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Tässä työssä esitetään uusi tulos koskien isometrioiden säännöllisyyttä nilpo-
tenttien yhtenäisten metristen Lien ryhmien välillä. Termillä metrinen Lien ryhmä
tarkoitamme Lien ryhmää, joka on varustettu etäisyysfunktiolla siten, että ryhmän
(vasen) siirtokuvaus on isometria, ja etäisyysfunktio indusoi topologian, joka Lien
ryhmällä on monistona alun perin olemassa. Todistamme, että isometriat tässä ti-
lanteessa ovat välttämättä affiinikuvauksia: jokainen isometria voidaan esittää yhdis-
tettynä kuvauksena siirrosta ja isomorfismista. Tämän seurauksena kaksi isometrista
ryhmää ovat välttämättä isomorfiset.

Klassisesti isometrioiden lineaariaffiinisuus on tunnettu Euklidisessa avaruudes-
sa, mutta myöhemmin vastaava yleistetty tulos on todistettu reaalisissa normiava-
ruuksissa (Mazur–Ulam lause) ja nilpotenteissa yhtenäisissä Riemannilaisissa Lien
ryhmissä (E.N. Wilson). Viime vuosina tulos on onnistuttu todistamaan myös sub-
Riemannilaisissa ja subFinsleriläisissä Carnot’n ryhmissä. Metrinen Lien ryhmä on
näitä kaikkia yleisempi avaruus, lukuun ottamatta ääretönulotteisia normiavaruuk-
sia.

Todistus perustuu Montgomery–Zippinin lokaalisti kompaktien ryhmien teorias-
ta johdettaviin isometrioiden säännöllisyysominaisuuksiin sekä mainitun Wilsonin
tuloksen käyttöön.

Toteamme lopuksi, että niin yhtenäisyys kuin nilpotenttiuskin ovat välttämättö-
miä oletuksia siinä mielessä, että voimme esittää vastaesimerkit kummasta tahansa
näistä oletuksista luovuttaessa.
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Abstract We show that any isometry between two connected nilpotent metric Lie
groups can be expressed as a composition of a translation and an isomorphism, i.e.
isometries have an affine decomposition. By the term metric Lie group we mean a Lie
group with a left-invariant distance that induces the topology of the manifold. It also
follows that two isometric groups are isomorphic in this setting. Classically isometries
are known to have the affine decomposition in the setting of Euclidean space and more
generally in normed vector spaces over R [MU32], nilpotent connected Riemannian
Lie groups [Wil82], and subRiemannian (even subFinsler) Carnot groups [Ham90],
[Kis03], [LDO14]. Metric Lie groups are more general spaces than these, excluding
the infinite dimensional normed spaces. Our proof is based on the theory of locally
compact groups of Montgomery–Zippin and on the usage of the above mentioned
result by Wilson [Wil82]. In a sense our result is a maximal generalization: After
proving the result we construct counterexamples to the result in the cases where
either nilpotency or connectedness is dropped from the list of assumptions.
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1 Introduction

In this section I will explain our result together with its Euclidean motivation or
analogue first without any mathematics and then with some simple mathematical
concepts. I will also show the reader an explicit proof of our result in the simple
Euclidean setting.

With exception of this introduction section, which should be accessible to any
undergraduate student of mathematics, there are some prerequisities to be able to
completely understand this thesis. The reader is assumed to have the knowledge of
Lie group theory at the level of some basic course treating the manifold-viewpoint
and thus naturally also basics of differentiable manifolds. A reference covering such
topics could be the book [War13]. Basic definitions and facts are still recalled here
in Section 2 to fix notations and for a reminder. Any advanced techniques of algebra
or Lie theory are introduced in preliminaries carefully, as well as anything that is
not appropriate to assume for an undergraduate student to know.

An experienced reader can start directly from the Section 3 where we really state
the theorem and its proof rigorously and with all details.

1.1 Some words without any mathematics

Think about the familiar 3-dimensional space we see around us. In how many ways
you can think of moving a body atom by atom from one place to another? To be
more precise we don’t want to break the structure of the body. So let’s make a
restriction: We move the body such a way that distances between any pair of atoms
is preserved, i.e. distances are the same finally as they were initially. So how many
ways there are? Well, we can just translate the body. We can also rotate it. Or do
any combination of translations and rotations. Oh, and there is one thing more: We
can make a reflected copy of the body1. It seems that this is everything you can do,
but how can we be sure?

Later in this introduction, we shall for a warm-up prove mathematically that
there are no more ways in non-curved n-dimensional space obeying the familiar
geometric laws we are used to (Euclidean space). This thesis is devoted to studying
an analogue of this elementary problem in its most generality. We move to the spaces
that not only are curved, but where possibly the curvature can’t even be defined
naturally, and still some geometry is present. Still we can study the generalizations
of translations, rotations and reflections. We will precisely identify which extra
assumptions then are necessary for the analogous result to hold, namely that there
are no more ways of moving bodies atom by atom preserving mutual distances of
atoms, than combinations of translations, rotations and reflections.

1In practice this may cause damage to the body: You can’t easily make a left-handed ice-hockey
stick from a right-handed one. But in principle the distance of pairs of atoms would be preserved.
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1.2 Explaining the result

Let’s move some steps towards mathematics. The result we will prove is stated in
its fully formal form as follows

Theorem 1.1. Let (N1, d1) and (N2, d2) be two connected nilpotent metric Lie
groups. Then any isometry F : N1 → N2 is affine.

In the preliminaries section we are going to go through the necessary definitions
precisely, but let’s for now have some idea what is this result about.

Isometry Isometry is a map between metric spaces that preserves distances, i.e.
any two points have the same separation from each other as their respective image
points under the map.

Affine map In Euclidean space the map F : Rn → Rn is called linear affine if it
has the decomposition

F (x) = Ax+ c ,

where A : Rn → Rn is a linear map and c ∈ Rn is the translation part of the map.
More generally in a space equipped with some ”multiplication”, an operation

similar to the vector sum of Euclidean space, an affine map is a map which breaks
nicely to the translation part and the origin fixing part. Nicely means here that the
origin fixing part preserves the multiplication of the space just like a linear map in
Euclidean space preserves the sum: L(x+ y) = L(x) + L(y).

The space equipped with a properly behaving multiplication is a group. In a group
G the translation by an element g is the map Lg : G→ G, Lg(h) 7→ gh so called left-
translation2. In a group the map which presevers the multiplication, the analogue of
a linear map, is a homomorphism, i.e. a map ψ : G→ G for which ψ(gh) = ψ(g)ψ(h)
for every g, h ∈ G. In a group G we therefore call a map F : G→ G affine if it has
the decomposition3

F (x) = (Lg ◦ ψ)(x)

with g ∈ G and ψ a homomorphism.

Metric Lie group Lie groups are groups with a delicate topological structure,
namely that of a differentiable manifold4. With the term metric Lie group we refer
to a Lie group that is also a metric space in such a way that group structure, manifold
structure, and metric structure are combatible with each other. This compatibility

2We could as well use right-translation h 7→ hg, but let’s stick with the left one since we must
choose one and be consistent. Note that we will always denote the product in a group just by
writing the elements side by side, i.e. gh := g ∗ h.

3Actually we studied the problem in more generality where F can be an isometry between two
different groups. But let me forget this for a moment because thinking about one group is simpler,
and serves well for this introduction.

4Besides the topology, the structure of a differentiable manifold also provides us the notion of
differentiability for maps defined on the manifold.
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means that the distance function induces the manifold topology and that the distance
is invariant under the left-translations. Notice that this really is the most general
setting that makes sense: It would be weird to study the properties of a space with a
topology, a distance and a group structure if the distance does not respect the group
structure nor the topology.

Nilpotency We shall later introduce nilpotency very precisely, but let’s say for
now that it is an algebraic constraint on the group related to commutativity of
group elements. All commutative (a.k.a. Abelian) groups are nilpotent, but there
are many more nilpotent groups. For a non-Abelian example consider the algebra
of linear operators on some vector space. One defines commutator of operators A
and B to be [A,B] := AB − BA. For some restricted subgroup F of all linear
operators (that is closed under the commutator) it can be the situation that there
are some non-zero commutators but that all second order commutators vanish, i.e.
[A, [B,C]] = 0 for all operators A,B,C ∈ F . This is an example of a nilpotent
but non-Abelian Lie algebra5. In a general nilpotent group there exist an analogue
for the commutator above and nilpotency then means exactly that commutators of
some order must vanish.

1.3 Warm-up: Proof in Euclidean space

In the Euclidean setting the statement of our result is the following:

Proposition 1.2. Let F : Rn → Rn be an isometry, i.e. a map for which d(x, y) =
d(F (x), F (y)) for all x, y ∈ Rn, where d denotes the usual Euclidean distance

d(x, y) :=
√∑

(xi − yi)2 .

Then there exists a linear map A : Rn → Rn and a vector c ∈ Rn such that

F (x) = Ax+ c ∀x ∈ Rn .

Notice that Euclidean space with the usual vector addition is a commutative
group. Commutative groups are nilpotent so this fact can be deduced from our
theorem. But in any case this is classical and well known fact, although it is not
immediately clear why it holds. We shall next construct a proof for it. It is just for
doing some warm-up gymnastics with a simple case, we don’t need this result for
anything.

Proof. Recall that the Euclidean distance function d actually comes from the Eu-
clidean scalar product

〈x, y〉 =
n∑
i=1

xiyi .

5This is exactly the situation of the Heisenberg algebra in the quantum mechanics. In the
quantum mechanics the fundamental operators of position and momentum don’t commute, but
their commutators commute with the original operators.
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As any scalar product, this induces a norm on Rn defined by ‖x‖ =
√
〈x, x〉 and a

norm always induces a distance function by the relation d(x, y) = ‖x − y‖. This is
exactly how the Euclidean distance, norm, and scalar product are connected to each
other. Notice the formula (to prove this, consider the scalar product 〈x− y, x− y〉)

〈x, y〉 =
1

2
(‖x‖2 + ‖y‖2 − ‖x− y‖2) .

This formula in hand, we observe that any isometry in Euclidean space preserves the
scalar product if it fixes the origin:

〈x, y〉 =
1

2
(d(x, 0)2 + d(y, 0)2 − d(x, y)2)

=
1

2
(d(F (x), F (0))2 + d(F (y), F (0))2 − d(F (x), F (y))2)

=
1

2
(d(F (x), 0)2 + d(F (y), 0)2 − d(F (x), F (y))2) = 〈F (x), F (y)〉 .

Actually it is enough to show that an isometry fixing the origin is linear. Namely,
if G is an isometry that does not fix the origin, then the map G̃(x) := G(x)−G(0)
fixes and thus is linear. Therefore the original map G has the affine decomposition
asked for in the claim:

G(x) = G̃(x) +G(0) .

Let’s check that an isometry F : Rn → Rn fixing the origin is linear. In Euclidean
space length minimizing curves are lines. Because an isometry preserves distance, it
must send lines to lines: If A,B ∈ Rn, then the point C found from the line joining
A to B must be mapped to the line joining F (A) to F (B) because otherwise

d(F (A), F (C)) + d(F (C), F (B)) > d(F (A), F (B)) = d(A,B) = d(A,C) + d(C,B)

which is a contradiction because F is isometry.
Therefore

∀a,b ∈ Rn ∃x,y ∈ Rn such that F (a + tb) = x + f(t)y ∀t ∈ R (1)

for some f : R→ R. The idea of the proof is to work towards the linearity condition

F (a + tb) = F (a) + tF (b) .

To have that, we should argue we can replace x = F (a), f(t) ≡ t and y = F (b) in
the above. This turns out to be possible because expressing lines with two vectors
a,b as a + tb contains a lot of useless information, e.g. one can choose ‖b‖ = 1
without any change to the actual line.

Set t = 0 to get F (a) = x + f(0)y. Therefore

F (a + tb) = x + f(t)y + F (a)− F (a)

= F (a) + (f(t)− f(0))y ,
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and so we can express our condition (1) above in the form

∀a,b ∈ Rn ∃y ∈ Rn such that F (a + tb) = F (a) + g(t)y ∀t ∈ R

for some g : R→ R with g(0) = 0.
At this point it can be in principle that in the above expression y depends on

both vectors a,b, but we shall argue that it can’t depend on a. Indeed, the lines
with different a but same b are parallel. If y chances to y′ when changing a to
a′ then the image lines F (a + tb) and F (a′ + tb) would intersect. This is against
injectivity6 of F , since the lines in the domain were parallel and thus disjoint.

Because we now know that y can’t depend on a, we can extract information on
g and y by setting a = 0. We get

F (tb) = F (0) + g(t)y = g(t)y .

We can assume that ‖y‖ = 1, otherwise we just scale the function g. Choosing also
‖b‖ = 1 and using that F preserves the norm we get

t = ‖tb‖ = ‖F (tb)‖ = ‖g(t)y‖ = |g(t)| ∀t .

We may assume t = g(t) by possibly changing y to its opposite vector, as g must
clearly be continuous. We have now the condition (1) in the form

∀a ∈ Rn, ∀b ∈ Sn−1 ∃y ∈ Sn−1 such that F (a + tb) = F (a) + ty ∀t ∈ R ,

where y does not depend on a. Setting a = 0 and t = 1 gives F (b) = y. We got
finally

∀a ∈ Rn, ∀b ∈ Sn−1 it holds F (a + tb) = F (a) + tF (b) ∀t ∈ R .

This proves linearity.

1.4 The general case

As we discussed, to generalize the Euclidean result above we need the generalized
concept of affine map, for which the group structure is necessary. In order to talk
about isometries on the other hand, the space in question must be a metric space.
Seen in this way it actually is not immediate that one should require the manifold
structure, i.e. require the space to be a Lie group. The minimal setting where the
result would make sense is a group with a distance function that is invariant under
group multiplication from the left (or right). Still, Lie groups appear in numerous
applications and come with a rich theory to attack the problem. The tools of this
theory are heavily used in our proof. Also the setting of Lie groups is already more
general than any previous result in this area. Thus we will not discuss more about
dropping the manifold structure.

6Indeed, an isometry is necessarily injective.
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The result of this thesis is new as far as we know. The case of Euclidean space
that we just considered has been known since centuries perhaps, if not by the an-
cient Greeks. There are of course more serious results, which are more like the
real motivation for this study. The Euclidean case is just a convenient and under-
standable example. We shall discuss those more advanced results in the Section 5.
But to summarize a little, Theorem 1.1 was known due to Wilson in the setting of
(nilpotent and connected) Riemannian Lie groups [Wil82], i.e. Lie groups where the
distance comes from a Riemannian metric tensor. The work of Hamenstädt [Ham90]
and Kishimoto [Kis03] on the other hand gives the result in the setting of so called
subRiemannian Carnot groups (see the complete proof in [LDO14]). Carnot groups
have more assumptions on the algebraic structure of the space, but Riemannian Lie
groups have more assumptions on the metric structure than subRiemannian Carnot
groups. Our setting of metric Lie groups is a generalization of the both. But to
stress the logic, our proof of the general result actually uses the result of Wilson,
thus it does not make much sense to deduce the result of Wilson from our result,
altough formally that would be correct.

It has been also widely known that there are counterexamples to Theorem 1.1 if
we do not assume anything else than a metric Lie group. We will thus assume nilpo-
tency from the group structure and connectedness from the topological structure.
By providing counterexamples in the Section 4, we will also prove that one can’t
remove either of requirements of nilpotency and connectedness. Namely, we shall
present 1) a connected non-nilpotent and 2) a non-connected nilpotent metric Lie
group, where there exists isometries that do not have a decomposition to a homo-
morphism and a translation. In some sense one can think of this fact as maximality
of our result. But notice still: It can well be the case that it is possible to relax a
little bit for example the assumption of nilpotency. If some property is weaker than
nilpotency and is not satisfied by our non-nilpotent counterexample, then perhaps
one can establish Theorem 1.1 in connected metric Lie groups with that property.
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2 Preliminaries

In this section we shall go through some theory and techiniques on which the proof
is based. We shall recall some important definitions and facts even if some of them
are basically assumed as a prerequisite so that it is easy for the reader to check the
exact forms as these facts and notions appear along the proof. For elementary facts
we don’t give references, but in general a good reference for the basic Lie theory
is the book [War13] and for the topology of the homeomorphism group the books
[McC88] and [Kel12]. For some results with a very short proof we will give the proof.

After discussing these topics, we shall present in more detail some more advanced
concepts: Haar measures, nilpotent groups, semidirect product of groups and group
actions.

2.1 The basics of Lie groups

Definition. A Lie group is a differentiable manifold G together with the group oper-
ations of multiplication MultG : G×G→ G, (p, q) 7→ p·g and inversion invG : G→ G
such that these are smooth maps with respect to the differentiable structure of the
manifold. When we call a map smooth, it will always mean that it is of the class
C∞. The left-translations of the group, i.e. the maps p 7→ gp, are denoted by Lg.

Definition. A Lie algebra is a vector space g equipped with bilinear operator [·, ·]
called bracket that satisfies

i) [X,Y ] = −[Y,X] (antisymmetry) and

ii) [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 (Jacobi identity)

for all X,Y, Z ∈ g.

Let G be a Lie group. The Lie algebra of G, denoted by Lie(G), is the set of left-
invariant vector fields on G equipped with the commutator of vector fields. The Lie
algebra of a Lie group G is canonically isomorphic to (TeG, [·, ·]) where the bracket is
calculated in the tangent space by extending vector fields left-invariantly and taking
the usual commutator of vector fields calculated at the identity, i.e. for v, w ∈ TeG
we set

[v, w]TeG := [ṽ, w̃]Lie(G)(e) ∈ TeG ,

where ṽ and w̃ are left-invariant extensions of vectors v, w ∈ TeG. The left-invariant
extension is constructed by the formula ṽg = (Lg)∗v. From now on we do not usually
bother to make the distinction between Lie(G) and TeG.

Morphisms on Lie groups Recall that a morphism of Lie groups is a smooth
algebraic homomorphism between two Lie groups7. A morphism is a map preserving
the structure and Lie groups have the structures of a differentiable manifold and a

7Sometimes the term Lie group homomorphism is used, but we shall preserve the word ”homo-
morphism” for morphisms of groups, i.e. requiring just the algebraic structure to be preserved.
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group. Instead, an isomorphism of Lie groups is a map that is bijective and morphism
to both directions: It is a diffeomorphism and a group isomorphism. A morphism of
Lie algebras is a linear map that preserves the bracket, i.e. ψ([X,Y ]) = [ψ(X), ψ(Y )].

Fact 2.1. Let ϕ : G → H be a morphism (resp. isomorphism) of Lie groups. It
induces a morphism (resp. isomorphism) of Lie algebras ϕ∗ : Lie(G) → Lie(H)
defined by ϕ∗v = (dϕ)eve where ve ∈ TeG is the left-invariant vector field v calculated
at the identity.

Fact 2.2. Let G,H be Lie groups, where G is simply connected. Then for all mor-
phisms of Lie algebras ψ : Lie(G) → Lie(H) there exists a unique morphism of Lie
groups ϕ : G→ H with ϕ∗ = ψ.

Fact 2.3. Let G,H be Lie groups. If ϕ : G → H is a continuous homomorphism,
then it is smooth, i.e. a morphism of Lie groups.

The exponential map In a Lie group G the exponential map exp: Lie(G) → G
is the map which associates to a vector X ∈ TeG the point where the integral
curve of its left-invariant extension gets at time t = 1. Formally we write this as
exp(X) = Φ1

X(e), where Φt
X(e) denotes the flow of X starting from e calculated at

time t. The exponential map is globally smooth and a local diffeomorphism.

Fact 2.4. Let ϕ : G → H be a morphism of Lie groups and ϕ∗ : Lie(G) → Lie(H)
the induced morphism of Lie algebras. Then ϕ ◦ exp = exp ◦ ϕ∗.

Lie subgroups For a subset of a Lie group G to be a ”Lie subgroup” we should
not only require it is algebraicly a subgroup but that it is also a submanifold of
G. Different authors have different definitions of what actually is a submanifold
which reflect to the different notions of a Lie subgroup. We shall use the following
definition:

Definition. Let G,H be Lie groups such that H ≤ G as groups8. If

i) the inclusion map H ↪→ G is smooth9 and has injective differential (i.e. is an
immersion), we say that H is a Lie subgroup of G.

ii) the inclusion map is in addition a homeomorphism into its image (i.e. is an
embedding), we say that H is a regular Lie subgroup of G.

An example where nontrivial things happen is the torus S1 × S1. There the
lines `(x) = ax, a ∈ R are one-dimensional subgroups, but they are not embedded
submanifolds if the slope a is irrational.

Fact 2.5. If H is a Lie subgroup of G, then Lie(H) is a subalgebra of Lie(G) (up to
canonical isomorphism).

8By the notation H ≤ G we always mean that H is a subgroup of G.
9Notice that smoothness is only a statement about differentiable structure in H. Also notice

that the inclusion map is automatically a homomorphism and an injective map.
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Proof. By Fact 2.1, for the inclusion map there exists an associated morphism of Lie
algebras ι∗ : Lie(H) → Lie(G) which is injective by the definition of Lie subgroup.
Therefore, if we restrict ι∗ to its image, it is invertible. Thus ι∗ makes Lie(H)
isomorphic (as a Lie algebra) to a subset (and thus a subalgebra) of Lie(G).

Fact 2.6. Let G be a Lie group and H ≤ G. If H is a closed set in G, then H is a
regular Lie subgroup of G.

Fact 2.7. Let G be a Lie group. For every subalgebra h ⊂ Lie(G) there is a unique
connected Lie subgroup H ≤ G with h as its Lie algebra. In fact H is the group
generated by exp(h).

2.2 The topology of the homeomorphism group

It is clear what is the topology of a Lie group: it is the manifold topology. Considering
the metric Lie groups, the topology induced by the metric also agrees the manifold
topology. Manifold topology has almost all the nice properties one could require for
a topology because a manifold is locally just a Euclidean space. But in this thesis
there appears one class of objects which we should treat carefully from topological
viewpoint. We should make a sense of the topology of the isometry group of a metric
Lie group. In general, if X and Y are topological spaces, there is one good topology
in the set C(X,Y ), the space of continuous maps X → Y . That topology is the
following:

Definition. Let X and Y be topological spaces. For any K ⊂ X compact and
U ⊂ Y open, denote

[K;U ] = {f ∈ C(X,Y ) | f(K) ⊂ U} .

The compact-open topology on the set C(X,Y ) is the topology τco that has the sets
[K;U ] as its subbase, i.e. τco contains all unions and finite intersections of the sets
of the form [K;U ] with K compact and U open.

In metric spaces the convergence of a sequence of maps corresponds to the usual
uniform convergence in compact sets:

Fact 2.8. Let X and Y be metric spaces, (fi) ⊂ C(X,Y ) a sequence of continuous
maps and f ∈ C(X,Y ). Then fn → f in the compact-open topology if and only if
(fn)→ f uniformly on compact sets, i.e.

∀K ⊂ X compact ∀ε > 0 ∃m ∈ N such that sup
a∈K

(d(fn(a), f(a)) < ε ∀n ≥ m .

The following is from [Are46b, Thm 5.]:

Fact 2.9. Let A and B be second countable Hausdorff spaces with A locally compact.
Then the space (C(A,B), τco) is second countable.

Every second countable space is a sequential space, which means that its topology
is specified completely in terms of sequences. In particular we shall use the following:
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Fact 2.10. Let A and B be second countable Hausdorff spaces with A locally compact.
Then a set K ⊂ (C(A,B), τco) is

i) compact if and only if it is sequentially compact, i.e. every sequence has a
subsequence that converges in K.

ii) closed if and only if it is sequentially closed, i.e. every sequence of K that
converges in C(A,B) converges in K.

The compact-open topology makes the homeomorphism group a ”topological
group”. This is a more general concept than a Lie group:

Definition. A topological group is a topological space (X, τ) together with the group
operations of multiplication MultX : X × X → X, (p, q) 7→ p · g and inversion
invX : X → X such that these are continuous maps.

Fact 2.11. Let X be a locally compact and locally connected Hausdorff-space. Then
the set of homeomorphisms on X, denoted by Homeo(X), with the compact-open
topology and the composition of mappings as the group operation is a topological
group.

One requires an argument to prove the continuity of the multiplication, let alone
the continuity of the inversion. This was first proven by R. Arens in [Are46a, Thm
4.]. In this thesis our topological space X is a metric space and a manifold so the
assumptions of Fact 2.11 are fulfilled. In particular, the isometry group of a metric
Lie group is a topological group when equipped with the compact-open topology. For
the rest of this thesis, we will always consider the homeomorphism/isometry group
to be equipped with the compact-open topology.

Later in the Section 2.7 we shall study the concept of group action. In the
language of actions the following fact means that the action Homeo(X) y X is
continuous:

Fact 2.12. If X is a locally compact Hausdorff space, then the map Φ: Homeo(X)×
X → X, Φ(F )(x) = F (x) is continuous.

With the compact-open topology many natural continuity results, like the two
following facts, hold:

Fact 2.13. Let X,Y, Z be topological spaces with Y locally compact Hausdorff space.
Then the map

C(Y,Z)× C(X,Y )→ C(X,Z) (f, g) 7→ f ◦ g

is continuous when the compact open topology is considered in the spaces of contin-
uous maps.

Fact 2.14. If X,Y, Z are topological spaces and φ : X × Y → Z is continuous then
the corresponding map φ̃ : X → (C(Y,Z), τco) with φ̃(x) = φ(x, ·) is continuous.
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These two facts gives us two corollaries that we need in our proof:

Fact 2.15. Let X,Y be locally compact Hausdorff spaces and F : X → Y a homeo-
morphism. Then the map

F̂ : Homeo(X)→ Homeo(Y ) I 7→ F ◦ I ◦ F−1

is a homeomorphism.

Proof. For the continuity of F̂ , apply Fact 2.13 to the maps I 7→ F ◦ I and I 7→
I ◦ F−1. Because F−1 is also a homeomorphism, the inverse map I 7→ F−1 ◦ I ◦ F
is continuous by the first part of the proof.

Fact 2.16. Let G be a topological group. Then the map G → Homeo(G) for which
h 7→ Lh is continuous.

Proof. Apply Fact 2.14 fact to the case φ = MultG.

In addition to the facts related to the homeomorphism group we will need the
following result of the general theory of topological groups:

Fact 2.17. Let G be a topological group and K1,K2 ⊂ G compact sets. Then K1 ·
K2 := {k1k2 | k1 ∈ K1, k2 ∈ K2} is compact.

2.3 Basics of algebraic topology

Definition. Let X and X̃ be topological spaces. A continuous surjective map
π : X̃ → X is a covering map if any point x ∈ X has a neighbourhood U ⊂ X in
such a way that π−1(U) is a disjoint union of open sets Vα ⊂ X̃ and π|Vα : Vα → U
is a homeomorphism for all indexes α. In the case when such a map π exists, the
space X̃ is called a covering space of X.

Definition. Let X be topological space with a covering space X̃ and a covering
map π : X̃ → X. If X̃ is simply connected (a path connected space for which the
fundamental group is trivial), then X̃ is called a universal covering space.

For a connected manifold, a universal covering space always exists. For Lie groups
we have everything we can ask for (see [War13, p. 100]):

Fact 2.18. Let G be a connected Lie group. Then there exists a Lie group G̃ and
a map π : G̃→ G in such a way that π is a morphism of Lie groups and a covering
map, and G̃ is a universal covering space of G.

Quotient groups If G is a topological group with a subgroup Γ < G, we can form
the quotient space G/Γ whose elements are the equivalence classes [g] with g ∈ G
and g ∼ g′ if there exists k ∈ Γ in such a way that g′g−1 = k. This set is a topological
space when endowed with the usual quotient topology, i.e. the largest topology that
makes the projection map

p : G→ G/Γ p(g) = [g]

12



continuous.
Let G be a topological group that has the topological group G̃ as its covering

space with π : G̃ → G the covering map. Then π−1(eG) =: Γ is a subgroup of G̃
and we may consider the quotient space G̃/Γ. There exist now two different kind of
”projection maps” as the diagram below illustrates

G̃

G G̃/Γ

π
p

.

Actually, the spaces G and G̃/Γ are homeomorphic. From the diagram above one
can read the obvious candidate for this homeomorphism: Ψ([g]) = π(g) where [g]
denotes the equivalence class in the space G̃/Γ. This is well defined: if g′ ∼ g, i.e.

g′g−1 = k ∈ Γ = π−1(e) ,

then
e = π(g′g−1) = π(g′)(π(g))−1

so π(g′) = π(g). This reasoning also holds backwards, meaning that [g] = [g′] if and
only if π(g) = π(g′). Therefore the map Ψ is bijective. We also know that both
maps p and π are open: The covering map is always open, as well as the projection
to a quotient group. Therefore the map Ψ is continuous and open and hence a
homeomorphism.

The following fact is related to the general quotient spaces:

Fact 2.19. Let X and Y be topological spaces with some partitions X =
⊔
Xi

and Y =
⊔
Yi inducing equivalence relations ∼X and ∼Y . If f : X → Y is a

homeomorphism for which f(Xi) = Yi for all i, then f induces a homeomorphism
F : X/∼X → Y/∼Y by the formula F ([x]) = [f(x)].

2.4 Haar measures

Let X be a topological space. Recall that a Borel measure is a measure µ : MX →
[0,∞] for which any open set is measurable. Here MX denotes the σ-algebra of
measurable sets of X. A Radon measure has in addition the properties

i) µ(K) <∞ for any K ⊂ X compact,

ii) for all B ∈ BX holds µ(B) = inf{µ(V ) | B ⊂ V, V open} and

iii) for all open sets U holds µ(U) = sup{µ(K) | K ⊂ U, K compact}.

A nonzero Radon measure µ on a Lie group G is called left-Haar measure (re-
spectively right-Haar measure) if it is invariant by left-translations, i.e. if µ(A) =
µ(Lg(A)) (respectively if µ(A) = µ(Rg(A))) for any measurable set A and for any
g ∈ G. A measure is called a Haar-measure if it is both left- and right-invariant. In
compact groups such a Haar measure always exists [Kna13, p. 239]:
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Fact 2.20. i) In a Lie group there always exists a left-Haar-measure.

ii) In a compact Lie group any left-Haar measure is also a right-Haar measure.

Let’s study a little about integrating with respect to a Haar measure. Let K ≤ G
be a compact subgroup of a Lie group G. The group K is a Lie group by itself
(because it is a closed subgroup), so it has a left-Haar measure µ and this measure
is also right-invariant by the previous fact. The total measure of K is finite so given
k ∈ K and f : G→ [0,∞[ we can form the integral∫

h∈K
f(hk) dµ ≡

∫
K
f(hk) dµ(h) =

∫
K
f(Rk(h)) dµ(h) .

Let’s make a ”change of variables” to get rid of the translation Rk. How does it
work when integrating with respect to a general measure? We will show the correct
formula for the change of variables to be∫

K
(f ◦ F )(h) dµ(h) =

∫
K
f(h) dF∗µ(h)

for any homeomorphism F : K → K. Here F∗µ is the pushed forward measure
defined by F∗µ(A) = µ(F−1(A)).

Proof of the formula. Let F : X → Y be a homeomorphism, µ a measure in X and
A ⊂ Y a measurable set. For any set B we denote by IB the characteristic function
of that set. Recall that the measure of B with respect to some measure is then given
by integrating the characteristic function of B with that measure. We calculate∫

Y
IA dF∗µ = (F∗µ)(A) = µ(F−1(A)) =

∫
X
IF−1(A) dµ =

∫
X

(IA ◦ F ) dµ .

The integration is defined via approximating the integrand function by so called sim-
ple functions whose image is a finite set. A simple function is therefore a finite linear
combination of characteristic functions of some sets. If ψ : Y → R is an arbitrary
(measurable) function, and ψ0 =

∑n
i=1 ci IBi is a simple function approximating it,

then by the above formula∫
Y
ψ0 dF∗µ =

∫
Y

n∑
i=1

ci IBi dF∗µ =
n∑
i=1

ci

∫
Y

(IBi ◦ F ) dµ =

∫
X
ψ0 ◦ F dµ .

This holds for the function ψ itself also, since we can make better approximations.

Using the change of variables formula to F = Rk (it is important that k ∈ K so
that Rk(K) ⊂ K) we get for a Haar measure µ the result∫

K
f(hk) dµ(h) =

∫
K
f(h) d(Rk)∗µ(h) =

∫
K
f(h) dµ(h) . (2)

To summarize, integrating in a compact Lie group with respect to its Haar measure
one can just drop any right-translation10. We shall refer a couple of times to this
formula in our proof.

10This holds equally well for a left-translation, but for us only the right-translation appear in
these kind of situations.
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2.5 Nilpotency

This section is devoted to study the notion of a nilpotent group. Actually, for a Lie
group, there are two seemingly different definitions that in the end coincide.

The group commutator If R is an (algebraic) group, we can define a commutator
of two elements x, y ∈ R to be

[x, y] := x−1y−1xy ∈ R .

The commutator is thus the unique element with the property

xy = yx[x, y] .

A Lie group has in this way a commutator on the group level and another one on its
Lie algebra.

Let r be a Lie algebra with h, p ≤ r subalgebras and let R be a group with
H,P ⊂ R subgroups. We denote

[h, p] := spanR{[X,Y ] | X ∈ h, Y ∈ p}
and [H,P ] := 〈{h−1p−1hp | h ∈ H, p ∈ P}〉 ,

where 〈X〉 stands for the subgroup generated by the set X. We had to take the
generated group (respectively the span) as otherwise the set is not necessarily closed
under multiplication (respectively sum).

The center of a Lie algebra (or respectively a group) g is the set of elements that
commute with the whole Lie algebra (respectively the group):

Z(g) = {X ∈ g | [X, g] = 0} .

The two definitions of nilpotency A Lie algebra is nilpotent if there are no
arbitrarily long commutators:

Definition. Let g be a Lie algebra. The lower central series of g is formed by the
Lie subalgebras

g1 = g and gi+1 = [g, gi] for i ∈ N .

If for some s ∈ N we have gs+1 = {0}, but gs 6= {0}, then the Lie algebra g is said
to be nilpotent of step s.

The definition for groups is very similar:

Definition. Let R be a group. The lower central series of R is formed by the
subgroups

R1 = R and Ri+1 = [R,Ri] for i ∈ N .

If for some s ∈ N we have Rs+1 = {eR}, but Rs 6= {eR}, then the group R is said to
be nilpotent of step s.
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In a connected Lie group there is indeed a correspondence between these notions
(see [Rag72, p. 2]):

Fact 2.21. Let G be a connected Lie group. Then its Lie algebra is nilpotent if and
only if G is nilpotent.

Consequently, if a Lie group is non-connected and nilpotent, then the connected
component of the identity is a nilpotent subgroup and therefore the Lie algebra of
the group is nilpotent.

IfG is a nilpotent group with more than one element, it has necessarily non-trivial
center. Indeed, if G is nilpotent of step s, then Gs ⊂ Z(G).

In the nilpotent groups, there is a little more we can say about the exponential
map:

Fact 2.22. For a connected nilpotent Lie group the exponential map is surjective.

Fact 2.23. For a simply connected nilpotent Lie group the exponential map is a
diffeomorphism.

Nilpotency is a property that transfers to the universal covering space:

Fact 2.24. If N is a connected nilpotent Lie group and the Lie group Ñ is its
universal covering space, then Ñ is nilpotent.

Proof. The projection map π : Ñ → N is locally a Lie group isomorphism. Thus the
Lie algebra of the universal covering space is isomorphic to the Lie algebra of N .
Therefore Lie(N) is nilpotent if and only if Lie(Ñ) is nilpotent. Fact 2.21 completes
the proof.

Relation to nilpotent matrices To give some intuition to the concept of nilpo-
tency in perhaps more familiar terms, consider a vector space V . A linear map
M : V → V is said to be nilpotent if for some k ∈ N it holds Mk = 0.

The relation to the nilpotent Lie algebras is the following (see [Kna13, p. 2]):

Fact 2.25. A Lie algebra g is nilpotent if and only if for all X ∈ g the linear map
adX = [X, · ] ∈ gl(g) is nilpotent.

Examples of nilpotent groups Abelian groups are nilpotent as we already men-
tioned. This also holds for the non-connected ones, which is important when we
discuss the maximality of our result in the Section 4.

Here are some non-Abelian examples of nilpotent Lie algebras and groups:

i) TheHeisenberg algebra is the 2-step nilpotent 3-dimensional Lie algebra spanned
by the vectors {X,Y, Z} with the only non-trivial bracket relation

[X,Y ] = Z .

More generally, the 2n + 1-dimensional Heisenberg algebra for n ∈ Z+ is the
Lie algebra spanned by the vectors {X1, . . . , Xn, Y1, . . . , Yn, Z} with the only
non-trivial bracket relations

[Xi, Yj ] = δijZ .
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ii) A Lie algebra g is stratifiable if there is a direct sum decomposition g =⊕∞
i=1 Vi with only finitely many Vi different than {0} and with the prop-

erty [V1, Vi] = Vi+1. Stratifiable Lie algebras are nilpotent, but nilpotency is
a strictly weaker assumption as demonstrated by the following example: A
non-stratifiable nilpotent Lie algebra is the 7-dimensional Lie algebra spanned
by the vectors {X1, . . . , X7} with the only non-trivial bracket relations

[Xi, Xj ] = (j − i)Xi+j .

iii) The group of upper tringular matrices (with ones in the diagonal) is nilpotent
in any dimension. The (3-dimensional) Heisenberg group, a Lie group whose
Lie algebra is the (3-dimensional) Heisenberg algebra, is isomorphic to the
group of 3× 3 upper triangular matrices.

To give an example of a non-nilpotent Lie group and to see how one can observe
the non-nilpotency, let’s study the group SU(2). One can use the so called Pauli
spin matrices

σ1 :=

[
0 1
1 0

]
σ2 :=

[
0 −i
i 0

]
σ3 :=

[
1 0
0 −1

]
to span the Lie algebra of SU(2). They obey the commutation relation

[σi, σj ] = iεijkσ
k . (3)

If the Lie algebra were to be nilpotent, then by Fact 2.25 every adσi should form a
nilpotent matrix. But using (3) one sees that

adσ1 =

 0 0 0
0 0 −i
0 i 0


clearly is not nilpotent as (adσ1)3 = adσ1 .

As remarked above, all stratifiable Lie groups are nilpotent. The following defi-
nition gives an important family of examples of nilpotent groups:

Definition. Let G be a simply connected Lie group with a stratifiable Lie algebra
g = V1 ⊕ · · · ⊕ Vn. Fix a norm ‖·‖e in V1. We form a subbundle of the tangent
bundle by vector spaces ∆g := (Lg)∗V1. Any ∆g is equipped with the norm ‖v‖g :=
‖(Lg)∗v‖e. The distance function in G is now defined by

dCC(p, q) = inf
{∫
‖σ̇(t)‖ dt | σ AC curve from p to q with σ̇(t) ∈ ∆σ(t) for a.e. t

}
Here AC stands for absolutely continuous. The metric Lie group (G, dCC) is then
called a subFinsler Carnot group.

The result we shall prove was already known in Carnot groups. We shall discuss
the results that were known before in the Section 5.
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2.6 Semidirect product of groups

If H and N are two (algebraic) groups, then we can form a new group as a direct
product of H and N . This is achieved by equipping the set H ×N with the product

(h1, n1) · (h2, n2) = (h1h2, n1n2) .

This group has the subgroups H × {eN} and {eH} ×N which are isomorphic to H
and N respectively. Both of these subgroups are normal in H × N . Recall that a
subgroup H ≤ G is said to be normal in G, we write H C G, if gHg−1 ∈ H for all
g ∈ G.

Let’s study a more general construction. Still, let H and N be two groups and
let π : H → Aut(N) be a homomorphism11. The semidirect product of H and N
with respect to π, denoted by H nπ N , is setwise H ×N and has the product

(h1, n1) ∗ (h2, n2) = (h1h2, n1πh1(n2)) . (4)

Again H × {eN} and {eH} × N are both subgroups of H nπ N , and {eH} × N is
even a normal subgroup:

(h1, n1) ∗ (e, n) ∗ (h1, n1)−1 = (h1, n1) ∗ (e, n) ∗ (h−1
1 , π−1

h1
(n−1

1 ))

= (h1, n1) ∗ (h−1
1 , nπe(π

−1
h1

(n−1
1 )))

= (h1, n1) ∗ (h−1
1 , nπ−1

h1
(n−1

1 ))

= (h1h
−1
1 , n1πh1(nπ−1

h1
(n−1

1 )))

= (e, n1πh1(n)n−1
1 ) ∈ {eH} ×N .

Notice that in the non-symmetric notation H nπ N the normal subgroup is the
one on the right hand side. Notice also that the direct product is recoverd by choosing
π(h) = IdN for all h ∈ H.

In the above, the groups H and N were totally unrelated. What happens in the
situation where we have a group G and there are two subgroups H and N of it? Can
we in some case recover (an isomorphic copy of) G by taking the semidirect product
of H and N with respect to some π? Usually this does not happen. It is not even
enough if N C G. Still we have the following:

Fact 2.26. Let G be a group with subgroups H ≤ G and N C G in such a way
that H ∩ N = {eG} and G = N · H. Then by setting ψh(n) = hnh−1 we get a
homomorphism ψ : H → Aut(N) for which H nψ N is isomorphic to G.

2.7 Group actions

The group action is a general concept which we define probably best by giving a
particular example first. Let G be a group and X a topological space. A group
homomorphism Φ: G → Homeo(X) is called an action of G in X. If this action is
known implicitly, we say that G acts on X and denote Gy X.

11Here Aut(N) refers to the group of automorphisms of N , i.e. isomorphisms N → N .
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A priori the group G and the space X are totally non-related. The intuition
behind this definition is that an action Φ makes it possible to identify G with some
group of symmetries of X.

The generalization is that one can replace the assumption of X being topological
space by some other space with a mathematical structure and the set of homeo-
morphisms by the group of isomorphisms of that structure. For example one could
choose X to be a differentiable manifold and replace Homeo(X) by Diffeo(X). If
one wants to make explicit what kind of structure is Φ(g) (where g ∈ G) preserving,
one can say for example Gy X by isometries in the case X is a metric space.

An equivalent definition would be to say that an action is a mapping Ψ: G×X →
X with properties Ψ(e, p) = p and Ψ(st, p) = Ψ(s,Ψ(t, p)) requiring in addition that
mappings Ψ(t, ·) : X → X are isomorphisms of the structure on X for all t ∈ G.

If G is a group and M is a differentiable manifold, we say G y M smoothly or
that the action is smooth if the mapping Ψ is a smooth mapping between manifolds.
Notice that this is a stronger condition than Φ(G) ≤ Diffeo(M). Indeed, Φ(G) ≤
Diffeo(M) means just that GyM by diffeomorphisms, i.e. the restrictions {g}×M
are smooth. Similarly, we say G y M continuously or the action is continuous if
the mapping Ψ: G×X → X is continuous.

Definition. Let Φ be an action for which Gy X. We say that G acts

i) transitively if for all x, y ∈ X there exists g ∈ G with help of which x can be
mapped to y, i.e. Φ(g)(x) = y. If the element g is furthermore unique, we say
that G acts simply transitively.

ii) effectively if
Φ(g) = idX ⇔ g = eG .

iii) freely if already the existence of a fixed point, i.e. an element x ∈ X for
which Φ(g)(x) = x, implies g = eG.

For one example, any Lie group G acts on itself simply transitively, effectively
and freely by the action g 7→ Lg. Moreover, the action is smooth. Let’s go this
through: For transitivity, let x, y ∈ G. Then for g := yx−1 it holds uniquely

Φ(g)(x) = Lg(x) = Lyx−1(x) = y .

The action is effective because Lg and Lh are not the same mappings if h 6= g. It
is also free: If h 6= e, then the map Lh does not have fixed points. The action is
smooth by the definition of a Lie group.

Definition. Let G be a group acting on a space X with the action map Φ: G×X →
X. The stabilizer (or the isotropy group) of a point x ∈ X is the set

Stab(x) := {g ∈ G | Φ(g)(x) = x} .
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3 Our result and its proof

3.1 Stating the result and its corollaries

Let’s first state our result in a form that is possible to understand without the extra
terminology introduced in the earlier sections:

Theorem 3.1 (Main theorem, explicit form). Let (N1, d1) and (N2, d2) be two con-
nected nilpotent Lie groups endowed with left-invariant distances that induce the man-
ifold topologies. Then for any distance preserving bijection F : N1 → N2 there exists
a left-translation τ : N2 → N2 and a group isomorphism Φ: N1 → N2 such that
F = τ ◦ Φ.

Next we will restate here the definitions already mentioned at the introduction
because this section should be a stand-alone rigorous treatment. Then we restate
our theorem with this new terminology.

Definition. Let (M1, d1) and (M2, d2) be two metric spaces. A map F : M1 →M2

is said to be an isometry if it is bijective and it holds d1(p, q) = d2(F (p), F (q)) for
all p, q ∈M1.

Notice that we do not require an isometry to be a smooth map. We only require
isometries to preserve distances and be surjective12. Injectivity and continuity we
get for free, but smoothness shall only be a consequence of the main theorem. Along
the way for the proof we actually have to use advanced techniques like the results
of Montgomery–Zippin even to get the self-isometries of a Lie group13 smooth. It
remains an open problem if isometries between two general metric Lie groups are
always smooth.

Definition. Let G1 and G2 be two Lie groups. A map F : G1 → G2 is said to
be affine if there exists a left-translation τ of G2 and a Lie group isomorphism
Φ: G1 → G2 such that F = τ ◦ Φ.

Notice that since left-translations commute with a homomorphism, then affine
maps have equivalently the composition F = Φ ◦ τ ′, where the translation τ ′ : G1 →
G1 is related to τ = Lg by τ ′ = LΦ−1(g). We will stick in our notation to the
translations that come last in the composition just as in Euclidean space it is more
natural to write F = Ax+ v instead of F = A(x+ v′).

Definition. Let G be a Lie group and d a distance function on G. If d induces the
manifold topology of G, and d is moreover left-invariant, i.e. d(p, q) = d(gp, gq) for
all p, q, g ∈ G, we call the pair (G, d) a metric Lie group.

12The surjectivity/bijectivity is important in the idea that an isometry should be the ”isomor-
phism of metric spaces”. We want to say that two metric spaces are the same if they are isometric.
A non-surjective version of an isometry is called isometric embedding and our result does not apply
to such a map.

13This means isometries G→ G.
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Motivation for the notion of affine is discussed in the introduction and it is
general terminology. Instead, the notion of metric Lie group is, as far as we know,
only presented here. The reason to use such term is that the setting of metric Lie
group has only the most general assumptions that still make sense. If one endows
a Lie group with distance function not satisfying these assumptions, the distance is
not respecting the Lie group structure14.

Theorem 3.1 (Main theorem, convenient form). Let (N1, d1) and (N2, d2) be two
connected nilpotent metric Lie groups. Then any isometry F : N1 → N2 is affine.

For now on we will be using the introduced extra terminology stating the corol-
laries and going through proofs.

Corollary 3.2. Let (N1, d1) and (N2, d2) be two connected nilpotent metric Lie
groups. Any isometry F : N1 → N2 fixing the identity element is a group isomorphim.
In particular, if the groups are isometric, they are isomorphic.

Notice that this corollary is actually equivalent to the main theorem: If identity
fixing isometries are isomorphisms, then all the rest are necessarily affine maps.

Corollary 3.3. Let (N1, d1) and (N2, d2) be two connected nilpotent metric Lie
groups. Then the isometries F : N1 → N2 are C∞ maps.

Proof. Any isometry F has the affine decomposition F = τ ◦ Φ, where Φ is a ho-
momorphism. The map τ−1 ◦ F = Φ is still an isometry and thus continuous.
Continuous homomorphisms between Lie groups are necessarily smooth (Fact 2.3).
Thus also F is C∞.

Corollary 3.4. Let (N, d) be a connected nilpotent metric Lie group. Then its
isometry group has a decomposition15 as a semidirect product of the stabilizer of the
identity and the group of left-translations: Isome(N, d) = Stab(e) nNL.

In the corollary above (its proof shall be discussed in the Section 3.6) a new
notation was introduced: by NL we mean the group of left-translations of a Lie
group N . Actually we could also omit such extra notation and just write N instead
of NL as the group of left-translations NL := {Lg | g ∈ N} is naturally isomorphic to
N via the map g 7→ Lg. Still, I think keeping this notation explicit can help avoiding
confusion, and I will stick with it. Notice how in the case of a metric Lie group this
isomorphism allows one to see the group as a subgroup of its own isometry group16:
N ∼= NL < Isome(N, d).

14Notice also that the statements like ”an isometry is always continuous” is already a statement
about topology: this happens in every metric space with a topology induced by the metric but
not necessarily otherwise. If the manifold topology would be different, we don’t even know which
”continuity” we should refer to.

15To be very precise, we of course mean they are isomorphic.
16We will use occasionally the notation G ∼= G′ to mean that G is isomorphic to G′.
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3.2 The strategy of the proof

Let’s present a roadmap for proving the main theorem. In the parenthesis we refer to
the explicit and exact forms of these statements. The assumption of connectedness
is required in almost every step, but we do not write it in this list. First we study
the group of self-isometries:

a. The stabilizers of the action Isome(G, d) y G are compact for (G, d) a metric
Lie group by the Ascoli–Arzelà theorem (Proposition 3.7).

b. The isometry group of a metric Lie group is a locally compact topological group
(Proposition 3.8).

c. The isometry group of a metric Lie group is itself a Lie group by the theory of
Montgomery–Zippin (Corollary 3.9).

d. The self-isometries of a Lie group are smooth (Proposition 3.10).

e. For a metric Lie group (G, d) we can find a Riemannian metric g such that
Isome(G, d) ≤ Isome(G, g) (Theorem 3.13).

Then we continue by operating between two different groups:

f. An isometry between metric spaces induces an isomorphism between their re-
spective isometry groups (Lemma 3.15).

g. If the induced isomorphism of the step f maps the left-translations to left-
translations, then the corresponding isometry is affine (Lemma 3.16).

h. If the nilradical condition17 holds for groups N1 and N2, then the induced iso-
morphism of the step f maps the left-translations to left-translations (Lemma 3.17).

Finally, we can study more the self-isometries and find out that with the help of the
result by Wilson we can deduce:

i. The nilradical condition holds in nilpotent metric Lie groups (Proposition 3.19).

The logical dependence of these steps are described in Figure 1. Notice how
the assumption of nilpotency only appears in the step i. All the other results are
independent of nilpotency and thus the techniques based on nilpotency shall only
appear towards the end of the proof. To reduce the level of confusion, I have made
the most important steps in the roadmap Figure 1 to appear in boldface. The others
can be considered more like ”intermediate steps”.

17See the Definition 3.11.
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Figure 1: Logical dependence of the steps a–i of the proof. An arrow x → y means
that in proving y we need to use x. ”AA” stands for Ascoli–Arzelà theorem, ”MZ” for
Montgomery–Zippin theorem and ”Wilson” for Theorem 3.12. The more important
steps are in boldface.

3.3 The group of self-isometries

Let (G, d) be a metric Lie group. We will study the structure of its isometry group
Isome(G, d). This is a group with the composition of mappings as the multiplication.
Also, it is a topological group when endowed with the compact-open topology (Fact
2.11).

We would want to have a Lie group structure on Isome(G, d). This structure can
be deduced from the following ”big theorem”, originally presented in [MZ55] (with
a contribution of A. M. Gleason’s paper [Gle52]). This modified version is from
[LDO14, p. 7]:

Theorem 3.5 (Montgomery–Zippin). Let H be a second countable, locally compact
topological group and X a locally compact, locally connected metric space with finite
topological dimension18. Assume H y X by isometries continuously, effectively and
transitively. Then H is a Lie group and X is a differentiable manifold.

Now we just have to carefully go through the assumptions and see that they
are fullfilled. In the next subsection we prove that the isometry group is locally
compact. This essentially follows from the Ascoli–Arzelà theorem. Actually, it is
more convient to first prove that the stabilizer of the action Isome(G, d) y G is
compact, as this result shall also be used later when constructing a metric tensor on
G to accomplish the step e of the road map of the proof. Then using the compactness
of the stabilizers we get the local compactness of the isometry group.

18Topological dimension (also called the Lebesque covering dimension) of a topological space is
less or equal to n, if for every open cover one can find a finite refinement cover (the new sets are
the subsets of the old ones) such that any point belongs to at most n + 1 sets. For us these details
does not matter because topological dimension of a manifold is that of Rn, which is n.
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3.3.1 Local compactness of the isometry group

The Ascoli–Arzelà theorem can be found from the literature rephrased in uncount-
ably many ways. Here is a version we shall use (for a more general discussion check
for example the book by Kelley [Kel12]):

Theorem 3.6 (Ascoli–Arzelà). Let (A, dA) and (B, dB) metric spaces with A com-
pact. Suppose a set F ⊂ C(A,B) is equi-uniformly continuous and pointwise pre-
compact, i.e. suppose

i) for all ε > 0 there exists δ > 0 such that dB(f(x), f(y)) < ε whenever
dA(x, y) < δ and f ∈ F .

ii) for all x ∈ A the subset {f(x) | f ∈ F} ⊂ B is precompact, i.e. its closure is
compact.

Then every sequence (fn) ⊂ F has a subsequence (fnk) that converges to some f ∈
C(A,B) uniformly.

Proposition 3.7. Let (G, d) be a connected metric Lie group and let p ∈ G. Then
the stabilizer of p under the action by isometries, i.e. the set

Stab(p) := Isomep(G, d) := {f ∈ Isome(G, d) | f(p) = p}

is compact with respect to the compact-open topology.

Proof. It is enough to prove that the stabilizer is sequentially compact (see Fact 2.10).
Fix an arbitrary sequence (gn) of isometries fixing the point p. For the claim we want
that it has a subsequence that converges to some map g ∈ Isomep(G, d). We have
the convergence gn → g in the compact-open topology if and only if (Fact 2.8) in
all compact sets the convergence is uniform. Our strategy is to apply Ascoli–Arzelà
to the situation where we restrict the maps gn to an increasing sequence of compact
sets.

Observe that a Lie group G has a global frame for its tangent bundle TG, con-
sisting of a basis of left-invariant vector-fields. Thus one can define a Riemannian
metric on G by declaring this frame orthonormal. Resulting metric tensor η is then
automatically left-invariant, i.e. G-invariant: ηh(v, w) = ηh′h((Lh′)∗v, (Lh′)∗w). De-
note by ρ the distance function induced by the Riemannian metric tensor η. Now
there are two distances ρ and d on G, and we have to be careful: Both distances
are left-invariant and induce the same topology but the maps gn are only isometries
with respect to d.

Let r > 0 be arbitrary and denote K := Bρ(p, r). We know that every complete
Riemannian manifold is boundedly compact19, i.e. the closed balls are compact, thus
K is a compact set. The set FK := {gn|K} is equi-uniformly continuous because the
maps are isometries (one can choose uniformly δ = ε). We will next prove that the

19By Hopf–Rinow theorem, a Riemannian manifold is boundedly compact if and only if it is a
complete metric space. A Lie group G endowed with the Riemannian metric by declaring some
frame of TG orthonormal is always a complete metric space [Zhe05, p. 196]
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set Fq := {f(q) | f ∈ FK} is precompact for every q ∈ K. It is enough to prove that
Fq is bounded in ρ, again because (G, ρ) is boundedly compact space20.

Let s > 0 be such that Bd(a, s) ⊂ Bρ(a, 1) for all a ∈ G. Such an s exists
pointwise because d and ρ induce the same topology, but we claim that s is actually
independent of a. If b ∈ G is any other point, then Lba−1(Bd(a, s)) = Bd(b, s) by left-
invariance of the metric d. Similar relation holds for the left-invariant Riemannian
metric ρ, making s a global parameter.

Fix q ∈ K. Because K is compact there exist N ∈ N and points q1, . . . , qN ∈ K
such that

K ⊂
N⋃
i=1

Bd(qi, s/2) .

It is enough to show that for any g ∈ FK we have ρ(p, g(q)) ≤ N (it is allowed here
for N to depend on q, although this does not happen in our case). Because K is
path connected21, we can take a curve γ : [0, 1] → K from p to q. We may assume
by reordering points qi that γ starts from the ball B1 := Bd(q1, s/2). If we also
have q ∈ B1, then further reordering is not necessary and we stop. If this is not the
case, then γ leaves the ball B1 last time at some t1 ∈ ]0, 1[ (it may leave the ball
many times but after t1 it does not come back anymore). By above we mean that
t1 = sup{t | γ(t) ∈ B1}. Because the sets cover, by reordering we may assume that
γ(t1) is in the ball B2 := Bd(q2, s/2). If q ∈ B2, we stop, otherwise we continue to
define times ti with this system. Because q ∈ Bd(qk, s/2) for some k, this process
eventually stops and we have times t1, . . . , tk−1 ∈ ]0, 1[, where k ≤ N . Define in
addition t0 = 0 and tk = 1. By construction

d(γ(ti), γ(ti+1)) ≤ s ∀i ∈ {0, . . . , k − 1} .

This implies that for arbitrary g ∈ FK we have

d(g(γ(ti)), g(γ(ti+1))) ≤ s and so ρ(g(γ(ti)), g(γ(ti+1))) ≤ 1 .

Therefore

ρ(p, g(q)) ≤
k−1∑
i=0

ρ(g(γ(ti)), g(γ(ti+1))) ≤ k ≤ N

as was claimed.
By Ascoli–Arzelà some subsequence of (gn|K) has a limit g : K → G. Notice that

Ascoli–Arzéla is not telling us that g ∈ Isomep(G, d) but only that g ∈ C(K,G).
From the fact that the distance function d is continuous, it follows immediately that
also the map g preserves distances, but it is not immediate that g is bijective22.

20If (M,d) is a boundedly compact space and a subset X ⊂M is bounded, i.e. there exists x ∈M
and r > 0 such that X ⊂ Bd(x, r), then X is precompact because X̄ is closed: it is a closed subset
of a compact set Bd(x, r).

21A connected complete Riemannian manifold has path-connected balls because any point of a
ball is connected to the center of the ball with the geodesic (Hopf–Rinow theorem).

22In general it is not true that the set of distance preserving bijections is closed under pointwise
convergence: Consider the sequence gn : N→ N with gn(0) = 0, gn(k) = k + 1 for k < n, gn(n) = 1
and gn(k) = k for k > n and equip N with discrete topology. The key point is that N is not
connected.
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Another thing to notice: The above constructed subsequence, as well as its limit,
can depend on the compact set K chosen. Next we should find a subsequence of
(gn) that is uniformly convergent in any compact set.

Take as a sequence of compact sets the incresing ρ-balls Kn := Bρ(p, n). For K1

the argument above holds and we have some subsequence and some limit f1 : K1 →
G. For K2, using Ascoli–Arzelà again we can choose a subsequence of the preceding
subsequence, which was for K1, and again we have some limit map f2 : K2 → G.
Necessarily it holds f2|K1 = f1 and in this sense the limit is the same23. Proceeding
inductively we get infinitely many nested subsequencies in such a way that the nth
subsequence is converging uniformly in Kn to the limit function g.

If (gn) ⊂ Isomep(G, d) is a sequence of isometries, is there now a subsequence
(gnk) converging uniformly in any compact set, i.e. a subsequence that converges
in the compact-open topology? Yes: it can be ”read from the diagonal”. Choose
as the kth map in the sequence the kth map of the subsequence corresponding to
the set Kk. If K̂ is now any compact set, it is ρ-bounded and thus subset of some
Kn. The subsequence picked as above is converging uniformly in Kn because it is a
subsequence of the subsequence that was constructed for Kn. Thus it is converging
in K̂ also.

Denote by (gnk) the subsequence described above. We know gnk → g ∈ C(G)
in compact open topology and g preserves distances necessarily. But why should
it be bijective? Consider the sequence (g−1

nk
) constructed out of the inverse maps

of the above sequence. This is also a sequence of isometries in Isomep(G, d), and
therefore anything argued above can be applied it: This sequence has a subsequence
(g−1
nkm

) that converges uniformly on compact sets to some map h ∈ C(G). Denote the
corresponding subsequence of the original maps gn by (gm) := (gnkm ) for simplicity.
We complete the proof by showing that h(g(x)) = x = g(h(x)) for all x ∈ G.

Fix x ∈ G. Although not all closed d-balls are compact, small balls are because
G is a manifold. If ε > 0 is such that Bd(h(x), ε) =: Q is compact, then after
some index we have g−1

m (x) ∈ Q, so we may assume this is always the case. The
convergence gm → g is uniform in Q, and thus the map g|Q is continuous. Therefore,
since g−1

m (x)→ h(x), there exists an index N such that

d(g(g−1
m (x)), g(h(x))) < ε ∀m ≥ N .

Let M ≥ N be an index after which

sup{d(gm(y), g(y)) | y ∈ Q} < ε

which exists because the convergence is uniform. Then we have for all m ≥M

d(x, g(h(x)) = d(gm(g−1
m (x)), g(h(x)))

≤ d(gm(g−1
m (x)), g(g−1

m (x))) + d(g(g−1
m (x)), g(h(x))) < 2ε .

This proves g(h(x)) = x. Similarly one gets h(g(x)) = x.
23Consider pointwise sequences: necessarily a subsequence of a converging sequence converges to

the same limit.
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Notice that compactness of the stabilizers is not true without the assumption
of connectedness. From Proposition 3.7 the assumption of connectedness is induced
basically to every theorem of this thesis.

Proposition 3.8. Let (G, d) be a connected metric Lie group. Then its isometry
group is locally compact.

Proof. We need to find a compact neighbourhood for every point in Isome(G, d).
Let’s fix F ∈ Isome(G, d) and denote F (e) =: q. A compact neighbourhood of F
shall be the set

V F
ε :=

⋃
h∈Bε(q)

{Lh ◦ J | J ∈ Stab(e)} ,

where ε > 0 is actually arbitrary. At least F ∈ V F
ε because F = Lq ◦ (Lq−1 ◦ F ).

Moreover, F is an interior point of this set because if (Fi) is a sequence of isometries
converging to F in the compact-open topology, then by pointwise convergence qi :=
Fi(p)→ q. This means that in the expression Fi = Lqi ◦ (Lq−1

i
◦ F ) we have sooner

or later qi ∈ Bε(q), as is required for the sequence (Fi) to enter the set V F
ε .

Next we should prove the set V F
ε compact. Using the group product of Isome(G, d)

we can write

V F
ε = K · Stab(e) , where K := {Lh | h ∈ Bε(q)} .

We have expressed V F
ε as product of two compact sets, hence it is compact (Fact

2.17). The set K is compact as the image of the compact set Bε(q) under the
continuous mapping G→ Homeo(G, d) for which h 7→ Lh (Fact 2.16).

3.3.2 The isometry group as a Lie group

Corollary 3.9 (Consequence of MZ). Let (G, d) be a connected metric Lie group.
Then its isometry group Isome(G, d) is a (finite-dimensional) Lie group.

Proof. Using the terminology of MZ theorem, as stated in Theorem 3.5, we have
a metric Lie group (G, d) as our metric space X. It is locally compact, locally
connected and finite dimensional as a manifold because the local properties of a
manifold are the same as those of Rn.

The topological group H is the isometry group endowed with the compact-open
topology, and H is locally compact by Proposition 3.8. The compact-open topology
of H is second countable (Fact 2.9) as isometries are continuous.

Because the distance d is left-invariant, the action Isome(G, d) y G is transitive,
and effective it is trivially. Note that a priori the action by isometres could be
discontinuous because acting continuously requires the map H × X → X to be
continuous. Still, with compact-open topology in the isometry group, the action
Isome(G, d) y G is continuous (Fact 2.12).
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3.3.3 Smoothness of the self-isometries

In this section we will prove that self-isometries of a metric Lie group are smooth.
Notice that we don’t claim such to hold for isometries between two different metric
Lie groups. Between two different groups we work instead with the techniques based
on the induced isomorphism of the isometry groups, which we will introduce in
Lemma 3.15 and use in Lemma 3.16.

Proposition 3.10. If G is a metric Lie group and F : G→ G is an isometry, then
F is smooth.

Proof. Let g ∈ G be a point where we want to check smoothness. Notice that the
map L−1

F (g) ◦ F ◦ Lg =: F ′ is smooth at the identity e ∈ G if and only if F is smooth
at g. In addition F ′ fixes the identity, so if G◦ denotes the connected component of
G containing e, then F ′(G◦) ⊂ G◦ as F ′ is continuous (as an isometry). This means
F ′ ∈ Isome(G◦, d). Hence, without loss of generality, we can assume G is connected.

Let’s prove a bit stronger result as it comes with the same effort: the action
Isome(G) y G is smooth. The proof is based on the following facts:

(i) If H is a Lie group and S ≤ H a regular Lie subgroup, then the quotient space
H/S (with the quotient topology) has a unique differentiable structure ωH/S
for which the left-action24 H y H/S is smooth [Hel01, p. 123].

(ii) The quotient space Isome(G)/Isomee(G) is homeomorphic to G via the map
[F ] 7→ F (e). [Hel01, p. 121].

We know that Isome(G) =: H is a Lie group and Isomee(G) =: S is a compact
subgroup, in particular closed. Topologically closed subgroups of a Lie group are
regular Lie subgroups (Fact 2.6).

Thus by (i) there is a differentiable structure on Isome(G)/Isomee(G) = H/S
making the action H y H/S smooth. Denote this action by ξ : H ×H/S → H/S.
We can construct a differentiable structure to G by declaring the homeomorphism
in (ii), which we denote by ψ, to be smooth. Let’s denote that structure of G by ω.
Then the action H y (G,ω) is smooth as is evident from the following diagram:

H ×H/S H/S

H × (G,ω) (G,ω)

ξ

(Id,ψ) ψ .

We still did not prove that isometries act smoothly because there was already a
differentiable structure ω0 on Lie group G, and although structures ω and ω0 are by
our construction topologically similar, we still want ω = ω0.

Because the action H y (G,ω) is smooth, in particular the action by left-
translations G y (G,ω) is smooth. To be precise, we mean the action (GL, ωL) y

24The left action is given by the map H × H/S → H/S, (h, h′S) 7→ hh′S so the left coset of
element h′ is sent to the left coset of element hh′.
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(G,ω) where the set of left-translations GL is equipped with the induced differen-
tiable structure ωL which it gets as a submanifold of Isome(G, d).

We can apply again (i) to the case H = GL and S = {Id} in which case H/S =
G (they are homeomorphic) and (i) gives that there exists a unique differentiable
structure ω̃ in G such that the action (GL, ωL) y (G, ω̃) is smooth. We had exactly
this condition for ω̃ = ω. For ω̃ = ω0 it holds because (G,ω0) is a Lie group, so we
conclude ω = ω0.

3.3.4 A little stop for the ideas

Until now we have gone through the steps a, b, c and d in the roadmap of the
proof: Figure 1. This was more or less just developing the tools that were necessary:
Because of the smoothness of the self-isometries we can now use their differentials,
the compactness of the stabilizers lets us integrate over that set, and we can invoke
the Lie group structure of the isometry group to use the Lie theory techniques there.

As Figure 1 tells, the logic is now going to branch into two. The branch of steps
h, f and g is less complicated using mainly algebraic observations and some basic
Lie group theory. One can think of the harder points of our proof lying on the right
branch of the Figure 1 instead.

A key idea for how to prove that isometries are affine was to consider the tech-
niques of Wilson in [Wil82], where he proved that the self-isometries of nilpotent
connected Riemannian Lie groups are affine. His theorem stood on the observation
that in this setting the group of left-translation is actually a normal subgroup in
the isometry group. Actually, the normality of this subgroup is equivalent to the
self-isometries being affine, see Section 3.6.

Definition 3.11. Let g be a Lie algebra. The nilradical of g, denoted by nil(g), is
the sum of all nilpotent ideals of g. We say that a metric Lie group (G, d) satisfies
the nilradical condition, if it holds Lie(GL) = nil(Lie(Isome(G, d))).

Recall that a subalgebra a of a Lie algebra g is an ideal, if [a, g] ⊂ a. The
nilradical of a Lie algebra g is itself a nilpotent ideal of g, because a sum of any
two nilpotent ideals is a nilpotent ideal [HN11, p. 93] (and we only consider finite
dimensional Lie algebras). Thus the nilradical is the unique maximal nilpotent ideal.

Wilson observed that in the level of Lie algebras the key result to prove that the
isometries are affine was the following theorem [Wil82, p. 342 theorem 2]:

Theorem 3.12 (Wilson). Let N be a nilpotent connected Lie group with a left-
invariant Riemannian metric tensor g. Then Lie(NL) = nil(Lie(Isome(N, g))).

We oberved that in our case this kind of result would also be the key. Indeed,
the left branch of the Figure 1 finishes to the step h saying exactly that it would be
enough to prove that the nilradical condition holds in our setting. So far I have been
telling that Wilson’s result 3.12 gives the idea how to proceed, but indeed we shall
also use it explicitly to give the nilradical condition in our more general setting as
shown in Figure 1.
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How shall we then get the nilradical condition? We observe that in a general
(connected) metric Lie group (G, d), it is possible to construct a Riemannian metric
tensor g in such a way that the old isometries are now Riemannian isometries, i.e.
Isome(G, d) ≤ Isome(G, g). Combining with Wilson we have then immediately the
following result:

In a connected nilpotent metric Lie group (N, d) there exists a Riemannian
metric tensor g such that Lie(NL) = nil(Lie(Isome(N, g))).

But what about the original distance d of the metric Lie group (N, d)? The
condition Lie(NL) = nil(Lie(Isome(N, g))) means that Lie(NL) is a nilpotent ideal
of Lie(Isome(N, g)) and there are no bigger nilpotent ideals. When we know that
Isome(N, d) ≤ Isome(N, g), then Lie(NL) is also a nilpotent ideal25 of the Lie algebra
Lie(Isome(N, d)), but a priori it can be that Lie(NL) is no more the biggest as the
notion of ideal is less strict in the smaller space Lie(Isome(N, d)). This issue shall
be completed in the Proposition 3.19.

3.3.5 A Riemannian metric preserving the old isometries

We ask if for an arbitrary metric Lie group (G, d) there exists a Riemannian metric
tensor such that the old isometries are still isometries with respect to this Riemannian
metric. Put in other words, if I := Isome(G, d) we want to construct a metric tensor
g on G for which I y (G, g) by isometries26. Recall that isometries are defined
in the Riemannian setting as those diffeomorphisms F that leave the metric tensor
invariant (when pulled back with F ). So we ask for a metric tensor g such that
F ∗g = g for all ”old” isometries F ∈ Isome(G, d). Notice how at this point it is
important to know the isometries of (G, d) to be smooth: We need to differentiate
them.

Theorem 3.13. Let (G, d) be a connected27 metric Lie group. Then there exists a
Riemannian metric tensor g such that Isome(G, d) ≤ Isome(G, g).

Approach the idea of the proof by first examining the following problem:

On an arbitrary Lie group G construct a Riemannian metric that is G-invariant.

Recall that we already solved this problem during the proof of Proposition 3.7:
Such a Riemannian metric tensor can be defined by declaring a global frame of TG

25That it is an ideal actually needs some reasoning because we have to go from group level to
the algebra level, but we will do it when it is the time for the rigorous proof. This is just giving
the idea.

26This does not mean that the metric tensor gives exactly the original distance. For example, if
g gives the distance dg, then 2g gives the distance 2dg, but the isometries of these distances are
the same. Moreover, a priori it might be the case that there are really more of these Riemannian
isometries.

27The connectedness assumption may actually be removed by restricting the problem to the
identity component G◦, as in the proof of Proposition 3.10. However, we don’t wish to go through
these technicalities for such an intermediate step.
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orthonormal. A philosophical note is that in this exercise the construction gives
us a left-invariant metric tensor because declaring some set of left-invariant vectors
orthogonal is exactly what is asked for G-invariance of the metric tensor. Why this
case was so easy is that the action Gy G has trivial stabilizers, i.e. Stab(p) = {Le}
for any p ∈ G. More general actions I y G have complicated stabilizers, and we
have to care about the stabilizer.

The strategy to prove Theorem 3.13 is the following: Lemma 3.14 shall show
first how to define a stabilizer-invariant scalar product on TeG by averaging over the
stabilizer. Then we move that scalar product to every point of the Lie group using
left-translations. To make the mentioned averaging procedure possible we need the
compactness of stabilizers given by Proposition 3.7. Recall that the isometry group
is a Lie group and this makes it possible to average using Haar measures. These
observations explain the arrows pointing to e in Figure 1.

Lemma 3.14. Let Ie be a compact Lie group that acts continuously on a Lie group
G. Assume that the action Ie y G is via diffeomorphisms and fixes the identity of
G. Then there exists a Ie-invariant scalar product on TeG.

Proof. Let 〈·, ·〉 be any scalar product on TeG. We denote by Φ: Ie → Diffeo(G) the
action map. Because for every f ∈ Ie we have Φ(f)(e) = e, then each f ∈ Ie gives
birth to a new scalar product on TeG, namely Φ(f)∗〈·, ·〉. Recall that if F : M → N
is a smooth mapping between manifolds, we can pull back a scalar product η defined
at a point F (p) ∈ F (M) to a scalar product at p by the formula (F ∗η)(Xp, Yp) =
η(F∗Xp, F∗Yp) where the vectors at p are pushed forward by the differential of F ,
i.e. F∗Xp ≡ dFpXp.

By Fact 2.20, we have a Haar measure µ on the Lie group Ie such that the total
measure is finite. Therefore we can define

〈〈·, ·〉〉 :=

∫
Ie

Φ(f)∗〈·, ·〉dµ(f)

since this an integral of a continuous function over a compact set, being then well
defined and finite (this is just the usual integration of real valued function over a
measure space when the inputs are fed in). A more concrete formula is

〈〈X,Y 〉〉 =

∫
Ie

Φ(f)∗〈X,Y 〉 dµ(f) =

∫
Ie

〈Φ(f)∗X,Φ(f)∗Y 〉 dµ(f) .
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We claim that this is the desired Ie-invariant scalar product. Indeed, for any h ∈ Ie
we have

Φ(h)∗〈〈X,Y 〉〉 = 〈〈Φ(h)∗X,Φ(h)∗Y 〉〉

=

∫
Ie

〈Φ(f)∗Φ(h)∗X,Φ(f)∗Φ(h)∗Y 〉dµ(f)

=

∫
Ie

〈(Φ(f) ◦ Φ(h))∗X, (Φ(f) ◦ Φ(h))∗Y 〉dµ(f)

=

∫
Ie

〈Φ(fh)∗X,Φ(fh)∗Y 〉dµ(f)

(2)
=

∫
Ie

〈Φ(f)∗X,Φ(f)∗Y 〉 dµ(f)

= 〈〈X,Y 〉〉 .

Moreover, 〈〈·, ·〉〉 is really a scalar product: it is positive definite, symmetric and
linear in both variables as immediate consequence of 〈·, ·〉 having those properties.

Proof of Theorem 3.13. We must now construct an I-invariant Riemannian metric
on the Lie group G (remember, I = Isome(G, d)). As the stabilizers are compact, the
above lemma gives us a scalar product 〈〈·, ·〉〉 =: ηe on TeG that is invariant under
Stab(e) ⊂ I. The idea is to use the left-translations to move this scalar product to
everywhere on the manifold, thus defining a Riemannian metric28. More precisely, if
p ∈ G, then we define ηp := (Lp−1)∗ηe as cotensors must be pulled back. There are
two things to check:

a) η varies smoothly on the manifold and thus defines really a metric tensor.

b) metric tensor η is I-invariant.

Problem a: Recall that a tensorfield η is smooth if and only if the R-valued
map on the manifold η(X,Y ) is smooth for any fixed smooth vectorfields X,Y . Our
formula is

ηp(Xp, Yp) = (Lp−1)∗ηe(Xp, Yp) = 〈〈(Lp−1)∗Xp, (Lp−1)∗Yp〉〉 = 〈〈dLp−1Xp,dLp−1Yp〉〉

Here dLp−1Xp ∈ TeG for all p and as 〈〈·, ·〉〉 is just a scalar product on TeG we
can check very concretely in coordinates that the map M → R for which p 7→
〈〈dLp−1Xp,dLp−1Yp〉〉 is smooth: Expressions v(p) := dLp−1Xp and w(p) := dLp−1Yp
define vectors v and w always at TeG that vary smoothly with p, i.e. the coordinate
functions

vi(p) := dϕi(v(p)) =
∂(ϕi ◦ Lp−1 ◦ ϕ−1)

∂xj

∣∣∣
ϕ(p)

Xj
p

28With help of left-translations every point can be reached in unique way. In fancy words, the
action is simply transitive.
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are smooth functions M → R in any frame, when ϕ is the local chart. We conclude
by noticing that the scalar product has the simple expression 〈〈v, w〉〉 =

∑
viwi in

its associated orthonormal basis at p.
Problem b: Let F ∈ I and denote F (e) =: p. We want to prove F ∗ηq = ηF−1(q)

at every point q. First of all

F ∗ηq = F ∗(Lq−1)∗ηe = (Lq−1 ◦ F )∗ηe .

Notice that this is a tensor calculated at F−1(q) = (Lq−1 ◦ F )−1(e), but the scalar
product was brought to this point via translation, i.e. ηF−1(q) = (L(F−1(q))−1)∗ηe.
We realize that it did not matter that we chose exactly the left-translation to bring
scalar product from e to other points: any isometry does the same thing. To make
this argument simple, choose two maps H, Ĥ ∈ I such that H−1(e) = Ĥ−1(e). We
claim that H∗ηe = Ĥ∗ηe. Remember that ηe is stabilizer-invariant and Ĥ ◦ H−1

fixes the identity. Observe that

(Ĥ ◦H−1)∗ηe = ηe ⇒ (H−1)∗Ĥ∗ηe = ηe ⇒ Ĥ∗ηe = H∗ηe ,

so the claim follows. We proved that the pull back of η does not depend on the
isometry making the pull back as long as the points are the same. Therefore

F ∗ηq = (Lq−1 ◦ F )∗ηe = (L(F−1(q))−1)∗ηe = ηF−1(q) ,

which completes the proof of I-invariance of the metric tensor.

3.4 Operating between two different groups

So far we have studied the self-isometries of a metric Lie group. Now it is time to
focus on isometries F : N1 → N2 between two possibly different Lie groups. This
means going through the left branch of the roadmap of the proof in Figure 1.

Lemma 3.15. If two metric spaces (M1, d1) and (M2, d2) are isometric via F : M1 →
M2, their groups of isometries are isomorphic as topological groups via the map

F̂ : Isome(M1, d1)→ Isome(M2, d2) I 7→ F ◦ I ◦ F−1 .

Proof. First of all, the map F̂ has the correct codomain because for any isometry I
of (M1, d1) its image F̂ (I) is a mapping M2 →M2 and has the property

d2

(
F̂ (I)(p), F̂ (I)(q)

)
= d2

(
F (I(F−1(p))), F (I(F−1(q)))

)
= d1

(
I(F−1(p)), I(F−1(q))

)
= d1

(
F−1(p), F−1(q)

)
= d2(p, q) ∀p, q ∈M1 ,

where we just used the fact that all these maps are isometries. Moreover, F̂ is
invertible: its inverse is (F̂ )−1 = F̂−1 as is obvious. The homorphism property is
proved as follows:

F̂ (I ◦H) = F ◦ (I ◦H) ◦ F−1 = (F ◦ I ◦ F−1) ◦ (F ◦H ◦ F−1) = F̂ (I) ◦ F̂ (H)

for any I,H ∈ Isome(M1, d1).
The fact that F̂ is a homeomorphism follows from Fact 2.15.
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The main theorem is basically about proving isometric groups isomorphic. The
above lemma applied to two metric Lie groups gives that for isometric groups the
groups of isometries are isomorphic via the map F̂ that is induced by the isometry
F . But we want the isomorphism-property to occur at the group level. Could it
happen through the map F? This is the case if the induced map F̂ works correctly
with translations:

Lemma 3.16. Let (G1, d1) and (G2, d2) be metric Lie groups. Suppose F : G1 → G2

is an isometry fixing the identity for which F̂ (GL1 ) = GL2 . Then G1 is isomorphic to
G2 via the map F .

This result makes much sense: if one thinks ”G = GL”, which is quite legal as
they are isomorphic, then the assumption reads ”F̂ (G1) = G2” and thus it guarantees
with Lemma 3.15 that there is a bijective homomorphism between the groups G1

and G2.
We can make this point precise immediately, as Gi is isomorphic to GLi and thus

G1
∼= GL1

∼= GL2
∼= G2 using that F̂ is an isomorphism. The only thing we did not

get by this reasoning is that the groups are isomorphic via the map F . With these
ideas, let’s write the proof:

Proof. An idea to make the above reasoning precise is that it didn’t use the fact
that F fixes the identity. Let’s show first that at least an isomorphism is induced
between the groups Gi, even if it is not the map F . Indeed, given p1 ∈ G1, we
have F̂ (Lp1) = Lp2 for some p2 ∈ G2. This defines one-to-one correspondence
between elements of G1 and G2. Call this bijection F̃ . Then by the definition
F̂ (Lp1) = LF̃ (p1). We want to show that F̃ is a homomorphism, and therefore
indeed the desired isomorphism G1 → G2.

Fix p1, q1 ∈ G1 and let h2 := F̃ (p1q1), p2 := F̃ (p1) and q2 := F̃ (q1). Then we
have by the homomorphism property of F̂ that

Lh2 = F̂ (Lp1q1) = F̂ (Lp1Lq1) = F̂ (Lp1) ◦ F̂ (Lq1) = Lp2 ◦ Lq2 = Lp2q2 .

This means that h2 = p2q2 which is exactly the required homorphism property

F̃ (p1q1) = F̃ (p1)F̃ (q1) .

Moreover, if we use the assumption that the isometry F fixes the identity, i.e.
F (eG1) = eG2 , then the isomorphism F̃ is really the map F . Indeed, for arbitrary
p ∈ G1 we have

F̃ (p) = LF̃ (p)(eG2) = F̂ (Lp)(eG2) = (F ◦ Lp ◦ F−1)(eG2) = (F ◦ Lp)(eG1) = F (p)

so F̃ ≡ F .

We observe next, that the condition that left-translations map to left-translations
actually follows from the nilradical condition. Therefore the nilradical condition ac-
tually implies that isometries are affine. Later we go from this result to the Main The-
orem by proving that the nilradical condition is automatic in nilpotent Lie groups.
It is immediate that the nilradical condition implies the group to be nilpotent.
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Lemma 3.17. Let (N1, d1) and (N2, d2) be two connected nilpotent metric Lie groups.
Assume Lie(NL

i ) = nil(Lie(Isome(Ni, di))) for both i ∈ {1, 2}. Then for any isometry
F : N1 → N2 fixing the identity it holds F̂ (NL

1 ) = NL
2 .

Proof. First of all, isometry groups are Lie groups by Proposition 3.9 and thus it
makes sense to talk about their Lie algebras. The map F̂ is a group isomorphism
between two Lie groups. Actually, the map F̂ is even an isomorphism of Lie groups
because it is continuous and thus smooth (Fact 2.3).

Corresponding to the isomorphism F̂ there exists (Fact 2.1) the Lie algebra
isomorphism F̂∗ : Lie(Isome(N1, d1)) → Lie(Isome(N2, d2)). Because isomorphisms
preserve all algebraic properties they preserve the nilradical:

F̂∗(nil(Lie(Isome(N1, d1)))) = nil(Lie(Isome(N2, d2))) .

Using now the nilradical condition, we have

F̂∗(Lie(NL
1 )) = Lie(NL

2 )

⇒ exp(F̂∗(Lie(NL
1 ))) = exp(Lie(NL

2 ))

⇒ F̂ (exp(Lie(NL
1 ))) = exp(Lie(NL

2 )) ,

where in the last line we used Fact 2.4. Both sides of the last equation are sets
with a multiplication but not necessarily groups. Taking the group generated we get
〈exp(Lie(NL

i ))〉 = NL
i as the groups Ni are connected (Fact 2.7). This means

〈F̂ (exp(Lie(NL
1 )))〉 = NL

2

⇒ F̂ (〈exp(Lie(NL
1 ))〉) = NL

2

⇒ F̂ (NL
1 ) = NL

2 ,

where we also observed that a homomorphism goes through the group generating
operation 〈·〉, more precisely 〈F (S)〉 = F (〈S〉), as is clear (generated group contains
only finite products and inverses of the original set S).

To stress this point, if for the groups (Ni, di) the nilradical condition holds and
F : N1 → N2 is an isometry, then F is necessarily affine. Indeed, from Lemmas 3.16
and 3.17 together one deduces, that the map Φ := Lp−1◦F , where p := F (eN1), which
is an identity fixing isometry, is an isomorphism N1 → N2. Therefore F = Lp ◦Φ is
the affine decomposition of F .

3.5 The nilradical condition

The next Proposition 3.19, combined with Lemma 3.17 and Lemma 3.16, gives the
main theorem. The proof relies on Theorem 3.13. Or to be precise, it relies on the
following corollary of that theorem:

Corollary 3.18. Let (G, d) be a connected metric Lie group. Then there exists a
Riemannian metric g such that Lie(Isome(G, d)) ≤ Lie(Isome(G, g)).
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Proof. From Theorem 3.13 we have a metric tensor g in G in such a way that
Isome(G, d) ≤ Isome(G, g). By Montgomery–Zippin theorem we know (see Corol-
lary 3.9) that the groups Isome(G, d) and Isome(G, g) are Lie groups. The set
Isome(G, d) is closed in Isome(G, g) as it is sequentially closed (see Fact 2.10). There-
fore Isome(G, d) is a regular Lie subgroup of Isome(G, g), which is even more than
we would need to deduce the claim, a Lie subgroup would be enough (Fact 2.5).

Proposition 3.19. For a nilpotent connected metric Lie group (N, d) it holds

Lie(NL) = nil(Lie(Isome(N, d))) .

Proof. We shall show the two inclusions. First we treat the easy claim

Lie(NL) ⊂ nil(Lie(Isome(N, d))) =: h .

By the theorem of Wilson (Theorem 3.12) we know that Lie(NL) is a nilpotent ideal
of the Lie algebra Lie(Isome(N, g)). As we have Corollary 3.18, then Lie(NL) is of
course also an ideal in the smaller Lie algebra Lie(Isome(N, d)) as the notion of ideal
is less restrictive in smaller set.

Now we must show Lie(NL) ⊃ h. Denote H := 〈exp(h)〉 and pick any φ ∈ H. It
is enough to show that φ is a translation, i.e. that the map f := Lφ(e)−1 ◦ φ is the
identity map. Indeed, then H ⊂ NL and hence their Lie algebras are necessarily in
the same order (Fact 2.5).

Notice first that f ∈ Stab(e). Moreover, because we already proved the other
direction of the inclusion, taking the exponentials and the groups generated we know
that NL ⊂ H which means that translations are in H. Because H is stable by
multiplication of its elements as a generated group, we conclude f ∈ Stab(e) ∩H.

The Lie group H is nilpotent because by Fact 2.7 it has h as its Lie algebra, which
is nilpotent. The same fact gives the connectedness, so we deduce from Lemma 3.20
below that its topological closure Cl(H) is also a nilpotent and connected group.
As a consequence of Lemma 3.21 below all compact subgroups of a nilpotent and
connected group are central in that group. In particular, since the intersection of
two groups is always a group and the intersection of a closed set and a compact set
is a compact set, we have ∗ in

Stab(e) ∩H ⊂ Stab(e) ∩ Cl(H)
∗
⊂ Z(Cl(H)) ⊂ Z(NL) ,

where the fact NL ⊂ H was again used. We got f ∈ Stab(e)∩Z(NL). But the only
map that commutes with all the translations and fixes the identity is the identity
map. Indeed for such a map it necessarily holds

f(q) = f(Lq(e)) = Lq(f(e)) = Lq(e) = q ∀q ∈ N .

Therefore f = Lφ(e)−1 ◦ φ = id and the proof is finished.

Lemma 3.20. Let G be a topological group and H ≤ G a nilpotent and connected
subgroup. Then its closure Cl(H) in G is a nilpotent and connected subgroup of G.
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Proof. The closure of a connected set is connected. First we must prove that the
closure is a group and then prove nilpotency. If we close H, we possibly get some
additional elements of G to Cl(H), call this additional part A := Cl(H)\H. First of
all, any a ∈ A has inverse a−1 ∈ G. If such a point a−1 had a neighbourhood U not
intersecting H, then U−1 contains a and does not intersect H either (H is stable
under inversion), which is impossible. Thus a−1 ∈ Cl(H).

If a, b ∈ A and h ∈ H, we should prove that all kinds of multiplications ab, ah
and ha stay in Cl(H). We argue again by contradiction: The group multiplication
map Ψ: G×G→ G is continuous, so should there be a neighbourhood U 3 ab not
intersecting H, its inverse image would be open and thus contains a neighbourhood
W of (a, b) not intersecting H ×H. But W is formed by unions and finite intersec-
tions of products of open neighbourhoods of a and b, and those all intersect H, a
contradiction. Everything said here applies to the situations ah and ha.

To prove the closure nilpotent, we must use the group level definition of nilpo-
tency. Suppose H is nilpotent of step k − 1. This is equivalent to

[g1, [g2, [· · · [gk−2, [gk−1, gk]] · · · ]]] = e ∀gi ∈ H .

In other words, the map Φ: Gk → G (where Gk denotes cartesian product with
itself k times) defined as the left hand side of the above equation, is constantly e
in the set Hk ⊂ Gk. This map is formed only by multiplications and inverses, so
it is continuous in all its variables, and thus continuous in the product topology.
Therefore Φ ≡ e also in Cl(H)k, so Cl(H) is nilpotent.

Lemma 3.21. Let N be a connected nilpotent Lie group. Then every compact sub-
group K ≤ N is central in N .

Proof. Let the Lie group Ñ be the universal covering space of the Lie group N in
such a way that the projection map π : Ñ → N is a morphism of Lie groups (see
Fact 2.18). Because Ñ is simply connected as a universal cover, the exponential map
exp: Lie(Ñ) → Ñ is a diffeomorphism (see Fact 2.23). Denote log := exp−1 and
consider the sets

B := log(π−1(K)) and A := log(π−1(e)) .

We shall prove that K ⊂ Z(N) with the following steps:

1. π−1(e) ⊂ Z(Ñ).

2. A ⊂ Z(Lie(Ñ)).

3. B/A is a compact set.

4. B/AS is a compact set when AS := spanR(A).

5. if b ∈ B and m ∈ N, then mb ∈ B.

6. B ⊂ AS .

37



7. B ⊂ Z(Lie(Ñ)).

8. π−1(K) ⊂ Z(Ñ).

9. K ⊂ Z(N).

To prove step 1, notice that π−1(e) is discrete and π−1(e) C Ñ because π is a covering
map and a group homomorphism. Take points x ∈ π−1(e) and y ∈ Ñ and a curve
σ : [0, 1]→ Ñ from eÑ to y. Define another curve ζ by ζ(t) = σ(t)xσ(t)−1. Because
π−1(e) is a normal subgroup of Ñ , then ζ(t) ∈ π−1(e) for all t. We have ζ(0) = x
and because π−1(e) is dicrete, then ζ(t) = x for all t. This proves yxy−1 = x, so
π−1(e) ⊂ Z(Ñ).

To prove the step 2, we can use that for any nilpotent Lie group G it holds (see
[CG04, p. 24])

exp(Z(Lie(G))) = Z(G) . (5)

Therefore, whenever the logarithm is defined, it holds Z(Lie(G)) = log(Z(G)). Thus
by taking the logarithm of the result of step 1 (the universal covering space Ñ is
nilpotent, see Fact 2.24), we get

A ⊂ log(Z(Ñ)) = Z(Lie(Ñ)) .

In the step 3, we mean by B/A the quotient by a group. The fact that A is
a group29 follows from the fact that by step 2 the set A is commutative and that
π−1(e) is a subgroup. Indeed, if a, a′ ∈ A, then

exp(a+ a′) = exp(a) exp(a′) ∈ π−1(e)

so a + a′ ∈ A. To prove that the quotient space B/A is compact, we notice that
since A is contained in the center, the exponential map exp |B : B → π−1(K) sends
each coset of A to a coset of exp(A) = π−1(e), namely

exp(b+A) = exp(b) exp(A) .

By Fact 2.19 the map exp |B induces a homeomorphism between the spaces B/A
and π−1(K)/π−1(e). The latter space is homeomorphic to K, so B/A is compact.

To prove the step 4, consider the diagram

B

B/A B/AS

π
πS .

We can define a map ψ : B/A → B/AS in such a way that F ([b]) = πS(b′) where
b′ ∈ π−1({b}) is chosen arbitrarily. Because A ⊂ AS this is well defined map. The
map ψ is also continuous, because both maps π and πS are continuous and open.

29The group operation is the vector sum induced from Lie(Ñ).
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Therefore, the claim holds because B/AS is the image of the compact space B/A
under the continuous map ψ.

For step 5, take b ∈ B which means exp(b) ∈ π−1(K). The set π−1(K) is closed
under multiplication being preimage under a homomorphism of the subgroup K.
Therefore

exp(mb) = (exp(b))m ∈ π−1(K) .

To prove the step 6, assume by contradiction that there exists b ∈ B\AS . By
step 5, [nb] ∈ B/AS for all n. Because B/AS is compact, this sequence has a
subsequence that converges to some x ∈ B/AS . Then for every ε > 0 starting
from some index nε this subsequence is in the set π−1(π(B(x, ε))) because this is
an open neighbourhood of x. Thus for n ≥ nε there exists x′n ∈ B(x, ε) such that
π(nb) = π(x′n), so nb − x′n ∈ AS and we get dE(nb,AS) = dE(x′n, AS). This means
that for n ≥ nε

|dE(nb,AS)− dE(x,AS)| = |dE(x′n, AS)− dE(x,AS)| < ε

but on the other hand

dE(nb,AS) = inf{‖nb− a‖ | a ∈ AS} = ndE(b, AS)
n→∞−−−→∞

which is a contradiction.
The step 7 we get immediately from steps 2 and 6 because if A ⊂ Z(Lie(Ñ)),

then spanR(A) ⊂ Z(Lie(Ñ)).
The step 8 follows from the step 7 using the result (5).
The step 9 follows from the step 8 because π is a surjective homomorphism.

3.6 Corollary: The semidirect product decomposition

In this section we shall go through the proof of Corollary 3.4. The semidirect product
is straightforward to produce, once we know that the group of left-translations is a
normal subgroup of the isometry group. We found out that this is the case and there
is actually something more:

Proposition 3.22. Let (G, d) be a metric Lie group. Then its self-isometries are
affine maps if and only if GL C Isome(G, d).

For the proof recall Lemma 3.16 and the induced isomorphism F̂ of the isom-
etry groups. If we consider the case of just one metric Lie group (G, d), still any
isometry F : G → G induces an isomorphism from the isometry group to itself, i.e.
an automorphism. This automorphism is a priori non-trivial if F is not the identity
map. The proof of the above proposition follows from the lemmas below together
with Lemma 3.16.

Lemma 3.23. Let (G, d) be a metric Lie group. Suppose GL C Isome(G, d). Then
for any F ∈ Isome(G, d) for which F (e) = e it holds F̂ (GL) = GL.
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Proof. Let g ∈ GL and F ∈ Isome(G, d) be any isometry that fixes the identity. We
have then

F̂ (g) = F ◦ g ◦ F−1 ∈ GL and F̂−1(g) = F−1 ◦ g ◦ (F−1)−1 ∈ GL

by normality. This means

F̂ (GL) ⊂ GL and (F̂ )−1(GL) = F̂−1(GL) ⊂ GL .

These give together F̂ (GL) = GL.

Lemma 3.24. Let (G, d) be a metric Lie group such that any self-isometry F : G→
G is an affine map. Then GL C Isome(G, d).

Proof. We assume that every isometry has the affine decomposition into a translation
and a group isomorphism. Let Lp be any translation of the group G and F : G→ G
any isometry. Let the affine decomposition be F = τ ◦ Φ. Then

F ◦ Lp ◦ F−1 = (τ ◦ Φ) ◦ Lp ◦ (τ ◦ Φ)−1

= τ ◦ Φ ◦ Lp ◦ Φ−1 ◦ τ−1

= τ ◦ LΦ(p) ◦ Φ ◦ Φ−1 ◦ τ−1

= τ ◦ LΦ(p) ◦ τ−1 ∈ GL .

Proof of Corollary 3.4. Recall Fact 2.26. From the Main Theorem and Proposition
3.22 we get that the group of left-translations is a normal subgroup of the isometry
group. The Main Theorem also gives us the condition Isome(N, d) = NL · Stab(e).
The condition NL∩Stab(e) = {Id} is trivial. Therefore the conjugation gives us the
correct semidirect product decomposition.
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4 Maximality of the result: counterexamples

4.1 When connectedness is dropped

In this subsection we shall show that the condition of connectedness can’t be re-
moved. It can’t be even relaxed to the case of finitely many connected components.

Consider the discrete group D = {1, i,−1,−i} ⊂ S1 equipped with the usual
multiplication of complex numbers. Equip it with the so called discrete metric, i.e.
the distance function for which d(x, y) ≡ 1 for all x, y ∈ D. This is known to be a
distance and inducing the discrete topology on D, i.e. the topology for which any
set is open. It is a left-invariant distance because actually every bijection D → D,
in particular every left-translation, is an isometry.

This group has four connected components and it is an abelian group and thus
nilpotent. If our result would be generalizable to finitely many connected compo-
nents, then in particular Corollary 3.2 applied to the case N1 = N2 = D states that
isometries fixing the identity are group automorphisms.

But how many automorphisms are there? An automorphism φ necessarily satis-
fies φ(e) = e and now e = 1. Observe also that such a map is injective and satisfies
φ(x2) = (φ(x))2. Let’s figure out what are the options for the element i to be
mapped. By the injectivity an automorphism can’t have φ(i) = 1 and for the other
options for i to go we have the following conclusions:

a) if φ(i) = −1, then φ(−1) = φ(i2) = (φ(i))2 = (−1)2 = 1, which is impossible
by injectivity.

b) if φ(i) = i, then φ(−1) = −1. This options recovered the identity map.

c) if φ(i) = −i, then φ(−1) = −1. This also completely determines the map since
then φ(−i) = i. This is a bijection different than the identity map.

So only possiblities for an automorphism are the identity map and the map that
reflects with respect to x-axis. This is a contradiction because all the bijections
fixing the identity should have been automorphisms, for example the permutation
i 7→ −1 7→ i keeping the other points fixed.

There is one thing we should consider a little more. Our group D is definitely a
nilpotent group with a metric but is it really a Lie group? A Lie group should have a
manifold structure, but D is intuitively ”zero-dimensional” and surely it is not locally
diffeomorphic to Rn for n ≥ 1. We can of course define discrete spaces to be zero-
dimensional manifolds. But if this bothers the reader, a more solid way of arguing
is the following: Consider as the counter-example the direct product D × R (with
the distance d((g, x), (h, y)) = max{dD(g, h), dR(x, y)}) which is a one-dimensional
manifold. The above argument still applies: If ψ is the permutation i 7→ −1 7→ i,
then (ψ, Id) is an isometry of D ×R. But if Ψ is any bijection of D ×R of the form
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Ψ = (f, Id), then Ψ is an automorphism if and only if

Ψ((a, x) · (b, y)) = Ψ(a, x) ·Ψ(b, y)

⇔ Ψ(ab, xy) = Ψ(a, x) ·Ψ(b, y)

⇔ (f(ab), xy) = (f(a), x) · (f(b), y) = (f(a)f(b), xy) .

This means that the component map f should be an automorphism. The map ψ
above was not, so the same contradiction arises.

4.2 When nilpotency is dropped

Nilpotent groups are unimodular, i.e. they admit Radon measures that are both
left- and right-invariant. Also all compact Lie groups are unimodular by Fact 2.20.
Our result on the affine decomposition of isometries does not extent to unimodular
groups. The easiest example is provided by the sphere S3 equipped with the product
of unit quaternions and a distance d that is induced by the Euclidean distance of R4.
Then the group (S3, d) is a connected non-nilpotent unimodular metric Lie group.
Indeed, one can check that the induced distance is left-invariant using the quaternion
product law.

In this case the group inversion is an isometry because it has the formula

(a, b, c, d)−1 = (a,−b,−c,−d)

and this is clearly an isometry of R4. Thus the inversion is an isometry fixing the
identity but it is not a group isomorphism. Since however such a map is defined in
terms of the group structure, in the next section we shall provide a (non-unimodular)
group with isometries that have nothing to do with the group structure.

4.2.1 Introducing the rototranslation group

Next we will show that the assumption of nilpotency can’t be removed. Concretely
we shall present a connected non-nilpotent group that again has more isometries
than those of the form a translation composed with an isomorphism.

The group of rigid motions of the plane, also called the roto-translation group,
is

Rot(R2) := {x ψ7−→ Ax+ b | A ∈ SO(2), b ∈ R2} .
Notice that such maps are parametrized by 3 numbers: for all ψ ∈ Rot(R2) there
exists α, β, θ ∈ R such that

ψ(x, y) =

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
+

[
α
β

]
.

From here the group law can be deduced by first calculating the result of two con-
sequent affine motions:

ψ1(ψ2(x, y)) =

[
cos θ1 − sin θ1

sin θ1 cos θ1

]([
cos θ2 − sin θ2

sin θ2 cos θ2

] [
x
y

]
+

[
α2

β2

])
+

[
α1

β1

]
=

[
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

] [
x
y

]
+

[
α2 cos θ1 − β2 sin θ1 + α1

α2 sin θ1 + β2 cos θ1 + β1

]
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as is also clear just by geometric intuition.
Now we are ready to precisely define the Lie group Rot(R2). It is the manifold

R2 × S1 endowed with the product30

(α1, β1, θ1) ∗ (α2, β2, θ2)

= (α2 cos θ1 − β2 sin θ1 + α1, α2 sin θ1 + β2 cos θ1 + β1, θ1 + θ2) . (6)

However, this group is not going to be our counterexample, but its universal
covering group will be. In this case the universal covering group is nothing more
complicated than just R3 endowed with the product law above. Denote this group
by G. The reason to pass to the universal cover is to have the space simply connected.
We then get one-to-one corresponce between the group automorphisms and the Lie
algebra automorphisms (Fact 2.2).

We still did not define a distance in the roto-translation group or in G. We
will just take the Euclidean distance dE of R3. This makes (G, dE) a metric Lie
group, actually even a Riemannian Lie group. The fact that the distance dE is left-
invariant must be checked since our product is not the Euclidean vector sum. The
left-invariance can be directly seen from product law (6): The question is if for fixed
α1, β1, θ1 the map

(x, y, z) 7→ (x cos θ1 + y sin θ1 + α1, x sin θ1 + y cos θ1 + β1, θ1 + z)

is an isometry of (G, dE), i.e. an isometry of E3. Evidently it is, as it is a rotation
of xy-plane composed with a translation.

Considering the group G instead of Rot(R2) actually makes our counterexample
in some sense more powerful. Indeed, we get the existence of a connected and even
simply connected metric Lie group (not nilpotent!) for which the affine decompo-
sition of isometries fails. If our counterexample would have been the actual group
and not its universal cover, one could wonder if the lack of simply connectedness is
spoiling the affine decomposition, but that is not the case.

Before going to study the isometries inside (G, dE) we can make things a little
bit more concrete by working on a matrix group that is isomorphic to G. This is
handy as we are going to study the Lie algebra of G, and the considerations of Lie
algebra are very easy for matrix groups. We have an isomorphism

Ψ: G→ GL(3,R) Ψ(α, β, θ) =

 cos θ − sin θ α
sin θ cos θ β

0 0 1

 . (7)

The manifold structure of GL(3,R) is the submanifold structure of R32 , so this
isomorphism is a smooth map indeed and thus a Lie group isomorphism.

Denote by G the group of matrices of the form (7), i.e. the isomorphic copy of G
inside GL(3,R). Next we want to find the Lie algebra of the matrix-group G. This

30The product is clearly a smooth map. Checking the smoothness of the inversion map is equally
straightforward: just figure out its formula.

43



consists of searching matrices that generate rotations and translations, and studying
their commutator-relations. Those generators are the derivatives calculated at zero31

X :=

 0 0 1
0 0 0
0 0 0

 Y :=

 0 0 0
0 0 1
0 0 0

 Θ :=

 0 −1 0
1 0 0
0 0 0

 .

The Lie bracket relations are then calculated to be

[X,Y ] = XY − Y X = 0− 0 = 0

[Θ, X] = ΘX −XΘ = Y − 0 = Y

[Θ, Y ] = ΘY − YΘ = −X − 0 = −X .

4.2.2 Calculating the isometric automorphisms

Notice that as (G, dE) has the Euclidean metric we know its isometry group already.
It is

Isome(G, dE) = Isome(E3) = O(3) nR3 .

Thus, the isometries that fix the identity are exactly the matrices of O(3). We shall
show that the space of isometric automorphisms of G is much smaller, and thus
not every isometry fixing the identity is an automorphism, which contradicts again
Corollary 3.2.

Let ש! : Lie(G) → Lie(G) be an arbitrary Lie algebra automorphism. Our first
claim is that it satisfies necessarily span{X,Y)ש! }) ⊂ span{X,Y }. This we prove as
follows: Write

(X)ש! = aX + bY + µΘ and Y)ש! ) = cX + dY + λΘ . (8)

By the automorphism property

0 = (0)ש! = X,Y])ש! ]) = [ ,(X)ש! Y)ש! )]

= aλ[X,Θ] + bλ[Y,Θ] + µc[Θ, X] + µd[Θ, Y ]

= (bλ− µd)X + (µc− aλ)Y .

This implies {
bλ = µd

µc = aλ
.

We claim that λ = 0 = µ. If either one is zero, then is also the other because of the
pair of equations above and the fact that ש! can’t map X nor Y to the zero-vector. So
it is enough to assume by contradiction that λ 6= 0 6= µ. In this case one can divide
the pair of equations with µ and substituting those equations back to (8) gives

Y)ש! ) =
aλ

µ
X +

bλ

µ
Y + λΘ .

31One can also check that the exponentiation gives of these matrices gives respectively the pure
rotation and translation matrices.
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This is a contradiction because then (X)ש! = µ
λ Y)ש! ), which is an impossible situation

for an invertible linear map since X and Y were linearly independent vectors.
Now when span{X,Y)ש! }) ⊂ span{X,Y } is proved, observe that there actually is

an equality span{X,Y)ש! }) = span{X,Y }. This is just because ש! is a linear bijection
as a Lie algebra automorphism, and thus ש! must preserve the vector space dimension.

Let then F : G → G be an arbitrary self-isometry of G that fixes the identity
and that is also a group automorphism. Because the distance is Euclidean, we
actually know that F is smooth and thus a Lie group automorphism. Because the
Lie group G is topologically R3, it is simply connected and therefore all Lie group
automorphisms are induced by some Lie algebra automorphism (Fact 2.2). So we
can assume from now on that ש! is the Lie algebra automorphism corresponding the
isometric automorphism F . We want to say next that the vectors X, Y and Θ form
an orthogonal set, as well as their images ,(X)ש! Y)ש! ) and .(Θ)ש!

Recall that G is diffeomorphic and isometric to R3. On the other hand G is
isomorphic as a metric Lie group to G. Thus the obvious identification I : R3 → G
(which has the same formula (7) as Ψ) is an isometric diffeomorphism. In R3 it is
not so easy to make the difference between the tangent space of the identity and
the space itself, but we must now do that to make sense about what is the scalar
product in TeG. An isometry f of R3 = {(α, β, θ)} fixing the identity preserves the
scalar products between the tangent vectors of the curves

σ1(t) = (t, 0, 0) σ2(t) = (0, t, 0) σ3(t) = (0, 0, t) .

In the space G the corresponding curves are I ◦ σi so the scalar product of TeG is
the one that makes the vectors (I ◦ σi)′(0) orthogonal. These tangent vectors are
exactly the matrices X,Y,Θ.

The tangent of the space G is not similar to the space itself. An arbitary isometry
of G is of the form I ◦ f ◦ I−1 =: F . This F is not the map that should preserve
X,Y,Θ but only its differential. Concretely we show this to be the case by calculating

d(F )(I ◦ σi)′(0) = (I ◦ f ◦ σi)′(0) = d(I)(f ◦ σi)′(0)

⇒ 〈d(F )(I ◦ σi)′(0),d(F )(I ◦ σj)′(0)〉 = 〈d(I)(f ◦ σi)′(0), d(I)(f ◦ σj)′(0)〉
= 〈(f ◦ σi)′(0), (f ◦ σj)′(0)〉
= 〈σ′i(0), σ′j(0)〉 = δij .

Because we proved the sets {X,Y,Θ} and { ,(X)ש! Y)ש! ), {(Θ)ש! to be orthogonal
sets, then span{X,Y)ש! }) = span{X,Y } implies (Θ)ש! = ±Θ. We can now form the
matrix of ש! in the basis X,Y,Θ. It is

ש! =

 a b 0
c d 0
0 0 ±1

 , where
[
a b
c d

]
∈ O(2) ,

using ones more that ש! preserves the scalar product. Here is a contradiction since the
set of isometric Lie algebra automorphisms is then at most32 of dimension dim(O(2)×

32The space may be smaller, as in the above we only argued to limit the degrees of freedom in
the space of isometric automorphisms.
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Z2) = 1, where Z2 denotes the two element discrete group {1,−1} equipped with the
multiplication. But the set of isometric Lie algebra automorphisms should equal in
dimension to the set of isometries fixing the identity, which is the group O(3) with
dimO(3) = 3.

The result is quite ironic: The space on which isometries are not affine is the
space of affine isometries of R2.
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5 Discussion

Riemannian

Carnot

Normed real

Euclidean

Lie

Figure 2: Theorem 3.1 was known already in Carnot groups, normed vectors spaces
over R, and connected nilpotent Riemannian Lie groups. In the figure ”Lie” stands
for general connected nilpotent metric Lie groups.

What was known before The main theorem has been know in several differ-
ent settings before this study. The situation is described in Figure 2. There were
basically three categories of which two were unified by this study.

1. As already mentioned, it is proved by E.N. Wilson in [Wil82] that the self-
isometries of a nilpotent connected Lie group equipped with left-invariant Rie-
mannian distance33 are affine. Wilson was only considering the self-isometries,
but if one wants to extend Wilson’s result for the isometries between two dif-
ferent groups, one can use the steps h, f and g of this thesis and part 2 of
his Theorem 2 which is the nilradical condition. Considering the affine de-
composition for the self-isometries, Wilson does not state the result in this
form outside the introduction, but his Theorem 2 states that the group of left-
translations is a normal subgroup of the isometry group in the connected case.
In Proposition 3.22 of this thesis we showed using elementary arguments that
the normality is equivalent to the fact that the self-isometries are affine. It
should also be noted that actually Wilson uses the language of nilmanifolds,
Riemannian manifolds acted upon isometrically and transitively by a nilpotent
Lie group. Still, Wilson himself notes that nilmanifolds are only superficially
more general than nilpotent Riemannian Lie groups.

2. By the work of U. Hamenstädt [Ham90] and I. Kishimoto [Kis03] it was known
that the isometries between two subRiemannian Carnot groups are affine (see
the complete proof in [LDO14]). In the paper [LDO14] this was also generalized
to the subFinsler Carnot groups (for the definition, see Section 2.5). A metric

33In Riemannian geometry the distance of two points is defined as the length of the shortest curve
between them. The length of a curve is defined by integrating the norm of the tangent vector, given
by the metric tensor, of the curve. Recall that a Riemannian metric always induces the manifold
topology. In the more general setting we were studying in this thesis we had to instead explicitly
require that the manifold topology is induced by the distance.
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Lie group is more general both as a metric space and as a group. Actually the
paper [LDO14] deals with isometries allowed to be defined locally, i.e. from an
open set to another. Thus our result does not cover their result completely but
only the case of globally defined isometries.

3. The result that the isometries between two normed real vector spaces are affine
maps is known as the Mazur–Ulam theorem originally presented in the paper
[MU32]. This covers also the infinite dimensional spaces which are not touched
by the settings that assume the manifold structure since manifolds are always
finite dimensional.

For the completeness of Figure 2 we mention that the Riemannian Heisenberg-group
is an example of a Riemannian Carnot-group that is not a vector space since it is
non-Abelian. So the intersections of different settings are really meant precisely in
Figure 2.

What was not known before Every connected subgroup H < G of a Carnot
group is an example of nilpotent connected metric Lie group. These subgroups are
not necessarily Carnot groups themselves, they can fail to be length spaces. Proper
subgroups are never open sets, so even the theory of local isometries in the paper
[LDO14] that we discussed in the above list cannot be applied to such sets.

For a concrete example, take the 3-dimensional Heisenberg group seen topologi-
cally as R3. Then the xz-plane is a connected subgroup but not a length space. In
a length space (M,d), by the definition, the distance function is such that

d(x, y) = inf
{

sup{
N∑
i=1

d(γ(ti), γ(ti+1)) | (t1, . . . , tN ) is a partition of [0, 1].}

| γ : [0, 1]→M is a curve from x to y
}
.

The term intrinsic distance is also used to refer to such a distance function. In
words: the distance is the infimum of the lengths of the curves where the lengths are
calculated by approximating the curve by a piecewise linear curve. It turns out that
in the xz-plane of the Heisenberg group, most curves have infinite length, although
the distance function induced from the total space is finite everywhere. From our
main theorem we can now deduce that also in such a space the isometries are affine.

A note on Berestovskii theorem In the above we noted that metric Lie groups
with non-intrinsic distances are examples of settings that were not covered by the
results before ours. Actually, they are the only examples. A theorem of V.N.
Berestovskii [Ber88, Thm 2] states exactly that if (G, d) is a connected metric Lie
group with an intrinsic distance, then the distance is actually a subFinsler distance.
Thus such spaces are already covered by the paper [LDO14]. As intrinsic distances
are physically natural, one could argue that the generalization we just worked out is
non-physical and unimportant. Still, there are non-intrinsic distances appearing in
other applications of mathematics.
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