
UNIVERSITY OF JYVÄSKYLÄ
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JYVÄSKYLÄ
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0 Introduction

In this licentiate thesis we study the Dirichlet boundary value problem{
−∆p(x)u(x) = 0, if x ∈ Ω,

u(x) = f(x), if x ∈ ∂Ω.
(0.1)

Here Ω ⊂ Rn is a bounded domain, p : Ω → (1,∞] a measurable function,
f : ∂Ω → R the boundary data, and −∆p(x)u(x) is the p(x)-Laplace operator,
which is written as

−∆p(x)u(x) = −div
(
|∇u(x)|p(x)−2∇u(x)

)
for finite p(x). If p(·) ≡ p for 1 < p <∞, then the p(x)-Laplace operator reduces
to the standard p-Laplace operator

−∆pu(x) = −div
(
|∇u(x)|p−2∇u(x)

)
.

For p(x) =∞ we consider the infinity Laplace operator,

−∆∞u(x) = −
n∑

i,j=1

∂u

∂xi
(x)

∂u

∂xj
(x)

∂2u

∂xi∂xj
(x), (0.2)

which is formally derived from the p-Laplace equation −∆pu = 0 by sending
p to infinity. We study the problem (0.1) in different cases, depending on the
function p, and our aim is to show that this problem has a unique solution in
each of these cases. The merit of this work is in that it is the first survey of the
known existence and uniqueness results for (0.1), although not complete, since
the borderline cases p = 1 and inf p(x) = 1 are outside the scope of this work.

We consider five different cases, all with different assumptions on p(x), and
all of them have been distributed into their own sections. The theory is pre-
sented in chronological order thus following how the research on the p(x)-Laplace
operator has advanced.

The first case is the most well-known case where p is a constant function,
1 < p < ∞. The p-harmonic functions (i.e., the solutions of the p-Laplace
equation −∆pu = 0) have been widely studied during the past sixty years. By
studying p-harmonic functions one learns a lot about different fields of mathe-
matics, such as calculus of variations and partial differential equations, and it is
a good model case for more general nonlinear elliptic equations. The theory of
p-harmonic functions is quite well developed, albeit there are some well-known
open problems left, see, e.g., the survey [24]. In the first section we present
the direct method of calculus of variations to find a function u that is a unique
minimizer to the Dirichlet energy integral

I(v) :=

∫
Ω

|∇v(x)|p dx

I would like to thank Professor Petri Juutinen for introducing me to the theory of p(x)-
harmonic functions and for many valuable discussions and advice. I also want to thank
Professor Julio D. Rossi and Docent Petteri Harjulehto for reviewing this thesis and for their
valuable comments. For financial support I am indebted to the University of Jyväskylä and
to the Vilho, Yrjö and Kalle Väisälä Foundation.
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in the set {v ∈W 1,p(Ω) : v−f ∈W 1,p
0 (Ω)}. Then we show that there is a one to

one correspondence between the minimizer of the energy integral and problem
(0.1), i.e., u is a minimizer of the integral if and only if u solves (0.1). The same
method will be used in Sections 3 and 4.

In the second case we study infinity harmonic functions (i.e., the solutions
of the infinity Laplace equation −∆∞u = 0). The articles by Gunnar Aronsson
([4], [5] and a handful of others) in the 1960s were the start-up point in this field.
Aronsson started by studying the optimal Lipschitz extensions and found the
connection between them and infinity harmonic functions. At that time viscosity
solutions had not yet been discovered and the expression (0.2) could be verified
only for C2-functions. Later, in the 1980s, the concept of viscosity solutions was
presented and it gave a new view to examine the infinity harmonic functions.
Using p-harmonic approximation, it was easy to prove that the problem (0.1)
has a solution, but the uniqueness was harder to prove. Jensen proved that
first in 1993 in his paper [21]. In 2001, Crandall, Evans and Gariepy used
viscosity solutions to prove the connection that Aronsson found, see [9]. This
is presented in Theorem 2.15. In 2009, Armstrong and Smart [3] found a new,
easy way to prove the uniqueness. The research of infinity harmonic functions is
quite intensive today. Especially, the regularity of infinity harmonic functions is
still an unsolved problem in dimensions three or higher. The infinity harmonic
equation also works as a model case for more general Aronsson-Euler equations.
We recommend the survey [6] by Aronsson, Crandall and Juutinen to get a
wider picture of infinity harmonic functions and related problems.

In the third section we assume that the function p is non-constant and
bounded, and 1 < inf p(x) < sup p(x) < ∞. The research of variable expo-
nent Lebesgue and Sobolev spaces started in 1991, when the seminal paper by
Kováčik and Rákosńık [23] was published. They defined spaces Lp(·) and W k,p(·)

and proved the basic properties of these spaces. Although the Lp(·)-functions
share many properties with standard Lp-functions, they, in general, lack a so-
called p(x)-mean continuity property. Because of this, the convolution of an
Lp(·)-function and a C∞0 -function does not belong to Lp(·) in general. Then the
standard convolution approximation, which is familiar from the Lp-spaces, can-
not be generalized to variable exponent Lebesgue spaces, and hence the density
of smooth functions in Lp(·) becomes an untrivial issue. However, by adding
some extra conditions on p(x), from which the log-Hölder continuity

|p(x)− p(y)| ≤ C

log(e+ 1/|x− y|)

is the most important, this problem can be avoided and the density problem
solved, see [12] and [26]. The log-Hölder continuity is also a sufficient condition
on p(x) so that the variable exponent Sobolev-Poincaré inequality holds. This
inequality is crucial when proving the existence of the solution of (0.1). After
solving these difficulties, the variable p(x)-case becomes practically identical
with the constant p-case from the standpoint of the problem (0.1). The research
of variable exponent spaces is a growing field in nonlinear analysis nowadays,
and there are still many open problems left and waiting to be solved. To get a
comprehensive view of variable exponent Lebesgue and Sobolev spaces, we ask
the reader to get acquainted with a book by Diening, Harjulehto, Hästö and
Růžička [11].
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In the fourth case we assume that p(x) ≡ ∞ in a subdomain D of Ω, and
that p|Ω\D is C1-smooth and bounded. This case is based on the article [25] by
Manfredi, Rossi and Urbano. Their article was the first attempt to analyze the
problem (0.1) when the variable exponent is not bounded. The approach to this
case is the following: first find a unique solution uk to the problem (0.1) with
pk(x) = min{k, p(x)} by using the direct method of calculus of variations, then
get estimates for uk and ∇uk that are independent of k, after that pass to the
limit k →∞ to get a limit function u∞ and find out what equation it solves.

In the final, fifth, case we consider a one-dimensional case where p is contin-
uous and unbounded on the interval (a, b) with limx→b− p(x) =∞, and infinity
on (b, c); here a < b < c. The unboundedness of p on (a, b) causes different
problems that we discuss. In view of these problems it is easy to see why the
boundedness assumption for p|Ω\D was made in the fourth section. Our analysis
will not be very deep, and we shall only draw some guidelines. The generaliza-
tions of our results to higher dimensions is an interesting open problem.

Next we shall say something about the cases that have been left out of this
work. In the case p = 1 the (standard) p-Laplace operator is

−∆1u(x) = − div

(
∇u(x)

|∇u(x)

)
.

In the associated variational problem we should try to find a unique minimizer
for the functional I, where

I(v) :=

∫
Ω

|∇v(x)| dx,

in the set {v ∈ W 1,1(Ω) : v − f ∈ W 1,1
0 (Ω)}. The first problem now is that

W 1,1(Ω) is not reflexive and I is not strictly convex, and thus the direct method
of calculus of variations is no more applicable. The corresponding problem
can be formulated in BV (Ω) (the class of functions u ∈ L1(Ω) whose partial
derivatives in the sense of distributions are measures with finite total variation
in Ω) as follows: for f ∈ C(∂Ω), find a minimizer for ‖∇v‖(Ω) in the set {v ∈
BV (Ω) ∩ C(Ω), u = f on ∂Ω}. Here

‖∇v‖(Ω) = sup

{∫
Ω

v div σ dx : σ ∈ C∞0 (Ω;Rn), |σ(x)| ≤ 1 for x ∈ Ω

}
.

If Ω is a Lipschitz domain, then it is quite easy to construct the minimizer for
this problem in the space BV (Ω), but the question that the minimizer is contin-
uous and satisfies the boundary condition, is more subtle. The behaviour of ∂Ω
plays an essential role in this question. By assuming that ∂Ω has non-negative
mean curvature in a weak sense and that ∂Ω is not locally area-minimizing, the
continuity and the boundary condition of the minimizer can be verified. On
the other hand, if neither condition on ∂Ω is true, then it is possible to con-
struct a boundary data f such that the corresponding problem has no solution.
The uniqueness of solutions can also be obtained under the aforementioned as-
sumptions on ∂Ω. Since the nature of this problem is quite different from the
cases we treat, we do not consider it any further in this work. See [27] for a
detailed study of this case and [22], where the minimizers of the above problem
are approximated by p-harmonic functions as p→ 1. See also [18], in which the
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authors consider the minimization problem related to (0.1) in the case where
the variable exponent p : Ω→ [1,∞) attains the value 1.

The regularity of solutions of (0.1) is beyond the scope of this thesis. If the
reader is interested in regularity, we recommend the following articles/surveys:
[24] for p-harmonic functions, [1], [2] and [7] for variable p(x)-harmonic func-
tions, and [13] and [14] for infinity harmonic functions.

0.1 Notation and prerequisities

We shall use the following notation throughout this thesis. For a set A in the
euclidean space Rn, ∂A is its boundary and A is its closure. The notation
A ⊂⊂ B means that A is an open subset of B whose closure A is a compact
subset of B. The euclidean distance between two sets, A and B, is denoted by
dist (A,B), and dist (x,A) is the distance from x to A. The diameter of A is
diam (A).

Throughout this work we shall assume that Ω ⊂ Rn is a bounded domain
(=open and connected) with n ≥ 2, except in Section 5 where Ω is an open
interval in R. The Lebesgue measure of a measurable set A is denoted by |A|.
The open ball with center at x ∈ Rn and radius r > 0 is B(x, r) = {y ∈ Rn :
|x − y| < r}. The boundary of the ball, {y ∈ Rn : |x − y| = r}, is denoted by
∂B(x, r) or, equivalently, by S(x, r).

The class of continuous functions in A is denoted by C(A). For an open set
A, the class Ck(A) consists of all k times continuously differentiable functions u :
A→ R. When we say that u : A→ R is a classical solution (or smooth solution)
to some equation, we mean that u is at least twice continuously differentiable,
and when we talk about the density of smooth functions, we mean by the word
smooth that the functions are infinitely many times continuously differentiable,
that is, they are members of the class C∞(A). By Ck0 (A) we denote all the
functions u ∈ Ck(A), for which the support of u, sptu, is a compact subset of A.
A function u ∈ Ck(A) belongs to class Ck,α(A), if all k-th order derivatives of
u are Hölder continuous with exponent 0 < α < 1. For a Lipschitz continuous
function f : A→ R we denote the Lipschitz constant of f by

Lip (f,A) = sup

{
|f(x)− f(y)|
|x− y|

: x, y ∈ A, x 6= y

}
.

Let A be a measurable set and 1 ≤ p ≤ ∞. We define a Lebesgue space
Lp(A) by

Lp(A) := {u : A→ R is measurable : ‖u‖Lp(A) < +∞},

where the Lp-norm of u is

‖u‖Lp(A) :=

(∫
A

|u(x)|p dx
) 1

p

,

for 1 ≤ p <∞ and
‖u‖L∞(A) := ess sup

x∈A
|u(x)|

for p = ∞. Then Lp(A) is Banach space. The space Lploc(A) consists of all
measurable functions u for which u ∈ Lp(K) for every compact K ⊂ A. If
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p ∈ (1,∞), then the dual space of Lp(A) is Lq(A), where 1/p + 1/q = 1, and
the space Lp(A) is reflexive.

For an open set B, the Sobolev space W 1,p(B) consists of functions u ∈
Lp(B), whose weak gradient ∇u belongs to Lp(B). The space W 1,p(B) is Ba-
nach space with the norm

‖u‖W 1,p(B) := ‖u‖Lp(B) + ‖∇u‖Lp(B).

The local space W 1,p
loc (B) is defined in the same way as the local Lp-space, and

the Sobolev space with zero boundary values, W 1,p
0 (B), is defined as the closure

of C∞0 (B) with respect to the Sobolev norm ‖·‖W 1,p(B). For p ∈ (1,∞), the
space W 1,p(B) is reflexive and the dual space is W 1,q(B); here 1/p+ 1/q = 1.

We present the inequalities that will be used frequently. The Hölder inequal-
ity ∫

A

|f(x)g(x)| dx ≤ ‖f‖Lp(A)‖g‖Lq(A)

holds for f ∈ Lp(A) and g ∈ Lq(A), where 1/p+1/q = 1. The Sobolev inequality

‖∇u‖Lp(B) ≤ C(n, p,B)‖∇u‖Lp(B)

is true if B is an open set with finite measure, u ∈W 1,p
0 (B) and 1 < p <∞. If

n < p <∞ and u ∈W 1,p(Rn), then Morrey’s inequality

|u(x)− u(y)| ≤ C(n, p)|x− y|1−
n
p ‖∇u‖Lp(Rn)

holds for every x, y ∈ R. For the proofs of the inequalities above and for more
information concerning Lebesgue and Sobolev spaces, we ask reader to see [16]
and [29].

We assume that the reader of this work knows the basics from functional
analysis and from measure and integration theory. Also the knowledge on calcu-
lus of variations and on partial differential equations helps the reader to follow
the text. For example, the book by Giusti [16] is of great help and gives more
than sufficient prerequisities.
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1 Constant p, 1 < p <∞
In this section, we consider the case where the function p is constant, 1 < p <∞.
Then the Dirichlet boundary value problem is written as{

−∆pu(x) = 0, if x ∈ Ω,

u(x) = f(x), if x ∈ ∂Ω.
(1.1)

Here f : ∂Ω→ R is the boundary data and

−∆pu(x) = −div
(
|∇u(x)|p−2∇u(x)

)
= −|∇u(x)|p−4

|∇u(x)|2∆u(x) + (p− 2)

n∑
i,j=1

uxi
(x)uxj

(x)uxixj
(x)


is the p-Laplace operator. Our aim is to show that the problem (1.1) has a
unique solution.

Since the class of classical solutions (i.e., C2-functions for which−∆pu(x) = 0
and u(x) = f(x) could be verified pointwise) is too small to treat the problem
(1.1) properly, we need to use the concept of weak solutions. Then the boundary
values are determined by the function f ∈W 1,p(Ω). The fact that an arbitrary
function u is a weak solution to the problem (1.1) means two things:

1) u is a weak solution of the equation −∆pu = 0 in Ω.

2) u equals f on ∂Ω in the Sobolev sense, that is, u− f ∈W 1,p
0 (Ω).

The concept of weak solutions of the equation −∆pu = 0 is deduced from
the classical solutions of that equation. Indeed, suppose that u ∈ C2(Ω) and
−∆pu(x) = 0 pointwise in Ω. Then∫

Ω

−∆pu(x)ϕ(x) dx = 0

for every C∞0 (Ω). Using integration by parts, we obtain∫
Ω

|∇u(x)|p−2∇u(x) · ∇ϕ(x) dx = 0

for all ϕ ∈ C∞0 (Ω). This expression is the natural interpretation of −∆pu = 0
in the weak sense.

Definition 1.1. We say that a function u ∈ W 1,p
loc (Ω) is a weak solution (re-

spectively, subsolution, supersolution) of the equation −∆pu = 0 in Ω, if∫
Ω

|∇u(x)|p−2∇u(x) · ∇ϕ(x) dx = 0 (respectively, ≤ 0, ≥ 0)

for every test function ϕ ∈ C∞0 (Ω) (respectively, for every non-negative test
function ϕ ∈ C∞0 (Ω)).

A continuous weak solution of −∆pu = 0 is called a p-harmonic function.
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We want to remark that every weak solution of −∆pu = 0 can be redefined
in a set of zero Lebesgue measure such that the new function is continuous.
Even more can be said about the regularity of weak solutions. In fact, they
belong to class C1,α

loc (Ω) for some α > 0, see [10].
We consider |0|p−20 as 0 also when 1 < p < 2. It would be a priori enough

to assume that ∇u ∈ Lp−1
loc (Ω) to ensure that the integral is finite. However,

not much can be done with this relaxation (for example, Cacciopoli estimates),
so we stick with the space W 1,p

loc (Ω).
In Definition 1.1 we used C∞0 (Ω)-functions to the test if the integral is zero.

Sometimes it is useful to use a wider class of test functions. This is possible
if we assume that the weak solution belongs to the global space W 1,p(Ω); then
C∞0 (Ω) can be replaced by W 1,p

0 (Ω). Indeed, suppose that u ∈ W 1,p(Ω) is a
weak solution of −∆pu = 0 and v ∈ W 1,p

0 (Ω). Since the function v can be
approximated by a sequence of C∞0 (Ω)-functions (ϕj) in the norm ‖·‖W 1,p(Ω),
we have that∫

Ω

|∇u|p−2∇u · ∇v dx

=

∫
Ω

|∇u|p−2∇u · (∇v −∇ϕj) dx+

∫
Ω

|∇u|p−2∇u · ∇ϕj dx︸ ︷︷ ︸
=0

(?) ≤
(∫

Ω

|∇u|p dx
)p−1(∫

Ω

|∇v −∇ϕj |p dx
) 1

p

,

where (?) follows from Hölder’s inequality. Since the first term on the right
hand side is bounded and the second term tends to zero as j → ∞, we finally
get ∫

Ω

|∇u|p−2∇u · ∇v dx = 0.

Note that the step (?) is no longer true for u ∈W 1,p
loc (Ω).

Example 1.2. a) Constant functions and linear functions are p-harmonic.
b) The function uF : Ω→ R, where

uF (x) :=

{
|x|

p−n
p−1 , when p 6= n,

log |x|, when p = n,

is p-harmonic in Ω, if 0 /∈ Ω. This is true since uF ∈ C2(Ω) and −∆puF (x) = 0

pointwise in Ω. If 0 ∈ Ω, then uF /∈ W 1,p
loc (Ω) since uF /∈ W 1,p(D) for any open

D that contains zero. Thus uF cannot be a weak solution since it does not
belong to right space.

Next we formulate the main theorem of this section.

Theorem 1.3. Let Ω ⊂ Rn be a bounded domain, 1 < p <∞ and f ∈W 1,p(Ω)
be the boundary data. Then there exists a unique p-harmonic function u ∈
W 1,p(Ω) such that u− f ∈W 1,p

0 (Ω), i.e., u is a weak solution to{
−∆pu = 0, in Ω,

u = f, on ∂Ω.
(1.2)

9



The proof of this theorem is based on the direct method of calculus of vari-
ations. By that method we find a function u0 ∈ W 1,p

f (Ω) that is a unique
minimizer to a certain energy integral. After that we show that the minimizers
of that energy integral are the same functions as the solutions of the prob-
lem (1.1). First we present the method separately, and then we use it for our
purposes.

1.1 The direct method of calculus of variations

Let (X, ‖·‖) be a reflexive Banach space, K ⊂ X and I : K → R a functional.
The direct method of calculus of variations answers to the question how to find
a minimizer u0 for the functional I in K, if it is possible. The steps for this are
the following:

1) Show that inf
u∈K

I(u) is finite.

2) By the definition of infimum, there exists a sequence (uj) ⊂ K such that
I(uj) < inf

u∈K
I(u) + 1

j .

3) Show that there exists u0 ∈ K, to which the sequence (uj) converges in a
suitable sense.

4) Show that I(u0) = inf
u∈K

I(u), i.e., I(u0) ≤ I(v) for every v ∈ K.

If infu∈K I(u) is not finite, then the minimizer does not exist since I is real-
valued. Step 2) can always be done since it is based only on the definition of
infimum. How the steps 3) and 4) are done depends on the space X, on the set
K and on the functional I.

1.2 Dirichlet energy integral

Let X = W 1,p(Ω), K = W 1,p
f (Ω) for given f ∈W 1,p(Ω), and I : K → R,

I(u) =

∫
Ω

|∇u(x)|p dx.

The integral I(u) is the so-called Dirichlet energy integral or p-energy integral.
The functional I is weakly lower semicontinuous in K, i.e.,

I(u) ≤ lim inf
j→∞

I(uj)

for every sequence (uj) ⊂ K for which uj ⇀ u ∈ K weakly in K. This follows
from the fact that the ‖·‖Lp(Ω;Rn)-norm is weakly lower semicontinuous.

The next theorem shows that in this setting the direct method of calculus of
variations works and we find a minimizer for the functional I in the set W 1,p

f (Ω).
Furthermore, the minimizer can be proven to be unique by using the properties
that this particular I has.

Theorem 1.4. Let f ∈W 1,p(Ω). There exists a unique u ∈W 1,p
f (Ω) such that∫

Ω

|∇u(x)|p dx ≤
∫

Ω

|∇v(x)|p dx

for every v ∈W 1,p
f (Ω).
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Proof. Let

I0 = inf
v∈W 1,p

f (Ω)

∫
Ω

|∇v(x)|p dx.

Then 0 ≤ I0 ≤
∫

Ω
|∇f(x)|p dx < +∞ and we can choose functions v1, v2, v3, ... ∈

W 1,p
f (Ω) such that ∫

Ω

|∇vj(x)|p dx < I0 +
1

j
(1.3)

for j = 1, 2, 3, ... The Sobolev inequality holds for vj − f and hence

‖vj‖Lp(Ω) ≤ ‖vj − f‖Lp(Ω) + ‖f‖Lp(Ω)

≤ C‖∇vj −∇f‖Lp(Ω) + ‖f‖Lp(Ω)

≤ C‖∇vj‖Lp(Ω) + C‖∇f‖Lp(Ω) + ‖f‖Lp(Ω)

≤ C(I0 + 1)
1
p + (C + 1)‖f‖W 1,p(Ω),

where C = C(n, p,Ω) is the constant from the Sobolev inequality. This together
with (1.3) implies that the sequence (vj)

∞
j=1 is bounded in W 1,p(Ω), and thus

there exists a subsequence, still denoted as (vj)
∞
j=1, and a function u ∈W 1,p(Ω)

such that vj ⇀ u weakly in W 1,p(Ω). Since W 1,p
f (Ω) is weakly closed and

nonempty, we deduce that u ∈W 1,p
f (Ω). Then

I0 ≤
∫

Ω

|∇u(x)|p dx ≤ lim inf
j→∞

∫
Ω

|∇vj(x)|p dx = I0

by the weak lower semicontinuity of I. This proves the existence.
For the uniqueness, we use strict convexity (p > 1). Let u1 and u2 be two

minimizers. Then for u = u1+u2

2 ∈W 1,p
f (Ω) we have∫

Ω

|∇u1(x)|p dx ≤
∫

Ω

|∇u(x)|p dx =

∫
Ω

∣∣∣∣∇u1(x) +∇u2(x)

2

∣∣∣∣p dx
≤
∫

Ω

|∇u1(x)|p + |∇u2(x)|p

2
dx

=
1

2

∫
Ω

|∇u1(x)|p dx+
1

2

∫
Ω

|∇u2(x)|p dx

=

∫
Ω

|∇u1(x)|p dx,

since
∫

Ω
|∇u1(x)|p dx =

∫
Ω
|∇u2(x)|p dx. If∇u1(x) 6= ∇u2(x) in a set of positive

measure, then the second inequality is strict by the strict convexity, which leads
to a contradiction. Thus ∇u1(x) = ∇u2(x) almost everywhere in Ω and hence
u1−u2 is constant. Since u1−u2 ∈W 1,p

0 (Ω), the constant must be zero, which
yields u1 = u2. This proves the uniqueness and the claim follows.

Now we have proved that the functional I : W 1,p
f (Ω) → R has a unique

minimizer. To prove Theorem 1.3, we show that there is a one to one corre-
spondence between the minimizer of the functional I and the solution of problem
(1.1). This can be directly seen from the next theorem.

Theorem 1.5. Let f ∈ W 1,p(Ω) be the boundary data. Then the following
conditions are equivalent for u ∈W 1,p

f (Ω):

11



(a) −∆pu = 0 in Ω in the weak sense,

(b) I(u) ≤ I(v) for every v ∈W 1,p
f (Ω).

Proof. “(a) =⇒ (b)”: As discussed earlier, we recall that the test function
class C∞0 (Ω) can be replaced by W 1,p

0 (Ω) when testing p-harmonicity, since u ∈
W 1,p(Ω) by the assumption. To start, let v ∈ W 1,p

f (Ω). By the convexity of
x→ |x|p, p ≥ 1, we have

|∇v(x)|p ≥ |∇u(x)|p + p|∇u(x)|p−2∇u(x) · (∇v(x)−∇u(x)).

It follows that∫
Ω

|∇v(x)|p dx ≥
∫

Ω

|∇u(x)|p dx+ p

∫
Ω

|∇u(x)|p−2∇u(x) · (∇v(x)−∇u(x)) dx.

Since v − u ∈ W 1,p
0 (Ω) is an admissible test function, the last integral is zero,

and hence I(u) ≤ I(v).
“(b) =⇒ (a)”: We assume that u ∈ W 1,p

f (Ω) is the energy minimizer. Let
ϕ ∈ C∞0 (Ω) be a test function. Then, by setting ut(x) = u(x) + tϕ(x), we have
ut ∈W 1,p

f (Ω) and I(u) = I(u0) ≤ I(ut) for every t ∈ R. Hence

0 = lim
t→0

I(ut)− I(u)

t
= lim
t→0

∫
Ω

|∇ut(x)|p − |∇u(x)|p

t
dx

=

∫
Ω

lim
t→0

|∇ut(x)|p − |∇u(x)|p

t
dx =

∫
Ω

d

dt

[
|∇ut(x)|p

]
t=0

dx

=

∫
Ω

p
[
(∇u(x) + t∇ϕ(x))|∇u(x) + tϕ(x)|p−2 · ∇ϕ(x)

]
t=0

dx

= p

∫
Ω

|∇u(x)|p−2∇u(x) · ∇ϕ(x) dx.

In the third equality we use the mean value theorem and Hölder’s inequal-

ity to see that
∫

Ω
|∇ut(x)|p−|∇u(x)|p

t dx is bounded by a constant depending on
p, ϕ,Ω, u, and then by Lebesgue’s dominated convergence theorem we may take
the limit inside the integral.

Remark 1.6. According to the terminology of calculus of variations, the p-
Laplace equation −∆pu = 0 is the Euler-Lagrange equation for the variational
integral I.

Proof of Theorem 1.3. The proof follows directly from Theorems 1.4 and
1.5.

Another way to prove Theorem 1.3 is to use the theory of monotone oper-
ators for the existence and the maximum principle for the uniqueness. See, for
example, [19].
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2 Infinity harmonic functions, p ≡ ∞
At first we derive the infinity Laplace equation,

−∆∞u(x) = −
n∑

i,j=1

∂u

∂xi
(x)

∂u

∂xj
(x)

∂2u

∂xi∂xj
(x) = 0, (2.1)

from the p-Laplace equation. The calculation is done formally for a p-harmonic
function up with assumptions up ∈ C2(Ω) and that the gradient of up does not
vanish. First compute that

0 = −div
(
|∇up(x)|p−2∇up(x)

)
= −|∇up(x)|p−4

(
|∇up(x)|2∆up(x) + (p− 2)∆∞up(x)

)
and then divide both sides by (p− 2)|∇up(x)|p−4 to get

0 = −|∇up(x)|2∆up(x)

p− 2
−∆∞up(x).

Here ∆ is the usual Laplace operator. If up → u in C2(Ω) as p→∞, then

−|∇up(x)|2∆up(x)

p− 2
→ 0

as p → ∞ and, by the standard theorems in the theory of viscosity solutions,
see [8],

−∆∞up(x)→ −∆∞u(x)

as p→∞. Hence,
0 = −∆∞u(x),

that is, the limit function u satisfies the infinity Laplace equation in Ω.
For u ∈ C2(Ω) we can easily calculate −∆∞u(x) pointwise. However, the

class C2(Ω) is too small to solve the Dirichlet boundary value problem{
−∆∞u(x) = 0, if x ∈ Ω,

u(x) = f(x), if x ∈ ∂Ω.

Indeed, in [5], Aronsson proved the uniqueness of smooth (classical) solutions
to the Dirichlet problem above, but he also gave examples of cases when the
existence could not be obtained. Here is one of his examples.

Example 2.1. This example is based on the result, which is also presented in
[5], that if u ∈ C2(Ω) is a non-constant classical solution to −∆∞u = 0, then
|Du(x)| > 0 for every x ∈ Ω.

Let Ω = B(0, 1) ⊂ R2 and f : S(0, 1) → R, f(x, y) = 2xy. We assume that
there exists a function u ∈ C2(Ω) ∩ C(Ω) such that −∆∞u = 0 in Ω and u = f
on ∂Ω. Then, by symmetry, the function (x, y) 7→ u(−x,−y) is also a solution.
The uniqueness of solutions then gives that u(x, y) = u(−x,−y). Differentiating
with respect to x yields

ux(0, 0) = lim
t→0

u(−te1, 0)− u(0, 0)

−t
= lim
t→0

u(te1, 0)− u(0, 0)

−t
= −ux(0, 0),
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and hence ux(0, 0) = 0. Similarly, we calculate that uy(0, 0) = 0 and thus
Du(0, 0) = 0. This is a contradiction unless u is a constant function. But this
is not the case since f is not constant. Thus the assumption that there exists a
smooth solution u is wrong.

Since the classical solutions are not applicable, the next attempt would be
to use weak solutions. After spending some moments with −∆∞u = 0 one finds
out that it cannot be written in the divergence form. This is the reason why we
cannot use weak solutions. Instead, we use viscosity solutions.

Definition 2.2. (i) A function u ∈ USC(Ω) (u : Ω → R is upper semicontin-
uous) is a viscosity subsolution of −∆∞u = 0 in Ω if for every local maximum
point x̂ ∈ Ω of u− ϕ, where ϕ ∈ C2(Ω), we have −∆∞ϕ(x̂) ≤ 0.

(ii) A function u ∈ LSC(Ω) (u : Ω → R is lower semicontinuous) is a
viscosity supersolution of −∆∞u = 0 in Ω if for every local minimum point
x̂ ∈ Ω of u− ϕ, where ϕ ∈ C2(Ω), we have −∆∞ϕ(x̂) ≥ 0.

(iii) We say that a function u ∈ C(Ω) is a viscosity solution of −∆∞u = 0 in
Ω if it is both a viscosity sub- and supersolution in Ω.

Moreover, a viscosity subsolution (supersolution, solution) of −∆∞u = 0 is
called an infinity subharmonic (superharmonic, harmonic) function.

Remark 2.3. a) Viscosity solutions may be defined similarly for various types
of equations, for example, to −∆pu = −div

(
|∇u|p−2∇u

)
= 0 by only changing

the operator. For the reference, see [8].
b) We did not require that x̂ should be a strict local maximum (or minimum)

point of u−ϕ. However, by considering the function ϕ(x) + |x− x̂|4 (or ϕ(x)−
|x− x̂|4) instead of ϕ, we may assume the strictness if needed.

c) The word local can be replaced by the word global ; all that matters is the
behaviour of ϕ near x̂.

We divide this section into three parts: existence, uniqueness and relation-
ship with a certain minimizing problem. In the first two parts we prove the
following theorem:

Theorem 2.4. Let Ω ⊂ Rn be a bounded domain and f : ∂Ω→ R a Lipschitz
continuous function. Then there exists a unique infinity harmonic function
u ∈ C(Ω) such that u(x) = f(x) for every x ∈ ∂Ω, i.e., u is a viscosity solution
to {

−∆∞u(x) = 0, in Ω,

u(x) = f(x), on ∂Ω.
(2.2)

2.1 Existence of solutions

For given Lipschitz boundary data f , we define a function F : Ω→ R as

F (x) = inf
y∈∂Ω

{f(y) + L|x− y|}, x ∈ Ω,

where L = Lip (f, ∂Ω) is the Lipschitz constant of f . Then Lip (F,Ω) =
Lip (f, ∂Ω) and F (x) = f(x) for every x ∈ ∂Ω. This is a so-called McShane-
Whitney extension of f . If we had defined F as the supremum of f(y)−L|x−y|
over ∂Ω, then we would have got another McShane-Whitney extension with the
same properties. In any case, we have that F ∈W 1,∞(Ω).
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Since W 1,∞(Ω) ⊂ W 1,p(Ω) for every p > 1 (Ω is bounded), we may use F
as a boundary data and solve the Dirichlet problem (1.1) for each p > 1. We
get a family of p-harmonic functions {up}p>1 with up ∈W 1,p

F (Ω). To prove the
existence, we show that the limit lim

p→∞
up exists (up to a subsequence) and is a

viscosity solution of (2.2).
We start with a lemma that gives a convergent subsequence upk .

Lemma 2.5. Let Ω ⊂ Rn be a bounded domain and f : ∂Ω → R a Lipschitz
continuous function with F as above. If the functions up ∈ W 1,p

F (Ω) are weak
solutions to −∆pu = 0, then {up}p≥n+1 is a normal family.

Proof. Let p ≥ n+ 1. Since F ∈W 1,p
F (Ω), we know by the minimizing property

of up that ∫
Ω

|∇up(x)|p dx ≤
∫

Ω

|∇F (x)|p dx ≤ ‖∇F‖pL∞(Ω)|Ω|,

which yields (
1

|Ω|

∫
Ω

|∇up(x)|p dx
) 1

p

≤ ‖∇F‖L∞(Ω).

By Hölder’s inequality we obtain(
1

|Ω|

∫
Ω

|∇up(x)|n+1 dx

) 1
n+1

≤
(

1

|Ω|

∫
Ω

|∇up(x)|p dx
) 1

p

≤ ‖∇F‖L∞(Ω).

Let (ũp − F ) be a zero extension of up − F to Rn \ Ω. Then (ũp − F ) ∈
W 1,n+1(Rn), and by Morrey’s inequality we have

|(ũp − F )(x)− (ũp − F )(y)| ≤ C(n)|x− y|
1

n+1 ‖∇(ũp − F )‖Ln+1(Rn) (2.3)

for every x, y ∈ Rn. Here C(n) is a constant from Morrey’s inequality and

‖∇(ũp − F )‖Ln+1(Rn) = ‖∇(up−F )‖Ln+1(Ω). In particular, (2.3) holds for x, y ∈
Ω, and for such x, y we have that

|up(x)− up(y)| ≤ |F (x)− F (y)|+ C(n)|x− y|
1

n+1 ‖∇up − F‖Ln+1(Ω)

≤ L|x− y|+ C(n)|x− y|
1

n+1

(
‖∇up‖Ln+1(Ω) + ‖∇F‖Ln+1(Ω)

)
≤ L|x− y|+ C(n)|x− y|

1
n+1

(
2 ‖∇F‖L∞(Ω)|Ω|

1
n+1

)
= |x− y|

1
n+1

(
L|x− y|

n
n+1 + C̃(n)‖∇F‖L∞(Ω)|Ω|

1
n+1

)
≤ |x− y|

1
n+1

(
L(diam Ω)

n
n+1 + C̃(n)‖∇F‖L∞(Ω)|Ω|

1
n+1

)
= C(n, F,Ω)|x− y|

1
n+1 .

This guarantees that the family {up}p≥n+1 is equicontinuous in Ω.
Since p > n, it holds that up ∈ C(Ω) and up(x) = f(x) for every x ∈ ∂Ω.
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Then, by fixing some y0 ∈ ∂Ω, we have

|up(x)| ≤ |up(y0)|+ C(n, F,Ω)|x− y0|
1

n+1

= |f(y0)|+ C(n, F,Ω)|x− y0|
1

n+1

≤ max
∂Ω
|f |+ C(n, F,Ω)(diam Ω)

1
n+1

= C̃(n, F,Ω),

which implies that the family {up}p≥n+1 is uniformly bounded in Ω. The claim
follows from Arzelà-Ascoli’s theorem.

Corollary 2.6. There exists a subsequence (pk)∞k=1, where pk →∞ as k →∞,
and u ∈ C(Ω) such that upk → u uniformly in Ω and u(x) = f(x) for every
x ∈ ∂Ω.

The function u ∈ C(Ω) in Corollary 2.6 is our candidate for a solution to
(2.2). It already satisfies the boundary condition. Next we show that it satisfies
the infinity Laplace equation in the viscosity sense. For this we need a little
lemma which says that weak solutions to −∆pu = 0 are also viscosity solutions
to the same equation.

Lemma 2.7. Let p ≥ 2 and u ∈ W 1,p
loc (Ω) be a weak solution of −∆pu = 0.

Then u is also a viscosity solution of −∆pu = 0.

Proof. We prove by contradiction that u is a viscosity supersolution. Suppose
that there exists x̂ ∈ Ω and ϕ ∈ C2(Ω) such that u−ϕ attains its strict minimum
at x̂ but −∆pϕ(x̂) < 0. Without loss of generality we may assume that (u −
ϕ)(x̂) = 0. Since the mapping x 7→ − div

(
|∇ϕ(x)|p−2∇ϕ(x)

)
is continuous, we

find r > 0 such that B(x̂, r) ⊂ Ω and −div
(
|∇ϕ(x)|p−2∇ϕ(x)

)
< 0 for every

x ∈ B(x̂, r). Let

m := inf {u(x)− ϕ(x) : |x− x̂| = r} > 0

and define ϕ̃ ∈ C2(Ω) such that ϕ̃(x) = ϕ(x) + m
2 . Then ϕ̃(x̂) > u(x̂) and u ≥ ϕ̃

on S(x̂, r), which yields that (ϕ̃− u)+ ∈W 1,p
0 (B(x̂, r)) and that the measure of

{x ∈ B(x̂, r) : ϕ̃(x) − u(x) > 0} is positive. Furthermore, −∆pϕ̃(x) < 0 holds
in B(x̂, r). Then, after multiplification and integration by parts, we get

0 >

∫
B(x̂,r)

|∇ϕ̃|p−2∇ϕ̃ · ∇(ϕ̃− u)+ dx

=

∫
B(x̂,r)∩{ϕ̃>u}

|∇ϕ̃|p−2∇ϕ̃ · ∇(ϕ̃− u) dx.

On the other hand, by extending (ϕ̃ − u)+ as zero outside B(x̂, r), we get by
definition that

0 =

∫
Ω

|∇u|p−2∇u · ∇(ϕ̃− u)+ dx

=

∫
B(x̂,r)∩{ϕ̃>u}

|∇u|p−2∇u · ∇(ϕ̃− u) dx.
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Upon subtraction and using Lemma 6.1 from Appendix, we have

0 >

∫
B(x̂,r)∩{ϕ̃>u}

[
|∇ϕ̃|p−2∇ϕ̃− |∇u|p−2∇u

]
· ∇(ϕ̃− u) dx

≥C(p)

∫
B(x̂,r)∩{ϕ̃>u}

|∇ϕ̃−∇u|p dx,

which is a contradiction.
The proof that u is a viscosity subsolution is similar and we omit the details.

Theorem 2.8. Let {upk}∞k=1 be a family of pk-harmonic functions such that
upk → u locally uniformly in Ω as pk →∞. Then u is infinity harmonic.

Proof. We show that the function u is a viscosity supersolution of −∆∞u = 0.
The proof that u is a subsolution is similar.

Let ϕ ∈ C2(Ω) and x̂ ∈ Ω such that u−ϕ has a strict minimum at x̂. Without
loss of generality, we may assume that (u − ϕ)(x̂) = 0. Let r > 0 be such that
B(x̂, r) ⊂ Ω and define

mr := min {u(x)− ϕ(x) : |x− x̂| = r} > 0,

and
εk,r := sup {upk(x)− u(x) : |x− x̂| ≤ r} > 0

for k ∈ N. Choose k1 = k1(r) ∈ N such that εk,r <
mr

2 when k ≥ k1. Now

inf
B(x̂,r)

(upk − ϕ) ≤ upk(x̂)− ϕ(x̂) = upk(x̂)− u(x̂) ≤ εk,r <
mr

2

and
inf
S(x̂,r)

(upk − ϕ) ≥ mr − εk,r > mr −
mr

2
=
mr

2

holds for any k ≥ k1. This means that for large k the function upk − ϕ attains
its local minimum inside the ball B(x̂, r). We fix such a point and denote it by
xk.

Next we show that xk → x̂. This is done by repeating the previous procedure
for smaller radii. For example, we find k2 = k2(r/2) such that if k ≥ k2; then
the function upk − ϕ attains its local minimum at xk ∈ B(x̂, r/2). By choosing
xk ∈ B(x̂, r) for k1 ≤ k < k2, xk ∈ B(x̂, r/2) for k2 ≤ k < k3 = k3(r/3) and so
on, we find a sequence (xk)∞k=1 for which xk → x̂.

Now, by Lemma 2.7, it holds that

−
(
|∇ϕ(xk)|pk−2∆ϕ(xk) + (pk − 2)|∇ϕ(xk)|pk−4∆∞ϕ(xk)

)
≥ 0.

If ∇ϕ(x̂) = 0, then −∆∞ϕ(x̂) = 0, and we are done. Thus we can assume that
∇ϕ(x̂) 6= 0. Then ∇ϕ(xk) 6= 0 for large k by the continuity of ∇ϕ. We divide
the previous inequality by |∇ϕ(xk)|pk−4(pk − 2) and get

−|∇ϕ(xk)|2∆ϕ(xk)

pk − 2
−∆∞ϕ(xk) ≥ 0.

Letting k →∞ and, consequently, pk →∞, we obtain

−∆∞ϕ(x̂) ≥ 0,

which proves the claim.
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2.2 Uniqueness of solutions

The uniqueness of the solution of (2.2) follows immediately from the next the-
orem. It is due to Jensen [21], but we follow a recently published new proof by
Armstrong and Smart [3].

Theorem 2.9. Let u, v ∈ C(Ω) such that u is infinity subharmonic and v is
infinity superharmonic. Then

max
Ω

(u− v) = max
∂Ω

(u− v).

We now introduce some notation. For ε > 0 we write Ωε := {x ∈ Ω :
B(x, ε) ⊂ Ω}. If u ∈ C(Ω) and x ∈ Ωε, then we denote

S+
ε u(x) := max

y∈B(x,ε)

u(y)− u(x)

ε

and

S−ε u(x) := max
y∈B(x,ε)

u(x)− u(y)

ε
.

By choosing y = x, we see that S+
ε u(x), S−ε u(x) ≥ 0.

The next result is a comparison lemma for a finite difference equation and
it is a first step towards the proof of Theorem 2.9.

Lemma 2.10. Suppose that u, v ∈ C(Ω) ∩ L∞(Ω) and

S−ε u(x)− S+
ε u(x) ≤ 0 ≤ S−ε v(x)− S+

ε v(x) (2.4)

holds for every x ∈ Ωε. Then

sup
Ω

(u− v) = sup
Ω\Ωε

(u− v).

Proof. We prove by contradiction. Suppose that

sup
Ω

(u− v) > sup
Ω\Ωε

(u− v).

Then the set
E := {x ∈ Ω : (u− v)(x) = sup

Ω
(u− v)}

is nonempty, compact and E ⊂ Ωε. Let

F := {x ∈ E : u(x) = max
E

u}

and choose a point x0 ∈ ∂F . Then x0 ∈ E, which means that u− v attains its
maximum at x0. In particular, this means that for every x ∈ B(x0, ε) it holds
that u(x)− v(x) ≤ u(x0)− v(x0), and hence

v(x0)− v(x)

ε
≤ u(x0)− u(x)

ε
≤ S−ε u(x0).

This implies that
S−ε v(x0) ≤ S−ε u(x0). (2.5)
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If it was the case that S+
ε u(x0) = 0, then by (2.4), (2.5) and the non-

negativeness of S+
ε and S−ε it would hold that

S−ε u(x0) = S+
ε u(x0) = 0 = S−ε v(x0) = S+

ε v(x0).

Hence u(x) ≡ u(x0) and v(x) ≡ v(x0) in the ball B(x0, ε). Since x0 ∈ ∂F ,
there exists y ∈ B(x0, ε) \ F . If y ∈ E, then u(y) < maxE u = u(x0), which is
a contradiction since u was supposed to be a constant in the ball B(x0, ε). If
y /∈ E, then (u−v)(y) < supΩ (u−v) = (u−v)(x0), which is also a contradiction
since u− v was supposed to be a constant in B(x0, ε). This yields that the case
S+
ε u(x0) = 0 is not possible.

Now we consider the case S+
ε u(x0) > 0. Since u is continuous and B(x0, ε)

is compact, there exists z ∈ B(x0, ε) such that

S+
ε u(x0) =

u(z)− u(x0)

ε
.

This implies that
u(z) = u(x0) + εS+

ε u(x0)︸ ︷︷ ︸
>0

> u(x0).

If z ∈ E, then u(z) > u(x0) = maxE u, which is a contradiction. Thus z /∈ E,
and it holds that (u−v)(z) < (u−v)(x0). From this we get that v(z)−v(x0) >
u(z)− u(x0), and thus

εS+
ε v(x0) ≥ v(z)− v(x0) > u(z)− u(x0) = εS+

ε u(x0),

which yields
−S+

ε v(x0) < −S+
ε u(x0). (2.6)

Combining (2.5) and (2.6), we have that

S−ε v(x0)− S+
ε v(x0) < S−ε u(x0)− S+

ε u(x0),

which contradicts (2.4), and the claim follows.

We continue by presenting new notations. For u ∈ C(Ω) and x ∈ Ωε we write

uε(x) := max
y∈B(x,ε)

u(y)

and
uε(x) := min

y∈B(x,ε)
u(y).

Then
εS+

ε u(x) = max
y∈B(x,ε)

(u(y)− u(x)) = uε(x)− u(x)

and
εS−ε u(x) = max

y∈B(x,ε)
(u(x)− u(y)) = u(x)− uε(x).

These notations are used in the next Lemma, which allows us to modify the
solutions of the PDE (2.2) to get solutions that satisfy (2.4). Before we proceed
to this Lemma, we present a property called Comparison with cones, which is
tightly related to infinity harmonic functions and which is needed in the proof
of the Lemma.
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Definition 2.11. The function u : Ω → R enjoys comparison with cones from
above in Ω, if for every open set U ⊂⊂ Ω and every x0 ∈ Rn, a, b ∈ R, for which

u(x) ≤ C(x) = a+ b|x− x0| (2.7)

holds for every x ∈ ∂(U \ {x0}); one then has

u(x) ≤ C(x)

also for every x ∈ U .
Comparison with cones from below is defined similarly, that is, ” ≤ ” is

replaced by ” ≥ ”. Moreover, we say that u enjoys comparison with cones in Ω
if u enjoys comparison with cones both from above and below.

Theorem 2.12. Assume that u is an infinity subharmonic (superharmonic,
respectively) function in Ω. Then u enjoys comparison with cones from above
(below) in Ω.

Proof. Let U ⊂⊂ Ω be open and x0 ∈ Rn, a, b ∈ R be such that u ≤ C on
∂(U \ {x0}). Assume, on the contrary, that there exists x̂ ∈ U \ {x0} such that
u(x̂) > C(x̂). Let R > 0 be so large that x0 ∈ B(x,R) for every x ∈ ∂U and set

w(x) := a+ b|x− x0|+ ε(R2 − |x− x0|2), x ∈ U.

Then u ≤ w on ∂(U \ {x0}) but u(x̂) > w(x̂) when ε > 0 is small enough. We
may assume that x̂ is the maximum point of u−w in U \ {x0}. One calculates
that

−∆∞w(x̂) = 2ε(2ε|x̂− x0|2 − b)2.

This is strictly positive if b ≤ 0 or if b > 0 and ε is small enough. This
is a contradiction to our assumption that u is infinity subharmonic, that is,
−∆∞u ≤ 0.

Lemma 2.13. Suppose that u and v are infinity subharmonic and superhar-
monic functions in Ω, respectively. Then

S−ε u
ε(x)− S+

ε u
ε(x) ≤ 0 (2.8)

and
S−ε vε(x)− S+

ε vε(x) ≥ 0 (2.9)

for all x ∈ Ω2ε.

Proof. We first prove (2.8). Let x0 ∈ Ω2ε. Choose y0 ∈ B(x0, ε) and z0 ∈
B(x0, 2ε) such that u(y0) = uε(x0) and u(z0) = u2ε(x0). Since

(uε)
ε

(x0) = max
y∈B(x0,ε)

uε(y) = max
y∈B(x0,ε)

max
z∈B(y,ε)

u(z) = u2ε(x0)

and
(uε)ε (x0) = min

y∈B(x0,ε)
uε(y) = min

y∈B(x0,ε)
max

z∈B(y,ε)
u(z) ≥ u(x0),
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we have that

ε
(
S−ε u

ε(x0)− S+
ε u

ε(x0)
)

= uε(x0)− (uε)ε (x0)− ((uε)
ε

(x0)− uε(x0))

= 2uε(x0)− (uε)
ε

(x0)− (uε)ε (x0)

≤ 2uε(x0)− u2ε(x0)− u(x0) (2.10)

= 2u(y0)− u(z0)− u(x0).

By the definition of z0 it is easy to see that the inequality

u(w) ≤ u(x0) +
u(z0)− u(x0)

2ε
|w − x0| (2.11)

holds for every w ∈ ∂ (B(x0, 2ε) \ {x0}), (that is, |w − x0| = 2ε or w = x0).
Since u is an infinity subharmonic function, Theorem 2.12 implies that (2.11)
holds also for every w ∈ B(x0, 2ε). This allows to put w = y0 to (2.11), and we
get

u(y0) ≤ u(x0) +
u(z0)− u(x0)

2ε
|y0 − x0|

≤ u(x0) +
u(z0)− u(x0)

2ε
ε

=
1

2
u(x0) +

1

2
u(z0).

From this we deduce that 2u(y0)−u(z0)−u(x0) ≤ 0, which together with (2.10)
yields

S−ε u
ε(x0)− S+

ε u
ε(x0) ≤ 0.

Since x0 ∈ Ω2ε was arbitrary, the proof of (2.8) is complete.
To prove (2.9), we substitute −v, which is an infinity subharmonic function

in Ω, with (2.8) and use the facts that S+
ε (−v)(x) = S−ε v(x) and (−v)ε = −vε.

Indeed, for x ∈ Ω2ε, we calculate that

0 ≥ S−ε (−v)ε(x)− S+
ε (−v)ε(x)

= S−ε (−vε)(x)− S+
ε (−vε)(x)

= S+
ε vε(x)− S−ε vε(x),

which is (2.9).

Proof of Theorem 2.9. By Lemmas 2.10 and 2.13

sup
Ωε

(uε − vε) = sup
Ωε\Ω2ε

(uε − vε)

for all ε > 0. Let ε→ 0, and the claim follows.

Let us briefly discuss the necessity of the assumption that the boundary
data is Lipschitz continuous. We used this assumption in the proof of existence,
for simplicity, but it turns out that it is not crucial and it can be relaxed to
continuity, see [21]. In the proof of uniqueness we did not use the Lipschitz
continuity. Thus Theorem 2.4 is true if the boundary data is just continuous.

We also want to remark that Theorem 2.9 implies that the entire sequence
(up)p, which was used in the existence part, converges uniformly in Ω.
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2.3 Minimizing property and related topics

Theorem 1.5 shows the equivalence of p-harmonic functions and the energy
minimizers. In this section we discuss the analogous result for p =∞.

First we define what it means to be a minimizer in the case p =∞.

Definition 2.14. A function u ∈ W 1,∞
loc (Ω) satisfies the AMG (absolutely

minimizing gradient) property in Ω if for every open U ⊂⊂ Ω and for every
v ∈W 1,∞

loc (Ω) with v = u on ∂U we have that

‖∇u‖L∞(U) ≤ ‖∇v‖L∞(U).

As can be seen from [4], the need for a local minimizing property is justified.
To be exact, it could be possible to have multiple functions with given boundary
data that minimize the norm of the gradient in whole Ω. To gain uniqueness,
we need to add an extra condition, which is that the minimizer must also be
a local minimizer. In a p-harmonic case we do not need this extra condition,
since a global minimizer is also a local minimizer, due to the set additivity of
the integral. In fact, the AMG property is derived from this p-harmonicity by
sending p→∞.

Now we show that infinity harmonic functions are the same as the functions
that satisfy the AMG property. This is done by using comparison with cones,
which was presented before. The next theorem says that all these properties
are equivalent.

Theorem 2.15. Let u ∈ W 1,∞
loc (Ω). Then the following conditions are equiva-

lent:

(a) u satisfies the AMG property in Ω.

(b) u enjoys comparison with cones in Ω.

(c) u is infinity harmonic in Ω.

Proof. “(c) =⇒ (b)”: This is Theorem 2.12. � “(b) =⇒ (a)”: We omit the
proof of this implication, since the proof is quite long and it is based on several
technical lemmas, see [9, Theorem 3.2]. � “(b) =⇒ (c)”: Suppose that (c) is
not true. We may assume that u is not infinity subharmonic in Ω, that is, there
exist ϕ ∈ C2(Ω) and x̂ ∈ Ω such that u − ϕ attains its local zero maximum at
x̂, but −∆∞ϕ(x̂) > 0.

By Lemma 6.3 in the Appendix, there exists a cone function C such that

(i) C(x̂) = ϕ(x̂)

(ii) ∇C(x̂) = ∇ϕ(x̂)

(iii) D2C(x̂) > D2ϕ(x̂),

where the third statement means that

D2C(x̂)ξ · ξ > D2ϕ(x̂)ξ · ξ for all ξ ∈ Rn \ {0}.

This means that x̂ is a strict local maximum point for the function ϕ− C, and
hence it is possible to find r1 > 0 such that

ϕ(x)− C(x) < ϕ(x̂)− C(x̂) = 0
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for every x ∈ B(x̂, r1) \ {x̂}. Further, by antithesis, there exists r2 > 0 such
that

u(x)− ϕ(x) ≤ 0

in a ball B(x̂, r2). These inequalities together yield

u(x)− C(x) < 0

for all x ∈ B(x̂, r) \ {x̂}, where r = min{r1, r2}. This allows us to find ε > 0
such that

max
x∈∂B(x̂,r)

(u(x)− C(x)) < −ε.

Now for the cone C − ε it holds that

u(x) ≤ C(x)− ε (2.12)

for every x ∈ ∂B(x̂, r). Since u enjoys comparison with cones, (2.12) holds also
for every x ∈ B(x̂, r). This is a contradiction since C(x̂)− ε = u(x̂)− ε < u(x̂).
�

“(a) =⇒ (b)”: Suppose that u does not enjoy comparison with cones
from above. Then there exist U ⊂⊂ Ω, x0 ∈ Rn and a, b ∈ R such that
u(x) ≤ C(x) := a+ b|x− x0| on ∂ (U \ {x0}) but u(x̂) > C(x̂) for some x̃ ∈ U .

Consider a half-line that has endpoint at x0 and which passes through x̂,
and pick two distinct points y1 and y2 from that half-line such that y1, y2 ∈
∂(U \ {x0}) and the segment ]y1, y2[ lies in U . For identification, we assume
that y1 is the point which is located between x0 and x̂. Let yj,δ = yj +δ(x̂−yj),
0 < δ < 1, for j = 1, 2. Since u satisfies the AMG property in Ω, we have that

‖∇u‖L∞(U) ≤ ‖∇(a+ b|x− x0|)‖L∞(U) = |b|,

and thus
|u(yj,δ)− u(yj)| ≤ |b||x̂− yj |δ.

If b ≥ 0, then

u(y1,δ) ≤ u(y1) + b|x̂− y1|δ ≤ a+ b|y1 − x0|+ b|x̂− y1|δ.

As δ → 1, u(y1,δ) → u(x̂) and a + b|y1 − x0| + b|x̂ − y1|δ → C(x̂), which
contradicts the assumption u(x̂) > C(x̂). If b < 0, then

u(y2,δ) ≤ u(y2)− b|x̂− y2|δ ≤ a+ b|y2 − x0| − b|x̂− y2|δ

When δ → 1, u(y2,δ)→ u(x̂) and a+ b|y2 − x0| − b|x̂− y2|δ → C(x̂), which also
contradicts with u(x̂) > C(x̂).

We can similarly prove that u enjoys comparison with cones from below.
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3 Variable p(x), with 1 < inf p(x) < sup p(x) < +∞
In this section we let a (measurable) function p : Ω→ (1,∞] vary in the set Ω.
The function p is called a variable exponent. We set

p− := inf
x∈Ω

p(x) and p+ := sup
x∈Ω

p(x)

and assume that
1 < p− < p+ < +∞.

The variable exponent Lebesgue space Lp(·)(Ω) consists of all measurable
functions u defined on Ω for which∫

Ω

|u(x)|p(x) dx < +∞.

The Luxembourg norm on this space is defined as

‖u‖Lp(·)(Ω) := inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Equipped with this norm, Lp(·)(Ω) is a Banach space. If p is a constant function,
then the variable exponent Lebesgue space is just the standard Lebesgue space.

The following properties are needed later (for the proof, see [15]); for u ∈
Lp(·)(Ω) it holds that

(i) if ‖u‖Lp(·)(Ω) < 1, then ‖u‖p
+

Lp(·)(Ω)
≤
∫

Ω
|u(x)|p(x) dx ≤ ‖u‖p−

Lp(·)(Ω)
,

(ii) if ‖u‖Lp(·)(Ω) > 1, then ‖u‖p−
Lp(·)(Ω)

≤
∫

Ω
|u(x)|p(x) dx ≤ ‖u‖p

+

Lp(·)(Ω)
,

(iii) ‖u‖Lp(·)(Ω) = 1 if and only if
∫

Ω
|u(x)|p(x) dx = 1.

The outcome of these properties is

min
{
‖u‖p

+

Lp(·)(Ω)
, ‖u‖p−

Lp(·)(Ω)

}
≤
∫

Ω

|u(x)|p(x) dx (3.1)

≤ max
{
‖u‖p

+

Lp(·)(Ω)
, ‖u‖p−

Lp(·)(Ω)

}
.

We also present a variable exponent version of Hölder’s inequality:∫
Ω

|fg| dx ≤ C‖f‖Lp(·)‖g‖Lq(·)

holds for f ∈ Lp(·)(Ω) and g ∈ Lq(·)(Ω), where C = C(p−, p
+) and 1/p(x) +

1/q(x) = 1 for every x ∈ Ω. Moreover, the dual space of Lp(·)(Ω) is Lq(·)(Ω)
and the space Lp(·)(Ω) is reflexive.

We continue by defining a variable exponent Sobolev space W 1,p(·)(Ω). It
consists of functions u ∈ Lp(·)(Ω), whose weak gradient ∇u exists and belongs
to Lp(·)(Ω). The space W 1,p(·)(Ω) is a reflexive Banach space with the norm

‖u‖W 1,p(·)(Ω) := ‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω).
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The density of smooth functions in W 1,p(·)(Ω) is not a trivial issue and it can
happen that the smooth functions are not dense. However, if we assume that
the variable exponent p is log-Hölder -continuous, that is,

|p(x)− p(y)| ≤ C

log(e+ 1/|x− y|)
(3.2)

for some C > 0 and for every x, y ∈ Ω, then smooth functions are dense in
W 1,p(·)(Ω). To the best of our knowledge, this is the weakest modulus of con-
tinuity for p that ensures the density of smooth functions in variable exponent
Sobolev spaces, see [26] and [11, Chapter 9]. From now on we assume that (3.2)
holds.

Under the assumption that C∞(Ω) is dense in W 1,p(·)(Ω), the variable ex-

ponent Sobolev space with zero boundary values, W
1,p(·)
0 (Ω), is defined as the

closure of C∞0 (Ω) with respect to the norm ‖·‖W 1,p(·)(Ω), and it is reflexive. To
check the basic properties of the variable exponent Lebesgue and Sobolev spaces,
see [15] and [23].

We also want to present the variable exponent Sobolev-Poincaré inequality:

‖u‖Lp(·)(Ω) ≤ C(diam Ω)‖∇u‖Lp(·)(Ω)

holds for functions u ∈W 1,p(·)
0 (Ω). Here C = C(n, p).

Remark 3.1. Generally, there are several sufficient assumptions for p so that
the Sobolev-Poincaré inequality holds. These include

• p is log-Hölder continuous (our case)

• p satisfies a so-called jump condition in Ω: there exists δ > 0 such that
for every x ∈ Ω either

ess inf {p(y) : y ∈ B(x, δ)} ≥ n

or

ess sup {p(y) : y ∈ B(x, δ)} ≤ n · ess inf {p(y) : y ∈ B(x, δ)}
n− ess inf {p(y) : y ∈ B(x, δ)}

.

Note that if p is continuous up to the boundary, then p satisfies the jump-
condition.

For the references, see [11] and [17].

We proceed as in the constant p-case. The methods are the same, only in
the proofs we need to be more accurate. We start by defining a p(x)-harmonic
function.

Definition 3.2. We say that a function u ∈ W
1,p(·)
loc (Ω) is a weak solution

(respectively, subsolution, supersolution) of

−∆p(x)u = − div
(
|∇u(x)|p(x)−2∇u(x)

)
= 0 (3.3)

in Ω, if ∫
Ω

|∇u(x)|p(x)−2∇u(x) · ∇ϕ(x) dx = 0 (respectively, ≤ 0, ≥ 0)
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for every test function ϕ ∈ C∞0 (Ω) (respectively, for every non-negative test
function ϕ ∈ C∞0 (Ω)).

A continuous weak solution of −∆p(x)u = 0 is called a p(x)-harmonic func-
tion.

As in the constant p-case, the continuity requirement for a p(x)-harmonic
function is redundant. For higher regularity results, see [1], [7] and the list
of references given in [11, Chapter 13]. Furthermore, the test function space

C∞0 (Ω) can be extended to W
1,p(·)
0 (Ω) if we assume that the p(x)-harmonic

function belongs to the class W 1,p(·)(Ω). This is based on the fact that C∞0 (Ω) is

dense in W
1,p(·)
0 (Ω) and on the variable exponent version of Hölder’s inequality.

Calculations are the same as in Section 1 and will not be repeated.
The next theorem is the p(x)-version of Theorem 1.3. This is our main goal

in this section.

Theorem 3.3. Let Ω ⊂ Rn be a bounded domain, p a log-Hölder-continuous
variable exponent with 1 < p− < p+ < +∞ and f ∈ W 1,p(·)(Ω). Then
there exists a unique p(x)-harmonic function u ∈ W 1,p(·)(Ω) such that u− f ∈
W

1,p(·)
0 (Ω), that is, u is a weak solution of{

−∆p(x)u = 0, in Ω,

u = f, on ∂Ω.
(3.4)

For the proof we define a functional I : W 1,p(·)(Ω)→ R,

I(u) =

∫
Ω

1

p(x)
|∇u(x)|p(x) dx.

Then (3.3) is the Euler-Lagrange equation of the functional I. The existence
and uniqueness of solutions of (3.4) is obtained by the following two theorems,
just as in the constant p-case.

Theorem 3.4. Let f ∈ W 1,p(·)(Ω) be the boundary data. Then the following

conditions are equivalent for u ∈W 1,p(·)
f (Ω):

(a) −∆p(x)u = 0 in Ω,

(b) I(u) ≤ I(v) for every v ∈W 1,p(·)
f (Ω).

Theorem 3.5. Let f ∈W 1,p(·)(Ω) be the boundary data. There exists a unique

u ∈W 1,p(·)
f (Ω) such that∫

Ω

1

p(x)
|∇u(x)|p(x) dx ≤

∫
Ω

1

p(x)
|∇v(x)|p(x) dx

for every v ∈W 1,p(·)
f (Ω).

Now we try to modify the proofs from Section 1 to fit to the p(x)-case.

Proof of Theorem 3.4. ”(a) =⇒ (b)”: Let v ∈W 1,p(·)
f (Ω). For any fixed x0 ∈ Ω

the function y → |y|p(x0) is convex, and thus

|∇v(x)|p(x0) ≥ |∇u(x)|p(x0) + p(x0)|∇u(x)|p(x0)−2∇u(x) · (∇v(x)−∇u(x))
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holds for every x ∈ Ω, especially for x = x0. Since x0 ∈ Ω was arbitrary, we
have

|∇v(x)|p(x) ≥ |∇u(x)|p(x) + p(x)|∇u(x)|p(x)−2∇u(x) · (∇v(x)−∇u(x)).

We divide by p(x) and integrate over Ω, and the result is∫
Ω

1

p(x)
|∇v(x)|p(x) dx ≥

∫
Ω

1

p(x)
|∇u(x)|p(x) dx (3.5)

+

∫
Ω

|∇u(x)|p(x)−2∇u(x) · (∇v(x)−∇u(x)) dx.

Since u is p(x)-harmonic and belongs to the class W 1,p(·)(Ω), the function v−u ∈
W

1,p(·)
0 (Ω) is an admissible function to test the p(x)-harmonicity of u, and thus

the last integral is zero. This implies that I(u) ≤ I(v).

”(b) =⇒ (a)”: Assume that u ∈ W 1,p(·)
f (Ω) is the minimizer for the func-

tional I. Fix ϕ ∈ C∞0 (Ω) and set ut(x) = u(x) + tϕ(x). Then ut ∈ W 1,p(·)
f (Ω)

and I(u) = I(u0) ≤ I(ut) for all t ∈ R. Hence

0 = lim
t→0

I(ut)− I(u)

t
= lim
t→0

∫
Ω

1

p(x)

|∇ut(x)|p(x) − |∇u(x)|p(x)

t
dx

=

∫
Ω

1

p(x)
lim
t→0

|∇ut(x)|p(x) − |∇u(x)|p(x)

t
dx

=

∫
Ω

1

p(x)

d

dt

[
|∇ut(x)|p(x)

]
t=0

dx

=

∫
Ω

1

p(x)
p(x)

[
(∇u(x) + t∇ϕ(x))|∇u(x) + tϕ(x)|p(x)−2 · ∇ϕ(x)

]
t=0

dx

=

∫
Ω

|∇u(x)|p(x)−2∇u(x) · ∇ϕ(x) dx.

If we can show why the third equality is true, the proof is complete since
the other equalities are clear. To do this, we set

ft(x) =
|∇ut(x)|p(x) − |∇u0(x)|p(x)

t

and use the mean value theorem to get the following estimate: there exists
s ∈ R, 0 < |s| < |t| < 1 such that

ft(x) =
|∇u0(x) + t∇ϕ(x)|p(x) − |∇u0(x)|p(x)

t

= p(x)|s∇ϕ(x) +∇u0(x)|p(x)−2 (s∇ϕ(x) +∇u0(x)) · ∇ϕ(x),

and then

|ft(x)| ≤ p+‖∇ϕ‖L∞(Ω)|s∇ϕ(x) +∇u0(x)|p(x)−1

≤ C(ϕ)p+2p(x)−1(sp(x)−1|∇ϕ(x)|p(x)−1 + |∇u0(x)|p(x)−1)

≤ C(ϕ)p+2p
+−1(max{1, ‖∇ϕ‖p

+−1
L∞(Ω)}+ |∇u0(x)|p(x)−1)

= C(ϕ, p)(C̃(ϕ, p) + |∇u0(x)|p(x)−1).
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Then by the variable exponent version of Hölder’s inequality we have∫
Ω

|ft(x)| dx ≤ C(ϕ, p)

(
C̃(ϕ, p)|Ω|+

∫
Ω

|∇u0(x)|p(x)−1 · 1 dx
)

≤ C(ϕ, p)

(
C̃(ϕ, p)|Ω|+ C(p)‖|∇u0|p(·)−1‖

L
p(·)

p(·)−1 (Ω)
‖1‖Lp(·)(Ω)

)
.

Since ∫
Ω

(
|∇u0(x)|p(x)−1

) p(x)
p(x)−1

dx =

∫
Ω

|∇u0(x)|p(x) dx < +∞,

we have |∇u0|p(·)−1 ∈ L
p(·)

p(·)−1 (Ω) and thus ‖|∇u0|p(·)−1‖
L

p(·)
p(·)−1 (Ω)

< +∞. It fol-

lows that ft has an L1-integrable majorant, and then, by Lebesgue’s dominated
convergence theorem,

lim
t→0

∫
Ω

ft(x) dx =

∫
Ω

lim
t→0

ft(x) dx.

This completes the proof.

Remark 3.6. Using the same argument as at the beginning of the proof of
Theorem 3.4, we have for u, v ∈ Lp(·)(Ω) that

|tu(x) + (1− t)v(x)|p(x) ≤ t|u(x)|p(x) + (1− t)|v(x)|p(x) (3.6)

for every 0 ≤ t ≤ 1 and every x ∈ Ω. Since p− > 1, the inequality is strict if
|{x ∈ Ω : u(x) 6= v(x)}| > 0.

Moreover, since the mapping F : Ω × Rn → R, where F (x, ξ) = 1
p(x) |ξ|

p(x),

is C1-smooth and ξ 7→ F (x, ξ) is convex for every x ∈ Ω by (3.6), the functional
I is weakly lower semicontinuous, see [16].

Although the next proof is mainly similar to the proof of Theorem 1.4, there
are slight differences that come from the p(x)-term. To point this out, we repeat
the proof.

Proof of Theorem 3.5. Let

I0 = inf
v∈W 1,p(·)

f (Ω)

∫
Ω

1

p(x)
|∇v(x)|p(x) dx.

Then

0 ≤ I0 ≤
∫

Ω

1

p(x)
|∇f(x)|p(x) dx ≤ 1

p−

∫
Ω

|∇f(x)|p(x) dx < +∞.

This allows us to choose a sequence of functions v1, v2, v3, ... ∈ W 1,p(·)
f (Ω) such

that ∫
Ω

1

p(x)
|∇vj(x)|p(x) dx < I0 +

1

j
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for j = 1, 2, 3, ... Since vj − f ∈ W
1,p(·)
0 (Ω), we find by the Sobolev-Poincaré

inequality that

‖vj‖Lp(·)(Ω) ≤ ‖vj − f‖Lp(·)(Ω) + ‖f‖Lp(·)(Ω)

≤ C(n, p)‖∇vj −∇f‖Lp(·)(Ω) + ‖f‖Lp(·)(Ω)

≤ C(n, p)‖∇vj‖Lp(·)(Ω) + C(n, p)‖∇f‖Lp(·)(Ω) + ‖f‖Lp(·)(Ω) (3.7)

≤ C(n, p)‖∇vj‖Lp(·)(Ω) + C̃(n, p)‖f‖W 1,p(·)(Ω).

We next estimate the term ‖∇vj‖Lp(·)(Ω). If ‖∇vj‖Lp(·)(Ω) > 1, then

‖∇vj‖Lp(·)(Ω) =
(
‖∇vj‖p−Lp(·)(Ω)

) 1
p− ≤

(∫
Ω

|∇vj(x)|p(x) dx

) 1
p−

≤
(
p+

∫
Ω

1

p(x)
|∇vj(x)|p(x) dx

) 1
p−

≤
(
p+(I0 +

1

j
)

) 1
p−
≤
(
p+(I0 + 1)

) 1
p− .

If ‖∇vj‖Lp(·)(Ω) ≤ 1, then no estimates are needed. Hence we get

‖∇vj‖Lp(·)(Ω) ≤ 1 +
(
p+(I0 + 1)

) 1
p− (3.8)

for every j = 1, 2, 3, ... Now (3.7) together with (3.8) gives that the sequence
(vj)

∞
j=1 is bounded in W 1,p(·)(Ω). Then there exists a subsequence, still denoted

as (vj)
∞
j=1, and u0 ∈ W 1,p(·)

f (Ω) such that vj ⇀ u0 weakly in W 1,p(·)(Ω). The
weak lower semicontinuity of the functional I implies that

I0 ≤ I(u0) ≤ lim inf
j→∞

I(vj) = I0.

This proves the existence.
To prove the uniqueness, we assume that u1 and u2 are two minimizers.

Then u = u1+u2

2 ∈W 1,p(·)
f (Ω), and we have

I0 ≤
∫

Ω

1

p(x)
|∇u(x)|p(x) dx =

∫
Ω

1

p(x)

∣∣∣∣∇u1(x) +∇u2(x)

2

∣∣∣∣p(x)

dx

(?) ≤
∫

Ω

1

p(x)

|∇u1(x)|p(x) + |∇u2(x)|p(x)

2
dx

=
1

2

∫
Ω

1

p(x)
|∇u1(x)|p(x) dx+

1

2

∫
Ω

1

p(x)
|∇u2(x)|p(x) dx

=
1

2
I0 +

1

2
I0 = I0.

In (?) we used convexity. If the measure of the set {x ∈ Ω : ∇u1(x) 6= ∇u2(x)}
is positive, then the inequality (?) is strict by strict convexity, which leads to a
contradiction. Thus ∇u1(x) = ∇u2(x) almost everywhere in Ω, and hence the
Sobolev-Poincaré inequality implies that

‖u1 − u2‖Lp(·)(Ω) ≤ C‖∇u1 −∇u2‖Lp(·)(Ω) = 0.

Then u1 = u2, and the uniqueness follows.
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4 Variable p(x) with p(·) ≡ +∞ in a subdomain

This section is based on [25] (an article by Manfredi, Rossi and Urbano), which
was the first attempt to analyse the Dirichlet problem (0.1) in the case where
the exponent p(·) becomes infinity in some part of the domain.

Let us fix the setting for this section. We assume that Ω ⊂ Rn and D ⊂ Ω
are both bounded and convex domains with smooth boundaries, at least of class
C1. The variable exponent p : Ω→ (1,∞] satisfies

p(x) = +∞ for every x ∈ D (4.1)

and is assumed to be continuously differentiable in Ω \D. We also assume that
both functions p and ∇p have a continuous extension from Ω\D to ∂D∩Ω and
that

p− = inf
x∈Ω

p(x) > n (4.2)

and
p+ := sup

x∈Ω\D
p(x) < +∞. (4.3)

In a way, the problem considered in this section is a combination of the
problems studied in the two previous sections. In the set D we have infinity
harmonic functions (as in Section 2) and in the set Ω\D we have p(x)-harmonic
functions (as in Section 3). However, we have extra assumptions for p, which
we explain next.

Let us first compute how −∆p(x) (with p(x) < +∞ everywhere) evaluates
on C2(Ω) functions. For ϕ ∈ C2(Ω) we find

−∆p(x)ϕ(x) =− div
(
|∇ϕ(x)|p(x)∇ϕ(x)

)
=− |∇ϕ(x)|p(x)−2 (4.4)

×
(

∆ϕ(x) +∇p(x) · ∇ϕ(x) log |∇ϕ(x)|+ (p(x)− 2)
∆∞ϕ(x)

|∇ϕ(x)|2

)
.

In order to use the theory of viscosity solutions, the mapping x 7→ −∆p(x)ϕ(x)
should be continuous. This is needed, for example, in Lemma 2.7. Since ∇p
appears in (4.4), it is natural to assume that p ∈ C1(Ω \D). This also ensures
the density of smooth functions in W 1,p(·)(Ω \D). That the functions p and ∇p
can be extended continuously from Ω \D to ∂D ∩Ω is needed to guarantee the
continuity of the function x 7→ −∆p(x)ϕ(x) in Ω \D in the last theorem on this
section. The assumption (4.3) is there in order for us to use the theory from
Section 3, and the assumption (4.2) guarantees the continuous embedding; for
the variable exponent q : Ω→ [q−, q

+], n < q− < q+ < +∞, it holds that

W 1,q(·)(Ω) ↪→W 1,q−(Ω) ⊂ C(Ω). (4.5)

The variable exponent q can even be discontinuous, and still (4.5) holds. We
shall use this embedding property later to bounded functions pk(x), where
pk(x) = min {p(x), k}, for which n < p− < pk(x) < p+ < +∞ holds in Ω
for large k. To check (4.5), see [23].
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Remark 4.1. The convexity of Ω and D guarantees that the Lipschitz con-
stant of W 1,∞-functions coincides with the L∞-norm of their gradients. This
property is needed in some of the proofs. The boundary smoothness assumption
guarantees the existence of the exterior unit normal vector to ∂D in Ω, which
is also needed later.

The first step in trying to solve the Dirichlet boundary value problem,{
−∆p(x)u(x) = 0, if x ∈ Ω,

u(x) = f(x), if x ∈ ∂Ω,
(4.6)

is to replace p(x) by a sequence of bounded functions pk(x) such that pk(x)
is increasing in k and converges to p(x) as k → ∞. In this work we use the
sequence where

pk(x) := min {p(x), k}.

We shall use the notation (4.6)k to refer to the problem (4.6) for the variable
exponents pk(x).

Since p(x) is bounded in Ω \D, we have for large k that

pk(x) =

{
p(x), if x ∈ Ω \D,
k, if x ∈ D.

Moreover, the boundary of the set {x ∈ Ω : p(x) > k} is ∂D for large k, and
thus it is independent of k. This property is needed later in the proofs.

The next step is to solve (4.6)k. Since pk(x) is not log-Hölder continuous,
the existence and uniqueness do not follow from Theorem 3.3. However, Lemma
4.3 below yields a solution to (4.6)k that we call uk. If we could show that the
limit limk→∞ uk exists, then it would be a natural candidate for a solution to
(4.6) with the original p(x). The uniqueness is achieved quite easily; we combine
the results from Sections 2 and 3.

Before we formulate the main result, we introduce the sets in which the
minimization process is done. For k ∈ N we define

Sk = {u ∈W 1,pk(·)(Ω) : u|∂Ω = f}

and

S = {u ∈W 1,p−(Ω) : u|Ω\D ∈W
1,p(·)(Ω \D), ‖∇u‖L∞(D) ≤ 1 and u|∂Ω = f}.

Observe that S ⊂ Sk for every k ∈ N.

Theorem 4.2. Let p(·) be the variable exponent with the properties defined
above and f : ∂Ω → R a Lipschitz function. Then the following three claims
are true:

1) There exists a unique solution uk to (4.6)k.
2) If S 6= ∅, then the uniform limit u∞ := lim

k→∞
uk exists and it is a minimizer

of the variational integral ∫
Ω\D

1

p(x)
|∇u(x)|p(x) dx
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in S. The function u∞ is the only minimizer amongst those functions in S
that are also infinity harmonic in D in the viscosity sense. Moreover, u∞ is a
viscosity solution of

−∆p(x)u(x) = 0, x ∈ Ω \D,
−∆∞u(x) = 0, x ∈ D,
sgn (|∇u|(x)− 1) sgn

(
∂u
∂ν (x)

)
= 0, x ∈ ∂D ∩ Ω,

u(x) = f(x), x ∈ ∂Ω,

where ν is the exterior unit normal vector to ∂D in Ω.
3) If ∂D ∩ ∂Ω 6= ∅ and the Lipschitz constant of f |∂D∩∂Ω is strictly greater

than one, then S = ∅ and

lim inf
k→∞

(∫
D

|∇uk(x)|k

k
dx

) 1
k

> 1,

and hence the natural energy associated to the sequence (uk) is unbounded.

4.1 Approximate solutions uk

We first prove the existence and uniqueness of solutions to (4.6)k.

Lemma 4.3. Let p be the variable exponent as defined earlier and f : ∂Ω→ R
a Lipschitz function. Then, for k large enough, there exists a unique weak
solution uk ∈ W 1,pk(·)(Ω) to (4.6)k such that uk(x) = f(x) for every x ∈ ∂Ω.
Moreover, uk is the unique minimizer of the functional

Ik(u) =

∫
Ω

|∇u(x)|pk(x)

pk(x)
dx =

∫
Ω\D

|∇u(x)|p(x)

p(x)
dx+

∫
D

|∇u(x)|k

k
dx

in Sk.

Proof. Suppose that k > p+. Then

pk(x) = min{k, p(x)} ≥ p− > n

for every x ∈ Ω. This ensures that pk satisfies the jump condition in Ω (see
Remark 3.1), and hence the Sobolev-Poincaré inequality is applicable. This
means that the proof of Theorem 3.5 goes through with pk(x) and we find a
unique minimizer uk for the functional Ik in Sk. By (4.5), uk is continuous up
to the boundary and we can take the boundary condition pointwise.

Next we show that Theorem 3.4 holds for pk(x). The only difficulty we face

is the density of C∞0 (Ω) functions in W
1,pk(·)
0 (Ω). Since D is convex, it is a so-

called exterior cone domain and thus by the results of [12] and [20], the density
of smooth functions in W 1,pk(·)(Ω) follows from the corresponding densities in
W 1,k(D) and W 1,p(·)(Ω \ D) which are known. We deduce that uk is also a
unique weak solution of (4.6)k.

The problem (4.6)k is considered in the weak sense since the solutions need
not be smooth. Next we derive an equivalent formulation to the problem (4.6)k.
Let us first suppose that u = uk ∈ C2(Ω). We set F : Ω× Rn → Rn, F (x, ξ) =
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|ξ|pk(x)−2ξ and denote Fk := F |D×Rn and Fp(x) := F |Ω\D×Rn . We take ϕ ∈
C∞0 (Ω) and calculate

div (F (x,∇u)ϕ) = [divF (x,∇u)]ϕ+ F (x,∇u) · ∇ϕ.

Then by the divergence theorem it holds that∫
D

F (x,∇u) · ∇ϕdx

=

∫
D

div[Fk(x,∇u)ϕ] dx−
∫
D

[divFk(x,∇u)]ϕdx

=

∫
sptϕ∩D

div[Fk(x,∇u)ϕ] dx−
∫
D

[divFk(x,∇u)]ϕdx

=

∫
∂(sptϕ∩D)

[Fk(x,∇u) · ν]ϕdS −
∫
D

[divF (x,∇u)]ϕdx

=

∫
∂D∩Ω

[Fk(x,∇u) · ν]ϕdS −
∫
D

[divFk(x,∇u)]ϕdx,

and, similarly,∫
Ω\D

F (x,∇u) · ∇ϕdx

=

∫
Ω\D

div[Fp(x)(x,∇u)ϕ] dx−
∫

Ω\D
[divFp(x)(x,∇u)]ϕdx

=−
∫
∂D∩Ω

[Fp(x)(x,∇u) · ν]ϕdS −
∫

Ω\D
[divFp(x)(x,∇u)]ϕdx.

Hence,∫
Ω

F (x,∇u) · ∇ϕdx =

∫
∂D∩Ω

[Fk(x,∇u) · ν]ϕdS −
∫
∂D∩Ω

[Fp(x)(x,∇u) · ν]ϕdS

(4.7)

−
∫
D

[divFk(x,∇u)]ϕdx−
∫

Ω\D
[divFp(x)(x,∇u)]ϕdx.

Since u is a smooth solution, we have that

divFk(x,∇u) = 0

in D and
divFp(x)(x,∇u) = 0

in Ω \D, and thus∫
Ω

F (x,∇u) · ∇ϕdx =

∫
∂D∩Ω

[Fk(x,∇u) · ν]ϕdS −
∫
∂D∩Ω

[Fp(x)(x,∇u) · ν]ϕdS.

(4.8)
Generally, u need not be smooth. Then the natural interpretation (in the

weak sense) of (4.7) is (4.8) for a solution u. This yields that∫
Ω

F (x,∇u) · ∇ϕdx = 0
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if and only if∫
∂D∩Ω

[Fk(x,∇u) · ν]ϕdS =

∫
∂D∩Ω

[Fp(x)(x,∇u) · ν]ϕdS

for every ϕ ∈ C∞0 (Ω). The latter equality is the interpretation of

|∇u(x)|k−2 ∂u

∂ν
(x) = |∇u(x)|p(x)−2 ∂u

∂ν
(x) for x ∈ ∂D ∩ Ω

in the weak sense.
We get the following lemma.

Lemma 4.4. Problem (4.6)k is equivalent to the problem
−∆p(x)uk(x) = 0, x ∈ Ω \D,
−∆kuk(x) = 0, x ∈ D,
|∇uk(x)|k−2 ∂uk

∂ν (x) = |∇uk(x)|p(x)−2 ∂uk

∂ν (x), x ∈ ∂D ∩ Ω,

uk(x) = f(x), x ∈ ∂Ω.

(4.9)

Here ν is the exterior unit normal vector to ∂D in Ω.

Remark 4.5. From now on, if u is smooth, we may write −∆pk(x)u(x) as

• −∆p(x)u(x), if x ∈ Ω \D

• −∆ku(x), if x ∈ D

• |∇uk(x)|k−2 ∂uk

∂ν (x)− |∇uk(x)|p(x)−2 ∂uk

∂ν (x), if x ∈ ∂D ∩ Ω.

The next step is to show that weak solutions uk of (4.6)k are also viscosity
solutions of the same problem. This result is similar to Lemma 2.7, but we need
to pay extra attention when considering the equation on ∂D ∩ Ω. Before that
we define viscosity solutions of the equation −∆pk(·)u = 0.

Definition 4.6. i) An upper semicontinuous function u : Ω→ R is a viscosity
subsolution of −∆pk(·)u = 0 in Ω if for every local maximum point x̂ ∈ Ω of

u − ϕ, where ϕ ∈ C2(Ω), we have −∆p(x̂)ϕ(x̂) ≤ 0 if x̂ ∈ Ω \D, −∆kϕ(x̂) ≤ 0

if x̂ ∈ D, and the minimum of {−∆p(x̂)ϕ(x̂), −∆kϕ(x̂), |∇ϕ(x̂)|k−2 ∂ϕ
∂ν (x̂) −

|∇ϕ(x̂)|p(x̂)−2 ∂ϕ
∂ν (x̂)} ≤ 0 if x̂ ∈ ∂D ∩ Ω.

ii) A lower semicontinuous function u : Ω → R is a viscosity supersolu-
tion of −∆pk(·)u = 0 in Ω if for every local minimum point x̂ ∈ Ω of u − ϕ,

where ϕ ∈ C2(Ω), we have −∆p(x̂)ϕ(x̂) ≥ 0 if x̂ ∈ Ω \ D, −∆kϕ(x̂) ≥ 0

if x̂ ∈ D, and the maximum of {−∆p(x̂)ϕ(x̂), −∆kϕ(x̂), |∇ϕ(x̂)|k−2 ∂ϕ
∂ν (x̂) −

|∇ϕ(x̂)|p(x̂)−2 ∂ϕ
∂ν (x̂)} ≥ 0 if x̂ ∈ ∂D ∩ Ω.

iii) We say that a function u ∈ C(Ω) is a viscosity solution of −∆pk(·)u = 0
in Ω if it is both a viscosity sub- and supersolution in Ω.

At this point we want to remark that, as in Remark 2.3, the local maxima
and minima of u − ϕ can be assumed to be strict and/or global maxima and
minima.

Lemma 4.7. Let uk be a continuous weak solution of (4.6)k. Then uk is also
a viscosity solution of (4.6)k.
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Proof. To prove the lemma, we need to show that uk is a viscosity solution of
−∆pk(·)u = 0 in Ω and that uk(x) = f(x) for every x ∈ ∂Ω. First we notice that
the boundary condition is true by Lemma 4.3. We prove that uk is a viscosity
supersolution of −∆pk(·)u = 0 in Ω. The proof that uk is a viscosity subsolution
is similar, and we omit the details.

To check that the condition in Definition 4.6 ii) holds, we argue by contra-
diction. Suppose that there exist x̂ ∈ Ω and ϕ ∈ C2(Ω) such that uk−ϕ attains
its strict minimum at x̂ and −∆pk(x̂)ϕ(x̂) < 0. Without loss of generality we
may assume that (uk − ϕ)(x̂) = 0. Depending on the location of x̂, we have
three cases.

Case 1. x̂ ∈ Ω \D. Then the counter-assumption becomes

−∆p(x̂)ϕ(x̂) =− |∇ϕ(x̂)|p(x̂)−2∆ϕ(x̂)− (p(x̂)− 2)|∇ϕ(x̂)|p(x̂)−4∆∞ϕ(x̂)

− |∇ϕ(x̂)|p(x̂)−2 log |∇ϕ(x̂)|∇p(x̂) · ∇ϕ(x̂)

<0.

Since the mapping x 7→ −∆p(x)ϕ(x) is continuous in Ω \D, we find r > 0 such

that B(x̂, r) ⊂ Ω \D and −∆p(x)ϕ(x) < 0 for every x ∈ B(x̂, r). Let

m := inf{u(x)− ϕ(x) : |x− x̂| = r} > 0

and define ϕ̃ ∈ C2(Ω) such that ϕ̃(x) = ϕ(x) + m
2 . Then uk ≥ ϕ̃ on S(x̂, r),

ϕ̃(x̂) > uk(x̂) and
−∆p(x)ϕ̃(x) = −∆p(x)ϕ(x) < 0 (4.10)

for all x ∈ B(x̂, r). Next we multiply (4.10) by (ϕ̃ − uk)+ ∈ W 1,p(·)
0 (B(x̂, r)),

which is an admissible function for the integration by parts formula, and we get

0 >

∫
B(x̂,r)

−∆p(x)ϕ̃(x)(ϕ̃− uk)+ dx

=

∫
B(x̂,r)

|∇ϕ̃|p(x)−2∇ϕ̃ · ∇(ϕ̃− uk)+ dx (4.11)

=

∫
B(x̂,r)∩{ϕ̃>uk}

|∇ϕ̃|p(x)−2∇ϕ̃ · ∇(ϕ̃− uk) dx.

On the other hand, we may extend (ϕ̃− uk)+ as zero outside B(x̂, r) and use it
as a test funtion in the weak formulation of −∆p(x)uk = 0 to get

0 =

∫
Ω\D
|∇uk|p(x)−2∇uk · ∇(ϕ̃− uk)+ dx (4.12)

=

∫
B(x̂,r)∩{ϕ̃>uk}

|∇uk|p(x)−2∇uk · ∇(ϕ̃− uk) dx.

By subtracting (4.12) from (4.11) and using Corollary 6.2 from Appendix, we
get

0 >

∫
B(x̂,r)∩{ϕ̃>uk}

[
|∇ϕ̃|p(x)−2∇ϕ̃− |∇uk|p(x)−2∇uk

]
· ∇(ϕ̃− uk) dx

≥C
∫
B(x̂,r)∩{ϕ̃>uk}

|∇ϕ̃−∇uk|p(x) dx,
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where C is a constant depending on sup {p(x) : x ∈ B(x̂, r)}. This is a contra-
diction and Case 1 is done.

Case 2. x̂ ∈ D. The proof of this case is exactly the same as in Lemma 2.7
and it will not be repeated.

Case 3. x̂ ∈ ∂D ∩ Ω. Now the counter-assumption is that each quantity
−∆kϕ(x̂), −∆p(x̂)ϕ(x̂) and |∇ϕ(x̂)|k−2 ∂ϕ

∂ν (x̂) − |∇ϕ(x̂)|p(x̂)−2 ∂ϕ
∂ν (x̂) is strictly

negative. Then, by the C2-smoothness of ϕ, there exists r > 0 such that

−∆kϕ(x) < 0 and −∆p(x)ϕ(x) < 0

for every x ∈ B(x̂, r), and

|∇ϕ(x)|k−2 ∂ϕ

∂ν
(x)− |∇ϕ(x)|p(x)−2 ∂ϕ

∂ν
(x) < 0

for every x ∈ B(x̂, r) ∩ ∂D. Let

m := inf {uk(x)− ϕ(x) : |x− x̂| = r} > 0

and define ϕ̃ ∈ C2(Ω) such that ϕ̃(x) = ϕ(x) + m
2 . Then uk ≥ ϕ̃ on S(x̂, r),

ϕ̃(x̂) > uk(x̂), and we get

−∆kϕ̃(x) < 0 in B(x̂, r) ∩D, (4.13)

−∆p(x)ϕ̃(x) < 0 in B(x̂, r) ∩
(
Ω \D

)
(4.14)

and

|∇ϕ̃(x)|k−2 ∂ϕ̃

∂ν
(x)− |∇ϕ̃(x)|p(x)−2 ∂ϕ̃

∂ν
(x) < 0 (4.15)

in B(x̂, r) ∩ ∂D. Next we multiply (4.13) and (4.14) by (ϕ̃− u)+, and we have

0 >

∫
B(x̂,r)∩D

−∆kϕ̃(x)(ϕ̃− uk)+ dx

=

∫
B(x̂,r)∩D

|∇ϕ̃|k−2∇ϕ̃ · ∇(ϕ̃− uk)+ dx

−
∫
B(x̂,r)∩∂D

|∇ϕ̃|k−2 ∂ϕ̃

∂ν
(ϕ̃− uk)+ dS

and

0 >

∫
B(x̂,r)∩(Ω\D)

−∆p(x)ϕ̃(x)(ϕ̃− uk)+ dx

=

∫
B(x̂,r)∩(Ω\D)

|∇ϕ̃|p(x)−2∇ϕ̃ · ∇(ϕ̃− uk)+ dx

+

∫
B(x̂,r)∩∂D

|∇ϕ̃|p(x)−2 ∂ϕ̃

∂ν
(ϕ̃− uk)+ dS,
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which yield, after adding them together,∫
B(x̂,r)∩D

|∇ϕ̃|k−2∇ϕ̃ · ∇(ϕ̃− uk)+ dx

+

∫
B(x̂,r)∩(Ω\D)

|∇ϕ̃|p(x)−2∇ϕ̃ · ∇(ϕ̃− uk)+ dx (4.16)

<

∫
B(x̂,r)∩∂D

[
|∇ϕ̃|k−2 ∂ϕ̃

∂ν
− |∇ϕ̃|p(x)−2 ∂ϕ̃

∂ν

]
︸ ︷︷ ︸

<0, by (4.15)

(ϕ̃− uk)+ dS

< 0.

On the other hand, we extend (ϕ̃− uk)+ as a zero outside B(x̂, r) and use it as
a test function in the weak formulation of −∆pk(x)u = 0 to get

0 =

∫
B(x̂,r)

|∇uk|pk(x)−2∇uk · ∇(ϕ̃− uk)+ dx.

By splitting the integral above over the sets B(x̂, r)∩D and B(x̂, r)∩
(
Ω \D

)
,

subtracting it from (4.16) and using the monotonity argument separately for
both integrals, like we did in Case 1, we get a contradiction and Case 3 is
done.

So far we have showed that the problem (4.6)k has a unique weak solution
uk for every k large enough and that they are also viscosity solutions. The next
thing is to study the limit limk→∞ uk, if there exists one. In the next theorem we
get uniform estimates for the sequence (uk). At this point we ask the reader to
recall the definitions of the sets S, Sk and the functional Ik. Recall also Lemma
2.5, in which the Lipschitz-continuation of the boundary data f : ∂Ω→ R plays
an important role but which is now replaced by the assumption that S 6= ∅ since
we do not know if the Lipschitz constant of f is at most one.

Theorem 4.8. Let uk be the minimizer of the functional Ik in Sk (i.e., the so-
lution of (4.6)k). Suppose also that S 6= ∅. Then the sequence (uk) is uniformly
bounded in W 1,p−(Ω), equicontinuous and uniformly bounded in Ω.

Proof. Let k > p+ and v ∈ S. We denote by F : Ω → R a McShane-Whitney
extension of f . By the embedding property (4.5) we know that uk = F on ∂Ω
and uk ∈W 1,p−(Ω). Then we use Sobolev’s inequality to see that

‖uk‖Lp− (Ω) ≤ ‖uk − F‖Lp− (Ω) + ‖F‖Lp− (Ω)

≤ C‖∇uk −∇F‖Lp− (Ω) + ‖F‖Lp− (Ω) (4.17)

≤ C‖∇uk‖Lp− (Ω) + (C + 1)‖F‖W 1,∞(Ω),

where constant C = C(n, p−,Ω) is a constant from the Sobolev inequality. Next
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we estimate the norm of the gradient of uk as follows:

‖∇uk‖Lp− (Ω)

=

(∫
Ω

|∇uk|p− dx
) 1

p−

=

(∫
D

|∇uk|p− dx+

∫
Ω\D
|∇uk|p− dx

) 1
p−

≤2
1

p−

(∫
D

|∇uk|p− dx
) 1

p−
+ 2

1
p−

(∫
Ω\D
|∇uk|p− dx

) 1
p−

≤2
1

p−

(∫
D

|∇uk|p− dx
) 1

p−
+ 2

2
p−

(∫
(Ω\D)∩{|∇uk|≤1}

|∇uk|p− dx

) 1
p−

+ 2
2

p−

(∫
(Ω\D)∩{|∇uk|>1}

|∇uk|p− dx

) 1
p−

(4.18)

≤2
1

p− |D|
1

p−
− 1

k

(∫
D

|∇uk|k dx
) 1

k

+ 2
2

p−
∣∣(Ω \D) ∩ {|∇uk| ≤ 1}

∣∣ 1
p−

+ 2
2

p−

(∫
(Ω\D)∩{|∇uk|>1}

|∇uk|p(x) dx

) 1
p−

≤2
1+ 1

p− |D|
1

p−

(∫
D

|∇uk|k dx
) 1

k

+ 2
2

p− max {|Ω|, 1}

+ 2
2

p−

(∫
Ω\D
|∇uk|p(x) dx

) 1
p−

.

In the last inequality we assumed that k is so large that D
1

p−
− 1

k ≤ 2|D|
1

p− . On
the other hand, since uk is a minimizer of Ik in Sk and v is an element of S, we
deduce that

Ik(uk) =

∫
D

|∇uk|k

k
dx+

∫
Ω\D

|∇uk|p(x)

p(x)
dx

≤
∫
D

|∇v|k

k
dx+

∫
Ω\D

|∇v|p(x)

p(x)
dx

≤ |D|
k

+

∫
Ω\D

|∇v|p(x)

p(x)
dx (4.19)

≤ |D|+
∫

Ω\D

|∇v|p(x)

p(x)
dx =: C1,

where C1 does not depend on k. Using this estimate we get(∫
D

|∇uk|k dx
) 1

k

= k
1
k

(∫
D

|∇uk|k

k
dx

) 1
k

≤ 2C
1
k
1 ≤ 2 max{C

1

p+

1 , 1} (4.20)
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and(∫
Ω\D
|∇uk|p(x) dx

) 1
p−

≤

(
p+

∫
Ω\D

|∇uk|p(x)

p(x)
dx

) 1
p−

≤ (p+)
1

p− C
1

p−
1 . (4.21)

Finally we put (4.20) and (4.21) to (4.18) to see that ‖∇uk‖Lp− (Ω) is bounded
above by a constant that does not depend on k. This observation, together with
(4.17), gives the uniformly boundedness of the sequence (uk) in W 1,p−(Ω).

The proof that the sequence (uk) is equicontinuous in Ω runs as follows. First
extend uk − F as zero outside Ω and then use Morrey’s inequality to uk − F ∈
W 1,p−(Rn) to get the pointwise estimate for |uk(x) − uk(y)|. The calculations
are exactly the same as in the proof of Lemma 2.5. You will also need the fact
that ‖∇uk‖Lp− (Ω) is bounded from above by a constant not depending on k.
Fortunately, this is what we just proved above.

The uniform boundedness is also proved as in Lemma 2.5.

4.2 Passing to the limit

It is time to let k → ∞ and prove Theorem 4.2. At first we study what the
location of D in Ω tells us about the set S. Recall that

S = {u ∈W 1,p−(Ω) : u|Ω\D ∈W
1,p(·)(Ω \D), ‖∇u‖L∞(D) ≤ 1 and u|∂Ω = f}.

1) If D is compactly supported in Ω, that is, D ⊂⊂ Ω, then S 6= ∅. Indeed,
let F : Ω → R be a McShane-Whitney extension of the boundary data f to Ω.
Using convolution it is easy to construct a smooth function ψ : Ω → R such
that

• ψ ≡ 0 in an open set U ⊃⊃ D

• ψ ≡ 1 in Ωε = {x ∈ Ω : dist (x, ∂Ω) < ε} for small ε > 0

• δ := dist (U,Ωε) > 0

• |∇ψ(x)| ≤ 7
δ for every x ∈ Ωε.

Then the product function Fψ is an element of S.
2) If ∂D ∩ ∂Ω 6= ∅ and the Lipschitz constant of f : ∂Ω→ R is at most one,

then S 6= ∅ since the McShane-Whitney extension of f to Ω does not increase
the Lipschitz constant, and hence it is an element of S.

3) If ∂D∩∂Ω 6= ∅ and Lip (f, ∂D∩∂Ω) > 1, then S = ∅, since any extension
u of f |∂D∩∂Ω to D verifies ‖∇u‖L∞(D) > 1.

4) The case where ∂D ∩ ∂Ω 6= ∅, Lip (f, ∂D ∩ ∂Ω) ≤ 1 and Lip (f, ∂Ω) > 1,
is complicated. Under these assumptions, it is possible to construct an example
where S = ∅ as well as an example that leads to S 6= ∅.

Note added after the completion of the manuscript: Related to the case 4), there is a very
recent paper, see [28], that considers the non-emptiness (and the emptiness) of the set S more
closely.
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Case S = ∅

In the next theorem we show that if ∂D ∩ ∂Ω 6= ∅ and Lip (f, ∂D ∩ ∂Ω) >
1, then the natural energy associated to the sequence (uk) is unbounded. If
Lip (f, ∂D ∩ ∂Ω) ≤ 1, then the proof fails and we do not know if the theorem is
true or not.

Theorem 4.9. Assume that ∂D ∩ ∂Ω 6= ∅ and Lip (f, ∂D ∩ ∂Ω) > 1. Then

lim inf
k→∞

(Ik(uk))
1
k > 1,

which means that Ik(uk) → +∞ and the natural energy associated to the se-
quence (uk) is unbounded.

Proof. Assume, on the contrary, that

lim inf
k→∞

(Ik(uk))
1
k = β ≤ 1.

Letm > p+ and take k > m. By imitating the proof of Theorem 4.8 and noticing
that β plays the role of the constant C1 (i.e., the counter-assumption plays the
role of S 6= ∅), we find out that (uk) is a bounded sequence in W 1,m(Ω). Then
there exists a subsequence, still denoted as (uk), and u∞ ∈ W 1,m(Ω) ∩ C(Ω)
with u∞ = f on ∂Ω such that uk ⇀ u∞ weakly in W 1,m(Ω). By restricting the
functions to D we have that uk ⇀ u∞ in W 1,m(D), where u∞ ∈W 1,m(D) and
u∞ = f on ∂D ∩ ∂Ω. Then the weak lower semicontinuity of the ‖·‖Lm(D;Rn)-
norm and Hölder’s inequality imply that(∫

D

|∇u∞|m dx
) 1

m

≤ lim inf
k→∞

(∫
D

|∇uk|m dx
) 1

m

≤ lim inf
k→∞

[
|D| 1m− 1

k

(∫
D

|∇uk|k dx
) 1

k

]

= lim inf
k→∞

|D| 1m− 1
k k

1
k

(∫
D

|∇uk|k

k
dx

) 1
k

︸ ︷︷ ︸
≤Ik(uk)

1
k


≤ |D| 1m β.

This estimate is independent of k and so it is true for every m. Thus, taking
the limit m→∞, we get that u∞ ∈W 1,∞(D) and

|∇u∞(x)| ≤ β

for almost every x ∈ D. Thus we have found a Lipschitz extension of f |∂D∩∂Ω to
D that decreases the Lipschitz constant. This is a contradiction since for every
such Lipschitz extension u it holds that Lip (u,D) ≥ Lip (f, ∂D ∩ ∂Ω).
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Case S 6= ∅

This is the more interesting case. We remind that for large k, the solutions uk
of (4.6)k are minimizers of the functional

Ik(u) =

∫
Ω

|∇u|pk(x)

pk(x)
dx =

∫
D

|∇u|k

k
dx+

∫
Ω\D

|∇u|p(x)

p(x)
dx

in
Sk = {u ∈W 1,pk(·)(Ω) : u = f on ∂Ω}.

For an element v of S, where

S = {u ∈W 1,p−(Ω) : u|Ω\D ∈W
1,p(·)(Ω \D), ‖∇u‖L∞(D) ≤ 1 and u|∂Ω = f},

we have ∫
D

|∇v|k

k
dx ≤

∫
D

1

k
dx =

|D|
k
→ 0

as k →∞, which leads to

Ik(v)→
∫

Ω\D

|∇v|p(x)

p(x)
dx =: I∞(v).

Theorem 4.10. Let uk be minimizers of Ik in Sk and assume that S 6= ∅. Then
there exists u∞ ∈ S such that, along subsequences,

1) (uk) converges uniformly in Ω

2) (uk) converges weakly in W 1,m(D) for every m > p+, and

3) (uk) converges weakly in W 1,p(·)(Ω \D)

to u∞. Moreover, u∞ is a minimizer of I∞ in S and also an infinity harmonic
function in D.

Proof. By Theorem 4.8, the sequence (uk) is equicontinuous and uniformly
bounded in Ω. Then the Arzelà-Ascoli theorem says that there exists a function
u∞ ∈ C(Ω) and a subsequence (kj)j such that (ukj )j converges uniformly in Ω
to u∞. Since uk = f on ∂Ω, also u∞ = f on ∂Ω. Moreover, since (ukj )j is
bounded in W 1,m(D) for every m > p+ by the proof of Theorem 4.9, we get
both u∞ ∈ W 1,m(D) and the weak convergence (upon subsequence, notation
remains the same) ukj ⇀ u∞ in W 1,m(D) for every m > p+.

To obtain the weak convergence in W 1,p(·)(Ω\D), we use the estimate (4.21)
and the Sobolev-Poincaré inequality (as in (3.7)) to show that (ukj )j is bounded

in W 1,p(·)(Ω \D). This fact together with the pointwise convergence of (ukj )j
gives that u∞ ∈ W 1,p(·)(Ω \ D) and ukj ⇀ u∞ weakly in W 1,p(·)(Ω \ D) as
j →∞.

To see that u∞ is really an element of S, we have to show that
‖∇u∞‖L∞(D) ≤ 1. Choosing some v ∈ S, we get

Ik(uk) ≤ Ik(v) ≤ C

by the minimizing property and (4.19), and, consequently,

lim inf
k→∞

Ik(uk)
1
k ≤ lim inf

k→∞
C

1
k = 1.
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Now the setting is similar to the proof of Theorem 4.9 with β = 1, and by that
we get u∞ ∈ W 1,∞(D) and |∇u∞(x)| ≤ 1 for almost every x ∈ D. This finally
guarantees that u∞ ∈ S.

Next we show that u∞ is a minimizer of I∞. Indeed, since ukj ⇀ u∞ weakly

in W 1,p(·)(Ω \D) and I∞ is weakly lower semicontinuous (see Remark 3.6), we
have for every v ∈ S that

I∞(u∞) ≤ lim inf
j→∞

I∞(ukj ) ≤ lim inf
j→∞

Ikj (ukj ) ≤ lim inf
j→∞

Ikj (v) = I∞(v).

That u∞ is infinity harmonic in D is clear by Theorem 2.8, since each ukj
is kj-harmonic in D and ukj converges uniformly to u∞.

The next interesting question is the uniqueness of the minimizer. Unfor-
tunately, this cannot be obtained. The reason for this is that I∞ sees only
what happens in Ω \ D. If we modify the minimizer u∞ inside D such that
‖∇ũ∞‖L∞(D) ≤ 1 still holds for the modified function ũ∞, we have found an-
other minimizer.

Example 4.11. Let D = B(0, 1) and Ω = B(0, 2), f : S(0, 2) → R such that
f ≡ 0. Then the function u ≡ 0, which is now the same as u∞, is an element
of S and is clearly a minimizer of I∞. If we define a new fuction v such that
v(x) = 0 for every 1 ≤ |x| ≤ 2 and v(x) = 1 − |x| for every 0 ≤ |x| ≤ 1, then
v is also a minimizer of I∞ and an element of S. The difference between these
two functions is that v is not infinity harmonic in D.

By demanding that the minimizer is also infinity harmonic in D, we can gain
uniqueness.

Theorem 4.12. Let u1, u2 ∈ S be two minimizers of I∞. Suppose also that
both of them are infinity harmonic in D in the viscosity sense. Then u1 = u2.

Proof. Clearly u1 = u2 = f on ∂Ω. By Remark 3.6, I∞ is a strictly convex
functional in S, and thus u1 = u2 in Ω \ D. This implies that u1 = u2 on
∂D by continuity. Since both u1 and u2 are infinity harmonic in D with the
same boundary values on ∂D, we deduce that u1 = u2 also in D (see Theorem
2.9).

Remark 4.13. Since u∞ is infinity harmonic in D and it is the only minimizer
of I∞ in S, the whole sequence (uk) converges uniformly in Ω.

The final step in proving Theorem 4.2 is to show that the uniform limit
u∞ of (uk) is a viscosity solution to the limit problem ”limk→∞(4.6)k”. We
formulate the limit problem with the help of the equation (4.9).

Theorem 4.14. Let uk be a weak solution of (4.6)k and denote by u∞ the
uniform limit of (uk)k. Then u∞ is a viscosity solution of

−∆p(x)u(x) = 0, x ∈ Ω \D,
−∆∞u(x) = 0, x ∈ D,
sgn (|∇u(x)| − 1) sgn

(
∂u
∂ν (x)

)
= 0, x ∈ ∂D ∩ ∂Ω,

u(x) = f(x), x ∈ ∂Ω,

where ν stands for an exterior unit normal vector to ∂D in Ω.
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Proof. We show that u∞ is a viscosity supersolution. The subsolution case runs
similarly and thus it will be omitted.

First notice that u∞(x) = f(x) for every x ∈ ∂Ω, since uk(x) = f(x) for
every x ∈ ∂Ω and for all k. Let x̂ ∈ Ω and ϕ ∈ C2(Ω) such that u∞ − ϕ
attains its strict minimum at x̂. Without loss of generality we may assume
that (u∞ − ϕ)(x̂) = 0. Depending on where the point x̂ locates, we have three
different cases.

Case 1. x̂ ∈ Ω \D. We use the same method as in the proof of Theorem
2.8, to find points xk ∈ Ω \ D for which xk → x̂ and uk − ϕ attains its local
minimum at xk. Since uk is a viscosity solution of (4.9) and every xk lies in
Ω \D, we have that

−∆p(xk)ϕ(xk) ≥ 0

for every k > p+. Since the mapping x 7→ −∆p(x)ϕ(x) is continuous in Ω \D,
we get

−∆p(x̂)ϕ(x̂) ≥ 0

as a limit when k →∞.
Case 2. x̂ ∈ D. Since u∞ is a uniform limit of k-harmonic functions in D,

we have by Theorem 2.8 that −∆∞ϕ(x̂) ≥ 0.
Case 3. x̂ ∈ ∂D ∩ Ω. In this case we need to show that

max

{
−∆p(x̂)ϕ(x̂),−∆∞ϕ(x̂), sgn (|∇ϕ(x̂)| − 1) sgn

(
∂ϕ

∂ν
(x̂)

)}
≥ 0. (4.22)

Using again the same method as in the proof of Theorem 2.8, we find points
xk ∈ Ω such that xk → x, and uk − ϕ attains its local minimum at xk. There
are three subcases depending on the location of the points xk.

Case 3.1. Infinitely many xk locate in Ω \D. Then for these xk it holds,
by Lemma 4.7, that

−∆p(xk)ϕ(xk) ≥ 0

for every k > p+, and, consequently, by the continuity of x 7→ −∆p(x)ϕ(x) in
Ω \D, that

−∆p(x̂)ϕ(x̂) ≥ 0.

This proves that (4.22) is true.
Case 3.2. Infinitely many xk locate in D. Since uk is k-harmonic in D also

in the viscosity sense, see Lemma 2.7, we then have

−∆kϕ(xk) = −|∇ϕ(xk)|k−2∆ϕ(xk)− (k − 2)|∇ϕ(xk)|k−4∆∞ϕ(xk) ≥ 0.

If ∇ϕ(x̂) = 0, then trivially −∆∞ϕ(x̂) = 0, and we are done. Otherwise,
∇ϕ(x̂) 6= 0, which implies that ∇ϕ(xk) 6= 0 for large k. Then, after dividing,
we get

−|∇ϕ(xk)|2∆ϕ(xk)

k − 2
−∆∞ϕ(xk) ≥ 0,

and, by taking the limit as k →∞, we conclude that

−∆∞ϕ(x̂) ≥ 0

by the continuity of x 7→ −∆∞ϕ(x) in Ω. Thus (4.22) is true.
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Case 3.3. Infinitely many xk locate on ∂D ∩ Ω. By Lemma 4.7 we know
that the maximum of{
−∆p(xk)ϕ(xk),−∆kϕ(xk), |∇ϕ(xk)|k−2 ∂ϕ

∂ν
(xk)− |∇ϕ(xk)|p(xk)−2 ∂ϕ

∂ν
(xk)

}
is non-negative for every k. If −∆p(xk)ϕ(xk) ≥ 0 or −∆kϕ(xk) ≥ 0 for infinitely
many k, then, along such subsequences, we get in the limit that −∆p(x̂)ϕ(x̂) ≥ 0,
or −∆∞ϕ(x̂) ≥ 0, respectively, and (4.22) holds. Thus we may assume that

|∇ϕ(xk)|k−2 ∂ϕ

∂ν
(xk)− |∇ϕ(xk)|p(xk)−2 ∂ϕ

∂ν
(xk) ≥ 0

for infinitely many k, let us say for every k without losing the generality. We may
also assume that ∇ϕ(x̂) 6= 0, since otherwise we would have that −∆∞ϕ(x̂) = 0,
and thus (4.22) holds. Then, for large k, ∇ϕ(xk) 6= 0, and we get

∂ϕ

∂ν
(xk)

[
|∇ϕ(xk)|k−p(xk) − 1

]
≥ 0.

From this we deduce, by taking the limit k →∞, that

• |∇ϕ(x̂)| > 1 implies
∂ϕ

∂ν
(x̂) ≥ 0

and

• |∇ϕ(x̂)| < 1 implies
∂ϕ

∂ν
(x̂) ≤ 0.

This is the same thing as

sgn (|∇ϕ(x̂)| − 1) sgn

(
∂ϕ

∂ν
(x̂)

)
≥ 0,

and thus (4.22) holds. This completes the proof that u∞ is a viscosity superso-
lution.
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5 One-dimensional case, where p is continuous
and sup p(x) = +∞

In this section we consider a one-dimensional case where the variable exponent p
is continuous and unbounded. The properties of p, besides the dimension, differ
from the situation we had in Section 4, where the function p was not continuous
in Ω and ”jumped” to infinity at D without reaching the values between p+

and +∞. If we had allowed p|Ω\D to be unbounded, then pk(x) = min{k, p(x)}
would have no longer equalled to p(x) for large k. This would have caused big
problems, not to mention the negative contribution that the unboundedness of
p has on the Sobolev space W 1,p(·)(Ω\D). By studying the initial problem (0.1)
for continuous and unbounded p, we will understand the nature of the problem
better if we embark on the analysis on the real line.

We work under the following assumptions. We assume that Ω = (a, b) ⊂ R
is an open and bounded interval and p : (a, b) → (1,∞) is a continuously
differentiable function with the following two properties:

• p− := inf
x∈(a,b)

p(x) > 1

• lim
x→a

p(x) = +∞ or lim
x→b

p(x) = +∞.

In this section we try to understand the one-dimensional Dirichlet boundary
value problem 

− d

dx

[
|u′(x)|p(x)−2u′(x)

]
= 0, if x ∈ (a, b),

u(a) = f(a),

u(b) = f(b),

(5.1)

where the function f : {a, b} → R prescribes the boundary values. We do not
try to fully cover the problem. Our aim is to see what difficulties one may face,
what needs to be taken into consideration and, of course, to get some preliminary
results. In the last part of this section we consider the case in which p is allowed
to be infinity in a set of positive measure.

The p(x)-harmonic functions on the real line have been studied in many
papers. For these, see [11, Chapter 13] and the references therein.

5.1 Discussion

In what follows, the case p− = 1 is also allowed until further notice. We first
define a modular on the set {u : (a, b)→ R : u is measurable} by setting

ρp(·)(u) :=

∫
(a,b)

|u(x)|p(x) dx.

The variable exponent Lebesgue space Lp(·)((a, b)) consists of all measurable
functions u on (a, b) for which ρp(·)(λu) is finite for some λ > 0. Notice that
this definition is equivalent to the definition in Section 3, since in that definition
p(x) was bounded and thus the term λp(x) would not affect to the finiteness of
ρ(λu). The Luxembourg norm on this space is defined as

‖u‖ := ‖u‖Lp(·)((a,b)) := inf
{
λ > 0 : ρp(·)(u/λ) ≤ 1

}
.
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Next we consider the relation between the modular and the norm. In Sec-
tion 3, where the function p was bounded, we could estimate ρp(·)(u) from above
and below in terms of ‖u‖, see (3.1). In the basic theory of variable exponent
Lebesgue and Sobolev spaces, the formula (3.1) is useful since one can eas-
ily switch between the modular and the norm. But this is not the case with
unbounded p. Only the estimate

‖u‖ ≤ 1 =⇒ ρp(·)(u) ≤ ‖u‖p−

is true, see [23], where this estimate is deduced from the basic properties of
ρp(·)(u) and from Fatou’s lemma. Next we will give counterexamples to show
the lack of general two-sided estimates for ρp(·)(u) in terms of ‖u‖.

Example 5.1. a) Let Ω = (0, 1) and p(x) = 1
x . Then for a constant function

u ≡ 2 it holds that

ρp(·)(u) =

∫
(0,1)

2
1
x dx = +∞.

Since

ρp(·)(u/λ) =

∫
(0,1)

∣∣∣∣ 2λ
∣∣∣∣p(x)

dx ≤ 1

if and only if λ ≥ 2, we get by definition that ‖u‖ = 2.
b) Let Ω = (0, 1) and p(x) = 1

x . For every j = 1, 2, 3, ... we define a function
uj such that

uj(x) =

(
1

2

) j
p(x)

.

Then we calculate that

ρp(·)(uj) =

∫
(0,1)

|uj(x)|p(x) dx =

∫
(0,1)

1

2j
dx =

1

2j
,

and thus ρp(·)(uj) → 0 as j → ∞. On the other hand, since ρp(·)(uj/1) =
ρp(·)(uj) ≤ 1, we have that ‖uj‖ ≤ 1, and moreover, since

ρp(·)

(uj
λ

)
=

∫
(0,1)

1

λp(x)
|uj(x)|p(x) dx = 2−j

∫
(0,1)

1

λp(x)
dx = +∞

for every 0 < λ < 1 and every j, we deduce that ‖uj‖ = 1 for all j.

The unboundedness of p causes also another problem. We do not even know
if C∞((a, b)) ∩ Lp(·)((a, b)) is dense in Lp(·)((a, b)), much less that C∞((a, b)) ∩
W 1,p(·)((a, b)) is dense in W 1,p(·)((a, b)). Then we cannot define W

1,p(·)
0 ((a, b))

as a closure of C∞0 ((a, b))-functions in W 1,p(·)((a, b)). This could lead to troubles
if we wanted to use weak solutions and move from compactly supported smooth

test functions to W
1,p(·)
0 -functions by using the method we used earlier in this

thesis. On the other hand, it might be possible to do this in some other way,
but we do not know how to do it.

Earlier in this thesis, when we proved that the Dirichlet boundary value
problem has a unique solution, we did that in two steps. First we showed
that being a solution is equivalent to being a minimizer to a certain variational
integral. Then we proved that the variational integral has a unique minimizer
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by using the direct method of calculus of variations. These together implied the
result. By the discussion above, this path is rocky for unbounded p. It may not
be impossible, but it needs plenty of effort and new results. This is the reason
why we consider the problem (5.1) only by using smooth solutions that verify
the conditions pointwise.

5.2 Preliminary results

Let (a, b) be an open interval in R and let p : (a, b)→ (1,∞) be a continuously
differentiable function such that limx→b p(x) = +∞ and p− > 1 (equal to one
is not allowed anymore). For the boundary data f : {a, b} → R, we assume
that f(a) < f(b). Our aim is to solve (5.1), that is, to find a twice continuously
differentiable function u such that

− d

dx

[
|u′(x)|p(x)−2u′(x)

]
= 0

for every x ∈ (a, b), u(a) = f(a) and u(b) = f(b).
Since we assumed that f(a) < f(b), we are looking for an increasing solution

(decreasing for f(a) > f(b) and constant for f(a) = f(b)), see Remark 5.2 later.
For an increasing function u it holds that u′ ≥ 0. Then the equation reads as

− d

dx

[
u′(x)p(x)−1

]
= 0.

After integrating and raising both sides to the power of 1
p(x)−1 , we get that

u′(x) = C
1

p(x)−1

for some C > 0. Hence

u(x) = E +

∫ x

a

C
1

p(t)−1 dt, (5.2)

where E ∈ R is a constant.

Remark 5.2. We will show why the assumption f(a) < f(b) implies that u′ > 0
on the whole interval (a, b). First, since u(a) = f(a) < f(b) = u(b), there must
be points where u′ > 0. If x is such a point, then

(?) u′(x) = C
1

p(x)−1 ≥

{
1, if C ≥ 1,

C
1

p−−1 , if 0 < C < 1.

If there was a point z ∈ (a, b) such that u′(z) = 0, then, by continuity, u′ should

attain all the values between 0 and min{1, C
1

p−−1 }. This contradicts (?).
Similarly, we may deduce that f(a) > f(b) implies u′ < 0 and f(a) = f(b)

implies u′ = 0 on the whole interval (a, b).

To find a function u that solves (5.1) uniquely, we need to determine C and
E. Since u(a) = E, we have to choose E = f(a) so that the left boundary value
is correct, and therefore E is uniquely determined. Next we put u(b) = f(b),
which leads to

u(b)− u(a) = f(b)− f(a) =

∫ b

a

C
1

p(t)−1 dt. (5.3)
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The question is: is it possible to find unique C > 0 such that (5.3) holds? The
answer is positive by the next lemma.

Lemma 5.3. Let p : (a, b)→ (1,∞) be a continuous function such that p− > 1.
Then the function F : [0,∞)→ [0,∞), where

F (c) =

∫ b

a

c
1

p(t)−1 dt,

is a homeomorphism, that is, the function F has the following properties:

1) F (0) = 0

2) lim
c→∞

F (c) = +∞

3) F is continuous and strictly increasing.

Proof. The proof is an easy exercise and is omitted.

Thus we have proved that the problem (5.1) has a unique smooth solution
if f(a) < f(b). Similarly, the same result holds if f(a) > f(b). If f(a) = f(b),
then by Remark 5.2 we have u′ = 0, and hence u must be a constant function,
u ≡ f(a). We gather these results under the following theorem.

Theorem 5.4. The problem (5.1) has a unique smooth solution.

5.3 Measure of {p(x) = +∞} is positive

At the end of this section we say something about the case where p is extended
as∞ on [b, c) for some c > b, while the assumptions for p|(a,b) remain the same.
Then the p(x)-Laplace equation reads as

− d
dx

[
|u′(x)|p(x)−2u′(x)

]
= 0, if a < x < b,

− u′′(x)u′(x)2 = 0, if b < x < c,

some transmission condition, if x = b.

(5.4)

On the interval (a, b) the solutions of this equation are functions of the form
(5.2), and on the interval (b, c) we have one-dimensional (classical) infinity har-
monic functions, that is, affine functions which are of the form a1 + a2x.

Suppose that u : (a, b) → R is a given increasing function of the form (5.2)
(i.e., C > 0 and E ∈ R). Then we have the following limit:

lim
x→b−

u′(x) = lim
x→b−

C
1

p(x)−1 = 1.

We choose the constants a1 and a2 such that a2 = 1 and

a1 = u(b)− b = E +

∫ b

a

C
1

p(t)−1 dt− b.

Then the function v : (b, c) → R, where v(x) = a1 + a2x, can be glued to the
function u at c such that the function w : (a, c)→ R,

w(x) =

{
u(x), if a < x ≤ b,
v(x), if b < x < c,
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is a member of the class C1((a, c)). If we had chosen a2 6= 1 and a1 = u(b)−a2b,
then we would have got only a continuous extension.

Now we study how the function w fits to the boundary value problem. Since
w is an increasing function, the boundary data f is fixed such that f(c) > f(a).
Then

• w(a) = f(a) =⇒ u(a) = f(a) =⇒ E = f(a)

• w(c) = f(c) =⇒ v(c) = f(c) =⇒ u(b) = v(b) = f(c)− (c− b).

Then we must choose C > 0 such that∫ b

a

C
1

p(t)−1 dt = u(b)− u(a) = f(c)− f(a)− (c− b).

This is possible if and only if f(c)− f(a) > c− b.
We have worked out the following theorem.

Theorem 5.5. Let p be as above and f : {a, c} → R be the boundary data. If
f(c)− f(a) > c− b, then there exists a unique function w : [a, c]→ R such that

1) w ∈ C1((a, c))

2) w ∈ C2((a, b)) and − d

dx

[
|w′(x)|p(x)−2w′(x)

]
= 0 pointwise on (a, b)

3) w is infinity harmonic on (b, c) in the classical sense

4) w(a) = f(a) and w(c) = f(c).

By studying the second derivative of u, which is

u′′(x) = − p′(x)

(p(x)− 1)2
C

1
p(x)−1 logC,

we can deduce the following two facts.

1) w ∈ C2((a, b)) if and only if lim
x→b−

u′′(x) = 0, which is equivalent to

lim
x→b−

− p′(x)

(p(x)− 1)2
= 0.

2) If the function p is increasing on (a, b), that is, p′ ≥ 0, then u′′ ≤ 0 if
C ≥ 1, and u′′ ≥ 0 if 0 < C < 1. This means that u is concave or
convex on (a, b). Then the part a) of Lemma 6.5 in Appendix says that
w is infinity harmonic at b in the viscosity sense (v is affine and thus
both concave and convex). On the other hand, the part b) of that lemma
says that if we glue the functions u and v together differently from w,
then we do not merely lose the differentiability at b, but also the infinity
harmonicity at b.

To emphasize the second item above, we write it down as a part of the next
remark.
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Remark 5.6. a) If p is increasing on (a, b), then item 1) in Theorem 5.5 may
be changed to ”w is infinity harmonic at b in the viscosity sense”. This is a
proper transmission condition for (5.4) at b.

b) If f(c) − f(a) < b − c, then we naturally get similar results for −w. If
again f(a) = f(c), then we end up with a constant function w ≡ f(a).

c) The results we have gained are easy to extend for certain types of p, which
are the unions of our model case. An example of this type of p is

p(x) =


− 1
x + 1, if − 1 < x < 0,

+∞, if 0 ≤ x ≤ 1,
1

x−1 + 1, if 1 < x < 2.

.

The next example is the last statement in this section. It considers the
Hölder continuity of w′ with certain exponent p(x).

Example 5.7. Let 0 < α <∞ and p : (−1, 1)→ (1,∞] be such that

p(x) =

{
1 + |x|−α, if − 1 < x < 0,

+∞, if 0 ≤ x < 1.

Let w be any C1((−1, 1))-solution to (5.4) (no fixed boundary data). If −1 <
x < a < 0, then

|u′(x)− u′(a)| =

∣∣∣∣∣∣
x∫
a

u′′(t) dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x∫
a

− p′(t)

(p(t)− 1)2
C

1
p(t)−1 logC dt

∣∣∣∣∣∣
≤ max{1, C

1
p(−1)−1 }| logC|

x∫
a

− p′(t)

(p(t)− 1)2
dt

= C̃

[
1

p(t)− 1

]t=x
t=a

= C̃

[
1

p(x)− 1
− 1

p(a)− 1

]
,

where C̃ = max{1, C}| logC| since p(−1) − 1 = 1. Hence, by the continuity of
w′ at zero, we get for −1 < x < 0 that

|w′(x)− w′(0)| = lim
a→0−

|w′(x)− w′(a)| ≤ lim
a→0−

C̃

[
1

p(x)− 1
− 1

p(a)− 1

]
=

C

p(x)− 1
= C|x|α.

If x > 0, then |w′(x)− w′(0)| = |1− 1| = 0. From this, and from the fact that
w is smooth on (−1, 0) and on (0, 1), we may draw the following conclusions.

• 0 < α ≤ 1 =⇒ w′ is α-Hölder continuous on (−1, 1)

• α > 1 =⇒ w ∈ C2((−1, 1)). This can be seen directly from the estimate
we get for |w′(x)− w′(0)| or from the condition we got earlier:

lim
x→0−

− p′(x)

(p(x)− 1)2
= lim
x→0−

−−α|x|
−α−1

|x|−2α
= lim
x→0−

α|x|α−1 = 0.
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6 Appendix

In this section, we present and prove some auxiliary results that are needed in
this thesis.

Lemma 6.1. For all x, y ∈ Rn and p ≥ 2, we have

(x|x|p−2 − y|y|p−2) · (x− y) ≥ 21−p|x− y|p.

Proof. Let x, y ∈ Rn. First, the equality

|x− y|2 = (x− y) · (x− y) = |x|2 − 2x · y + |y|2

implies that

x · y =
1

2
|x|2 +

1

2
|y|2 − 1

2
|x− y|2.

Then we have

(x|x|p−2 − y|y|p−2) · (x− y)

=|x|p + |y|p − x · y|y|p−2 − y · x|x|p−2

=|x|p + |y|p − 1

2

(
|x|2 + |y|2 − |x− y|2

)
|y|p−2

− 1

2

(
|x|2 + |y|2 − |x− y|2

)
|x|p−2

=
1

2

(
|x|p + |y|p − |x|2|y|p−2 − |y|2|x|p−2 + |x− y|2(|x|p−2 + |y|p−2

)
=

1

2

(|x|2 − |y|2) (|x|p−2 − |y|p−2
)︸ ︷︷ ︸

same sign, product≥0

+|x− y|2
(
|x|p−2 + |y|p−2

)
≥1

2
|x− y|2

(
|x|p−2 + |y|p−2

)
(?) ≥1

2
|x− y|222−p|x− y|p−2

=21−p|x− y|p.

In (?) we used the inequality

|x− y|p−2 ≤ (|x|+ |y|)p−2 ≤ 2p−2(|x|p−2 + |y|p−2).

By the previous Lemma we immediately get the following corollary.

Corollary 6.2. Let A ⊂ Rn and p : A→ [2,∞) be such that p+
A := sup {p(z) :

z ∈ A} < +∞. Then for every x, y ∈ Rn and z ∈ A it holds that

(x|x|p(z)−2 − y|y|p(z)−2) · (x− y) ≥ 21−p+A |x− y|p(z).

Now we prove the result that we needed in the proof of Theorem 2.15.
Without loss of generality we may consider the case where x0 = 0. In the
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proof we will use the tensor product ” ⊗ ”, which is defined as follows: for
v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ Rn, the product v⊗w is n×n matrix with

(v ⊗ w)i,j = viwj .

Recall also that for symmetric n × n matrices A and B, we denote A > B if
Aξ · ξ > Bξ · ξ for every ξ ∈ Rn \ {0}.

Lemma 6.3. Suppose that 0 ∈ Ω and v ∈ C2(Ω) is such that −∆∞v(0) > 0.
Then there exists a cone function C(x) = a|x−z|, where a ≥ 0 and z ∈ Rn\{0},
which satisfies

∇C(0) = ∇v(0) and D2C(0) > D2v(0).

Proof. Let ε > 0 be so small that

1

|∇v(0)|
∆∞v(0) + ε

∣∣∣∣D2v(0)
∇v(0)

|∇v(0)|

∣∣∣∣ < 0.

This can be done because ∆∞v(0) = D2v(0)∇v(0)·∇v(0) < 0, and thus∇v(0) 6=
0. Then we set a := |∇v(0)| and choose z such that z

|z| = − ∇v(0)
|∇v(0)| and

1

ε
+ ‖D2v(0)‖ < |∇v(0)|

|z|
.

Here ‖D2v(0)‖ denotes the operator norm of the matrix D2v(0). This implies
that for C(x) := a|x − z| we have ∇C(0) = −a z

|z| = ∇v(0). To show the right

order of the Hessian matrices we fix y ∈ Rn \ {0} and write it in the form

y = α ∇v(0)
|∇v(0)| + y⊥ where ∇v(0) · y⊥ = 0. We calculate

D2C(0)y · y =
|∇v(0)|
|z|

(
I − z

|z|
⊗ z

|z|

)
y · y

=
|∇v(0)|
|z|

{
|y|2 − α2

[(
∇v(0)

|∇v(0)|
⊗ ∇v(0)

|∇v(0)|

)
∇v(0)

|∇v(0)|

]
· ∇v(0)

|∇v(0)|︸ ︷︷ ︸
=1

− 2α

[(
∇v(0)

|∇v(0)|
⊗ ∇v(0)

|∇v(0)|

)
∇v(0)

|∇v(0)|

]
· y⊥︸ ︷︷ ︸

=0

−
[(
∇v(0)

|∇v(0)|
⊗ ∇v(0)

|∇v(0)|

)
y⊥
]
· y⊥︸ ︷︷ ︸

=0

}

=
|∇v(0)|
|z|

(
|y|2 − α2

)
=
|∇v(0)|
|z|

|y⊥|2
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and

D2v(0)y · y =α2 1

|∇v(0)|2
∆∞v(0) + 2α

(
D2v(0)

∇v(0)

|∇v(0)|

)
· y⊥

+D2v(0)y⊥ · y⊥

≤α2 1

|∇v(0)|2
∆∞v(0) + 2

∣∣∣∣αD2v(0)
∇v(0)

|∇v(0)|

∣∣∣∣ |y⊥|
+
∣∣D2v(0)y⊥

∣∣ |y⊥|
≤α2 1

|∇v(0)|2
∆∞v(0) + 2

(
ε

2
α2

∣∣∣∣D2v(0)
∇v(0)

|∇v(0)|

∣∣∣∣2 +
1

2ε
|y⊥|2

)
+ ‖D2v(0)‖|y⊥|2

≤α2

(
1

|∇v(0)|
∆∞v(0) + ε

∣∣D2v(0)
∇v(0)

|∇v(0)|
∣∣2)︸ ︷︷ ︸

<0

+

(
1

ε
+ ‖D2v(0)‖

)
︸ ︷︷ ︸

<
|∇v(0)|
|z|

|y⊥|2

<
|∇v(0)|
|z|

|y⊥|2.

Thus D2C(0) > D2v(0).

The next example helps us in the upcoming lemma.

Example 6.4. a) The function f(x) = 1 − |x| is not infinity subharmonic at
zero, since

−φ′′(0)φ′(0)2 = −(−2)(−1/2)2 = 1/2 > 0

for the admissible test function φ(x) = 1− 1
2x− x

2.
b) Similarly, by using only second order polynomials, we can show that no

”real” (i.e., non-constant) cone function is infinity harmonic at the vertex point.
c) Let

f(x) =

{
−
√

1− x2, if x ∈ (0, 1),√
1− (x− 1)2, if x ∈ [1, 2).

Then f is continuous, convex on (0, 1), concave on (1, 2) and differentiable at
x 6= 1. The function f is infinity harmonic at 1, since it cannot be tested by any
C2-function from above or below at that point. However, the derivative f ′(1)
does not exist, since lim

x→1
f ′(x) =∞.

Lemma 6.5. Let (a, c) ⊂ R be an open interval, x0 ∈ (a, c) and let f : (a, c)→
R be a continuous function such that f is convex (concave) on (a, x0) and
concave (convex) on (x0, c).

a) If f is differentiable at x0, then f is infinity harmonic at x0.

b) Suppose that f is infinity harmonic at x0, f ′(x) exists for every x 6= x0

and that the limits limx→x0+ f
′(x) and limx→x0− f

′(x) exist and are finite.
Then f is differentiable at x0.
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Proof. a) Let φ ∈ C2((a, c)) be such that φ(x0) = f(x0) and φ(x) > f(x) when
x 6= x0. This means that the function f − φ has a local maximum at x0 and so
φ′(x0) = f ′(x0). Using Taylor’s formula, we have

φ(x) = φ(x0) + φ′(x0)(x− x0) +
1

2
φ′′(x0)(x− x0)2 + o(|x− x0|2),when x 6= x0.

When x < x0, by the convexity of f we deduce that

φ(x) ≥ f(x) ≥ f(x0) + f ′(x0)(x− x0) = φ(x0) + φ′(x0)(x− x0).

Thus
φ′′(x0)

2
(x− x0)2 + o(|x− x0|2) ≥ 0.

Dividing above by |x− x0|2 and letting x→ x0−, we have φ′′(x0) ≥ 0. Hence

−φ′′(x0)(φ′(x0))2 ≤ 0,

and so f is infinity subharmonic at x0. For superharmonicity we use a similar
argument and the concavity of f on (x0, c).

b) Suppose that f is not differentiable at x0. Then

m := lim
x→x0−

f ′(x) 6= lim
x→x0+

f ′(x) = M.

Since the cone function C, where

C(x) :=

{
mx+ f(x0)−mx0, if x ≤ x0,

Mx+ f(x0)−Mx0, if x > x0,

is not infinity harmonic at x0 (see Example 6.4 b)), neither f is that. Indeed,
without loss of generality we may assume that C is not infinity subharmonic at
x0. Then there exists a second order polynomial φ such that φ(x) > C(x) for
x 6= x0, φ(x0) = C(x0) and −φ′′(x0)φ′(x0)2 > 0. From the definitions of m and
M and from the convexity of f |(a,x0) and concavity of f |(x0,c), we deduce that f
behaves such as C near x0, and thus φ(x) > f(x) near x0. Since φ(x0) = f(x0),
φ is a proper test function to test the infinity harmonicity of f at x0. But
we already had that −φ′′(x0)φ′(x0)2 > 0, which means that f is not infinity
subharmonic at x0. This contradicts with the initial assumption and the proof
is complete.
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REP. UNIV. JYVÄSKYLÄ DEPT. MATH. STAT.
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