carbon atoms). C) A 
pharmacophore model of ER  with 4-hydroxytamoxifen as a reference ligand. 
The red and blue arrows indicate hydrogen bond acceptors and donors, 
respectively. The golden toroids designate aromatic rings. The darker blue 
shows a positive group, and the green sphere points the hydrophobic area. D) 
In negative image methods, the shape and the properties of the ligand-binding 
area of the protein are reflected in the model. The green surface outlines the 
shape of the negative image model. The red balls represent negatively charged 
model points, the blue balls represent positively charged model points, and the 
grey balls represent neutral model points. 
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When a protein molecule is in solution, the surface and the curvatures are 
entirely embedded in water molecules. Although most of the water molecules 
are mobile and only loosely bound to protein, some water molecules are more 
important than others are, and they mediate the interactions between the ligand 
and the protein by forming hydrogen-bond networks that stabilize the complex. 
The importance of water molecules depends on the binding ligand and thus the 
significance of the water molecules needs to be defined on a case-by-case basis 
(Roberts and Mancera 2008, Thilagavathi and Mancera 2010, Lie et al. 2011, 
Therrien et al. 2014). Other factors to consider include the modeling of 
interactions with a possible metal or cofactor at the ligand-binding area and that 
both the ligand-binding mode and affinity can be strongly pH-dependent 
(Ferrara et al. 2004). 

Different ligand conformers can be generated for molecular docking, 
either by using an external conformer generation method prior to the docking 
procedure or, more commonly, a method that is implemented in a docking 
program. Molecular docking programs (as well as other conformer generation 
methods) use different search algorithms to explore the conformational space 
for flexible ligand docking. The methods used to treat ligand flexibility can be 
divided into three basic categories: systematic, stochastic, and simulation-based 
(Kitchen et al. 2004, Huang and Zou 2010, Table 3).  

TABLE 3 Conformational search methods. 

Category and method Working principle 

Systematic 

- Incremental construction 

Degrees of freedom of a molecule are explored exhaustively 
i.e. the conformational search space consists of all possible 
conformers and orientations. Typically ligand fragments or 
core part (rigid) are docked and then torsion angles of 
flexible parts are systematically sampled before linking the 
docked parts. 

Stochastic/random 

- Genetic algorithm 
- Monte Carlo simulation 

Random changes are made to a ligand or a ligand tree i.e. a 
random starting conformer is generated and evaluated, and 
then a second randomly generated conformer is compared 
with the first one and the more optimal conformer is chosen 
for continuation. By repeating these cycles, the conformer of 
the molecule becomes optimized. 

Simulation-based 

- Molecular dynamics 
- Energy minimization 

A molecule is allowed to freely explore the conformational 
space in the ligand-binding area, and the force on each atom 
is calculated by the change in the potential energy between 
the current and new positions of the atoms. 

 
Both the posing and the ranking of predicted ligand conformers are vital 
aspects of molecular docking. Scoring functions are used to evaluate the fitness 
of the suggested ligand-binding poses and estimate the binding free energy in 
protein-ligand interactions. Scoring functions are mathematical approximation 
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methods that are based on several simplifications and assumptions that are 
made when the protein-ligand complexes are assessed. Scoring functions need 
to distinguish active molecules and conformers from inactive ones, rank poses 
correctly, and arrange them according to their predicted binding affinity. There 
are three types of scoring functions: force field-based, empirical, and 
knowledge-based (Halperin et al. 2002, Ferrara et al. 2004, Kitchen et al. 2004, 
Huang and Zou 2010; Table 4). In addition to aforementioned scoring function 
types, also approach called consensus scoring is utilized. In consensus scoring, 
several scoring functions or their components are combined, and only the poses 
that fulfill all the required conditions are accepted. 

TABLE 4 Scoring functions. 

Type Working principle 

Force field-based Molecular mechanics energy functions are applied. Binding free 
energy is approximated as a sum of intermolecular van der Waals 
interactions and electrostatic interactions. Also the effects of 
solvation and intramolecular energies can be included. 

Empirical Experimental binding constants of a training set of protein-ligand 
complexes are utilized. Binding free energy is estimated as a sum 
of interaction terms that consist of contributions of hydrogen 
bonds, ionic interactions, hydrophobic effect, and entropy. 

Knowledge-based Binding affinity is a sum of protein-ligand atom pair interactions 
derived from statistical analysis of known complexes. Probability 
of atoms or functional groups to lie close to each other is converted 
to distance-dependent interaction score. Frequently occurring 
interactions are assumed to be energetically more favorable. 

 
One reason for the popularity of docking is that the number of high-quality 
protein structures has increased dramatically in recent years (Berman et al. 2000, 
Rose et al. 2015). Because of the complexity and high dimensionality of the 
conformational space, the docking approach is generally a computationally 
demanding procedure and requires significantly more computing time than 
ligand-based methods (Krüger and Evers 2010). However, the steady increase 
in computing power has enabled these approaches to become standard 
computational tools in structure-based VS. Although molecular docking is 
widely used, not only in VS but also in the structure-based optimization of lead 
compounds, it still is not fully trouble-free (Grinter and Zou 2014). Some 
commonly used docking software and descriptions of their conformational 
search methods and scoring functions are listed in Table 5. 
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TABLE 5 Commonly used software in structure-based virtual screening. 

Software Conformational search method Scoring function References 

AutoDock Genetic algorithm Empirical Goodsell et al. 1996, 
Morris et al. 2009 

DOCK Incremental construction Force field-based Kuntz et al. 1982, 
Lang et al. 2009 

eHITS Exhaustive systematic Empirical, 
knowledge-based 

Zsoldos et al. 2007, 
Ravitz et al. 2011 

FlexX Incremental construction Empirical Rarey et al. 1996, 
Kramer et al. 1999 

FRED Exhaustive shape matching of 
multiple rigid conformers 

Gaussian, empirical McGann et al. 2003, 
McGann 2011 

Glide Incremental construction with 
Monte Carlo sampling 

Combined 
empirical and 
force field-based 

Friesner et al. 2004, 
Halgren et al. 2004, 
Friesner et al. 2006 

GOLD Genetic algorithm Empirical, force 
field-based 

Jones et al. 1997, 
Verdonk et al. 2003 

LigandFit Shape complementarity with 
Monte Carlo sampling 

Empirical Venkatachalam et al. 
2003, Krammer et al. 
2005 

PLANTS Ant colony optimization Empirical Korb et al. 2009 
Surflex Incremental construction and 

surface-based similarity 
Empirical Jain 2003, Cleves and 

Jain 2015 

 
Docking programs are usually rather successful in identifying ligand poses that 
resemble crystallographically determined or bioactive ligand conformers; 
however, problems sometimes occur in the creation of the bioactive ligand 
conformers (Warren et al. 2006, Kolb and Irwin 2009). Due to the inability of the 
current scoring functions to distinguish and differentiate sometimes subtle 
differences that can change ligand affinity from highly potent to inactive 
docking does not always work for the right reasons (Warren et al. 2006). 
However, a more wide-ranging issue is that docking programs are not accurate 
and reliable enough when predicting binding affinities (Ferrara et al. 2004, 
Warren et al. 2006, McGaughey et al. 2007, Cross et al. 2009, von Korff et al. 2009, 
Feliu and Oliva 2010, Plewczynski et al. 2011).  

An additional concern is that docking results are quite often case specific, 
and no single program performs well for all targets (Ferrara et al. 2004, Warren 
et al. 2006, McGaughey et al. 2007, Cross et al. 2009, von Korff et al. 2009, Feliu 
and Oliva 2010, Plewczynski et al. 2011). This shortcoming may require a 
considerable contribution by the researcher. In particular, extensive validation 
is required if no prior knowledge is available about the suitability of the 
program for certain targets. In general, if the applicability of the docking 
program is evaluated carefully, and it is proved that it is capable of separating 
active compounds from a pool of inactive compounds, its usage as a VS tool is 
supported (Ferrara et al. 2004, Warren et al. 2006, McGaughey et al. 2007, Cross 
et al. 2009, von Korff et al. 2009, Feliu and Oliva 2010, Plewczynski et al. 2011). 
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2.1.3 Pharmacophore modeling 

Popular VS methods utilizing 3D descriptors include pharmacophore models 
(Table 2; Fig. 2C). Earliest modern pharmacophore techniques date back to 
1970s (Martin et al. 1973, Gund 1979), and since then many applications of 
pharmacophores have been developed. Nevertheless, the basic concept of a 
pharmacophore as a simple geometric representation of the key molecular 
interactions has remained unchanged. For the evolution of the pharmacophore 
concept see (Güner 2002, Leach et al. 2010, Yang 2010).  

Pharmacophore models represent molecular features that are known or 
thought to be crucial in protein-ligand complex formation (Fig. 2C). 
Pharmacophore models try to find common features and thus explain how 
structurally diverse ligands can bind to the same ligand-binding area of the 
protein (Güner 2002, Leach et al. 2010, Yang 2010). Characteristic 
pharmacophoric features consist of steric and electrochemical properties, such 
as aromatics rings, hydrophobic interactions, and hydrogen bond acceptors and 
donors (Fig. 2C). Pharmacophore models can be derived either by using an 
ensemble of known ligand molecules or by projecting from the protein structure 
(Güner 2002, Leach et al. 2010, Yang 2010). For the creation of a ligand-based 
pharmacophore model, a set of structurally diverse compounds is selected as 
training molecules. The training molecules need to be superimposed, and they 
should contain a bioactive conformer. Based on the overlay of the training 
molecules, the common pharmacophoric points are identified. The validity of 
the model can be tested by screening an ensemble of test molecules whose 
activity status is known to determine whether the pharmacophore model can 
predict them correctly. In general, the pharmacophore model identifies and 
separates the active and inactive molecules by extrapolating the knowledge 
acquired from the training set compounds (Dixon et al. 2006a, Dixon et al. 2006b, 
Yang 2010). The molecular database can then be searched for more molecules 
that share the same features arranged in the same relative orientation. Although 
the generation of a pharmacophore model can be time-consuming and require 
diligence, VS with pharmacophore models is fast and efficient (Güner 2002, 
Schuster et al. 2008, Chen et al. 2009, Leach et al. 2010, Yang 2010, Vuorinen et al. 
2015). 

2.1.4 3D-quantitative structure-activity relationship 

In 3D-quantitative structure-activity relationship (3D-QSAR) relationship 
between the biological activity of a set of compounds and their 3D properties 
are determined quantitatively using statistical correlation methods (Hansch and 
Fujita 1964, Hansch et al. 1965, Hansch 1969). The basis for the technique lies on 
a simple assumption that similar molecules have similar biological activity. The 
first widely used 3D-QSAR method, comparative molecular field analysis 
(CoMFA), was introduced in 1988 (Cramer et al. 1988). For the advancement of 
the QSAR concept see (Cherkasov et al. 2014).  
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In 3D-QSAR is regression models are used to study the correlation 
between chemical structure and the biological activity of small molecules 
(Kubinyi 1997, Verma et al. 2010). For the creation of the 3D-QSAR model, 
comparable data with a wide range of affinity divided into training and test set 
are needed (Golbraikh et al. 2003). In principle, the same phases as in 
pharmacophore models apply (see above), and pharmacophore models often 
can be used as a starting point in developing 3D-QSAR models (Dixon et al. 
2006a, Dixon et al. 2006b). The difference is that 3D-QSAR models utilize the 
knowledge acquired from known molecules to predict the activity values of 
new compounds. The 3D-QSAR is not only used for drug discovery, lead 
optimization, and binding affinity predictions but also is applied to toxicity 
predictions, risk assessment, and regulatory decisions. The disadvantage of 
both the pharmacophore model and the 3D-QSAR model is that they depend 
strongly on the quality of the input data, and hence derived hypotheses usually 
rely on a finite number of chemical data. Furthermore, the models cannot 
predict activities that are outside the range of the training dataset, or cannot 
identify novel chemical structures that are not already presented during the 
model creation (Kubinyi 1997, Golbraikh et al. 2003, Verma et al. 2010). 

2.1.5 Negative image of the ligand-binding area 

In negative image-based (NIB) screening, the ligand-binding area of the target 
protein is represented as a ligand-like entity, which is then used instead of 
known ligand molecule(s) in similarity searches (Fig. 2D). The idea of searching 
ligand-sized cavities for the purpose of drug design is not new, and it is on 
display from time to time (see e.g. Kleywegt and Jones 1994, Liang et al. 1998, 
Nayal and Honig 2006, Coleman and Sharp 2010, Hetényi and van der Spoel 
2011). Moreover, previous studies have introduced methods that utilize 
negative images in VS (Oshiro and Kuntz 1998, Fukunishi et al. 2006, Ebalunode 
et al. 2008, Lee et al. 2009, Virtanen and Pentikäinen 2010, Lee and Zhang 2012). 
Common to all these methods is that a negative image is created of the ligand-
binding area, and the model is then used to identify potential novel compounds. 

Ligand-based screening is fast, but the ability of the protein to adapt 
according to the binding ligand is neglected. In ligand-based VS, multiple 
known ligands may be used to represent the adaptability of the protein; 
however, the results are restricted to scaffolds similar to reference ligands. 
Molecular docking is by far the most common method used in protein 
structure-based VS. However, compared to NIB screening, which also utilizes 
protein structure, docking is slow and computationally intensive. It has been 
shown that the parallel utilization of different ligand- and protein structure-
based VS methods is advantageous and promotes the identification of a greater 
number of active and diverse compounds (Tan et al. 2008, Krüger and Evers 
2010, Svensson et al. 2012, Drwal and Griffith 2013). NIB screening combines the 
best properties of both ligand- and protein structure-based methods by being 
fast and utilizing the knowledge offered by the protein needed for scaffold 
hopping.  
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This thesis presents Panther, a novel, ultrafast NIB multipurpose docking 
tool. In the Panther method, a simple shape-electrostatic model of the ligand-
binding area of the protein is created, and then the features of possible ligands 
are compared to the model by using a fast similarity search algorithm (Fig. 3). 
Panther can be used in several applications, such as a cavity-searching tool, a 
VS tool in the early phases of drug discovery projects, a tool to estimate ligand-
binding properties and off-target binding, as well as a tool to assess the 
environmental toxicity of chemicals. Panther-code is available free of charge 
after registration in Panther web page (http://www.jyu.fi/panther). 

 

 

FIGURE 3 Panther modeling. A) Simplified scheme of the Panther procedure. B) Charged 
model atoms (red, blue) are placed around polar/charged atoms in the ligand-
binding cavity with specified angle, geometry, and distance. Cavity is filled 
with neutral atoms (green, yellow). Overlapping atoms (yellow) are removed.  
C) The final model represents the negative image of the binding site. 

2.2 Binding free energy calculations 

Methods for the accurate prediction of the binding affinity of small molecules 
for a protein target are urgently needed in VS. Approximated estimations of 
binding affinity can be routinely made by using molecular docking programs. 
However, because these programs employ approximated scoring functions, the 
correlations between the estimated binding affinities and the experimentally 
measured values are often poor (Ferrara et al. 2004, Warren et al. 2006, 
McGaughey et al. 2007, Cross et al. 2009, von Korff et al. 2009, Feliu and Oliva 2010, 
Plewczynski et al. 2011). More thorough computational methods for binding free 
energy calculations include free energy perturbation (Kollman 1993) and 
thermodynamic integration (Lybrand et al. 1986). However, because these 
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methods are computationally very strenuous, reasonably accurate and 
computationally more efficient methods combining molecular mechanics force 
fields and continuum solvent models have become increasingly more widely 
used in binding free energy calculations (Kollman et al. 2000, Massova and 
Kollman 2000, Guimarães and Cardozo 2008). Such methods include the 
molecular mechanics generalized Born surface area (MMGBSA), the molecular 
mechanics Poisson-Boltzmann surface area (MMPBSA), and solvated 
interaction energy (SIE) methods. 

2.2.1 Molecular mechanics generalized Born/Poisson Boltzmann surface area 

In the MMGBSA and MMPBSA methods, the absolute free energy of a system is 
estimated from molecular mechanics (MM) energy, an estimate of the 
electrostatic free energy from continuum solvent model, such as generalized 
Born (GB) or Poisson-Boltzmann (PB), and an estimate of the solvation free 
energy determined from the exposed surface area (SA). The estimation of the 
entropy is derived from normal mode analysis; however, because of its high 
computational cost, it is often omitted in binding free energy calculations 
(Genheden and Ryde 2015). 

The disadvantage of MMGBSA and MMPBSA binding free energy 
calculations is that in some cases they are susceptible to the length of the MD 
simulation. Furthermore, the method chosen for the generation of the protein-
ligand complexes can alter the results (Ferrari et al. 2007, Hou et al. 2011a, Hou 
et al. 2011b, Greenidge et al. 2014). Another issue is that there may be significant 
differences between the different implicit water models, which makes the 
performance of the method highly case-specific (Ferrari et al. 2007, Hou et al. 
2011a, Hou et al. 2011b). Furthermore, MMGBSA and MMPBSA are intrinsically 
computationally laborious. In addition, the protein-ligand complexes for 
MMGBSA and MMPBSA are typically acquired from MD simulations which 
makes the combination even more strenuous and thus impractical in VS. 
Therefore, the ability to estimate the binding free energy reliably by using a 
single energy-minimized structure and implicit solvation would promote the 
usage of MMGBSA and MMPBSA as VS tools. Some studies have shown that 
correlations obtained using a single minimized protein-ligand complex are 
similar to those obtained by using either using multiple protein-ligand 
complexes or averaging multiple MD snapshots (Ferrari et al. 2007, Rastelli et al. 
2010, Sgobba et al. 2012, Mulakala and Viswanadhan 2013). 

Many studies employing MMGBSA and MMPBSA explore only relatively 
small number of ligands and target proteins. Nevertheless, these studies have 
showed that MMGBSA or MMPBSA are able to discriminate between active 
molecules and inactive molecules, that docking poses can be improved by 
reassessing them, and that reasonable correlations between calculated binding 
free energies and experimental affinities can be achieved (Ferrari et al. 2007, 
Guimarães and Cardozo 2008, Rastelli et al. 2010, Hou et al. 2011a, Hou et al. 
2011b, Mulakala and Viswanadhan 2013, Ylilauri and Pentikäinen 2013, 
Greenidge et al. 2014). 
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2.2.2 Solvated interaction energy  

Similar to the MMGBSA and MMPBSA methods, the solvated interaction 
energy (SIE) (Naïm et al. 2007) function approximates protein-ligand binding 
free energies. In SIE, molecular mechanics, the contribution of force field-based 
interaction energy is complemented by the continuum model of solvation. The 
implicit solvation model used in MMGBSA and MMPBSA is comprised of 
parameters that are fitted to the experimental solvation free energies of small 
molecules, and therefore may be neither sufficient nor optimal for protein-
ligand binding free energy calculations. The SIE method is explicitly calibrated 
on binding affinities in solution by using a diverse training set of 99 protein-
ligand complexes. This calibration of the dielectric constant, Born radii, surface 
tension coefficient, and enthalpy-entropy compensation scaling factor can be 
perceived as a rough treatment of entropy–enthalpy compensation (Naïm et al. 
2007, Cui et al. 2008). Some studies have shown that SIE predicts binding free 
energies with high accuracy (Naïm et al. 2007, Cui et al. 2008, Wang et al. 2009, 
Sulea et al. 2011, Sulea et al. 2012). 

2.3 Ligand properties 

Receptors and enzymes can differentiate their ligands and substrates through 
the recognition of shape and physicochemical properties. This recognition 
process is vital in virtually all biological functions. However, the recognition of 
chemical features, shapes, and changes in shape is essential not only in the 
function and understanding of biochemical reactions but also in the methods 
used in computational biosciences. As already mentioned, many drug 
discovery methods and evaluations of compounds rely on the idea that similar 
compounds have similar properties, and thus, presumably, similar biological 
functionality (Johnson et al. 1989, Patterson et al. 1996). These similar molecular 
properties include the structural and physicochemical properties of molecules 
(Kortagere et al. 2009, Nicholls et al. 2010). 

2.3.1 Shape 

Shape is a fundamentally important molecular feature that often determines the 
fate of a compound in terms of its molecular interactions with a target protein 
(Kortagere et al. 2009). Shape complementarity between the ligand and the 
target protein is also an important feature when novel drug molecules are 
discovered or designed. Molecular shape plays an important role in many 
approaches related to computational biochemistry, such as the discovery and 
optimization of lead molecules, the prediction of poses in molecular docking, 
the search for structure-activity relationships, the comparison of molecular 
similarities, the design of small molecule libraries, the clustering of similar 
molecules, and the refining of crystallographic structures (Kortagere et al. 2009, 
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Nicholls et al. 2010, Maggiora et al. 2014). In drug discovery, both global shape 
matching and partial substructure shape matching have proved useful; 
however, molecules are more than just shape they are also volumes and 
surfaces (Nicholls et al. 2010, Maggiora et al. 2014). 

In shape-based VS, the problem is that validation results are sensitive to 
the composition of the test data set. Because many drugs are topologically 
similar, the test set may not be variable enough in terms of molecular scaffolds. 
If this is the case, then the topological methods will find only similar hits and 
return very limited scaffolds (Huang et al. 2006, McGaughey et al. 2007, Jain and 
Nicholls 2008, Kirchmair et al. 2009). Because shape is essential in VS, the 
sampling of the conformational space to a sufficiently fine degree is crucial 
(Boström 2001, Sastry et al. 2013). In addition, in some VS methods, the 
description of atoms is not specific enough to capture the subtleties of the 
properties that are responsible for the activity, such as distinguishing between 
aromatic and aliphatic hydrophobic areas (Sheridan and Kearsley 2002). 

2.3.2 Electrostatics 

In addition to shape, electrostatics are particularly important because of their 
long range influence on polar or charged molecules, including water, aqueous 
ions, and amino acids, 11 of which are charged or polar in neutral solution 
(Dong et al. 2008). Therefore electrostatics are important in determining the 
structure, motion, association rate, function, and binding affinity of a wide 
range of biological molecules (Dong et al. 2008). 

In ligand binding, energetically favorable charge–charge interactions are 
formed between the compound and the target, as well as specific salt bridges 
and hydrogen bonds; however, simultaneously energetically unfavorable 
desolvation, i.e. the displacement of the bound waters on the surfaces of the 
ligand and the target protein must occur to allow close binding (Sheinerman et 
al. 2000, Sheinerman and Honig 2002, Dong et al. 2008). Regarding the 
electrostatics, the balance of these two aforementioned energetic contributions 
determines the binding affinity. Computational simulations can provide atom-
level information about the energetics and dynamics of protein-ligand complex 
structure and interactions; however, many models of biomolecular solvation 
and electrostatics compromise between the accuracy and the computational 
expense (Dong et al. 2008, Genheden and Ryde 2015). 

2.3.3 Properties of drugs 

The drug-likeness of a compound indicates the similarity of its features to the 
features of known drugs. Lipinski's rule of five defines guidelines that are 
commonly used to evaluate the drug-likeness and oral bioavailability of a 
compound. According to Lipinski’s rule of five, the drug-like molecule may 
violate at most one of the following rules: molecular weight is lower than 
500 g/mol; octanol/water partition coefficient (logP) is lower than five; the 
number of hydrogen-bond donors is no more than five; and number of 
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hydrogen-bond acceptors is no more than 10 (Lipinski et al. 1997). Lipophilicity 
and molecular weight are often increased when the affinity and selectivity of 
the drug candidate are improved, whereupon it may be challenging to maintain 
the drug-likeness. Hence, in lead molecule discovery, a rule of three, which 
favors smaller compounds and leaves more room for compound modification, 
has been proposed. The rule of three suggests that molecules having a 
molecular weight lower than 300 g/mol, a logP lower than three, a number of 
hydrogen-bond donors, acceptors, and rotatable bonds no more than three, and 
a polar surface area less than 60 are lead-like (Congreve et al. 2003). 

Absorption, distribution, metabolism, excretion, and toxicity (ADMET) 
properties of a molecule describe the characteristics and behavior of a 
pharmaceutical compound within an organism. Predictive tools used for the 
accurate assessment of pharmacokinetic, pharmacodynamic, metabolic, and 
toxicological properties in the early stages of the drug discovery process are 
highly useful because violations in these areas are important source of costly 
late stage failures in drug development (van de Waterbeemd and Gifford 2003, 
Tao et al. 2015). As part of the effort to develop tools to assess ADMET 
properties, novel computational methods are introduced and old methods are 
continuously improved. The physicochemical properties of a molecule have an 
important effect on the pharmacokinetic, pharmacodynamic, and metabolic fate 
of a compound in the body. Therefore predicting these properties is essential in 
computational ADMET methods. Most ADMET models are based on 
experimental knowledge or statistical analyses of the relationships between 
molecular descriptors and the feature. In general, ADMET prediction methods 
are either ADMET filters, which are used to trim molecular databases, or 
ADMET models, especially pharmacophore or QSAR models, which are used to 
evaluate compounds. The molecular modeling of metabolizing cytochrome 
P450 enzymes is also a popular method in ADMET prediction (Güner and 
Bowen 2013, Tao et al. 2015). 

Pan assay interference compounds (PAINS) appear as frequent hitters (or 
promiscuous compounds) in many different biochemical assays (Baell and 
Holloway 2010). PAINS interfere assays in multiple ways. For example, some 
PAINS compounds are fluorescent or strongly colored and may give a positive 
signal in an assay even without protein. Other compounds may contain 
residues of metals used in the synthesis of molecules or as reagents in assays 
giving rise to false signals. Other PAINS may alter protein function or interfere 
with proteins chemically without localizing specifically with the binding site 
Often PAINS also interact with many other proteins than the intended target 
(Baell and Holloway 2010, Baell and Walters 2014, Hu and Bajorath 2014, 
Dahlin et al. 2015). PAINS behavior is related to substructural features that are 
not identified by filters commonly used to exclude reactive compounds (Hu 
and Bajorath 2014, Dahlin et al. 2015). In commercially available chemical 
collections that are typically used as academic screening libraries 4.6–11.6% of 
compounds are problematic (Baell and Holloway 2010). For example, when all 
compounds from ChEMBL database with direct interactions against human 
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single protein targets at the highest confidence level with potency measurement 
types Ki or IC50 (activity unit nM accepted and approximate or verbal potency 
values discarded) were studied, 3.6% of the compounds contain PAINS 
substructures (Hu and Bajorath 2014). For comparison, for all compounds in 
ChEMBL with interactions against any target the corresponding percentage is 
9.8 (Hu and Bajorath 2014). Although PAINS usually are a poor starting point 
for medicinal chemistry, some of these compound may interact with a protein 
in a specific drug-like way, and thus could be optimized through medicinal 
chemistry (Baell and Holloway 2010, Baell and Walters 2014). 

 



 

 

3 AIMS OF THE STUDY 

A wide variety of different computational molecular modeling methods exists. 
Methods differ in their application area, working principles, and usability, 
having both strengths and weaknesses. In this study, several computational 
methods are compared for their ability to identify active molecules and predict 
binding affinities in order to assess their usability for VS and protein-ligand 
interaction studies. The study also contributes to the understanding of the 
relative advantages and limitations of these methods.  



 

 

4 METHODS 

The methods used in the original publications that comprise this thesis are 
summarized in Table 6. The most important methods are briefly discussed in 
this chapter. Detailed explanations can be found in the original publications. 

TABLE 6 Summary of the methods. 

Method Publication 
  

MOLECULAR DATABASES  
DUD I, II, III 
DUD-E III 
ChEMBL II, IV, V 
SPECS II 
Easy-to-synthesize II 
PDB I, II, III, IV, V, VI 
NEGATIVE IMAGE METHODS  
NIB VOIDOO/FLOOD I, II 
Panther III 
MOLECULAR DOCKING  
GLIDE docking I, II, V 
PLANTS docking II, V 
GOLD docking IV, VI 
MOLECULAR DYNAMICS AND BINDING FREE ENERGIES  
MD SANDER (in AMBER 10) I, IV 
MD NAMD II, VI 
MMGBSA/MMPBSA (in AMBER 10)  I, IV 
SIE IV 
Prime MMGBSA V 
OTHER METHODS  
3D similarity searching I, II, III, IV 
PHASE pharmacophore and 3D-QSAR II, V 
VS performance evaluation (ROC-AUC, enrichment factor) I, II, III, IV 
EXPERIMENTAL METHODS  
Fluorescence polarization II 

Organic synthesis (performed by collaborators) II 
SMase assay (performed by collaborators) VI 
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4.1 Molecular databases 

Active and decoy molecules in the directory of useful decoys (DUD) (Huang et 
al. 2006) (I, II, III) and the Database of Useful Decoys: Enhanced (DUD-E) 
(Mysinger et al. 2012) (III) were used to test and validate the VS methods. DUD 
is extensively used to benchmark VS protocols, especially molecular docking 
programs. DUD contains 40 protein targets. The decoys in DUD are selected 
from the ZINC database (Irwin and Shoichet 2005) based on their 
physicochemical similarity and topological dissimilarity to active ligands. The 
decoys are assumed inactive, but they may have not been experimentally tested. 

DUD-E is an upgraded and rebuilt version of the DUD database. In 
DUD-E, the number of protein targets has been increased to 102. As in DUD, in 
DUD-E, the decoy molecules are selected from ZINC, and they have similar 
physicochemical properties but dissimilar topology compared to the active 
ligands. Distinct from DUD, in DUD-E, there are 50 decoys for each active 
ligand, whereas in DUD the corresponding number is 36 decoys. Hence, DUD-E 
should offer more diverse, less biased, and more challenging molecule sets for 
benchmarking (Mysinger et al. 2012). 

Molecules with known, experimentally measured activities were retrieved 
from the ChEMBL database (Bellis et al. 2011) (II, IV, V). The compounds 
included in ChEMBL are primarily extracted from the medicinal chemistry 
literature, and they therefore usually are drug-like or lead-like small molecules 
with full experimental details. To ensure the homogeneity of the experimental 
data, active molecules are chosen, if possible, from a single research article, or in 
some cases from a limited number of research articles when a wider variety of 
the molecules is required. 

The SPECS (Specs, The Netherlands, www.specs.net) (II) database is a 
commercial, small molecule database of screening compounds. SPECS library 
compounds exhibit the structural characteristics of a biologically active 
compound, and they meet the criteria of drug-like compounds. Prior to 
screening, the SPECS database was filtered according to Lipinski's rule of five, 
which was complemented by allowing the maximum of six rotatable bonds. 

An in-house database of easy-to-synthesize coumarin derivatives (II) 
contains 75 compounds which have been synthesized for experimental testing. 
The idea is that the compound collection consists of molecules that are 
synthesizable from cheap starting materials with one step synthesis, excluding 
possible protecting groups, performed with microwave-assisted organic 
synthesis in few minutes. 

Protein crystal structures were acquired from the Protein Data Bank (PDB) 
(Berman et al. 2000) (I, II, III, IV, V, VI). PDB is a crystallographic database that 
contains the 3D structural data of large biological molecules, such as proteins 
and nucleic acids. When crystal structures were selected for the studies presented 
here, special attention was paid to the resolution of the structure and the bound 
ligand molecules that affect protein and ligand-binding area conformation. 
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4.2 Negative image methods 

Two slightly different negative image methods were utilized: NIB 
VOIDOO/FLOOD models and Panther models. 

4.2.1 NIB VOIDOO/FLOOD (I, II) 

In our earlier studies, we used NIB VOIDOO/FLOOD models of the ligand-
binding site of the protein target. The creation of NIB models relied on 
VOIDOO/FLOOD (Kleywegt and Jones 1994). The VOIDOO program was 
originally designed for grid-based cavity searching and cavity volume analysis, 
mainly for crystallographic purposes. The FLOOD program is used to fill the 
found cavities with solvent molecules or selected atoms.   

In the model creation, the solvent accessible surface area probe in 
VOIDOO was modified so that the allowed area within the ligand-binding site 
is closer to polar and charged amino acids but slightly further away from the 
hydrophobic amino acids. This goal was achieved by decreasing the van der 
Waals radius of electronegative atoms oxygen and nitrogen from 1.6 Å to 1.2 Å 
and from 1.75 Å to 1.2 Å, respectively, and increasing the radius of carbon from 
1.85 Å to 2.25 Å. Atom-centered MMFF94 charges (Halgren 1996) were added to 
the amino acids in the ligand-binding area. The charges within 2.7 Å distance 
from each model point were averaged, and the opposite charge was added to 
the corresponding model point. Protein flexibility was taken into account by 
utilizing several protein crystal structures or by taking snapshots from MD 
simulations. 

4.2.2 Panther (III) 

Based on similar idea as NIB VOIDOO/FLOOD models, a novel Panther 
algorithm was developed. Panther can be used for cavity searching, cavity 
volume analysis, and filling the cavities with chosen molecules as 
VOIDOO/FLOOD. However, this algorithm was designed mainly for accurate 
ligand-binding area recognition, determination, and filling the cavities to 
produce models that are better suited to VS. In Panther, the parameters can be 
adjusted to influence the cavity search process systematically and the model can 
be fine-tuned to accommodate the features of the ligand-binding site accurately. 
Panther is discussed more thoroughly in e.g. section 5.2. 
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4.3 Molecular docking  

4.3.1 GLIDE (I, II, V) 

The Protein Preparation Wizard in Maestro (Schrödinger LLC, New York, NY) 
was used to prepare the protein crystal structures for docking. The receptor 
grid used for docking was generated by GLIDE. GLIDE standard precision 
(I, II, V) and extra precision (II) modes were used. The scoring function of 
GLIDE, the GScore, is the following: 

 
GScore = 0.065*vdW + 0.130*Coul + Lipo + Hbond + Metal + BuryP + RotB + Site 

(I, II: GLIDE 5.5 and 5.7, respectively) 
 

GScore = 0.05*vdW + 0.15*Coul + Lipo + Hbond + Metal + Rewards + RotB + Site 
(V: GLIDE 5.9) 

 
where vdW is van der Waals energy, Coul is coulomb energy, and Lipo is a 
lipophilic term, which is a pairwise term in standard precision docking but is 
derived from the hydrophobic grid potential for extra precision docking. HBond 
is hydrogen-bonding term, Metal is metal-binding term, RotB is the penalty for 
freezing rotatable bonds, and Site rewards polar interactions in the active site. 
BuryP (in the former equation) is the penalty for buried polar groups whereas 
Rewards (in the latter equation) rewards and penalizes various features, such as 
buried polar groups, hydrophobic enclosure, correlated hydrogen bonds, amide 
twists, and so on, covering all terms except those explicitly mentioned. 

4.3.2 PLANTS (II, V) 

For PLANTS docking (version 1.2), protein structures prepared with the Protein 
Preparation Wizard in Maestro (Schrödinger LLC, New York, NY) for GLIDE 
docking were used. In PLANTS docking PLANTSCHEMPLP scoring was used with 
default parameters. PLANTSCHEMPLP is an empirical fitness function optimized 
for pose prediction. Its simplified form is the following: 
 

PLANTSCHEMPLP = fitnessPLP -(fchem-hb + fchem-cho + fchem-met) 
 

where the piecewise linear potential (fitnessPLP) is used to model the steric 
complementarity between the protein and the ligand. For the distance- and 
angle-dependent hydrogen and metal bonding, terms from ChemScore scoring 
are considered (fchem-hb, fchem-cho, fchem-met). For detailed information about 
PLANTSCHEMPLP scoring, see (Korb et al. 2009).  
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4.3.3 GOLD (IV, VI) 

For GOLD docking, hydrogen atoms were added to the protein structures using 
TLEAP in ANTECHAMBER 1.27 (Wang et al. 2005). The GoldScore fitness 
function is the original and default scoring function provided with GOLD in 
versions 5.0 and earlier (GOLD 4.1 in IV; GOLD 5.0 in VI). The GoldScore fitness 
function is the following: 

 
GoldScore = S(hb_ext) + 1.375*S(vdW_ext) + S(hb_int) + S(vdW_int) 

 
where S(hb_ext) is the protein-ligand hydrogen bonding score (external), 
S(vdW_ext) is the protein-ligand van der Waals score (external), S(hb_int) is the 
score of intramolecular hydrogen bonding in the ligand (internal), and 
S(vdW_int) is the score of intramolecular straining in the ligand (internal). The 
multiplication of the external van der Waals score by a factor of 1.375 yields an 
empirical correction that encourages protein-ligand hydrophobic interactions. 
Internal hydrogen bonding in the ligand is an optional term which was not 
taken into account in the scoring. 

4.4 Molecular dynamics simulations 

4.4.1 SANDER (I, IV) 

In articles I and IV, MD simulations were used to create protein-ligand complex 
conformers for binding free energy calculations. For the MD simulations, the 
starting conformers were generated using the similarity searching method, 
SHAEP (I, IV), GLIDE docking (I), and GOLD docking (IV). The charges for the 
ligands were derived from AM1-BCC (Jakalian et al. 2000) available in 
ANTECHAMBER. TLEAP in ANTECHAMBER (Wang et al. 2005) was used to 
create the force field parameters for the protein (ff03, Duan et al. 2003) and the 
ligand (gaff, Wang et al. 2004), add hydrogens, and solvate the protein-ligand 
complex with a rectangular box of transferable intermolecular potential three-
point water molecules (TIP3P3, Åqvist 1990) 14 Å in all directions.  

The MD simulations were run with the SANDER algorithm distributed in 
the AMBER 10 package (Case et al. 2008). The system was first minimized using 
the conjugate-gradient method for 1000 steps without restraints. This was 
followed by an equilibration step at constant volume by allowing the system to 
heat from 100 K to 300 K for 1000 steps with NMR restraints. The production 
simulation with a 2 fs time step was run without restraints for 20,000 steps 
(simulation time 40 ps in I) or 256,000 steps (simulation time 512 ps in IV) at a 
constant pressure controlled by isotropic position scaling. The temperature was 
maintained with the Berendsen thermostat (Berendsen et al. 1984). Electrostatics 
were treated with the Particle-Mesh Ewald (PME) method (Darden et al. 1993, 
Petersen 1995), and a cutoff value of 12 Å was employed for non-bonded 
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interactions. The equilibration step and the production simulation were run 
under periodic boundary conditions. The SHAKE algorithm (Ryckaert et al. 
1977) was used to restrain bonds involving hydrogen atoms. 

4.4.2 NAMD (II, VI) 

In article II, a ligand-free protein structure was simulated to include protein 
flexibility for NIB VOIDOO/FLOOD modeling. In article VI, MD simulations 
were used to study the binding properties of ligand analogs to their target 
protein. TLEAP in ANTECHAMBER (Wang et al. 2005) was used to create the 
force field parameters for the protein (II, VI) (ff03, Duan et al. 2003) and for the 
ligand (VI) (gaff, Wang et al. 2004), to add hydrogens, and solvate the protein-
ligand complex with a rectangular box of transferable intermolecular potential 
three-point water molecules  (TIP3P3, Åqvist 1990) 13 Å in all directions. 

Energy minimizations and MD simulations were performed using 
NAMD 2.6 (Phillips et al. 2005). First, the water molecules and amino acid side 
chains were minimized with a conjugate gradient algorithm for 15,000 steps, 
while the alpha carbons were kept in place with the harmonic force of 
5 kcal/(mol*Å2). Second, 15,000 step minimization was performed without 
constraints.  In the third phase, the simulation was run for 360 ps with a 2.0 fs 
time step at a constant temperature (300 K) and pressure (1 atm). The water 
molecules and amino acid side chains were allowed to move, while the alpha 
carbons were restrained as in the first energy minimization step. Finally, in the 
fourth step, the simulation was performed for 2.4 ns with a 2.0 fs time step (II) 
or for 7.2 ns with a 1.0 fs time step (VI) at a constant temperature (300 K) and a 
constant pressure (1 atm) with the Langevin-Piston method. In the MD 
simulations, a cutoff value of 12 Å was used for the van der Waals interactions, 
and the electrostatics were treated with the Particle Mesh Ewald (PME) method 
(Darden et al. 1993, Petersen 1995). The simulations were performed under 
periodic boundary conditions.  

4.5 Binding free energy calculations 

4.5.1 MMGBSA and MMPBSA (I, IV) 

In MMGBSA and MMPBSA, the binding free energies ( Gbind) can be estimated 
according to the free energies of three averaged terms for the ligand, the 
receptor, and the complex over a set of MD snapshots by using the following 
equation: 

 
Gbind = Gcomp - Grec - Glig 

 
where comp is complex, rec is receptor, and lig is ligand. The free energy term 
for each of the reactants is estimated by using the following equation: 
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G = EMM + Gsolv - TSsolute 

 
where EMM is the molecular mechanics contribution in vacuum consisting of the 
sum of electrostatics, the internal, and the van der Waals energies; Gsolv is the 
contribution of solvation free energies as the sum of polar and nonpolar 
solvation free energies; T is the temperature; and Ssolute is the solute entropy. 

The polar solvation energies were calculated with the GB and PB 
approaches implemented in AMBER 10 (Case et al. 2008). In article II, the GB 
model parameters developed by Tsui and Case (IGB1, Tsui and Case 2000) were 
used. In article IV, three different GB models available in AMBER 10 were 
tested: IGB1, and two GB models developed by Onufriev and co-workers (IGB2 
and IGB5, Onufriev et al. 2004). 

The atomic cavity radii and charges were taken from the corresponding 
MD topology files. The snapshots were extracted at either 0.4 ps intervals 
(yielding 100 structures in I) or 4 ps intervals (yielding 128 structures in IV). The 
dielectric constants of 1 and 80 were used for the interior and the exterior of the 
molecules, respectively. The hydrophobic contribution to the solvation free 
energy was estimated by calculating the solvent accessible surface area using 
Molsurf (Connolly 1983) with a probe radius of 1.4 Å. The surface tension 
constant  was set to 0.0072 kcal/mol/Å2. The estimation of entropy is usually 
done with a normal mode analysis of the vibration frequencies, but because of 
the high computational cost of the analysis, the effect of entropy was neglected 
in the calculations. 

4.5.2 SIE (IV) 

The SIE method (Naïm et al. 2007) is analogous to MMGBSA and MMPBSA. In 
the SIE calculations (IV), 128 extracted MD snapshots (with 4 ps intervals) were 
used. SIE calculations can be performed using the software SIETRAJ, which 
employs the following equation: 

  
 

 
where  and  are the intermolecular Coulomb and van der Waals 
interaction energies in the bound state, respectively.  is the electrostatic 
contribution of the solvation free energy to binding. The  term is the change 
in molecular surface area upon binding. The coefficients  (AMBER van der 
Waals radii linear scaling coefficient), Din (solute internal dielectric constant),  
(fitting coefficient),  (molecular surface area linear scaling coefficient), and 
fitting constant C were optimized with the set of 99 protein-ligand complexes 
(Naïm et al. 2007). The optimized values are  = 1.1, Din = 2.25,  = 0.1048,  = 
0.0129 kcal/mol/Å2, and C = -2.89 kcal/mol. 
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4.5.3 Prime MMGBSA (V) 

The Prime MMGBSA can be used to calculate the ligand-binding energies for 
protein-ligand complexes. Prime is part of the Schrödinger Maestro package 
(Schrödinger, LLC, New York, NY). For Prime MMGBSA, the starting 
conformers were generated by GLIDE docking. The default settings in Prime 
version 3.0 were used. 

Prime MMGBSA with the VSGB-2.0 solvent model has several empirical 
corrections (Li et al. 2011). For example VSGB-2.0 includes further terms to 
model physics-based empirical corrections for modeling the directionality of 
hydrogen bonding interactions, and pi stacking interactions. A special term is 
used to account for the internal hydrogen bonds in protein structures.  

4.6 3D similarity searching (I, II, III, IV) 

SHAEP (Vainio et al. 2009) was used in the similarity searching. SHAEP can 
perform similarity comparisons based on either only the shape of the molecules 
(onlyshape option) or by comparing both the shape and the electrostatics of the 
molecules (the default option). In addition, the weighting of shape and 
electrostatics can be set (espweight option). 

4.7 Pharmacophore modeling and 3D-QSAR (II, V) 

Pharmacophore models with the 3D-QSAR option were built in the PHASE 
module version 3.3 (II) or version 3.5 (V) of the Schrödinger software 
(Schrödinger, LLC, New York, NY). The PHASE program is suitable for 
structure alignment, pharmacophore modeling, activity prediction, and 3D 
database searching. PHASE can use pre-created and pre-aligned conformers, or 
it can perform conformational sampling prior to model generation and align 
newly created conformers (II, V). PHASE identifies common pharmacophore 
hypotheses that represent the mutual characteristics of 3D ligands, which are 
important for binding, by using a tree-based partitioning technique that groups 
similar pharmacophores. Pharmacophore hypotheses can then be combined 
with known activity data to create a 3D-QSAR model (II, V) that recognizes the 
features of molecules that govern activity (Dixon et al. 2006a, Dixon et al. 2006b). 
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4.8 Metrics for method performance evaluation (I, II, III, IV) 

The performance efficiency of the VS method can be graphically illustrated by 
plotting the true positive rate of active ligands (y-axis) against the false positive 
rate of decoy molecules (x-axis) in a receiver operating characteristics (ROC) 
curve (Metz 1978, Hanley and McNeil 1982). Traditional ROC curves are drawn 
on a linear scale. However, when the beginning of the curve, that is, the early 
enrichment of active molecules, is highlighted, the curve can be drawn on a 
logarithmic scale. The numerical summary of the ROC curve is given as an area 
under the curve (AUC) value. AUC values denote the probability of a randomly 
selected molecule to be an active compound. Completely random sampling 
yields an AUC value of 0.5, whereas a perfect VS method would produce an 
AUC value of 1.0. 

The early enrichment factors are calculated in two different ways: the ratio 
of ligands to molecules in a subset (n) divided by ratio of all ligands and all 
molecules (EFn%), or as a true positive rate when 1% of the decoy molecules 
have been found (EF1%DEC). The following formulas are used: 

 
 

EFn%=(Ligsn%/Molsn%)/(Ligsall/Molsall) 
 

EF1%DEC=(Ligs1%DEC/Ligsall)*100 
   
where Ligsn%, Molsn%, Ligsall and Molsall are the number of the ligands in the top 
n% of the screened compounds, the number of the molecules in the top n% of 
the screened compounds, the total number of the screened ligands, and the total 
number of the screened molecules, respectively. Ligs1%dec is the number of 
ligands when 1% of the decoy molecules have been found and Ligsall is the total 
number of the screened ligands. 

4.9 Visualization 

Figures presenting protein structures or protein-ligand interactions were 
generated by using BODIL v. 0.81 (Lehtonen et al. 2004), MOLSCRIPT v. 2.1.2 
(Kraulis 1991), and RASTER3D (Merritt and Bacon 1997). 

 
 

 

 
 
 



 

 

5 RESULTS 

5.1 Virtual screening of phosphodiesterase type 5 inhibitors (I) 

NIB modeling had been previously tested for shape-based screening (Virtanen 
and Pentikäinen 2010). Here, cyclic nucleotide phosphodiesterase type 5 (PDE5) 
was used as model target for VS using NIB VOIDOO/FLOOD models that were 
seasoned with electrostatic properties in addition to shape. Furthermore, the 
effect of the added electrostatics was also studied in an ensemble of nuclear 
hormone receptors. The charges were averaged from the amino acids 
surrounding the ligand-binding area, and then the opposite charges were 
added to the corresponding model points. The study used two PDE5 crystal 
structures: one was crystallized with tadalafil and the other was crystallized 
with sildenafil. The studies were conducted either by utilizing only one of the 
structures or by combining the results. For the validation PDE5-specific active 
ligands from the DUD database and two decoy molecule sets were used: PDE5-
specific decoy molecules from DUD (referred to here as PDE5 decoys); and 
other active DUD ligands were used as decoy molecules for PDE5 (referred to 
here as PDE5/DUD decoys). In addition, the effect of post-processing on the 
early enrichment of the VS results was explored with MD/MMGBSA. 

5.1.1 Shape-based screening 

Ligand shape-based screening. Neither PDE5 inhibitor, tadalafil nor sildenafil 
(I, Fig. 2), could efficiently identify the active molecules in the validation test 
sets. The AUC values of the sildenafil-based searches with both decoy sets were 
below 0.50 (I, Table 1), which means that random picking identifies a greater 
number of active molecules. For the tadalafil-based searches, the AUC values 
were slightly better (I, Table 1: 0.67 ± 0.04 for the PDE5 decoys and 0.58 ± 0.04 
for the PDE5/DUD decoys). Combining the ligand structure data on sildenafil 
and tadalafil marginally weakened the results of both decoy sets (I, Table 1: 0.64 
± 0.04 for the PDE5 decoys, and 0.57 ± 0.04 for the PDE5/DUD decoys). 
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NIB shape-based screening. NIB VOIDOO/FLOOD models were created for 
both PDE5 crystal structures. The smaller NIB solvation model (NIB-SM1) was 
based on tadalafil-bound crystal structure, whereas the larger NIB model (NIB-
SM2) utilized a sildenafil-bound crystal structure (I, Fig. 2). Shape comparison 
of the NIB VOIDOO/FLOOD models produced higher AUC values than those 
for the ligand shape-based screening (I, Table 1). The smaller NIB-SM1 
produced AUC values that were moderately higher than those for the larger 
NIB-SM2 (I, Table 1: 0.72 ± 0.04 vs. 0.65 ± 0.04 for PDE5 decoys and 0.75 ± 0.04 vs. 
0.71 ± 0.03 for PDE5/DUD decoys). Unlike the ligand shape-based screening, 
the combinatory usage of the NIB VOIDOO/FLOOD models did not weaken 
the AUC values (I, Table 1), but it identified a greater number active molecules 
in the later phases (I, Tables 2 and 3). 

5.1.2 Effect of electrostatics  

Docking. The advantage of docking is that it takes into consideration both the 
shape and the electrostatics within the target protein ligand-binding area. The 
GLIDE docking produced weaker AUCs when the tadalafil-PDE5 crystal 
structure was utilized instead of sildenafil-bound protein structure (I, Table 2: 
0.68 ± 0.04 vs. 0.78 ± 0.04 for the PDE5 decoys and 0.59 ± 0.04 vs. 0.78 ± 0.04 for 
the PDE5/DUD decoys). The usage of both crystal structures in docking 
produced the highest AUC value 0.80 ± 0.03 (I, Table 2: PDE5 decoys). The 
docking showed good results for both decoy sets when the number of active 
hits (I, Table 3) and the level of enrichment (I, Table 4) were inspected.  

Ligand-based screening. The addition of electrostatic information notably 
improved the ligand-based VS in the tadalafil-based or the combined search 
using the PDE5/DUD decoys (I, Table 1 vs. Table 2; Tables 3 and 4). However, 
the electrostatics enhanced only marginally the results of the PDE5-specific 
decoys (I, Table 1 vs. Table 2). The sildenafil-based searches with electrostatics 
remained ineffective in both decoy sets (I, Table 2). Using both PDE5 inhibitors 
in combination did not improve the overall results of the VS (I, Table 2). 

NIB screening. The addition of electrostatics improved the AUC values of 
the NIB screening with the tadalafil-like NIB-SM1 and the combined NIB model 
search with the PDE5/DUD decoys (I, Table 1 vs. Table 2). However, the 
addition of electrostatics marginally decreased the results of both solvation 
models with the PDE5-specific decoys and the NIB-SM2 results with the 
PDE5/DUD decoys (I, Table 1 vs. Table 2). The usage of both PDE5 inhibitors in 
combination did not improve the overall results of the VS (I, Table 2). Both the 
number of active hits and the enrichment in later percentages benefitted from 
the addition of electrostatics, whereas the early results were actually weakened 
by the addition of electrostatics (I, Tables 3 and 4).  

Overall, according to the AUC values, NIB VOIDOO/FLOOD and the 
ligand-based screening benefitted from the added electrostatic information, 
especially with the PDE5/DUD decoy set (I, Table 2). Different weightings of 
the shape and the electrostatics were tested, but the best results were achieved 
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when they contributed equally (data not shown). Docking achieved the highest 
enrichments and identified the most active molecules (I, Tables 3 and 4).  

Effect of electrostatics on other targets. The effect of the addition of 
electrostatic information was also studied in targets with less polar ligand-
binding sites than that of the PDE5. These targets have been tested previously 
for shape-based NIB VOIDOO/FLOOD modeling (Virtanen and Pentikäinen 
2010). The docking results showed that it was somewhat less efficient than the 
ligand-based and NIB screening were (I, Table 6). However, with the estrogen 
receptor  (ER ) antagonist conformer, the docking produced high early 
enrichments (I, Table 6). The addition of electrostatics in the ligand-based VS 
improved the results considerably in all studied cases compared to the ligand 
shape-based results (I, Table 6). In general, the addition of electrostatic 
information to the NIB VOIDOO/FLOOD models produced either comparable 
or slightly better results than the models without charges; however, in some 
cases, the early enrichment was substantially weakened (I, Table 6). 

5.1.3 Post-processing of the virtual screening results 

The top 5% of the VS results were post-processed with MD/MMGBSA to 
improve the early enrichment further. Short (40 ps) MD simulations were run to 
optimize ligand poses at the ligand-binding site. The re-ranking according to 
the favorability of the interactions within the protein-ligand complex was 
evaluated using the MMGBSA calculations. 

Rescoring of the docking-based screening. The docking with GLIDE produced 
good AUC values and very early enrichments. The post-processing with 
MD/MMGBSA did not improve the AUC values or the early enrichments of 
docking screening (I, Tables 2 and 4). Actually, after the post-processing the 
early enrichment was weakened considerably in both decoy sets (I, Table 4).  

Rescoring of the ligand-based screening. Although the AUC values did not 
indicate any change in the performance of the ligand-based screening when its 
results were post-processed with MD/MMGBSA (I, Table 2), the relative 
number of the active hits (I, Table 3) and the early enrichment (I, Table 4) 
improved nicely. The improvement can be visually inspected in the top 5% of 
the ROC curves (I, Fig. 3). In particular, the effect of post-processing is seen in a 
20-fold enrichment in the top 0.5% of the ranked results of the PDE5/DUD 
decoy set (I, Table 4). Improvement was not as notable in the PDE5 decoy set.  

Rescoring of the NIB screening. Similar to ligand-based screening, the AUC 
values in the results for the NIB VOIDOO/FLOOD did not show improvement 
after post-processing with MD/MMGBSA (I, Table 2). However, the 
improvement is visible in the top 5% of the ROC curves (I, Fig. 3), in the 
number of active hits (I, Table 3), and in the top enrichment (I, Table 4). The 
highest enrichments were 39-fold in the top 0.5% (i.e., 20% of ligands) and 24-
fold in the top 1% of the PDE5/DUD decoys (I, Table 4). 

Overall, it can be concluded that ligand-based and NIB VOIDOO/FLOOD 
screening benefitted from post-processing with MD/MMGBSA. However, the 
post-processing was not profitable in the docking process. 
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5.2 Virtual screening and identification of selective estrogen 
receptor modulators (II) 

In this study, the effectiveness and feasibility of ligand-based common 
pharmacophore hypothesis, followed by 3D-QSAR and the structure-based 
methods, molecular docking and NIB screening, were compared. ER , a widely 
applied drug discovery target, was used as a model structure. Validation of the 
methods relied on two datasets (DS): DS1 and DS2. DS1 contains 101 chemically 
diverse selective estrogen receptor modulators (SERMs) with ER  inhibitory 
activity IC50 values ranging from 0.2 nM to 10,000 nM retrieved from the 
ChEMBL database. DS2 consists of ER  antagonists and corresponding decoy 
molecules from the DUD database. In the study, a workflow for rapid 
identification of SERMs was suggested. The workflow was applied to the 
screening of the commercial Specs molecule database and our own compound 
collection of easy-to-synthesize molecules. The top-ranked compounds then 
were tested experimentally. 

5.2.1 Efficiency of pharmacophore modeling and 3D-QSAR  

The best pharmacophore hypothesis followed by building of 3D-QSAR model 
(II, Fig. 1: APRRR-223) was selected based on various statistical grounds 
(R2 = 0.923, standard deviation SD = 0.317, Fischer significance F = 154.7, chance 
correlation P = 4.47×10-44). The survival numbers of active and inactive ligands 
in the best model were 43.144 and 42.517, respectively. When DS1 was studied, 
the selected model identified 61 of the most active ligands from 101 ligands. 
However, two active ligands with pIC50 > 9 (ChEMBL241301 and 
ChEMBL391910) were not identified.  

The 3D-QSAR model was validated by randomized test set from DS1 
molecules. The validation statistics (Q2 = 0.822, RMSE = 0.431 and R2 = 0.870) 
showed the accuracy of the model in predicting the ER  activity in the test set. 
The 3D-QSAR model also was tested using DS2. Compulsory matching of all 
five pharmacophore features in the hypothesis showed that from 39 active 
ligands and 1395 decoys, the hypothesis recognized 16 of the most active 
antagonists without selecting any decoys. When the utilization of only four 
pharmacophoric features was required, all 39 active ligands were recognized, 
but also more than 600 decoys (43%) were identified. These results showed that 
all five chemical features included in APRRR-223 hypothesis are important.  

According to the validation, the pharmacophore and 3D-QSAR model 
preferentially selected only the highly active ligands from both DS1 and DS2, 
which indicates that it could be used for the identification of SERMs from a 
database in the VS study. 
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5.2.2 Efficiency of molecular docking 

Two docking methods were used: GLIDE and PLANTS. Both docking methods 
employed the original protein crystal structure (PDB: 3ERT). In addition, a 
slightly relaxed protein structure used in NIB VOIDOO/FLOOD modeling (see 
below) was also tested in docking, but because the minimization of the protein 
did not improve the docking results, it is not discussed here.  

The validation of the docking methods was done by studying the 
correlation between the ER  activity of DS1 ligands and the corresponding 
docking scores (II, Fig. 2). The faster GLIDE SP docking was considerably better 
than the extensive GLIDE XP docking (R2 = 0.638 vs. R2 = 0.230, respectively). In 
the case of the PLANTS docking with CHEMPLP scoring, the regression model 
yielded the correlation coefficient R2 = 0.639. To improve the accuracy of the 
docking, a hybrid regression model was developed by utilizing the normalized 
docking scores of both GLIDE SP and PLANTS CHEMPLP, which enhanced the 
correlation coefficient to R2 = 0.787. The visual inspection of the top-ranked 
poses of GLIDE SP and PLANTS CHEMPLP showed reasonable binding modes. 

In addition, the ability of the docking methods to separate active 
molecules from inactive molecules was studied in both the DS1 and DS2 
molecule sets and then evaluated with ROC curves and AUC values (II, Fig. S2). 
The AUC values showed better performance in GLIDE SP docking than in 
PLANTS CHEMPLP docking in both DS1 and DS2 (II, Table 1: 0.91 ± 0.01 vs. 
0.65 ± 0.01 for DS1 and 0.91 ± 0.01 vs. 0.73 ± 0.01 for DS2). The hybrid docking 
model yielded AUC values of 0.79 ± 0.01 for DS1 and 0.86 ± 0.01 for DS2. 

Overall, the GLIDE SP docking identified active molecules efficiently in 
DS1 containing larger number of SERMs and in DS2 with a limited amount of 
antagonists. Even though the efficiency of separating the active ligands over 
decoys with PLANTS CHEMPLP was slightly lower than with GLIDE SP, the 
results of PLANTS showed improvement in the separation of lower activity 
molecules from the datasets when it was used in combination with GLIDE. 
Therefore, the hybrid docking model showed a balanced level of screening 
performance in separating the active molecules from decoys in both DS1 and 
DS2.  

5.2.3 Efficiency of negative image-based screening 

Ligand-binding area flexibility was included in the NIB VOIDOO/FLOOD 
models by using protein conformers derived from MD simulation snapshots, 
which resulted in 21 models. All NIB VOIDOO/FLOOD models were screened 
against DS1 and DS2 by using SHAEP, which yielded AUC values ranging from 
0.01 to 0.97 in DS1 and from 0.38 to 0.85 in DS2. These results were obtained 
using the NIB VOIDOO/FLOOD search with the charge distance of 1.8 Å and 
an equal shape and electrostatic weighting of 50%. In addition, the binding 
poses of DS1 and DS2 ligands in various models were studied. The results 
suggested that model 1 (II, Fig. 3: a slightly relaxed crystal structure) was the 
most promising; thus, it was selected for further evaluation and optimization. 
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The experimentally most active compounds tend to have good balance in 
their electrostatic and shape contribution indicating that shape plays a crucial 
role in ligand binding but the electrostatic interactions lead to high affinity. The 
balance of the shape and electrostatics for the chosen NIB VOIDOO/FLOOD 
model 1 in VS was validated by varying the degree of electrostatic weighting 
from 0% to 100% at intervals of 10% (II, Table 1). These results clearly indicated 
that the shape alone or particularly low or high electrostatic weighting was not 
beneficial in effectively distinguishing active molecules from decoys. The most 
optimal electrostatic weighting was around 50% (II, Table 1 and Fig. S3). 

5.2.4 Identification of potential selective estrogen receptor modulators 

Using combination of four above presented methods screening identified no 
potential high affinity molecules (pIC50 > 7.0) from the pre-filtered commercial 
Specs molecule database containing about 100,000 drug-like molecules. 
However, if only both docking methods were considered, five potential 
molecules (II, Table 2) appeared. When these molecules were experimentally 
tested, only one (II, Table 2: molecule S4) showed activity (pIC50  6.6) within 
the concentration range of 0.0007 nM to 10 000 nM. Additionally, the developed 
workflow was used to screen and analyze the small virtual library of easy-to-
synthesize molecules. The experimental testing showed that the top five 
molecules from the virtual library had pIC50 values from 5.5 to 6.5 (II, Table 2). 

Based on the structural characteristics, the Specs molecule is likely an 
antagonist while the easy-to-synthesize molecules are agonists. Notably, the 
computational predictions of experimental activity were relatively accurate 
(II, Fig. 4). Also noteworthy is that among the presumably inactive decoy 
molecules, the workflow methods identified a highly active ligand (pIC50 = 8.0). 
Moreover, some interesting DUD decoy molecules were repeatedly identified, 
but unfortunately they are not commercially available and thus cannot be tested.  

5.3 Novel Panther method (III) 

Molecular docking is commonly used in protein structure-based VS. This study 
presents Panther, a novel, simple, fast, and efficient multipurpose docking tool. 
Similar to molecular docking, Panther utilizes structural information and 
requires a high-quality protein crystal structure. In Panther, the ligand-binding 
area of the protein is described as a simple atomistic shape-electrostatic model. 
Molecular databases can then be compared to the model by using the similarity 
search algorithm SHAEP (Vainio et al. 2009), which is used in ligand-based VS 
methods. In this study, the performance of Panther was evaluated by screening 
DUD and DUD-E datasets for nine protein targets that are familiar from our 
previous studies (Virtanen and Pentikäinen 2010, Niinivehmas et al. 2011). The 
results were also compared to previous results of the NIB VOIDOO/FLOOD 
screening and the results collected from the literature. 
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5.3.1 Generation of the Panther models 

To limit the search area, in the first phase, the approximate location of the 
binding cavity is defined by allocating point(s) in the presumed cavity. The 
protein and possible cofactor atoms then are divided into spherical sectors to 
select the amino acids lining the binding site (III, Fig. 1A). More than one center 
point can also be used to accommodate the various shapes of binding cavities. 
In this case, calculations are repeated for each of the used centers.  

For cavities on the protein surface, prominent shapes may be included in 
the amino acids lining the binding site even though they are not part of the 
binding pocket. To avoid this, only lining atoms with a defined radius (e.g. 4 Å) 
from other lining atoms are included. A similar problem may occur in protein 
structures containing multiple chains or subunits; therefore, only amino acids 
from the closest protein chain are routinely safe to use. If necessary, the amino 
acids lining the binding site can be either included or excluded by the user.  

When the lining of the ligand-binding site has been obtained, model atoms 
are placed around the polar/charged atoms at a specified angle, geometry (e.g. 
planar or tetrahedral), and distance of both the lining amino acids and the 
cofactors (III, Fig. 1B). Typically, the charges for the model atoms are defined as 
opposite the charge of the lining polar/charged atom, or they are taken from an 
additional input file (e.g. AMBER 12 force field charges). 

When hydrogen atoms are not included in the protein structure file, only 
one model that correctly describes the possible interactions of amino acids with 
hydroxyl groups cannot be defined. Similarly, if information about the 
protonation of histidines is lacking, all three alternative protonation states need 
to be considered. When the location of the hydrogen cannot be defined by 
studying the donors and acceptors in the environment, multiple alternative 
models are generated. If hydrogen atoms are present in the protein PDB-file, 
their positions are considered fixed and only one model is generated.  

Ligand binding pockets may include water molecules that are either 
critical for ligand binding or replaced by a ligand. Accordingly, the deletion or 
usage of such water molecules results in different cavity conformers which can 
be taken into account in the model creation. If a water molecule has hydrogen 
atoms in the PDB-file, the position of water molecule can be used as is. In 
addition, if two donors or acceptors are found within the hydrogen bonding 
distance within an acceptable angle, the water molecule can be taken into 
account. 

After the charged model points are defined, the cavity is filled with non-
charged filler atoms to represent the shape of the cavity. The filling can be grid-
based, or a face-centered cubic lattice method can be used. Model points 
overlapping the protein atoms or the created charged atoms or those located too 
far from the protein are discarded (III, Fig. 1). Finally, various exclusion options 
are applied to the model points to finalize the model. 



47 
 

 

5.3.2 Evaluation of the performance of Panther screening 

Shape and electrostatic contribution. In general, two Panther models for each of the 
nine protein targets were created (except one model was created for the 
mineralocorticoid receptor and three models were created for the ER ). In most 
cases, both models worked equally well, and thus the model selection was more 
or less insignificant. However, the performance of the ER  and glucocorticoid 
receptor models demonstrated the importance of the shape in ligand 
recognition by showing that because the molecules in datasets are varied, 
differently shaped models suit different screening molecules. There was also a 
slight difference in the performance of the PPAR  (peroxisome proliferator 
activated receptor gamma) model and the PDE5 model, which most likely is 
caused by variations in the electrostatic points in the models. In the Panther PR-
3kba model (a model based on a protein structure with PDB code 3KBA), one 
charge point clearly blocked another charge point. When this charge point was 
manually removed, and the root mean square deviation (RMSD) test was 
repeated, the results improved considerably. This finding indicates that 
although model building is quick and relatively accurate, the positioning and 
utilization of the electrostatic points is not trouble-free. Overall, these results 
showed the importance of both the shape and electrostatics in ligand binding.  

In addition, the weighting between the shape and the charge contribution 
is an important parameter in molecular overlay and similarity searches. 
However, the usefulness of the electrostatic component is target-protein specific, 
so protein targets with polar binding sites tend to benefit from the 
overweighting of electrostatics, whereas hydrophobic targets do not profit from 
it. In our previous study with PR, the AUC value increased notably (from 0.50 
to 0.77) when the electrostatic weighting was raised from 50% to 70% (Virtanen 
and Pentikäinen 2010). In Panther, almost the same levels of both the AUC 
value and the early enrichment were reached in the PR screening with 50% 
electrostatic weighting as achieved using 70% electrostatic weighting 
previously in NIB VOIDOO/FLOOD model. Similarly, when the electrostatic 
weighting in Panther was raised to 70%, the same improvement in AUC values 
occurred in the DUD screening. In addition, the binding of a small molecule to a 
protein is dependent on the protonation state of the molecule, which in turn 
depends on the solvent pH value (Shelley et al. 2007, Petukh et al. 2013, Sastry et 
al. 2013, Urbaczek et al. 2014). Thus, because protein-ligand recognition and 
binding are pH dependent, the preparation process of both the protein and the 
ligands is important (Shelley et al. 2007, Sastry et al. 2013, Urbaczek et al. 2014). 
In this study, low energy ligand conformers were created in pH 7.4 ± 0.0, which 
does not always cover protonation states sufficiently. For example, the original 
protonation state for the PDE5 ligands sildenafil and vardenafil was 
reproduced only when a one to two unit tolerance in pH was allowed.  

Comparison to NIB VOIDOO/FLOOD and methods from the literature. The 
novel Panther algorithm outperformed the previously used NIB 
VOIDOO/FLOOD approach, by producing either better or equal AUC values. 
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Overall, six of eleven Panther models with DUD screening led to either 
excellent (>0.9) or very good AUC values (0.9–0.8). Four models showed good 
AUC values (0.8–0.7), and one model showed a fair AUC value (0.7–0.6) 
(III, Table 2). When the early enrichments of NIB VOIDOO/FLOOD and 
Panther were compared, both performed better than the other in an equal 
number of cases (III, Table 3: four of eleven cases). However, the difference in 
enrichments was higher for benefit of Panther. In the novel Panther algorithm, 
model building is fast and rational and a much more flexible treatment of the 
protein structure is enabled than in the NIB VOIDOO/FLOOD. The downside 
is that the time required for the screening process increases slightly because the 
novel models are more precise and have more representative data points. 
Nevertheless, using a standard PC, the computational time required per ligand 
was only about 100 ms. 

Compared to Panther, traditional molecular docking methods are 
computationally demanding. When the DUD dataset was screened, eHITS 
achieved excellent AUC values in five of the ten cases tested (III, Table 2). FlexX 
and Panther also achieved excellent AUCs in several cases (III, Table 2). One 
disadvantage of Panther is the high dependence on the generated conformers 
that often is a compromise between a reasonable number of conformers and the 
increased computing time. Especially in very flexible molecule sets, the number 
of conformers sometimes may be too limited, which also limits the performance 
of Panther. The PDE5 results showed that the choice of protein structure (i.e. 
acknowledging flexibility) was highly important. Similarly, the importance of 
the protein structure selection was shown in cyclooxygenase 2, where small 
changes in the amino acid side chain positioning led to very different Panther 
models. In addition, the composition of the validation dataset is significant. For 
example, the ligands that are similar and easily separable from the decoys in the 
retinoid X receptor alpha DUD set, which makes it an unrepresentative 
benchmarking set. Hence, all the compared methods performed well in 
screening retinoid X receptor alpha revealing nothing of the differences 
between the methods. 

In the DUD-E screening with Panther, one of the nine tested models led to 
excellent AUC values. Five yielded good AUC values, and three achieved fair 
results (III, Table 4). When the DUD-E set was screened, the performance of 
Panther was superior to all the compared methods (three docking methods and 
MMGBSA) in five cases of nine (III, Table 4). In other cases, the AUC values of 
Panther were comparable to other methods. The average of the AUC values for 
DUD-E was 0.73, which was lower than the average result of 0.82 for DUD 
screening (III, Table 2 vs. Table 4). Because the DUD-E benchmarking set is 
more extensive and more challenging than DUD, the results achieved by the 
Panther can be considered good. However, all early enrichments in the DUD-E 
screening were rather poor (III, Table 5). When Panther was used in the DUD-E 
screening, the problem was that although the overall results were very good, 
the beginning of the VS was bad (III, Fig. 2). A suboptimal beginning in the 
screening is undesirable because when the screening procedure is applied to a 



49 
 

 

huge database, only the top ranked compounds usually are tested further. This 
shows that high AUC values do not automatically indicate good results. 

Reasonability of the docking poses. The size and the flexibility of the co-
crystallized ligands varied notably. When the ten best-ranked conformers for 18 
studied crystal ligands (four ligands had less than ten conformers) were taken 
into account, 69% of the poses had an RMSD < 2 Å and thus were considered 
correct. Of the poses, 14% had a reasonable RMSD  2 Å but  4 Å, and 17% had 
an RMSD > 4 Å (III, Fig. 3). Eleven of the 18 models repeated the crystal 
structure ligand pose very well, and the top ten poses were generally error free, 
including four rigid ligands with less than ten conformers. In fact, in two of the 
18 tested targets, the theoretically best RMSD of the generated conformers 
was > 2 Å; therefore, it was not possible to identify the correct pose in those 
targets. For all other targets, the theoretically best RMSD was < 1 Å. Although 
the original crystal structure ligand was a long and flexible acid molecule in 
three of the protein targets, which generally is difficult for both the conformer 
generation process and the crystal structure repeat, repeating the poses 
succeeded surprisingly well. Among the tested target structures were two 
flexible PDE5 ligands: sildenafil and vardenafil, whose binding orientation is 
more or less C-shaped. The somewhat symmetrical distribution of electrostatic 
points in the Panther model may guide conformers to flip by 180°. On the other 
hand, flexible ER  antagonist structures are T-shaped. In ER  Panther models, 
because the charged areas are clearly distinguishable, the positioning of the 
ligand conformers in the models was easier, and no bad poses existed among 
the top ten poses. 

5.4 Comparison of binding free energy calculation methods (IV) 

In this study, the performance of MMGBSA, MMPBSA, and SIE in VS were 
assessed. MMGBSA was calculated with the three GB models available in 
AMBER: IGB1 (Tsui and Case 2000), IGB2 (Onufriev et al. 2004) and IGB5 
(Onufriev et al. 2004). The VS efficiency of the methods was compared, the 
ability of the methods to predict the binding affinities was evaluated, and the 
effect of the length of the MD simulation on the results was determined. Five 
protein targets—aldose reductase 2 (ALR2), -lactamase (AmpC), human heat 
shock protein 90 (HSP90), phosphodiesterase type 5 (PDE5), and progesterone 
receptor (PR)—were chosen to represent variable ligand-binding areas. The 
DUD dataset and molecules from CHEMBL with known IC50 values for targets 
were used in the VS studies. The protein-ligand complexes were prepared by 
using two different methods: similarity superimposition of molecules with 
SHAEP onto crystal structure ligands; and molecular docking with GOLD. 
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5.4.1 Virtual screening efficiency 

ALR2. Overall, the VS results of both GOLD and SHAEP showed very low VS 
efficiency for ALR2 when the AUC values were considered. Nevertheless, the 
early enrichments for GOLD were rather good. The best results in VS were 
achieved by the GOLD-generated complexes treated with MMGBSA with IGB5 
parameters (IV, Table 2: 0.65 ± 0.07). In general, the GOLD-generated complexes 
produced better results than SHAEP generated structures. IGB1 and IGB2 did 
not succeed in VS with either GOLD- or SHAEP-generated complexes. 
MMPBSA and SIE performed equally although they were weaker than the 
results of the IGB5 in the GOLD-generated structures.  

AmpC. In AmpC, the VS efficiency with docking was really poor, but 
ligand-based VS with SHAEP performed considerably better, producing an 
AUC value of 0.76 ± 0.06 and the enrichment factors clearly higher compared to 
docking (EF1% = 17.9, EF5% = 6.6, EF10% = 3.8). All post-processing methods 
clearly improved the VS efficiency in terms of AUC values for the GOLD-
generated structures (IV, Table 3). Nevertheless, in general, the SHAEP-
generated complexes produced better results than the GOLD-generated 
structures. In both GOLD- and SHAEP-generated structures, the MMGBSA 
with the IGB5 parameters produced the highest AUC values (0.82 ± 0.04 and 
0.89 ± 0.03, respectively), as well as the highest enrichment factors.  

HSP90. The VS results for HSP90 with GOLD were equal to random 
picking, but SHAEP performed considerably better in terms of the AUC and the 
early enrichments. The post-processing of the structures generated by GOLD or 
SHAEP improved the AUC values only in the case of IGB5 (IV, Table 4). In all 
other methods, the VS efficiency decreased along the MD simulations. 
Nevertheless, SIE and IGB1 performed better in the early enrichment (IV, 
Table 4).  

PDE5. In VS with PDE5, the AUC values showed that docking performed 
better than SHAEP, although the early enrichment was better in SHAEP. IGB1 
and IGB2 performed comparably according to the AUC values of both GOLD- 
and SHAEP-generated structures producing also the highest early enrichments 
(IV, Table 5). In particular, the early enrichment benefitted from the usage of 
SHAEP to create the starting geometries. The results of the GOLD-generated 
complexes with MMPBSA and SIE were roughly comparable to the results of 
IGB2 and IGB2 in terms of AUC values and early enrichments. In SHAEP-
generated complexes, the results showed that the performance of MMPBSA and 
SIE was slightly weak. The MMGBSA with IGB5 parameters produced very 
poor results compared to the other tested methods. 

PR. The performance of both GOLD and SHAEP in VS with PR was poor. 
In the complexes generated with GOLD, all post-processing methods improved 
the results significantly (IV, Table 6). According to AUC values the best method 
was MMGBSA with IGB5 parameters; however, the early enrichment was 
rather poor. The AUC values produced by MMPBSA were nearly as good as 
those produced by the IGB5, but the early enrichment was clearly better. The 
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structures generated by SHAEP produced the highest AUC value for IGB5; 
however, in the early enrichments the improvement was visible only in 10%. 

Identification of highly active molecules. In addition, the ability of the 
methods to separate highly active molecules (pIC50  6) used in binding affinity 
predictions (see below) from the DUD molecules was investigated (IV, Table 13). 
For ALR2 there was only one highly active molecule, which was identified 
within the top 1% only when IGB5 and MMPBSA with the SHAEP generated 
structures were used (IV, Table 13). SIE and MMPBSA with the GOLD-
generated structures found the molecule in the top 5%. Other methods, except 
IGB2 with the GOLD-generated complex, found the molecule in the top 10%. 
The somewhat poor overall performance was unexpected because the protein 
crystal structure used in the studies was originally bound to the same inhibitor. 
For both HSP90 and PDE5, there were 11 highly active molecules. The results 
showed very poor efficiency in identifying the active molecules among the 
DUD molecules (IV, Table 13). For example, the MMGBSA methods could not 
identify any of the PDE5 molecules within the top 10%. For AmpC, there were 
13 highly active molecules. IGB1 and SIE with both GOLD- and SHAEP-
generated structures and MMPBSA with a GOLD-generated structure found 
one to two molecules within the top 1%, whereas other methods did not find 
any molecules within the top 1%. These methods found two to five of the active 
molecules in the top 5%. No significant change was observed when the top 10% 
was scrutinized. Altogether less than half of the molecules were identified. For 
PR, eight structures were highly active. IGB5 with both tested complex 
generation methods and SIE with the GOLD-generated complexes identified all 
the active molecules within the top 5% (IV, Table 13). Moreover, the number of 
identified active molecules in the top 1% was higher in these methods than in 
other methods; however, other methods achieved a comparable level in the top 
5%. Overall, the results showed that the identification of highly active 
molecules among the DUD molecules was unsuccessful, except for PR. 

5.4.2  Binding free energy calculations and experimental activity 

The applicability of the methods to predict the binding affinities of molecules 
with known IC50 values was evaluated. For each protein target, ligands were 
chosen from a single research article for data uniformity. 

ALR2. The ALR2 inhibitor set covered six structurally diverse molecules 
with a wide range of activities (IV, Table 1, Fig. S1). In general, the SHAEP-
generated complexes yielded better results compared to the GOLD-generated 
structures. Correlations with IGB1, IGB2, and MMPBSA were very good in both 
complex generation methods and in SIE with SHAEP-generated complexes 
(IV, Table 7). However, the best correlation, 0.94, was obtained by the GOLD-
generated complex with IGB2 parameters at 4 ps (IV, Table 7). Interestingly, the 
results of the complexes generated by GOLD worsened significantly during the 
512 ps simulation, whereas in the complexes made with SHAEP, the 
correlations remained quite stable throughout the simulation. 
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AmpC. The molecular dataset for AmpC comprises 26 cephalosporin-
derived structures with a wide range of activities (IV, Table 1, Fig. S1). The 
results showed that the correlation coefficients were negative in almost every 
studied case (IV, Table 8). Only the starting geometries generated with GOLD 
and the free energy of binding, which was calculated at the first 4 ps time point, 
produced a positive correlation; however, these correlations were very poor. 
Perhaps the changes in protein conformation during the MD simulation favored 
the weaker binding compounds. 

HSP90. The HSP90 inhibitor set contained 14 molecules with a relatively 
narrow range of activities (IV, Table 1, Fig. S1). The best correlations were 
obtained by GOLD-generated complexes with MMPBSA; however, in all 
methods, all the correlation coefficients were very poor (only 0.21 at best; 
IV, Table 9). IGB5 performed well in the identification of active ligands in VS, 
but in predicting the binding affinities of molecules, the same approach 
produced clearly the poorest results. 

PDE5. Tadalafil and eight analogs (IV, Table 1, Fig. S1) formed the dataset 
for PDE5. However with measured activities for several stereoisomers the total 
number of different structures in the set is 22. Because the differences among 
molecules are extremely subtle, it is not surprising that the correlations produced 
by the different methods were only moderate (IV, Table 10). The most efficient 
in predicting the binding affinities was IGB5 with SHAEP-generated complexes, 
which produced a correlation of 0.35. When three molecules with four different 
stereoisomers were considered separately, two showed relatively good 
correlations (IV, Fig. 4, Table 11: molecules 4a-d, 8a-d). For the third compound, 
the correlations were very low or negative, which was surprising because the 
only difference was that an ethyl group in (8a-d) was replaced by a methyl 
group (in 7a-d) (IV, Fig. S1).  

PR. The molecular set for PR contained 12 molecules with rather similar 
structures and activities (IV, Table 1, Fig. S1). The highest correlations were 
produced by SIE with GOLD-generated complexes (IV, Table 12). In addition, 
the IGB2 parameters with the GOLD-generated complexes produced reasonable 
correlations. In general, the results showed that MMGBSA with IGB1 and IGB2 
outperformed both IGB5 and MMPBSA. 

5.4.3  Effect of the molecular dynamics simulation length 

The effect of the length of the MD simulation on the VS was assessed by 
calculating AUC values and enrichment factors for structures extracted in 
different time point (4 ps, 32 ps, 64 ps, 128 ps, 256 ps, 384 ps, and 512 ps). The 
AUC values showed that the VS efficiency of the methods stayed at a stable 
level for ALR2, PDE5, and PR throughout the MD simulation (IV, Fig. 3). The 
longer MD simulations were not beneficial for AmpC and HSP90. In fact, a 
single snapshot from the beginning of the simulation often showed comparable 
or even better results than the longer simulations. These results imply that also 
short MD simulations can be used in VS. 
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The effect of the MD simulation length on the correlation coefficients of 
the predicted binding free energies and experimentally measured activities 
were also studied at the same time points. Contrary to the VS efficiency, the 
effect of the simulation length varied more in the binding free energy 
calculations. For example, the ALR2 correlation coefficients in the GOLD-
generated complexes decreased along the length of the MD, whereas in the 
SHAEP-generated complexes the efficiency remained rather stable, suggesting 
that for some complex generation methods also short simulations are sufficient 
to predict the binding affinities. For PR, the correlations improved in the 
GOLD-generated structures according to the length of the simulation, whilein 
the SHAEP-generated complexes, the results weakened after the first time step, 
after which they either remained rather stable or improved slowly. At the first 
4 ps time point for PDE5 with GOLD-generated structures, the correlations 
were often fair and then dropped significantly before rising according to the 
length of the simulation. In structures generated by SHAEP, however, the 
correlation at the first time point tended to be poor, after which the correlation 
improved constantly until the end of the simulation. This result in turn suggests 
that longer simulations may be profitable. For AmpC, only the GOLD-
generated starting geometries and the binding free energy calculated at the 4 ps 
time point produced a positive correlation. At all other time points, the 
correlation coefficients were negative. Similarly, for HSP90, only few 
correlations of the GOLD-generated starting geometries with MMPBSA were 
acceptable, and all were obtained at the simulation length of 128 ps. 

5.5 Exploring the virtual screening methods (V) 

This study assessed common computational methods, molecular docking, 
MMGBSA, and pharmacophore modeling complemented with 3D-QSAR, to 
estimate their ability to predict the activities for cyclic nucleotide 
phosphodiesterase type 4B inhibitors and to determine whether they could be 
used to separate highly potent inhibitors from less active molecules. This study 
used 152 molecules with a pIC50-range of 3.4-10.5, which were obtained from six 
original studies (named P1-P6). Two protein structures were utilized, one of 
which had an additional alpha helix, which restricted the binding cavity by 
acting as a lid.  

5.5.1  Virtual screening methods in activity predictions 

Molecular docking. Two different docking algorithms, PLANTS and GLIDE, were 
utilized. In PLANTS docking both used protein structures produced reasonable 
results although the protein structure with the additional alpha helix (the lid) 
performed slightly better. When the docking poses were inspected, the ligand 
poses showed greater variation when they were docked into the protein 
structure without the lid. The correlations between the docking scores and 
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measured activities within an article were sometimes very low (e.g. P2 and P5), 
but were immediately improved when more data were added (V, Table 2). The 
highest correlation, based on simple numerical comparison, was achieved when 
articles P1-P3 were used in combination (V, Table 2). Delightfully, the 
correlation coefficients of the entire ligand set (P1-P6) were reasonable in both 
protein structures (V, Table 2, Fig. 2). The cross-correlation test, where each of 
the used articles (P1-P6) was left out one at a time, yielded stable correlations 
with standard deviations usually below one pIC50 unit (V, Table 3). The 
performance of GLIDE was studied as that of PLANTS, but the results were not 
successful (V, Table 4). 

Prime MMGBSA. The reasonability of the best-docked ligand poses was 
further estimated by rescoring the results of both docking methods using Prime 
MMGBSA. Furthermore, the top five output conformers for each ligand in the 
PLANTS docking were also rescored. In general, the rescoring of PLANTS 
docking results using Prime MMGBSA worsened the correlations with the 
experimental pIC50 values compared to results achieved using only PLANTS 
docking without rescoring. The only exceptions were P5 with both protein 
structures and P6 with the protein structure without the lid (V, Table 5). The 
rescored correlations were much better when all five poses were considered 
than when only the top-ranked conformations were considered (V, Table 5). 
The results of the Prime MMGBSA analysis of the top-ranked GLIDE results 
showed notable improvement in the correlations (V, Table 6), but not to the 
same degree obtained with PLANTS. Nevertheless, the correlations of all 
ligands were higher in GLIDE rescored with Prime MMGBSA than in PLANTS 
rescored with Prime MMGBSA (V, Tables 5 and 6). 

Pharmacophore and 3D-QSAR models. In Phase, the pharmacophore model 
and atom-based 3D-QSAR model can be generated simultaneously. In the 
model creation, all 152 molecules were used, of which 75% and 25% were 
randomized to the training set and the test set, respectively. The best 
hypotheses were chosen based on the survival scores. From the produced 
3D-QSAR models, several had R2 > 0.80, Q2 > 0.75, and stability values > 0.95, 
which indicated that the models should not be over-fitted. Based on the results 
of the leave-one-out test, the predictions were almost insensitive to the 
composition of the training set. Furthermore, the R2 scramble values were < 0.5, 
indicating that the obtained correlations depend on correct data. Based on the 
statistics, the most promising model consisted of two hydrogen bond acceptor 
sites, one aromatic ring, and one hydrophobic area (V, Fig. 3). This model used 
three PLS components, and had R2 = 0.90, Q2 = 0.64, standard deviation = 0.52, 
F = 692.6, P = 1.937e -111, RMSE = 0.96, Pearson r = 0.87, R2 CV = 0.8523, R2 
scramble = 0.39, and stability = 0.99. 
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5.6 Binding property analysis of sphingomyelin analogs (VI) 

This study examined the effects of the structural properties of sphingomyelin 
(SM) analogs on their substrate properties with sphingomyelinase (SMase) from 
Bacillus cereus. The enzymatic activity of SM analogs was studied experimentally 
in micellar and monolayer substrates. Relevant to this thesis are computational 
studies with molecular docking and MD simulations of SMase–SM complex, 
which in part explain the relations between SM structures and enzyme activity.  

5.6.1  Computational studies 

Molecular docking and MD simulations were utilized to explore the relation of 
substrate structures to substrate properties. The docking of SM to the active site 
of SMase and the MD of the complex revealed that the 3OH group of SM 
coordinated with the magnesium ion and simultaneously donated a hydrogen 
bond to the carboxylate group of Glu53 (VI, Fig. 3). In addition, the carbonyl 
oxygen atom of SM accepted a hydrogen bond from Lys131, and the 2NH 
group formed a hydrogen bond with Asp156. Phosphorus was located in close 
proximity to the catalytic His296.  

Because the 3OH group has a dual role in the substrate binding to SMase 
and the reaction center is located next to it, it was expected that 3O-methylated 
SM would not bind similarly as SM, and thus SMase would fail to degrade 
3O-methylated SM. It was also expected that the methylation of 2NH would 
interfere with interactions of SM and the side chain of Asp156. The effect of the 
loss of induced fit on substrate binding could lead to the reduction of enzymatic 
activity, as observed in Asp156Gly mutation (Tamura et al. 1995). Experimental 
studies on both micellar and monolayer substrates validated the computational 
predictions: 3O-methylated SM was not degraded by the SMase, and 2N-
methylated SM was a substrate, but it was degraded at about half the rate of SM. 

In addition to the 3OH group in the long-chain base, PhytoSM has an OH-
group in the C4 position. An internal hydrogen bond might form between the 
4OH and 2NH or between the 4OH and carbonyl oxygen of the N-linked acyl 
chain. Internal hydrogen bonds might hinder the induced fit during the 
substrate binding, thus leading to a prolonged lag-time before the hydrolysis 
reaction. In computational studies, 4OH seemed not to interfere with the 3OH 
close to the active site, and thus did not interfere with catalysis. In experimental 
tests SMase readily hydrolyzed phytoPSM. 

Removing two or all three terminal methyls increased the positive charge 
of the N, and when the positive charge becomes strong enough and the steric 
effect of the methyls is reduced, a new interaction could form between the N of 
the head group and the Glu155 and Glu250 adjacent to the active site (VI, Fig. 3). 
This interaction may misalign the SM molecule in the active site, especially as 
for Glu53 and magnesium, and thus hinder catalysis. This explains why SM 
lacking one methyl in the phosphocholine head group was a good substrate, 
but SM lacking two or three methyls failed to act as substrates for SMase.  



 

 

6  DISCUSSION 

6.1 Development of a novel virtual screening method 

Part of this thesis is the development process of Panther method (III). Panther is 
a novel, simple, fast, and efficient multipurpose docking tool. In Panther, a 
negative image of the ligand-binding area of a protein is created by utilizing a 
high-quality protein crystal structure. The ligand-binding area is described as a 
simple atomistic shape-electrostatic model, which can be then used to screen 
molecular databases by using a fast similarity search algorithm. Panther was 
preceded by the NIB VOIDOO/FLOOD method (I, II). Although the principles 
of these two methods are similar, in Panther, the creation of the model is 
completely rebuilt. 

The complementarity of the shape of the ligand and the ligand-binding 
site is very important in the identification of lead molecules. Previous studies 
on NIB VOIDOO/FLOOD demonstrated that utilizing only shape can be 
adequate for VS (Virtanen and Pentikäinen 2010). However, here it was shown 
that the addition of electrostatic information in the models generally improved 
the similarity searches (I, II). PDE5 (I) and ER  (II) were well suited to explore 
the effect of electrostatics because the ligand-binding sites have important polar 
interactions as well as hydrophobic interactions. It is rather self-evident that 
because of the polarity of the binding site, VS performed utilizing only shape of 
the ligand-binding area wastes part of the available, and relevant, information. 
On the other hand, in the automatically created Panther PR model (III), one 
charge point blocked the other charge point, thus restraining and misaligning 
the screening results. This result indicates that although building models using 
novel Panther algorithm is quick and relatively accurate, the positioning and 
utilization of the electrostatic points is not foolproof.  

Moreover, the weighting of the shape and the electrostatics must be 
considered. In general, the AUC values were the highest in the equal weighting 
of the shape and the electrostatic potentials (I, II, III). However, PR was an 
exception because its AUC values increased significantly according to the 
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increased weighting of the electrostatic potential contribution in both NIB 
VOIDOO/FLOOD (I) and Panther screening (III). Here, basically no 
optimization of the parameters was done in the model creation, and 
individualized settings are likely to create models that describe better the 
electrostatic properties of the ligand-binding sites of different target proteins. 
The nature of the ligand-binding area, such as the ratio of hydrophobicity and 
polarity is likely a key factor in determining whether the addition of 
electrostatics in the negative image models produces negative, positive, or 
insignificant effects. Ultimately, the usefulness of the electrostatic component is 
somewhat specific to the target protein. 

Protein flexibility is a crucial issue in protein structure-based VS. Its high 
number of degrees of freedom makes modeling the protein flexibility both 
computationally and physico-chemically demanding. In NIB screening, the 
easiest way to consider protein flexibility is by utilizing several protein crystal 
structures. In addition, flexibility can be incorporated into NIB screening by 
creating models of the snapshot structures derived from MD simulations. The 
importance of considering flexibility is nicely demonstrated for example by the 
performance of the ER  agonist and antagonist Panther models and the 
screening of long and narrow or short and branched molecules with 
glucocorticoid receptor models (III). In general, different models of the ligand-
binding area are likely needed when diverse molecules and scaffold hopping 
are preferred as they usually are in VS. 

The properties of the reference structures and the studied molecules 
define what can be studied with them and the kind of results that can be 
achieved. Thus, evaluation of goodness in any specific case will depend on the 
query molecule, the method, and the contents of the validation database. For 
example, the set of active PDE5 ligands (I) did not contain as many bulky 
molecules as the PDE5 inhibitor sildenafil is, which may explain the feeble 
results for ligand-based VS with sildenafil compared to tadalafil. Similarly, the 
NIB VOIDOO/FLOOD model, which closely resembled the size and the shape 
of sildenafil, preferred bulkier molecules, which explains the weaker results 
compared to tadalafil-like NIB VOIDOO/FLOOD model. The results did not 
indicate that sildenafil or the bulkier model could not perform better in the 
actual VS study, where diversity is highly valued. Thus, not only choosing the 
query molecule but also choosing the validation dataset has a huge effect on 
both the method selection and eventually the VS results. Careful attention to the 
composition and the utilization of benchmarking sets is essential to avoid bias 
(Irwin 2008, Wallach and Lilien 2011, Lagarde et al. 2015). Additionally, in 
validation, if the molecules are not experimentally tested, in theory, the 
presumably inactive decoy molecules may contain unidentified active 
compounds (as the PDE5/DUD decoys in study I or the ER  decoys in study II). 

Overall, the results showed that NIB VOIDOO/FLOOD and Panther were 
often better than ligand-based methods or docking (I, III), and they were 
suitable for screening active compound in VS (II). NIB methods performed 
better than ligand-based methods most likely because screening with the shape 
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and the properties of the binding site rather than just those of a reference ligand 
allow more variation and thus more diverse ligands to be screened correctly. 
Compared to molecular docking, a state-of-the-art method in computational 
biology, screening utilizing NIB models is considerably faster and still relatively 
efficient. Overall, these results show the importance of both the shape and the 
electrostatics in ligand binding. In addition, they indicate that the usage of 
multiple protein conformations, reference ligands or negative images (NIB 
VOIDOO/FLOOD or Panther models) could improve the success of VS. In the 
further development of the Panther the strict demands are required from the 
method (Fig. 4). 

 

 
 
 
 
 
 

 
 
 

 

 

 

FIGURE 4 In the Panther method development the following criteria are considered.  

The idea of utilizing ligand-sized cavities for drug discovery and design 
purposes is not new (Kleywegt and Jones 1994, Liang et al. 1998, Nayal and 
Honig 2006, Coleman and Sharp 2010, Hetényi and van der Spoel 2011). Other 
methods  utilizing negative images in VS have been introduced (Oshiro and 
Kuntz 1998, Fukunishi et al. 2006, Ebalunode et al. 2008, Lee et al. 2009, Lee and 
Zhang 2012). In these methods, the ligand-binding area of the protein is 
modelled as a negative image, pseudoligand or virtual atoms, which may or 
may not carry also chemical information. The model is then used to identify 
potential novel compounds with methods known from ligand-based VS. The 
results obtained with other negative image methods also show similar trend as 
NIB VOIDOO/FLOOD and Panther: the efficient identification of active 
compounds and active molecule configurations, comparable or better AUC and 
enrichment ratios than other tested methods, and high diversity among the top 
ranking hit molecules. In general, these results support and encourage the 
usage of NIB methods in VS (Oshiro and Kuntz 1998, Fukunishi et al. 2006, 
Ebalunode et al. 2008, Lee et al. 2009, Lee and Zhang 2012). 
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6.2 Reliability of the virtual screening methods 

Ligand-based and protein structure-based methods are commonly used in VS. 
One of the first features demanded from the VS method is the ability to separate 
active molecules from inactive molecules. Ligand-based screening is usually 
able to find active compounds; however, the requirement is that such molecules 
have already been established in order to use them as a reference structure. 
Here, the AUC values for ligand-based screening were clearly lower than the 
ones produced by the protein structure-based methods (I). In general, also the 
enrichments of the ligand-based VS were weaker than those in the protein 
structure-based methods. However, also studies with opposite results exist 
(Zhang and Muegge 2006, McGaughey et al. 2007, Chen et al. 2009, Kinnings and 
Jackson 2009, Krüger and Evers 2010, Mishra and Basu 2013). 

Although the scoring functions of docking methods are not always 
efficient in the identification of active molecules with high accuracy, in some 
cases, they are able to find certain ligand conformations better than the ligand-
based or NIB methods can (Warren et al. 2006, McGaughey et al. 2007, Kolb and 
Irwin 2009, Plewczynski et al. 2011, Grinter and Zou 2014). Therefore, molecular 
docking detects active ligands of certain type with a high level of certainty, 
which is often reflected in the relatively high early enrichment, even though the 
overall AUC values do not indicate successful screening results. Many previous 
studies suggest that molecular docking is effective in VS (Ghosh et al. 2006, 
Cavasotto et al. 2008, Clark 2008, Markt et al. 2008, Ripphausen et al. 2010, 
Murgueitio et al. 2012, Kumar and Zhang 2014, Cerqueira et al. 2015, 
Danishuddin and Khan 2015). 

The derived pharmacophore and 3D-QSAR hypotheses were capable of 
separating the most and the least active SERMs (II) or phosphodiesterase 4B 
molecules (IV). However, although molecular diversity is taken into account in 
the model creation, some data of the more unusual molecules is missed because 
only common features and chemotypes are searched (Yang 2010). According to 
validation, the constructed pharmacophore and 3D-QSAR models were able to 
differentiate the active and inactive ligands acceptably. 

Compared to ligand-based methods, screening with NIB methods allows 
greater freedom in ligand positioning, which enables variability in the 
identification of active molecules. Unlike docking, NIB methods may allow 
some spatial overlap between the ligand and the protein, leaving space for e.g. 
induced fit upon binding. This may explain the good performance of NIB 
methods compared to ligand-based methods and molecular docking. 

In general, the post-processing of the top-ranked VS results with 
MD/MMGBSA improved the enrichments. For example, the post-processing of 
the NIB VOIDOO/FLOOD VS results produced considerably higher early 
enrichment than the ligand-based screening or docking (I). Interestingly, the 
enrichment produced by docking was diminished after the post-processing. In 
docking, if the sampled compounds do not match the surroundings perfectly 
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(e.g. some overlaps are produced or side pockets neglected), the docking 
algorithms usually do not rank them high, and occasionally the biologically 
relevant poses were ignored. However, in the post-processing stage, the protein 
structure is handled flexibly, and more room for molecules is offered, thereby 
altering their positioning and thus their scoring. Furthermore, rescoring the 
results using MD/MMGBSA may benefit from considering more than just one 
pose per ligand (V). Although post-processing with MD/MMGBSA improved 
the results in most cases, the results differed according to which MMGBSA 
method was used (I and IV vs. V).  

The results showed that docking could also predict binding affinities 
(II, V), which is slightly surprising because it is common that using the internal 
scoring of docking programs seldom leads to meaningful correlations (Ferrara 
et al. 2004, Warren et al. 2006, McGaughey et al. 2007, Cross et al. 2009, von Korff 
et al. 2009, Feliu and Oliva 2010, Plewczynski et al. 2011). The comparison of the 
performance of the binding free energy calculation methods MMGBSA, 
MMPBSA, and SIE regarding their ability to identify active molecules from 
inactive molecules and their ability to predict experimentally determined 
binding affinities showed substantial differences (IV). Earlier studies have 
indicated that MMGBSA, MMPBSA and SIE methods could be useful and 
accurate tools for predicting binding affinity with high accuracy (Ferrari et al. 
2007, Guimarães and Cardozo 2008, Rastelli et al. 2010, Hou et al. 2011a, Hou et 
al. 2011b, Mulakala and Viswanadhan 2013, Ylilauri and Pentikäinen 2013, 
Greenidge et al. 2014). Conversely, it has been shown that the results of binding 
free energy calculation methods can be highly case specific, depending heavily 
on the used parameters and the complex generation method; and moreover, 
variation in the performance of different IGB models may be remarkable 
(Ferrari et al. 2007, Hou et al. 2011a, Hou et al. 2011b, Greenidge et al. 2014). 

Although the target proteins may undergo vast conformational changes 
upon ligand binding, earlier studies (Thompson et al. 2008, Rastelli et al. 2010) 
and the studies presented in this thesis suggest that the length of the MD 
simulation is not an important factor in binding free energy calculation (IV), 
and that short MD simulations or even snapshots from the beginning of the MD 
can produce reasonable results enabling the screening of larger number of 
compounds (I, IV, V). The highest AUC values and correlation coefficients for 
experimental activity and predicted binding affinity were often obtained by 
relatively short MD simulations of less than 128 ps. Additionally, the binding 
free energy calculation results showed that in many cases, the results 
originating from two different complex generation methods—molecular 
docking and ligand-based similarity superimposition—were quite similar (IV).  

In addition to the accuracy of the method, also speed and the 
computational cost of the method must be taken into account. Given the size of 
molecular databases, a practical VS method cannot take more than a few 
seconds per compound. Typically, ligand-based VS methods are faster and 
computationally more straightforward to perform than protein structure-based 
methods, such as molecular docking, are. However, MD and binding free 
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energy calculations are even more demanding. Of the binding free energy 
methods investigated, MMGBSA is computationally the most efficient, while 
MMPBSA and SIE are more vigorous. NIB methods are protein structure-based 
methods, but still their computational demands are closer to ligand-based 
methods, which is a benefit in VS. For example, NIB VOIDOO/FLOOD and 
Panther are not strenuous if their computational costs are compared with 
ligand-based screening or molecular docking (I, II, III).  

Many biases can result from comparing VS methods, such as the selection 
of targets, active molecules and decoys, adjustable parameters, means used to 
evaluate of the performance of the methods, and so forth. For example, 
comparisons within and between AUCs and enrichment values are challenging 
and may be potentially biased (Truchon and Bayly 2007, Good and Oprea 2008, 
Jain 2008, Jain and Nicholls 2008, Sheridan 2008). The methods used for 
enrichment calculation vary greatly, and the percentages selected for 
comparisons differ. The preparation of the validation molecular databases 
greatly affects the molecules, so that the seemingly same dataset may yield 
different results and thus falsify the comparisons. In addition, the researcher is 
a potential source of subjective bias. For example, although visual inspection of 
the molecules is not objective, it is important to understand how a compound 
fits the ligand-binding area of the protein, aligns with a template molecule, or is 
mapped onto a pharmacophore, and in such cases, the subjective position of the 
researcher may bias the decision making. 



 

 

7  CONCLUSIONS 

The variety of VS methods is enormous in terms of their application area, 
working principles, and usability. All methods have both advantages and 
disadvantages. Ligand-based methods are extremely fast in VS. The 
pharmacophore and 3D-QSAR methods find the most active ligands, but their 
prediction capacity is highly chemotype dependent. Docking can be used to 
identify active molecules and to estimate binding affinities. NIB screening is 
efficient, and the addition of electrostatic information to the models improved it 
in most cases. Considering the protein flexibility in the form of multiple protein 
crystal structures or snapshots from MD brought additional value to the search 
for some targets. NIB screening, such as the novel Panther method, can be 
especially useful when there are no known active ligands, the number of known 
actives is low, or when docking is either ineffective or too slow. Additionally, 
the post-processing of the initially ranked molecules using the MD/MMGBSA 
produced significant early enrichment in the recognition of active ligands and 
thus the additional usage of MMGBSA analysis could serve as a tool to identify 
the most promising compounds. However, the findings also showed differences 
in the performance of the binding free energy calculation methods in active 
ligand recognition and in their ability to predict the activity of the compounds. 
According the results, complexes for binding free energy calculations can be 
generated by using either the docking or the ligand-based similarity method. 
Regarding the length of the MD simulation, the results suggest that also short 
simulation or even a single energy-minimized snapshot may be sufficient for 
the efficient binding free energy calculations. However, for the prediction of 
actual binding affinities, a longer MD simulation may be required. 

The comparison of the use of the above-mentioned methods in VS showed 
their differing abilities to identify active molecules and predict binding affinities, 
and moreover could also further the understanding of the advantages and 
limitations of these methods. However, it is difficult to recommend any method 
over other methods. The results of this study align well with earlier VS studies 
suggesting that computational methods could be used successfully to identify 
novel ligands, especially when multiple methods are combined. However, 
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caution and meticulousness are needed because the performance of 
computational methods may be case specific. Therefore, prior to the VS study, 
the careful validation of methods is recommended. Ultimately, the features of 
the computational method define its applicability and therefore also the quality 
of the results. Moreover, the reference structures, validation molecules, and 
studied compounds determine for their part what can be discovered. Thus, not 
only the methodology but also the molecules used must be considered 
prudently. 
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YHTEENVETO (RÉSUMÉ IN FINNISH) 

Laskennallisia tutkimuksia biomolekyylien seulonnasta ja vuorovaikutuksista 
 
Lääkkeet ovat kemiallisia yhdisteitä, joilla hoidetaan tai ennaltaehkäistään sai-
rauksia. Tavallisesti lääkkeiden vaikuttavat aineet ovat pieniä orgaanisia mole-
kyylejä. Lääkkeiden sisältämät aktiiviset pienmolekyylit vaikuttavat elimistössä 
muokkaamalla proteiinien toimintaa solujen signalointireiteillä ja metaboliassa. 
Proteiinit ovat suuria biologisia makromolekyylejä, jotka toimivat käytännölli-
sesti katsoen kaikissa solun prosesseissa. Esimerkiksi entsyymit katalysoivat 
kemiallisia reaktioita ja reseptoriproteiinit toimivat solun viestiliikenteessä. 
Koska proteiinit ovat hyvin monimuotoisia, myös niihin sitoutuvat lääkeaineet 
ovat erilaisia ja vaikuttavat kohdeproteiineihinsa monella tavalla, tyypillisesti 
joko vahvistamalla tai heikentämällä proteiinin toimintaa. 

Uuden lääkkeen saattaminen markkinoille on pitkä ja kallis prosessi. Tyy-
pillisesti lääkekehitysprojekti koostuu kahdesta vaiheesta: uusien lääkeaihioi-
den etsinnästä ja niiden kehittämisestä. Etsintävaiheessa satojen tuhansien mo-
lekyylien aktiivisuus voidaan seuloa kokeellisesti, mutta vain muutama tutki-
tuista yhdisteistä on riittävän lupaava edetäkseen kehitysvaiheeseen. Kehitys-
vaiheessa yhdisteiden turvallisuus ja tehokkuus arvioidaan tarkemmin, yhdis-
teillä tehdään kliinisiä kokeilta ja niitä muokataan parempien ominaisuuksien 
saavuttamiseksi. Lopulta vain hyvin pieni osa tutkituista molekyyleistä hyväk-
sytään uusiksi lääkeaineiksi. Tämän tehottomuuden vuoksi rationaalinen lää-
keainesuunnittelu tarvitsee uusia menetelmiä, jotka sekä nopeuttavat lää-
keaihiomolekyylien etsintää että tunnistavat aktiiviset aihiomolekyylit tarkem-
min. 

Virtuaaliseulonta on tehokas tapa suodattaa tietokoneavusteisesti suuria 
molekyylitietokantoja lääkeaihiomolekyylien löytämiseksi. Tämä mahdollistaa 
kokeellisissa tutkimuksissa keskittymisen vain oletettavasti parhaimpien mole-
kyylien ominaisuuksien tarkasteluun tehostaen näin lääkekehitysprosessia. Vir-
tuaaliseulontamenetelmä voidaan suunnitella hyödyntämään niin tunnettujen 
sitoutuvien molekyylien eli ligandien kuin kohdeproteiinin rakenteellista in-
formaatiota. Virtuaaliseulontamenetelmien avulla voidaan molekyylien etsimi-
sen lisäksi ennustaa molekyylien ominaisuuksia kuten molekyylien myrkylli-
syyttä ja metaboloitumista elimistössä. 

Tämän väitöskirjan osatöissä jatkettiin uuden virtuaaliseulontamenetelmän 
kehittämistä. Tämä menetelmä hyödyntää kohdeproteiinin ligandinsitomis-
alueen rakenteellista ja kemiallista tietoa molekyylitietokantojen nopeaan seu-
lontaan. Lisäksi väitöskirjan osatöissä testattiin ja vertailtiin useiden laskennal-
listen menetelmien käyttöä virtuaaliseulonnassa ja molekyylien sitoutumisen 
ennustamisessa. 

Olemassa olevien virtuaaliseulontamenetelmien kirjo on valtava. Mene-
telmät eroavat toisistaan toimintaperiaatteidensa ja käyttötarkoituksensa osalta. 
Kaikissa käytössä olevissa menetelmissä on hyvät ja huonot puolensa. Ligandi-
pohjaiset eli tunnettuja sitoutuvia molekyylejä hyödyntävät menetelmät ovat 
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erittäin nopeita virtuaaliseulontatyökaluja, mutta toisaalta hyvin riippuvaisia 
malleina käytetyistä molekyyleistä. Farmakoforimallit ja kolmiulotteinen ra-
kenne-aktiivisuusanalyysi tunnistavat aktiiviset molekyylit tarkasti, mutta nii-
den kyky ennustaa molekyylejä riippuu niin ikään mallin rakentamisessa käyte-
tyistä molekyyleistä. Telakoinnissa molekyylejä sovitetaan kohdeproteiinin li-
gandinsitomisalueelle, jolloin voidaan arvioida parhaiten kohteeseen soveltuvat 
molekyylit sekä niiden sitoutumisvoimakkuus. Kohdeproteiinin ligandinsito-
misalueesta luotuun negatiivikuvaan perustuva seulonta on tehokasta sekä las-
kennallisesti että molekyylien tunnistamisessa. 

Tämän väitöskirjan osatöissä esitelty ligandinsitomisalueen negatiiviku-
vaan perustuva virtuaaliseulontamenetelmä on erityisen hyödyllinen kun tun-
nettuja sitoutuvia ligandeja ei ole tarpeeksi tai kun molekyylien telakointi on 
joko tehotonta tai liian aikaavievää. Lisäksi todettiin, että sähköstaattisen in-
formaation lisääminen negatiivikuvamalliin tehostaa molekyylien etsintää. Joil-
lekin kohdeproteiineille proteiinirakenteiden joustavuuden huomiointi esimer-
kiksi käyttämällä useita kokeellisesti ratkaistuja proteiinikiderakenteita tai mo-
lekyylidynamiikkasimulaatiosta poimittuja rakenteita niin ikään parantaa vir-
tuaaliseulonnan tulosta.  Lisäksi nopeilla virtuaaliseulontamenetelmillä par-
haiksi arvioitujen molekyylien pisteyttäminen uudelleen tarkemmalla ja las-
kennallisesti vaativammalla molekyylien sitoutumisenergiaa määrittävillä me-
netelmällä osoittautui hyödylliseksi, koska se tehosti edelleen aktiivisimpien 
molekyylien erottamista heikommista sitoutujista. Tutkimuksessa havaittiin 
myös, että molekyylien sitoutumisenergiaa määrittävien menetelmien välillä oli 
eroja sekä aktiivisten molekyylien tunnistamisessa että kyvyssä ennustaa mole-
kyylien aktiivisuus. Tulokset kuitenkin osoittivat, että sitoutumisenergiaa mää-
rittäviin kokeisiin proteiini-ligandikompleksit voidaan luoda kummalla tahansa 
menetelmällä joko ligandipohjaisella samankaltaisuusvertailulla tai telakoimal-
la. Sitoutumisenergian määrittämistä edeltävien molekyylidynamiikka-
simulaatioiden pituudeksi voi joissain tapauksissa riittää joko hyvin lyhyt simu-
laatio tai jopa pelkkä proteiini-ligandikompleksin energian minimointi. On kui-
tenkin mahdollista, että todellisten sitoutumisvoimakkuuksien arviointiin vaa-
ditaan pidempiä molekyylidynamiikkasimulaatioita. 

Tämän väitöskirjan osatöissä suoritetut virtuaaliseulontamenetelmien ver-
tailut osoittavat eroja menetelmien kyvyssä erotella aktiivisia ligandeja inaktii-
visista molekyyleistä ja kyvyssä ennustaa molekyylien sitoutumisen voimak-
kuutta. Vertailut myös auttavat hahmottamaan testattujen menetelmien vah-
vuuksia ja heikkouksia. Tutkimuksen tulokset ovat samankaltaisia aiempien 
tutkimusten kanssa ja niiden perusteella voidaan suositella laskennallisten me-
netelmien käyttöä uusien molekyylien etsintään, mutta yhden menetelmän 
käyttöä ylitse muiden on vaikeata suositella. Koska tulokset voivat olla jossain 
määrin tapauskohtaisia, menetelmien soveltuvuuden varmentaminen ennen 
suurta virtuaaliseulontatutkimusta on tärkeää ja oletettavasti parhaaseen tulok-
seen päästään kun käytetään useita menetelmiä harkitusti yhtä aikaa. 
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