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Limited Memory Bundle Algorithm
for Large Bound Constrained Nonsmooth
Minimization Problems*

Marjo S. Haaralaf Marko M. Mikela?

Abstract

Typically, practical optimization problems involve nonsmooth functions
of hundreds or thousands of variables. As a rule, the variables in such prob-
lems are restricted to certain meaningful intervals. In this paper, we propose
an efficient adaptive limited memory bundle method for large-scale nons-
mooth, possibly nonconvex, bound constrained optimization. The method
combines the nonsmooth variable metric bundle method and the smooth
limited memory variable metric method, while the constraint handling is
based on the projected gradient method and the dual subspace minimiza-
tion. The preliminary numerical experiments to be presented confirm the
usability of the method.

Keywords: Nondifferentiable programming, large-scale optimization, bun-
dle methods, variable metric methods, limited memory methods, box con-
straints.

1 Introduction

In this paper, we propose an adaptive limited memory bundle algorithm for solving
large-scale nonsmooth (nondifferentiable) bound constrained optimization prob-
lems

{minimize f(x) 1)

subject to ' <x <z

where the objective function f : R” — R is supposed to be locally Lipschitz continu-
ous and the number of variables n is supposed to be large. Moreover, the vectors !
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and z" representing the lower and the upper bounds on the variables, respectively,
are fixed and the inequalities in (1) are taken componentwise.

Nonsmooth optimization problems are in general difficult to solve, even when
they are unconstrained. The direct application of smooth gradient-based methods to
nonsmooth problems may lead to a failure in convergence, in optimality conditions,
or in gradient approximation (see, e.g., [20]). Furthermore, derivative free methods,
like genetic algorithms (see, e.g., [11]) or Powell’s method (see, e.g., [9]) may be
unreliable and become inefficient whenever the dimension of the problem increases.
Thus, special tools for solving nonsmooth optimization problems are needed.

Nowadays different variants of bundle methods (see, e.g., [15, 17, 26, 32]) are rec-
ognized the most effective and reliable methods for nonsmooth optimization prob-
lems. Their basic assumption is that at every point x € R", we can evaluate the
value of the objective function f(x) and an arbitrary subgradient £ € R" from the
subdifferential [5]

JOf (x) = conv{ lim Vf(xz:)| ; — xand Vf(x;) exists },

where “conv” denotes the convex hull of a set. The idea behind bundle methods
is to approximate Of (x) by gathering subgradient information from previous itera-
tions into a bundle. A search direction can then be found as a solution a quadratic
subproblem (see, e.g., [17, 26, 32]). By utilizing so called subgradient aggregation
strategy [17], it is possible to prove the global convergence of bundle methods with
a bounded number of stored subgradients.

While standard bundle methods are very efficient for small- and medium-scale
problems, they are not, in general, competent in large-scale settings (see, e.g., [2, 14,
16]). In [12, 13, 14] we have proposed a limited memory bundle method for general,
possibly nonconvex, nonsmooth large-scale optimization. The method combines the
variable metric bundle methods [23, 33] for small- and medium-scale nonsmooth
optimization with the limited memory variable metric methods (see, e.g., [4, 10, 22,
29]) for smooth large-scale optimization.

The basic limited memory bundle method [13, 14] as well as its adaptive ver-
sion [12] are only suitable for unconstrained problems. However, besides non-
smoothness, real world optimization problems often involve some kind of con-
straints. Indeed, some problems are not even defined if their variables are not
restricted into certain meaningful intervals. Typically, when using bundle meth-
ods, the problems with simple constraints (such as bound or linear constraints) are
solved by including the constraints directly to the quadratic subproblem (see, e.g.,
[18, 19]). However, we do not solve any quadratic subproblems in the limited mem-
ory bundle method (at least not in the sense of bundle methods) and, thus, we had
to sought for alternative ways for constraint handling. Our approach is based on
gradient projection (naturally, we use subgradients instead of gradients) and dual
subspace minimization and it is adopted from the smooth limited memory BFGS
method for bound constrained optimization [3]. The method to be described here
differs from the original limited memory bundle method [12, 13, 14] mainly in the
calculation of the search direction. Furthermore, the line search is now enforced to
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produce feasible points (that is, the point € R" satisfying ' < < z*). On the
other hand, the new method differs from the limited memory BFGS method [3] in
the fact that, indeed, it is capable of handling nonsmooth objectives by utilizing null
steps and aggregation of subgradients. Moreover, we wish to point out that lim-
ited memory bundle method to be presented only generates feasible points. This
can be an advantage in the case the objective function or the subgradient values are
undefined or difficult to compute if some of the constraints are violated.

The rest of this paper is organized as follows. In Section 2, we describe the adap-
tive limited memory bundle method for bound constrained optimization. We start
by giving a brief introduction to the method. After that, we describe in detail the
adaptive limited memory bundle algorithm, identification of the active set, and the
subspace minimization procedure used. In Section 3, some preliminary results of
numerical experiments are presented. The numerical results demonstrate the us-
ability of the new method with both convex and nonconvex large-scale nonsmooth
bound constrained minimization problems. Finally, in Section 4, we conclude and
give some ideas of further development. A detailed description of limited memory
matrix updating is given in Appendix.

2 Method

In this section, we describe the adaptive limited memory bundle method for bound
constrained large-scale nonsmooth optimization. We start by giving a simple flowchart
(in Figure 1) to point out the basic ideas of the algorithm. The limited memory bun-
dle method is characterized by the usage of null steps together with the aggregation
of subgradients. Moreover, the limited memory approach is utilized in the calcula-
tion of the search direction and the aggregate values. The usage of null steps gives
turther information about the nonsmooth objective function in the case the search
direction is not “good enough”. On the other hand, a simple aggregation of subgra-
dients guarantees the convergence of the aggregate subgradients to zero and makes
it possible to evaluate a termination criterion [12, 13].

The search direction is calculated using two-stage approach. First, we define the
quadratic model function g, that approximates the objective function at the iteration
point x; by

@) = flam) + & (@ —m) + 3 (@ — @) Byl — ), @
where £, is the aggregate subgradient of the objective function and By, is the limited
memory variable metric update that, in smooth case, represents the approximation
of the Hessian matrix. Now, the generalized gradient projection method is used to
find the generalized Cauchy point [6] and, at the same time, to identify the active
set Zy = {i | z; = zlorx; = 2} of the problem. The calculation of the gener-
alized Cauchy point makes it possible to add and delete several bounds from the
active set during a single iteration, which may be an important feature for both non-
smooth [31] and large-scale [7] problems. After the active set has been identified,
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Figure 1: Adaptive limited memory bundle method with bounds.

the quadratic model function (2) is approximately minimized with respect to free
variables, in other words, the variables in the active set remain fixed throughout
the process. The search direction is then defined to be the vector leading from the
current iteration point x;, to this approximate minimizer. Finally, a line search that
is guaranteed to produce feasible points is performed.

As already mentioned, we utilize the limited memory approach (see, e.g., [4, 10,
22, 29]) in the calculation of the search direction and the aggregate values. The idea
of limited memory matrix updating is that instead of storing the large matrices B,
and Dy, (we denote by D;, the update formula that is inverse of By), we store a certain
(usually small constant) number 1. of vectors, so-called correction pairs obtained at
the previous iterations of the algorithm, and we use these correction pairs to implic-
itly define the variable metric matrices. When the storage space available is used up,
the oldest correction pairs are deleted to make room for new ones; thus, except for
the first few iterations, we always have the 1. most recent correction pairs available.

In practice, the utilization of limited memory approach means that the variable



metric updates are not as accurate as if we used standard variable metric updates
(see, e.g., [9]). However, both the storage space required and the number of oper-
ations needed in the calculations are significantly smaller. In the adaptive limited
memory bundle method [12] the number of stored correction pairs 7. may change
during the computation. This means that we can start the optimization with a small
m. and when we are closer to the optimal point, 7. may be increased until some up-
per limit 1, is achieved. The aim of this adaptability is to improve the accuracy of
the basic method without loosing much from efficiency, that is, without increasing
computational costs too much.
For more details of the limited memory updating formulae refer to Appendix.

2.1 Limited memory bundle method.

In this subsection, we describe within more details the limited memory bundle algo-
rithm for solving nonsmooth optimization problems of type (1). The algorithm to be
presented generates a sequence of basic points (x;) C S together with a sequence of
auxiliary points (y,) C S, where the set S = {x € R" | ' < & < "} is the feasible
region of problem (1). A new iteration point x,,, and a new auxiliary point y,_, are
produced using a special line search procedure [12, 13] such that

Ty, = T + t’de and

Yii1 =z + thdy, fork > 1
with y; = x;, where t}, € (0,t% .| and t% € [0, t%] are step sizes, t* > 1is the upper
bound for the step size that assures the feasibility of produced points, and d, is a
search direction.
A necessary condition for a serious step is to have

th=t;>0 and  f(y,.,) < flr) — ecthw, (©)

where ¢;, € (0,1/2) is a line search parameter and w;, > 0 represents the desirable
amount of descent of f at x;. If condition (3) is satisfied, we set x;,; = y,,, and a
serious step is taken.

Otherwise, we take a null step. In this case, the usage of special line search pro-
cedure guarantees that we have

th>1tf =0 and — Brp1 + di &y > —€Rw, 4)

where e € (¢, 1/2) is a line search parameter, §,.,, € 0f(y;,1), and (1 is the sub-
gradient locality measure [21, 27] similar to bundle methods. In the case of a null
step, we set ;1 = x;, but information about the objective function is increased be-
cause we store the auxiliary point y, . ; and the corresponding auxiliary subgradient
Eev1-

For the direction finding, the limited memory bundle method uses the original
subgradient &, after the serious step and the aggregate subgradient &, after the null



step. The aggregation procedure (see, Step 6 in Algorithm 2.1) is similar to that of
the original variable metric bundle methods [23, 33] except that the variable metric
updates are now calculated using limited memory approach.

In our algorithm we use both the limited memory BFGS and the limited memory
SR1 update formulae in the calculations of the search direction and the aggregate
values. If the previous step was a null step, the matrices D, and By, are formed us-
ing the limited memory SR1 updates (see Appendix, egs. (16) and (17)), since these
update formulae give us a possibility to preserve the boundedness and some other
properties of generated matrices needed for global convergence. Otherwise, since
these properties are not required after a serious step, the more efficient limited mem-
ory BFGS updates (see Appendix, egs. (14) and (15)) are employed. The individual
updates that would violate positive definiteness are skipped (for more details, see
[12, 13, 14]).

We now present a model algorithm for the adaptive limited memory bundle
method for solving the bound constrained optimization problems. After that, we
describe how the generalized Cauchy point and the search direction can be deter-
mined. In what follows, we assume that at every feasible point x € S C R" we can
evaluate the value of the objective function f(x) and the corresponding arbitrary
subgradient £ € 0f(x).

ALGORITHM 2.1. (Adaptive Limited Memory Bundle Method with Bounds.)

Data: Choose the final accuracy tolerance € > 0, the positive line search parameters
er € (0,1/2) and eg € (e, 1/2), the distance measure parameter v > 0 (with
v = 0if f is convex), and the locality measure parameter w > 1. Select an
upper limit 7, > 3 for the number of stored correction pairs and the size of
the bundle m, > 2.

Step 0: (Initialization.) Choose a (feasible) starting point ; € S C R" and set the
initial matrices D; = B; = I. Choose an initial maximum number of stored
correction pairs m. (3 < m, < m,). Sety, = x; and 5 = 0. Compute
fi = f(x1) and &, € Of(x1). Set the iteration counter k = 1.

Step 1: (Serious step initialization.) Set the aggregate subgradient £, = &, and the
aggregate subgradient locality measure 3, = 0. Set an index for the serious
step m = k.

Step 2: (Generalized Cauchy point.) Compute the generalized Cauchy point and deter-
mine the active set by Algorithm 2.2 using the limited memory BFGS update
formula (14) and (15) if m = k and using the limited memory SR1 update
formula (16) and (17), otherwise.

Step 3: (Direction finding.) Compute the search direction d;, by Algorithm 2.3 using
the same update formula as in Step 2.

Step 4: (Stopping criterion.) Calculate
wi = —&pdi + 2. )



Step 5:

Step 6:

If wy, < ¢, then stop with x;, as the final solution. Otherwise, if wy, < 10% and
me < My, set m, = m. + 1.

(Line search.) Determine the maximum step size t¥ . such that x; +tF, . d; is

feasible. Determine the step sizes t%, € (0,¢% ] and t§ € [0,%] to take either

? Ymazx

a serious step or a null step (that is, check whether (3) or (4) is valid). Set the
corresponding values

k
Tpt1 = Ty + tdy,

Ypt1 = T + thdy,
fer1 = f(@es),
€k+1 S af(ykﬂ)-

Set u, = &, — &, and s, = Yy, — @, = thd,. If t¥ > 0 (serious step),
set Bx11 = 0, k = k + 1, and go to Step 1. Otherwise, calculate the locality
measure

Brer = max{|f(@r) = f(Yri1) + 6 €pr)] Vlsell” }

(Aggregation.) Determine multipliers \¥ satisfying A\¥ > 0 for all i € {1, 2,3},
and 3.7 A\ = 1 that minimize the function

i=1""

©(A1, A2, A3) = (M€, + Xappy + )‘3§k)TDk()‘1€m + A&y + )‘SEk)
+2(XBrs1 + AsBr),

where Dj, is calculated by the same updating formula as in Steps 2 and 3.
Set

§k+1 - )‘Iffm + )‘gékﬂ + A'éék and
Bt = N5 Bri1 + A5B.

Set k = k + 1 and go to Step 2.

To ensure the global convergence of the method, we assume that matrices D), are
uniformly positive definite and uniformly bounded (we say that a matrix is bounded
if its eigenvalues lie in the compact interval that does not contain zero). This requires
some modifications to the model algorithm, for instance, corrections of matrices Dj,
when necessary. In this way we obtain more complicated algorithm which, in un-
constrained case, is described in detail in [12, 13]. The basic assumption for bundle
method to converge, that is, after a null step we have 2" Dy, 12 < 27D,z for all
z € R", is guaranteed by the special limited memory SR1 update [12, 13].



2.2 Generalized Cauchy Point

In this subsection, we show how to calculate the generalized Cauchy point and, at
the same time, how to identify the active set of problem (1). In principle, the proce-
dure used here is the same as that in [3]. We only use here the aggregate subgradient
of the objective function instead of gradient and, in addition to the limited memory
BFGS update formula, we utilize the limited memory SR1 update whenever neces-
sary.

Let us first define the projection operator P[] (componentwise) by

xt ifz; <l

I u) : l
Plx,x', x"]; = < x;, if z; € [z}, z¥]

x, if x; > .

This operator projects the point @ into the feasible region S defined by bounds '
and x".

The generalized Cauchy point at iteration k is defined as the first local minimizer
of the univariate piecewise quadratic function

() = qr(Play, — t&;, ', ")),

(with g, defined in (2)) along the projected gradient direction Pz — t&,, @', "] — x4
(see, e.g., [6]). That is, if we denote by ¢,” the value of ¢ corresponding to the first
local minimum of g (t), the generalized Cauchy point is given by

zy = Play — 1776, 2!, 2"

The variables whose values at ;" are at lower or upper bound, comprise the active
setZ4.
In practice, we first compute the values

(xk,i - xi)/ék‘,la if ék,z' >0
ti = (xri — 23)/Eris if &, <0 (6)
0, otherwise
forall: = 1,...,n to define the breakpoints in each coordinate direction. Here, we

have denoted by z; and sz the ith components of vectors x;, and é ,» Tespectively.
We then sort these values ¢; in increasing order to obtain the ordered set {t/ | t/ <
tt1,j = 1,...,n}. For finding the generalized Cauchy point we search trough the
intervals [t/,# ] in order of increasing j until the one containing z;” is located.
Thus, we investigate the behavior of the quadratic function (2) for points lying on
the piecewise linear path

Thy — tgk,i; ift <t
Tyi(t) = - . (7)
Tri — tik, otherwise.



Let us define the jth breakpoint by @/ = x;(#/). We can now express (7) in the
interval [¢/,t/*1] as

zi(t) = 2/ + Atd’ | 8)
where At =t — t/ and

Ji— {_gk,ia if t7 <t

‘ 0, otherwise.

Now, defining

~T . 1 . .
fi= flxp) +§,27 + §Z]TBI<:Z],
f]’ = ézglj + gleBkzj,
e

where z = / — x;, and combining (2) and (8), we obtain

awl0) = [ + D+ SRS

By calculating the derivative of ¢, (xx(t)) and setting it to zero, we obtain ¢ = ¢/ —
fi/f] (note that f; # 0 since in our algorithm By, is positive definite and d # 0).
Thus, due to positive definiteness of matrices Bj, used in our algorithm, the gener-
alized Cauchy point lies at x;(t/ — f;/f/') if the point t — f}/f/ lies in the interval
[t/,#711). Otherwise, the generalized Cauchy point lies at x(t’) if we have f; > 0,
and it lies at or beyond x (/') in all the other cases.

We now give an algorithm for calculation of the generalized Cauchy point and
determination of the active set Z,. To simplify the notation, we, for a while, omit the
iteration index k and use subscripts i and b to denote the ith and the bth component
of a vector. Moreover, we denote by e, the bth column of the identity matrix.

ALGORITHM 2.2. (Generalized Cauchy Point.)
Data: Suppose we have available the current (feasible) iteration point x, the lowe~r
and the upper bounds z' and z* for z, the current aggregate subgradient &,

and the limited memory representation of matrix B (either the BFGS or the
SR1 formulation).

Step 0: (Initialization.) Compute the breakpoints ¢; in each coordinate direction by (6)
and define the direction

=4, otherwise.



Initialize

P = x,

Ir = {i | t; > 0} (set of indices corresponding to the free variables),
T4 ={i|t; =0} (set of indices corresponding to the active bounds),
t =min{t; | i € I},

toa = 0,

At =t —tyqa =1, and

b =i such that ¢; = ¢. Shift b from Zp to Z 4.

Step 1: (Examining the first interval.) Calculate

If At,,in, < At go to Step 4.

Step 2: (Subsequent segments.) Set

Lt if cg,, >0
b al, if d, < 0.

Calculate

2y = xf — Ty,
f=f +Atf" +&+&el Bz, and
= "+ 26,el Bd + £2e] Bey,.
Set
dy = 0,
Atrin = _f,/flla
toga = t,
t = min{¢; | i € Zp} (using the heapsort algorithm [1])

At =1t — tolda and
b = i such that t; = t. Shift b from Zr to Z 4.

Step 3: (Loop.) If At,,;, > At go to Step 2.
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Step 4: (Generalized Cauchy point.) Set

Atmm = maX{Atmina 0}7
totd = toid + Atpin,
= x; + t.1qd; for all i such that ¢; > t.

For all ¢« € Zr such that t; = ¢, shift ¢ from Zp to Z4.

The only expensive computations in Algorithm 2.2 are
ngBEl, el Bz, el Bd, and e/ Be,

at Steps 1 and 2. However, these calculations can be done very efficiently (within
O(n) operations) by using limited memory approach. We do not give any details of
these calculations here since, essentially, for the limited memory BFGS update, these
calculations proceeds similar to those given in [3] and, for the limited memory SR1
update, the idea should be perspicuous as well.

2.3 Direction finding

When the generalized Cauchy point has been found, we approximately minimize
the quadratic model function (2) over the space of free variables. The subspace
minimization procedure used in our approach is in principal the same as the dual
space method in [3] but, as before, we use the aggregate subgradient of the objective
function and we utilize the limited memory SR1 update if the previous step taken
was a null step (see Algorithm 2.1).

We solve d from smooth quadratic problem

minimize éde + %dTBkd
such that ATd = b, and )
' <z +d< a2t

where 4, is the matrix of active constraints gradients at ;¥ and b, = Al (x;F — ).
Note that A, consists of n4 unit vectors (here n4 is the number of elements in the
active set Z,) and Af Ay, is equal to identity.

We first ignore the bound constraints. The first order optimality conditions for
problem (9) without bounds are

£, + Brd' + Ay =0 (10)
Ald* = b, (11)

Now, by multiplying (10) by A7 D,, where, as before, D), = B;', and by using (11),
we obtain

(AL Dy Ag)p* = —AT D&, — by, (12)
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which determines Lagrange multipliers p*. The linear system (12) can be solved by
utilizing the Sherman-Morrison-Woodbury formula and the compact representation
of limited memory matrices (see [3]). Thus, d* can be given by

Bpd = —Ap* —&,. (13)

If there are no active bounds present, we simply obtain d* = —D,£,, which is the
formula used also in the original unconstrained version of the limited memory bun-
dle method [12, 14]. In the case the vector x; + d* violates the bounds in (9), we,
similarly to [3], backtrack along the line joining the infeasible point ) + d* and the
generalized Cauchy point ;" to regain the feasible region.

We now give an efficient algorithm for direction finding in bound constrained
case. For more details of the calculations using the limited memory approach, see [3].

ALGORITHM 2.3. (Direction Finding.)

Data: Suppose that we have available the current (feasible) iteration point x;, the
Cauchy point x;”, the number of active variables n4 at z;’, the n x n4 matrix
Ay, of the active constraints gradients at «;”, the limited memory representa-
tion of matrix D, (either the BFGS or the SR1 formulation), and the current
aggregate subgradient 3 k-

Step 1: (No active bounds.) If n4 = 0, compute
d* = —Di§,
and go to Step 4.
Step 2: (Lagrange multipliers.) Compute the intermediate n 4-vector
p = —Af Dy, — by,
where b, = Al (x;¥ — x.). Calculate the n4-vector of Lagrange multipliers
p" = (AL DAy " 'p.
Step 3: (Search direction.) Compute
d* = —Dy(Agp* + &)
Step 4: (Backtrack.) Compute
o = min {1, max{a | 2} < ol aleg +df —al) <, 1 € Tp}}.
Setz = + a*(xy +d" — x’) and dj, = T — x;,.

Note that since the columns of A; are unit vectors, the operations between A;, and
a vector amount to select the appropriate elements from the vector and change of
sign if necessary. Hence, and due to usage of limited memory approach, the search
direction can be calculated within O(n) operations.

12



3 Numerical Experiments

In this section we compare the proposed limited memory bundle method (LMBM B)
to the proximal bundle method (PBNCGC [24, 26]) in a limited number of academic
large-scale test problems and one practical application. We use the solver PBNCGCas
a benchmark since the proximal bundle method is the most frequently used bundle
method in nonsmooth optimization. A more extensive numerical analysis concern-
ing the performance of the unconstrained version of the limited memory bundle
method and its comparison with some other existing bundle methods in large-scale
minimization problems can be found in [14].

The academic test experiments were performed in a Intel® Pentium® 4 CPU
3.20GHz. For the practical application the test runs were performed on an HP9000/
J5600 workstation 2xPA8600 CPU 552MHz because of the libraries required. Both
the algorithms were implemented in Fortran77 with double-precision arithmetic.

The solvers were first tested with 10 nonsmooth academic minimization prob-
lems described in [14]. The problems in [14] are unconstrained but we inclosed the
additional bounds

i +01 <z <z +11 foralloddzi,

where x* denotes the solution for the unconstrained problem. If the original starting
point given in [14] was not feasible, we simply projected it to the feasible region.

The number of variables used in our academic experiment was 1000, and the
solvers were tested with relatively small amount of stored subgradient information.
That is, the size of the bundle m, was set to 10 for LMBM B and to 100 for PBNCGC
(since the previous experiments [12, 13] have shown that a larger bundle usually
works better with PBNCGC). We tested LMBM B with different upper limits for the
stored correction pairs, that is, m, = 7, m, = 15, and m,, = 50. In all cases the initial
maximum number of stored corrections pairs 1. was set to 7. In what follows, we
denote these different variants by LMBM B[ 7] , LMBM B[ 15] , and LMBM B[ 50] ,
respectively. For convex problems (problems 1 — 5 in [14]), we used the distance
measure parameter v = 0 and for nonconvex problems (problems 6 — 10 in [14]), we
used the value v = 0.5 with both LMBM Band PBNCGC. The final accuracy parameter
e = 107° was used in all the cases. Otherwise, the default parameters of the solvers
were used.

In addition to the usual stopping criteria of the solvers, we terminated the ex-
periments if the CPU time elapsed exceeded half an hour. In these cases, the results
were accepted if they were less than two significant digits greater than the desired
accuracy of the solution.

The results of the academic experiments are summarized in Figure 2. The re-
sults are analyzed using the performance profiles introduced in [8]. As performance
measures, we use computation times (in Figure 2(a)) and numbers of function eval-
uations (in Figure 2(b)). In the performance profiles the value of p(7) at 7 = 0 gives
the percentage of test problems for which the corresponding solver is the best and
the value of p(7) at the rightmost abscissa gives the percentage of test problems that
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Figure 2: Nonsmooth bound constrained problems with 1000 variables.

the corresponding solver can solve (this does not depend on the measured perfor-
mance). Moreover, the relative efficiency of each solver can be directly seen from
the performance profiles: the higher is the particular curve, the better is the corre-
sponding solver. For more information of performance profiles, see [8].

In Figure 2(a) we see the superiority of the different variants of the limited mem-
ory bundle solver when comparing the computational times; the computation time
elapsed with any of these variants was on the average about 100 times shorter
than that of PBNCGC and that only if we, for each solver, removed the most time
consuming problem from the test set. Otherwise, the differences between com-
putational times of PBNCGC and different variants of LMBM B were even greater.
On the other hand, there was not a big difference in the computational times be-
tween the different variants of LMBM B (see Figure 2(a)). Although, quite surpris-
ingly, LMBM B[ 7] usually needed slightly more computation time than the other
two. This is due to fewer function evaluations required with LMBM B[ 15] and
LMBM B[ 50] (see Figure 2(b)). Note that, with all the problems the numbers of
function evaluations used with LMBM B[ 15] were exactly the same as those used
with LMBM B[ 50] and, thus, they can not be directly seen in Figure 2(b). The proxi-
mal bundle solver PBNCGC usually needed less function evaluations than the differ-
ent variants of LMBM B (see Figure 2(b)). However, as can be seen when comparing
the computational times, each individual iteration with PBNCGC was much more
costly than that with LMBM B.

All the variants of LMBM B failed to solve one of the problems (problem 2 in [14]).
This failure was quite predictable, since the problem is reported to be difficult to
solve with limited memory bundle method even without the bound constraints [14].
In addition, with solver LMBM B[ 7] there were some difficulties to reach the desired
accuracy in two problems (problems 1 and 8 in [14]). Both these problems were
solved successfully when the upper limit for the number of stored correction pairs
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was increased. Also the proximal bundle solver PBNCGC failed to solve three of the
problems in the test set (problems 1, 6, and 10 in [14]).

In addition to the academic test problems, we tested LMBM B and PBNCGC with a
hemivariational inequality problem [25] that is a nonsmooth nonconvex real-world
large-scale bound constrained optimization problem. Hemivariational inequalities
can be considered as generalizations of variational inequalities. The origin of these
kind of problems is in nonsmooth mechanics of solids, especially in nonmonotone
contact problems. Typically, hemivariational inequalities can be formulated as sub-
stationary point problems of the corresponding nonsmooth nonconvex energy func-
tionals. For more details of the mathematical theory an applications of hemivaria-
tional inequalities in general, see [28, 30] and of the formulation of this particular
problem, see [25].

Similarly to previous experiments, the solvers were tested with m; = 10 for
LMBM B[ 7] , LMBM B[ 15] , and LMBM B[ 50] and with m, = 100 for PBNCGC. In
all cases the value of the distance measure parameter v was set to 0.5 (since the ob-
jective function is nonconvex). Otherwise, the parameter values similar to academic
problems were used. The number of variables in the problem was equal to 840.

The results of the experiment are given in Table 1, where Ni and Nf denote the
numbers of iterations and function evaluations used, respectively, f denotes the
value of the objective function at termination, and CPU time is given in seconds.

Table 1: Results for hemivariational inequalities.

Solver Ni/Nf f CPU
PBNCGC 694 /1454 —0.01240639 48.23
LMBM B[ 7] 121/126 —0.01249884 1.49
LMBM B[ 15] 118/124 —0.01242044 3.04
LMBM B[ 50] 121/128 —0.01248906 5.66

Again, the different variants of LMBM B were superior when comparing the com-
putation times. Moreover, in this problem also the numbers of function evaluations
used with the limited memory bundle solvers were significantly smaller than those
used with the proximal bundle solver PBNCGC (see Table 1).

4 Conclusions

In this paper, we have described a new limited memory bundle method for bound
constrained nonsmooth large-scale optimization. The preliminary numerical exper-
iments confirm that the limited memory bundle solver is efficient for both convex
and nonconvex large-scale nonsmooth optimization problems. With large numbers
of variables it used significantly less CPU time than the other solver tested.
Although the new method appears to be useful already, there are some further
ideas to study in order to make the method more efficient and applicative. The fu-
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ture development of limited memory bundle method includes the study of alterna-
tive ways of constraint handling (with more complicated constraints), for instance,
those based on interior point methods.

Acknowledgements

The authors would like to thank Prof. Kaisa Miettinen for her support.

Appendix

Limited memory matrices The limited memory variable metric matrices used in
our algorithm are represented in the compact matrix form originally described in [4].
Let us denote by 7, the user-specified maximum number of stored correction
pairs (3 < m.) and by 7y, = min { k — 1, 7. } the current number of stored correction
pairs. Then the n x 1, dimensional correction matrices Sy, and U}, are defined by

Sk = [Sk_mk C Sk—l] and

U, = [’U:k—mk uk_l] .
The inverse limited memory BFGS update is defined by the formula
Dy = 0T + QN Qy, (14)
where ¥, is a positive scaling parameter,

Qr = [Sk ﬁkUk} ) and

N, =[BT (Cr+ UFUNR = (R

Here, on the other hand, R;, and C}, are matrices of order 1, given by the form

(Rp)i; = (Sk—rmp—140) (Up—y—145), if 1<
! 0, otherwise,

oleT T
Cr = diag s}z, Wiy, - - - Sp_1Uk—1]-

The similar representation for the direct limited memory BFGS update can be
written by

1 o
B, = ﬂ—kl — QN Q7T (15)
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where

Li  +SES,
-1
_ {—C;” C,:l/zLﬂ e o
0 J]z‘ _chk—l/Q Jk )

) ki) (Ui —145), B>
0, otherwise,

and
Tl = %S{Sk + LC LY
Note that here we have
Ly = S} U, — Ry.
In addition, the inverse limited memory SR1 update is defined by
Dy = 91 — WM, "W, (16)
where

Wk = ﬁkUk — Sk and
My = 90U Uy — Ry, — R} + C,

and, correspondingly, the direct SR1 update is defined by

1 _ _
By, = 19_1 + W MW (17)
k
where
_ 1
Wk = Uk — —Sk and
Uy,
_ 1
My =Ly + Ly +Cyp — ﬁ—s,ffsk.
k
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