
Large-S
ale Nonsmooth Optimization:New Variable Metri
 Bundle Algorithmwith Limited MemoryM. Haarala K. Miettinen M. M. M�akel�aDepartment of Mathemati
al Information Te
hnology,University of Jyv�askyl�a, P.O. Box 35 (Agora),FIN-40014 University of Jyv�askyl�a, Finland.Many pra
ti
al optimization problems involve nonsmooth (that is, not ne
essarilydi�erentiable) fun
tions of hundreds or thousands of variables. In su
h problems,the dire
t appli
ation of smooth gradient-based methods may lead to a failure dueto the nonsmooth nature of the problem. On the other hand, none of the
urrentgeneral nonsmooth optimization methods is eÆ
ient in large-s
ale settings. Inthis paper, we introdu
e a new limited memory variable metri
 -based bundlemethod for nonsmooth large-s
ale optimization. In addition, we introdu
e a newset of a
ademi
 test problems for large-s
ale nonsmooth minimization. Finally, wegive some en
ouraging results from numeri
al experiments using both a
ademi
and pra
ti
al test problems.Keywords: Nondi�erentiable programming, large-s
ale optimization, bundlemethods, variable metri
 methods, limited memory methods, test problems.1 Introdu
tionIn this paper, we des
ribe a limited memory bundle algorithm for solvinglarge nonsmooth (nondi�erentiable) un
onstrained optimization problems.We write this problem as (minimize f(x)subje
t to x 2 Rn ; (1)where the obje
tive fun
tion f : Rn ! R is supposed to be lo
ally Lips
hitz
ontinuous and the number of variables n is supposed to be large.1

Nonsmooth optimization problems of type (1) arise in many �elds of appli
a-tions, for example, in image restoration (see, e.g., [10℄) and in optimal
ontrol(see, e.g., [20℄). The dire
t appli
ation of smooth gradient-based methods tononsmooth problems may lead to a failure in
onvergen
e, in optimality
on-ditions, or in gradient approximation (see, e.g., [11℄). On the other hand,dire
t methods, for example, Powel's method (see, e.g., [3℄) employing noderivative information, are quite unreliable and be
ome ineÆ
ient when thesize of the problem in
reases.The methods for solving nonsmooth optimization problems
an be dividedinto two main
lasses: subgradient methods (see, e.g., [22℄) and bundle meth-ods (see, e.g., [7, 8, 16, 19, 20℄). They are all based on the assumption thatat every point x 2 Rn , we
an evaluate the value of the obje
tive fun
tionf(x) and an arbitrary subgradient � 2 Rn from the subdi�erential (see [2℄)�f(x) =
onvf limi!1rf(xi) j xi ! x and rf(xi) exists g; (2)where \
onv" denotes the
onvex hull of a set.At the moment, bundle methods are regarded as the most e�e
tive and reli-able methods for nonsmooth optimization (see, e.g., [19℄). Thus, we begin bygiving a short review of standard bundle methods to point out the basi
 ideasand to motivate the need of solvers for large-s
ale nonsmooth optimizationproblems.The basi
 idea of bundle methods is to approximate the subdi�erential of theobje
tive fun
tion by gathering the subgradients from previous iterations intoa bundle. We suppose that, in addition to the
urrent iteration point xk, wehave some auxiliary points yj 2 Rn (from previous iterations) and a bundleof subgradients �j 2 �f(yj) available for j 2 Jk, where Jk is a nonemptysubset of f1; : : : ; kg. We approximate the obje
tive fun
tion f by using apie
ewise linear fun
tionf̂k(x) = maxj2Jkf f(xk) + �Tj (x� xk)� �kj g; (3)where �kj � 0 is a so-
alled subgradient lo
ality measure (see, e.g., [20℄).A sear
h dire
tion
an be determined asdk = arg mind2Rnf f̂k(xk + d) + 12dTMkd g; (4)where the role of the stabilizing term 12dTMkd is to guarantee the existen
eof the solution dk and to keep the approximation lo
al enough. The regularand symmetri
 n�n -matrixMk is intended to a

umulate information about2

the
urvature of the obje
tive fun
tion f in a ball around xk. In the mostfrequently used proximal bundle method, the matrix Mk is diagonal of theform Mk = ukI, where I is the identity matrix and the weighting parameteruk > 0 (see, e.g., [20℄).The minimization of problem (4) is equivalent (see, e.g., [20℄) to the (smooth)quadrati
 subproblem of �nding the solution (dk; vk) 2 Rn+1 of(minimize 12dTMkd + vsubje
t to ��kj + dT�j � v for all j 2 Jk: (5)By duality this is equivalent to �nding Lagrange multipliers �kj for j 2 Jkthat solve the quadrati
 dual problem8>>>>><>>>>>:minimize 12 Pj2Jk �j�j!T M�1k Pj2Jk �j�j!+ Pj2Jk �j�kjsubje
t to Pj2Jk �j = 1 and�j � 0; for all j 2 Jk: (6)
A new auxiliary point yk+1 is de�ned by yk+1 = xk + tkRdk, where tkR 2 (0; 1℄is an appropriately
hosen step size (see, e.g., [8℄). A serious stepxk+1 = yk+1 (7)is taken if yk+1 is signi�
antly better than xk, in other words,f(yk+1) � f(xk) + "LtkRvk; (8)where "L 2 (0; 1=2) is a �xed line sear
h parameter and vk, whi
h is thesolution of the problem (5), represent the predi
ted des
ent of f at xk (see,e.g., [19℄). Otherwise, a null step is taken that keeps the
urrent iterationpoint un
hanged (xk+1 = xk) but the information about the obje
tive fun
-tion is in
reased by adding a new subgradient �k+1 2 �f(yk+1) into a bundle.The global
onvergen
e of bundle methods with a limited number of storedsubgradients
an be guaranteed by using a subgradient aggregation strategy,whi
h a

umulates information from the previous iterations (see [8℄).In their present form, bundle methods are eÆ
ient for small- and medium-s
ale problems. However, their
omputational demand expands in large-s
ale problems with more than 1000 variables. This is explained by the fa
tthat bundle methods need relatively large bundles to be
apable of solvingthe problems eÆ
iently. In other words, the size of the bundle has to be3

approximately the same as the number of variables and, thus, the quadrati
subproblem (6) be
omes very time-
onsuming to solve.In variable metri
 bundle methods introdu
ed by Luk�san and Vl�
ek [14, 24℄,the sear
h dire
tion is
al
ulated by using the variable metri
 approximationof the inverse of the Hessian matrix (Dk = M�1k in (6)). The idea of themethods is to use only three subgradients: one
al
ulated at the
urrentiteration point xk, one
al
ulated at the new auxiliary point yk+1, and anaggregated one,
ontaining information from previous iterations. Thus, thedimension of the normally time-
onsuming quadrati
 subproblem (6) is onlythree and it
an be solved with simple
al
ulations. However, variable metri
bundle methods use dense approximations of the Hessian matrix to
al
ulatethe sear
h dire
tion and, thus, also these methods be
ome ineÆ
ient whenthe dimension of the problem in
reases.We have not found any general bundle-based solver for large-s
ale nonsmoothoptimization problems from the literature. Thus, we
an say that at themoment the only possibility to optimize nonsmooth large-s
ale problems isto use some subgradient methods. However, the basi
 subgradient methodssu�er from some serious disadvantages: a nondes
ent sear
h dire
tion mayo

ur, there exists no implementable stopping
riterion, and the
onvergen
espeed is poor (not even linear) (see, e.g., [11℄). On the other hand, themore advan
ed variable metri
 based subgradient methods (see, e.g., [22℄)using dense matri
es su�er from the same drawba
ks than the variable metri
bundle methods. This means that there is an evident need of reliable andeÆ
ient solvers for nonsmooth large-s
ale optimization problems.In this paper, we introdu
e a new limited memory bundle method for large-s
ale nonsmooth un
onstrained minimization. The method is a hybrid ofthe variable metri
 bundle methods [14, 24℄ and the limited memory variablemetri
 methods (see, e.g., [1, 21℄), where the latter have been developed forsmooth large-s
ale optimization. The new method uses all the ideas of thevariable metri
 bundle method but the sear
h dire
tion is
al
ulated usinga limited memory approa
h. Thus, the time-
onsuming quadrati
 subprob-lem (6) appearing in the standard bundle methods need not to be solved.Furthermore, we use only few ve
tors to represent the variable metri
 approx-imation of the Hessian matrix and, thus, we avoid storing and manipulatinglarge matri
es as is the
ase in variable metri
 bundle methods. These im-provements make the limited memory bundle method suitable for large-s
aleoptimization. Namely, the number of operations needed for the
al
ulationof the sear
h dire
tion and the aggregate values is only linearly dependent onthe number of variables while, for example, with the original variable metri
bundle method, this dependen
e is quadrati
.4

This paper is organized as follows: In the following se
tion we introdu
e thenew limited memory bundle method. In Se
tion 3, we introdu
e a new setof a
ademi
 test problems for large-s
ale nonsmooth minimization. Then, inSe
tion 4, we analyze numeri
al experiments
on
erning some existing bun-dle methods and our new method. The numeri
al results to be presenteddemonstrate the usability of the new method with both smooth and nons-mooth large-s
ale minimization problems. Finally, in Se
tion 5, we
on
ludeby giving a short summary of the performan
e of the methods tested.2 Limited Memory Bundle MethodIn this se
tion, we present a new method for large-s
ale nonsmooth un
on-strained optimization. The method will be
alled the limited memory bundlemethod and its basi
 idea is very simple. We use all the ideas of variablemetri
 bundle methods but the variable metri
 approximation of the Hessianmatrix is
al
ulated by using a limited memory approa
h. This means thatwe use some ideas essential to bundle methods, namely the utilization of nullsteps, simple aggregation of subgradients, and subgradient lo
ality measures,but the sear
h dire
tion is
al
ulated by using the limited memory variablemetri
 updates. The basi
 idea of this limited memory approa
h is that thevariable metri
 update of the approximated Hessian is not
onstru
ted expli
-itly. The updates use the information of the last few iterations to impli
itlyde�ne a variable metri
 approximation. In pra
ti
e, this means that the ap-proximation of the Hessian matrix is not as a

urate as that of the originalvariable metri
 bundle methods but both the storage spa
e required and thenumber of operations used are signi�
antly smaller. In smooth large-s
alesettings, there exist also some other possibilities to deal with the variablemetri
 approximation of the Hessian matrix (see, e.g., [4, 23℄). However, we
hose this limited memory approa
h to be adopted for nonsmooth problemsbe
ause it does not need any information of the stru
ture of the problemor its Hessian. Thus, the only assumption required is that the obje
tivefun
tion f is lo
ally Lips
hitz
ontinuous.Next, we go through the algorithm step by step and des
ribe both its theo-reti
al properties and some details of the implementation. In what follows,we use the following notations: the
urrent iteration is denoted by k andthe approximation of the inverse of the Hessian matrix is denoted by D,the subgradient of the obje
tive fun
tion is denoted by � and an aggregatesubgradient to be des
ribed in Subse
tion 2.3 is denoted by ~�.5

2.1 Dire
tion FindingIn this subse
tion, we des
ribe how to �nd the sear
h dire
tion dk by usingthe limited memory bundle method. The basi
 idea in dire
tion �nding is thesame as with the limited memory variable metri
 methods (see, e.g., [1℄) andthe approximations Dk are formed impli
itly by using the limited memoryvariable metri
 updates.However, due to the usage of null steps some modi�
ations similar to variablemetri
 bundle methods [14, 24℄ have to be made: After a null step, theapproximation Dk is formed by using the limited memory SR1 update (see,e.g., [1℄), sin
e this update formula gives us a possibility of preserving theboundedness of the generated matri
es (that is, the eigenvalues of the matrixlie in the
ompa
t interval not
ontaining zero) (see, e.g., [24℄). In addition,we use an aggregate subgradient ~�k to
al
ulate the sear
h dire
tiondk = �Dk ~�k: (9)Be
ause the boundedness of the generated matri
es is not required aftera serious step (see [24℄), the more eÆ
ient limited memory BFGS updateformula (see, e.g., [1℄) is used to
ompute the approximationDk of the inverseof the Hessian. The sear
h dire
tion dk is
al
ulated by using the originalsubgradient �k 2 �f(xk). Thus, after a serious step, the sear
h dire
tion isde�ned by dk = �Dk�k: (10)Note that the matrix Dk is not formed expli
itly but the sear
h dire
tion dkis
al
ulated using the limited memory approa
h to be des
ribed in Subse
-tion 2.6.2.2 Line Sear
hNext, we
onsider how to
al
ulate a new iteration point xk+1 when the sear
hdire
tion dk has been
al
ulated. Similarly to the standard bundle methodsand the variable metri
 bundle methods, we use the line sear
h pro
edure(see, e.g., [24℄) that generates two pointsxk+1 = xk + tkLdk and (11)yk+1 = xk + tkRdk;where tkR 2 (0; tkI ℄, tkL 2 [0; tkR℄ are step sizes, tkI 2 [tmin; tmax) is the initialstep size, and tmax > 1 and tmin 2 (0; 1) are the upper and the lower bounds6

for the initial step size tkI , respe
tively. Note that in standard bundle meth-ods the initial step size tkI is equal to 1 at every iteration (see, e.g., [20℄).However, similarly to the original variable metri
 bundle method, we havethe possibility to use step sizes greater than 1 here, sin
e the informationabout the obje
tive fun
tion in
luded in the matrix Dk, is not suÆ
ient for aproper step size determination in the nonsmooth
ase (see [24℄). The initialstep size tkI is sele
ted by using a bundle
ontaining auxiliary points and
or-responding fun
tion values and subgradients. The pro
edure used is exa
tlythe same as in the original variable metri
 bundle method for non
onvex ob-je
tive fun
tions. The detailed des
ription of the sele
tion of this step size
an be found in [24℄.A ne
essary
ondition for a serious step to be taken is to havetkR = tkL > 0 and f(yk+1) � f(xk)� "LtkRwk; (12)where "L 2 (0; 1=2) is a �xed line sear
h parameter and wk > 0 representsthe desirable amount of des
ent of f at xk (note that this parameter is notthe same as vk in (8)). If the required
ondition (12) is satis�ed, we setxk+1 = yk+1 (13)and a serious step is taken. A null step is taken, iftkR > tkL = 0 and � �k+1 + dTk �k+1 � �"Rwk; (14)where "R 2 ("L; 1) is a �xed line sear
h parameter, �k+1 2 �f(yk+1), and�k+1 is the subgradient lo
ality measure similar to bundle methods (see, e.g.,[19℄), that is,�k+1 = maxfjf(xk)� f(yk+1) + (yk+1 � xk)T�k+1)j;
kyk+1 � xkk! g; (15)where
 � 0 is a distan
e measure parameter and ! � 1 is a lo
ality measureparameter supplied by the user. The distan
e measure parameter

an beset to zero when f is
onvex.In the
ase of a null step, we set xk+1 = xk (16)but information about the obje
tive fun
tion is in
reased be
ause of theauxiliary point yk+1 and the auxiliary subgradient �k+1 2 �f(yk+1) that westore.The step sizes tkL and tkR for the limited memory bundle method
an bedetermined by using the line sear
h pro
edure quite similar to that at the7

original variable metri
 bundle method [24℄. However, in order to avoidmany
onse
utive null steps, we have added an additional interpolation step.That is, we look for more suitable step sizes tkL and tkR by using an extrainterpolation loop if ne
essary. The role of this additional step is that if wehave already taken a null step at the previous iteration, we rather try to �nda step size suitable for a serious step (that is, so that (12) is valid) even ifthe
ondition (14) required for a null step was satis�ed.Note that under some semismoothness assumptions, the line sear
h pro
edureused is guaranteed to �nd the step sizes tkL and tkR su
h that exa
tly one ofthe two possibilities, serious step or null step, o

urs (see [24℄).2.3 Subgradient AggregationIn this subse
tion, we des
ribe the aggregation pro
edure used with the lim-ited memory bundle method. In prin
iple, the aggregation pro
edure is thesame as that with the original variable metri
 bundle methods [14, 24℄. How-ever, sin
e the matrix Dk is not formed expli
itly here, the pra
ti
al im-plementation of the aggregation pro
edure di�ers from that of the originalmethod.The aggregation pro
edure uses three subgradients and two lo
ality measures.We denote by m the lowest index j satisfying xj = xk (that is, m is the indexof the iteration after the latest serious step). Suppose that we have the
ur-rent subgradient �m 2 �f(xk), the auxiliary subgradient �k+1 2 �f(yk+1),and the
urrent aggregate subgradient ~�k (note that ~�1 = �1) available. Inaddition, suppose that we have the
urrent lo
ality measure �k+1 (see (15))and the
urrent aggregate lo
ality measure ~�k from the previous iteration(note that ~�1 = 0). The quite
ompli
ated quadrati
 subproblem (6) ap-pearing in the standard bundle methods redu
es to the minimization of thefun
tion'(�1; �2; �3) = (�1�m + �2�k+1 + �3~�k)TDk(�1�m + �2�k+1 + �3~�k) (17)+ 2(�2�k+1 + �3 ~�k);where �i � 0 for i 2 f1; 2; 3 g and P3i=1 �i = 1. The optimal values �ki ,i 2 f1; 2; 3 g
an be
al
ulated by using simple formulae (see [24℄). However,sin
e we do not form the matrixDk expli
itly, we have to use limited memoryBFGS (the �rst null step after any serious step) or SR1 (more than one
onse
utive null steps) update to impli
itly de�ne the approximation of theinverse of the Hessian matrix. 8

Now the next aggregate subgradient ~�k+1 is de�ned as a
onvex
ombinationof the three subgradients mentioned above:~�k+1 = �k1�m + �k2�k+1 + �k3~�k (18)and the next aggregate lo
ality measure ~�k+1 as a
onvex
ombination of thetwo lo
ality measures: ~�k+1 = �k2�k+1 + �k3 ~�k: (19)Note that the aggregate values are
omputed only if the last step was a nullstep. Otherwise, we set ~�k+1 = �k+1 2 �f(xk+1) and ~�k+1 = 0.2.4 Stopping CriterionFor smooth fun
tions, a ne
essary
ondition for a lo
al minimum is thatthe gradient has to be zero and by
ontinuity it be
omes small when weare
lose to an optimal point. This is no longer true when we repla
e thegradient by an arbitrary subgradient. Due to the subgradient aggregation,we have quite a useful approximation to the gradient, namely the aggregatesubgradient ~�k. However, as a stopping
riterion, the dire
t test k~�kk < ",for some " > 0, is too un
ertain, if the
urrent pie
ewise linear approximation(see (3)) is too rough. Therefore, we use the approximation Dk of the inverseof the Hessian matrix and the aggregate subgradient lo
ality measure ~�kto improve the a

ura
y of the norm of the aggregate subgradient. Theaggregate subgradient lo
ality measure ~�k approximates the a

ura
y of the
urrent linearization: If the value of the lo
ality measure is large, then thelinearization is rough. On the other hand, if the value is near zero, then thelinearization is quite a

urate and, thus, we
an stop the algorithm if thenorm of the aggregate subgradient is small enough.Sin
e in pra
ti
e the matrix Dk is not formed expli
itly we use the dire
tionve
tor dk = �Dk~�k instead. Hen
e, the stopping parameter wk at iterationk is de�ned by wk = �2~�Tkdk + 4~�k: (20)The multipliers 2 and 4 in (20) are
hosen experimentally su
h that thea

ura
y of the new method would be approximately the same as with theother bundle methods. Note that the parameter wk is also used during theline sear
h pro
edure (see (12)) to represent the desirable amount of des
ent.9

This �rst part of our stopping
riterion is quite similar to that of the originalvariable metri
 bundle method. However, in pra
ti
e the limited memoryapproximation Dk of the inverse of the Hessian matrix is not very a

urateand
omputational experiments showed that some a

idental terminationsmay o

ur (that is, the optimization was terminated before the minimumpoint was a
tually a
hieved). Thus, we added a se
ond stopping parameterqk, whi
h does not depend on the matrixDk. The se
ond stopping parameteris similar to that in standard bundle methods (see, e.g. [20℄), that isqk = 12~�Tk ~�k + ~�k: (21)Now, the stopping
riterion is given by:If wk < " and qk < 103", for given " > 0, then stop. (22)As before, the multiplier 103 above is
hosen experimentally.2.5 AlgorithmWe are now ready to present the limited memory bundle method for nons-mooth large-s
ale un
onstrained optimization.Algorithm 1. (Limited Memory Bundle Method).Data: Sele
t the upper and the lower bounds tmax > 1 and tmin 2 (0; 1)for serious steps. Sele
t positive line sear
h parameters "L 2 (0; 1=2)and "R 2 ("L; 1). Choose the �nal a

ura
y toleran
e " > 0, thedistan
e measure parameter
 � 0 (
 = 0 if f is
onvex), and thelo
ality measure parameter ! � 1.Step 0: (Initialization.) Choose a starting point x1 2 Rn . Set �1 = 0 andy1 = x1. Compute f1 = f(x1) and�1 2 �f(x1):Set the iteration
ounter k = 1.Step 1: (Serious step initialization.) Set the aggregate subgradient ~�k = �kand the aggregate subgradient lo
ality measure ~�k = 0. Set an indexfor the serious step m = k. 10

Step 2: (Dire
tion �nding.) Computedk = �Dk~�kby a limited memory BFGS update, if m = k (Algorithm 3) and bya limited memory SR1 update, otherwise (Algorithm 2). Note thatd1 = � ~�1.Step 3: (Stopping
riterion.) Cal
ulate wk and qk by (20) and (21), respe
-tively. If wk < " and qk < 103", then stop.Step 4: (Line sear
h.) Cal
ulate the initial step size tkI 2 [tmin; tmax). Deter-mine the step sizes tkR 2 (0; tkI ℄ and tkL 2 [0; tkR℄ to take either a seriousstep or a null step (that is,
he
k whether (12) or (14) is valid). Setthe
orresponding valuesxk+1 = xk + tkLdk;yk+1 = xk + tkRdk;fk+1 = f(xk+1);�k+1 2 �f(yk+1):Set uk = �k+1 � �m and sk = yk+1 � xk = tkRdk. If tkL > 0 (seriousstep), set �k+1 = 0, k = k+1, and go to Step 1. Otherwise,
al
ulatethe lo
ality measure �k+1 by (15).Step 5: (Aggregation.) Determine multipliers �ki � 0, i 2 f1; 2; 3g,P3i=1 �ki =1 that minimize the fun
tion (17), where Dk is obtained by the lim-ited memory BFGS update, if m = k and by the limited memorySR1 update, otherwise. Set~�k+1 = �k1�m + �k2�k+1 + �k3~�k and~�k+1 = �k2�k+1 + �k3 ~�k:Set k = k + 1 and go to Step 2.Note that in Steps 2 and 5, the matri
es Dk are not formed expli
itly but thesear
h dire
tion dk, and the aggregate values ~�k+1, and ~�k+1 are
al
ulatedusing the di�eren
e ve
tors uk and sk.As mentioned in Subse
tion 2.3, the aggregation pro
edure uses only threesubgradients and two lo
ality measures to
al
ulate the new aggregate values.In pra
ti
e, this means that the minimum size of the bundle m� is 2 and alarger bundle is used only for the sele
tion of the initial step size (see [24℄).11

2.6 Matrix UpdatingFinally, we need to
onsider how to update the approximation Dk of theinverse of the Hessian matrix and thus, how to �nd the sear
h dire
tion dk.Note that until this point, the pro
edures des
ribed are very similar to thoseof the original variable metri
 bundle method [24℄.We use a
ompa
t representation of limited memory matri
es (see [1℄), sin
ein addition to the BFGS updating formula, we need the SR1 updating formulaand for SR1 updates, there exists no re
ursive updating formula analogous tothat given in [21℄. Moreover, the
ompa
t representation of limited memorymatri
es fa
ilitates the possibility to generalize the method for
onstrainedoptimization.The basi
 idea of the limited memory matrix updating is that instead ofstoring the matri
es Dk, we use the information of the last few iterationsto impli
itly de�ne the approximation of the inverse of the Hessian. This isdone by storing a
ertain number of
orre
tion pairs (si;ui), (i < k), wheresk = yk+1 � xk and (23)uk = �k+1 � �m:Here, as before, yk+1 is the
urrent auxiliary iteration point, xk is the
urrentiteration point, and �k+1 and �m are the
orresponding subgradients of thesepoints (m is the index of the iteration after the latest serious step). Whenthe storage spa
e available is used up, the oldest
orre
tions are deleted tomake room for new ones. All the subsequent iterations are of this form: one
orre
tion pair is deleted and a new one is inserted.Let us denote by m
 the maximum number of stored
orre
tions supplied bythe user (3 � m
) and by mk = min f k�1; m
 g the
urrent number of stored
orre
tions. We assume that the maximum number of stored
orre
tions m
is
onstant, although it is possible to adapt all the formulae of this subse
tionto the
ase where m
 varies at every iteration (see, e.g., [9℄).The n�mk -dimensional
orre
tion matri
es Sk and Uk are de�ned bySk = �sk�mk : : : sk�1� and (24)Uk = �uk�mk : : : uk�1� :These
orre
tion matri
es are used to impli
itly de�ne the approximation ofthe inverse of the Hessian matrix at ea
h iteration. When a new auxiliaryiteration point yk+1 is generated, the new
orre
tion matri
es Sk+1 and Uk+1are obtained by deleting the oldest
orre
tions sk�mk and uk�mk from Sk and12

Uk if mk+1 = mk (that is, k > m
) and by adding the most re
ent
orre
tionssk and uk to the matri
es. Thus, ex
ept for the �rst few iterations, we alwayshave the m
 most re
ent
orre
tion pairs (si;ui) available.We de�ne the inverse limited memory BFGS update by the formula (see [1℄)Dk = #kI + �Sk #kUk� �(R�1k)T (Ck + #kUTk Uk)R�1k �(R�1k)T�R�1k 0 � � STk#kUTk � :(25)Here, Rk is an upper triangular matrix of order mk given by the form(Rk)ij = ((sk�mk�1+i)T (uk�mk�1+j) if i � j0 otherwise, (26)Ck is a diagonal matrix of order mk su
h thatCk = diag [sTk�mkuk�mk ; : : : ; sTk�1uk�1℄; (27)and the multiplier #k > 0 is given by#k = uTk�1sk�1uTk�1uk�1 : (28)In addition, we de�ne the inverse limited memory SR1 update (see [1℄) byDk = #kI � (#kUk � Sk)(#kUTk Uk � Rk �RTk + Ck)�1(#kUk � Sk)T ; (29)where instead of (28) we use the value #k = 1 for every k.Next, we des
ribe some pro
edures for updating the limited memory BFGSand SR1 matri
es. In addition to the two n �mk -matri
es Sk and Uk, themk � mk -matri
es Rk, UTk Uk, and Ck are stored. Sin
e in pra
ti
e mk is
learly smaller than n, the storage spa
e required by these three auxiliarymatri
es is insigni�
ant but the savings in
omputational e�orts are
on-siderable. We also give some ideas of how the sear
h dire
tion dk
an be
al
ulated by using these di�erent updates. After dis
ussing the
al
ulationsseparately, we then link them together.At the k-th iteration, we have to update the limited memory representationof Dk�1 to get Dk. Thus, we delete a
olumn from Sk�1 and Uk�1 and adda new
olumn to ea
h of these matri
es. Then, we make the
orrespondingupdates to Rk�1, UTk�1Uk�1, and Ck�1. These updates
an be done in O(m2k)operations by storing a small amount of additional information, namely the13

mk-ve
tors STk�1�m and UTk�1�m from the previous iteration. For example,the new triangular matrix Rk is formed from Rk�1 (see (26)) by deleting the�rst row and the �rst
olumn if mk = mk�1 and by adding a new
olumn tothe right and a new row to the bottom of the matrix. The new
olumn isgiven by STk uk�1 = STk (�k � �m) (30)and the new row has the value zero in its �rst mk � 1
omponents. Theprodu
t STk uk�1
an be
omputed eÆ
iently sin
e we already know mk � 1
omponents of STk �m from STk�1�m. We only need to
al
ulate sTk�1�m and
arry out the subtra
tions. The matrix UTk Uk
an be updated in a similarway. In this
ase, both the new
olumn and the new row are given by UTk uk�1.The diagonal matrix Ck is updated by deleting the �rst element of Ck�1 andadding sTk�1uk�1 as the last element (note that Ck is stored as a ve
tor).Next, we give an eÆ
ient algorithm for updating the limitedmemory SR1 ma-trix Dk and for
omputing the sear
h dire
tion dk = �Dk~�k. This algorithmis used whenever the previous step was a null step. Suppose that the numberof
urrent
orre
tions is mk and that we have the
urrent iteration point xk,the previous
orre
tions sk�1 and uk�1, the
urrent (auxiliary) subgradient�k 2 �f(yk), the
urrent aggregate subgradient ~�k, the basi
 subgradient�m 2 �f(xk), the n � mk -matri
es Sk�1 and Uk�1, the mk � mk -matri
esRk�1, UTk�1Uk�1, and Ck�1, and the ve
tors STk�1�m and UTk�1�m available.Algorithm 2. (SR1 Updating and Dire
tion Finding).Step 1: If �dTk�1uk�1 � ~�Tk�1sk�1 < 0;then update the matri
es (i.e., go to Step 2). Otherwise, skip theupdates, that is, set Sk = Sk�1, Uk = Uk�1, Rk = Rk�1, UTk Uk =UTk�1Uk�1, Ck = Ck�1, STk �m = STk�1�m, and UTk �m = UTk�1�m and goto Step 6.Step 2: Obtain Sk and Uk by updating Sk�1 and Uk�1.Step 3: Compute mk-ve
tors STk �k and UTk �k.Step 4: Compute mk-ve
tors STk uk�1 and UTk uk�1 by using the fa
tuk�1 = �k � �m:Store mk-ve
tors STk �m and UTk �m.14

Step 5: Update mk �mk -matri
es Rk, UTk Uk, and Ck.Step 6: Set #k = 1:0.Step 7: Compute mk-ve
tors STk ~�k and UTk ~�k.Step 8: Computep = (#kUTk Uk �Rk � RTk + Ck)�1(#kUTk ~�k � STk ~�k):Step 9: Compute dk = �#k~�k + (#kUk � Sk)p:Note that the
ondition (see Step 1)�dTi ui � ~�Ti si < 0 for all i = 1; : : : ; k � 1 (31)assures the positive de�niteness of the matri
es obtained by the limited mem-ory SR1 update (see [6℄).Due to the fa
t that after a serious step the aggregate subgradient ~�k = �k 2�f(xk) and sk = xk+1 � xk anduk = �k+1 � �k;(note that in the
ase of a serious step this representation of sk and uk isnot
on
i
ting with (23)), the
al
ulations used are very similar to thosegiven in [1℄. In fa
t, all the
al
ulations in [1℄
ould be done by repla
ing thegradientrf(x) by an arbitrary subgradient � 2 �f(x). However, rather thanupdating and inverting the upper triangular matrix Rk at every iteration, weupdate and store the inverse R�1k .We now give an eÆ
ient algorithm for updating the limited memory BFGSmatrixDk and for
omputing the sear
h dire
tion dk = �Dk�k when the pre-vious step was a serious step. Suppose that we have the
urrent subgradient�k 2 �f(xk), the previous subgradient �k�1 2 �f(xk�1), the mk � mk -matri
es R�1k�1, UTk�1Uk�1, and Ck�1, and the previous multiplier #k�1 avail-able.
15

Algorithm 3. (BFGS Updating and Dire
tion Finding).Step 1: If uTk�1sk�1 > 0;then update the matri
es (i.e., go to Step 2). Otherwise, skip theupdates, that is, set Sk = Sk�1, Uk = Uk�1, Rk = Rk�1, UTk Uk =UTk�1Uk�1, Ck = Ck�1, and #k = #k�1,
ompute STk �k and UTk �k, andgo to Step 7.Step 2: Obtain Sk and Uk by updating Sk�1 and Uk�1.Step 3: Compute and store mk-ve
tors STk �k and UTk �k.Step 4: Compute mk-ve
tors STk uk�1 and UTk uk�1 by using the fa
tuk�1 = �k � �k�1:Step 5: Update mk �mk -matri
es R�1k , UTk Uk, and Ck.Step 6: If uTk�1uk�1 > 0,
ompute #k#k = uTk�1sk�1uTk�1uk�1 :Note that both uTk�1sk�1 and uTk�1uk�1 have already been
al
ulated.Otherwise, set #k = 1:0.Step 7: Compute two intermediate valuesp1 = R�1k STk �k;p2 = (R�1k)T (Ckp1 + #kUTk Ukp1 � #kUTk �k):Step 8: Compute dk = #kUkp1 � Skp2 � #k�k:Note that the
ondition (see Step 1)uTi si > 0 for all i = 1; : : : ; k � 1 (32)assures the positive de�niteness of the matri
es obtained by the limited mem-ory BFGS update (see, e.g., [1℄). 16

In order to use both the Algorithms 2 and 3 with the same stored information,some modi�
ations have to be made. Firstly, we have to update and storeboth matri
es Rk and R�1k at ea
h iteration regardless of the update formulawe are using. In addition, sin
e we use the same
orre
tion matri
es Sk andUk for the
al
ulations of both the BFGS and the SR1 updates, we have totest both the positive de�niteness
onditions (31) and (32) in ea
h
ase beforewe update the matri
es. However, numeri
al experiments have showed thatthe simple skipping of the updates (see Algorithms 2 and 3, Step 1), if boththe required
onditions are not satis�ed, makes the method quite ineÆ
ient.This is due to the fa
t that the BFGS update was usually skipped due to
ondition (31) required for the SR1 update. Therefore, we use the most re
ent
orre
tions sk�1 and uk�1 to
al
ulate the new sear
h dire
tion dk wheneverthe required positive de�niteness
ondition is valid but the matri
es are notupdated unless both the
onditions (31) and (32) are satis�ed. In pra
ti
e,this means that the
orre
tion matri
es Sk and Uk may a
tually in
lude someindi
es smaller than k �mk and that the number of the
urrent
orre
tionsused may be mk = m
 + 1.The new limited memory bundle method uses a limited memory approa
hto
al
ulate the sear
h dire
tion and it requires only three subgradients andtwo lo
ality measures to
al
ulate the new aggregate values. Thus, the time-
onsuming quadrati
 subproblem (6) appearing in standard bundle methodsneeds not to be solved and the size of the bundle needs not to in
rease withthe dimension of the problem. Furthermore, both the sear
h dire
tion dkand the aggregate values ~�k+1 and ~�k+1
an be
omputed impli
itly using atmost O(nm
) operations. Assuming m
 � n, this is mu
h less than O(n2)operations needed with the original variable metri
 bundle method, whi
hstores and manipulates the whole matrix Dk. These improvements makethe limited memory bundle method suitable for large-s
ale problems. Thisassertion is supported by numeri
al tests presented in Se
tion 4.3 Large-S
ale Nonsmooth Test ProblemsMany pra
ti
al optimization appli
ations involve nonsmooth fun
tions ofmany variables. However, there exist only few large-s
ale a
ademi
 test prob-lems for the nonsmooth
ase. For this reason, we now introdu
e a new setof large-s
ale un
onstrained minimization problems for nonsmooth optimiza-tion.
17

We have made 10 nonsmooth problems whi
h all
an be formulated with anynumber of variables. The problems are
onstru
ted either by
haining andextending small existing nonsmooth problems or by \nonsmoothing" largesmooth problems (that is, for example, by repla
ing the term x2i with jxij).First, we give the formulation of the obje
tive fun
tion f(x) and the startingpoint x1 for ea
h problem. Then, we
olle
t some details of the problems aswell as the referen
es to the original problems in Table 1.1. Generalization of MAXQf(x) = max1�i�n x2i .x1i = i, for i = 1; : : : ; n=2 andx1i = �i, for i = n=2 + 1; : : : ; n.2. Generalization of MXHILBf(x) = max1�i�n ���Pnj=1 xji+j�1���.x1i = 1, for all i = 1; : : : ; n.3. Chained LQf(x) =Pn�1i=1 max��xi � xi+1;�xi � xi+1 + (x2i + x2i+1 � 1)	.x1i = �0:5, for all i = 1; : : : ; n.4. Chained CB3 If(x) =Pn�1i=1 max� x4i + x2i+1; (2� xi)2 + (2� xi+1)2; 2e�xi+xi+1 	.x1i = 2, for all i = 1; : : : ; n.5. Chained CB3 IIf(x) = max�Pn�1i=1 �x4i + x2i+1� ;Pn�1i=1 ((2� xi)2 + (2� xi+1)2) ;Pn�1i=1 (2e�xi+xi+1)	.x1i = 2, for all i = 1; : : : ; n. 18

6. Number of A
tive Fa
esf(x) = max1�i�n f g (�Pni=1 xi) ; g(xi) g,where g(y) = ln (jyj+ 1).x1i = 1, for all i = 1; : : : ; n.7. Nonsmooth generalization of Brown fun
tion 2f(x) =Pn�1i=1 �jxijx2i+1+1 + jxi+1jx2i+1�.x1i = �1, when mod (i; 2) = 1; (i = 1; : : : ; n) andx1i = 1, when mod (i; 2) = 0; (i = 1; : : : ; n).8. Chained Mi�in 2f(x) =Pn�1i=1 ��xi + 2 �x2i + x2i+1 � 1�+ 1:75 ��x2i + x2i+1 � 1�� �.x1i = �1, for all i = 1; : : : ; n.9. Chained Cres
ent If(x) = max�Pn�1i=1 �x2i + (xi+1 � 1)2 + xi+1 � 1� ;Pn�1i=1 ��x2i � (xi+1 � 1)2 + xi+1 + 1�	.x1i = �1:5, when mod (i; 2) = 1; (i = 1; : : : ; n) andx1i = 2:0, when mod (i; 2) = 0; (i = 1; : : : ; n).10. Chained Cres
ent IIf(x) =Pn�1i=1 max�x2i + (xi+1 � 1)2 + xi+1 � 1;�x2i � (xi+1 � 1)2 + xi+1 + 1	.x1i = �1:5, when mod (i; 2) = 1; (i = 1; : : : ; n) andx1i = 2:0, when mod (i; 2) = 0; (i = 1; : : : ; n).The details of the problems are given in Table 1, where P denotes the prob-lem number, f(x�) is the minimum value of the obje
tive fun
tion, and the19

Table 1: Test problemsP f(x�) Convex Original problem and referen
e1 0.0 + MAXQ, n = 20, see, e.g., [20℄2 0.0 + MXHILB, n = 50, see, e.g., [18℄3 �(n� 1)p2 + LQ, n = 2, see, e.g., [20℄4 2(n� 1) + CB3, n = 2, see, e.g., [20℄5 2(n� 1) + CB3, n = 2, see, e.g., [20℄6 0.0 � See [5℄7 0.0 � Generalization of Brown fun
tion 2, see, e.g., [15℄8 varies� � Mi�in 2, n = 2, see, e.g., [20℄9 0.0 � Cres
ent, n = 2, see, e.g., [20℄10 0.0 � Cres
ent, n = 2, see, e.g., [20℄* f(x�) � �6:51 for n = 10, f(x�) � �70:15 for n = 100 and f(x�) � �706:55 for n = 1000.symbols � (non
onvex) and + (
onvex) denote the
onvexity of the prob-lems. Also the referen
es to the original problem in ea
h
ase are given inTable 1.4 Numeri
al ExperimentsIn order to get some information of how the new method works in pra
ti
ewhen
ompared to other nonsmooth methods, we tested di�erent existingprograms with several problems. In this se
tion, we �rst introdu
e the testedsoftware. Then, we give the results from the numeri
al experiments and drawsome
on
lusions.4.1 Tested SoftwareIn this subse
tion, we �rst introdu
e the programs used in our experiments.The experiments were performed in a SGI Origin 2000/128 super
omputer(MIPS R12000, 600 M
op/s/pro
essor). The algorithms were implementedin FORTRAN77 with double-pre
ision arithmeti
. The pie
es of softwaretested are presented in Table 2. None of the nonsmooth optimization pro-grams PVAR, PBUN, PNEW, and PBNCGC has been developed for large-s
ale op-timization. On the other hand, we wanted to get some information of thebehavior of the new program LMBM espe
ially with large-s
ale problems. Forthis reason, we used the smooth large-s
ale optimization program L-BFGSas a ben
hmark. Thus, all the programs were �rst tested with 22 smooth20

Table 2: Tested pie
es of softwareSoftware Author(s) Method Referen
ePVAR Luk�san & Vl�
ek Variable metri
 bundle [14, 24℄PNEW Luk�san & Vl�
ek Bundle-Newton [13℄PBUN Luk�san & Vl�
ek Proximal bundle [17℄PBNCGC M�akel�a Proximal bundle [20℄L-BFGS No
edal Limited memory BFGS [12, 21℄LMBM Haarala Limited memory bundleminimization problems, whi
h all
ould be formulated with any number ofvariables. A detailed des
ription of these problems
an be found in [15℄.Then, the programs for nonsmooth optimization (that is, all the programs inTable 2 ex
ept L-BFGS) were tested with 10 nonsmooth minimization prob-lems des
ribed earlier. Finally, the programs for nonsmooth optimizationwere tested with a pra
ti
al nonsmooth image restoration problem. A de-tailed des
ription of the problem
an be found in [10℄.4.2 Numeri
al ResultsSmooth test problems. All the programs given in Table 2 were �rsttested with 22 smooth problems with the numbers of variables 10, 100 and1000 and in
ase of the limited memory programs L-BFGS and LMBM also with10 000 variables.We tested the bundle programs PVAR, PNEW, PBUN, PBNCGC, and LMBM withrelatively small sizes of the bundle (m�). That is, m� = 10 for the bundle-Newton program PNEW and for both the proximal bundle programs PBUNand PBNCGC, and m� = 2 for the variable metri
 bundle programs PVAR andLMBM. For the limited memory programs L-BFGS and LMBM, the maximumnumber of stored
orre
tions (m
) was set to 7. As a stopping parameter,we used " = 10�6 in all the
ases. The other parameters used were
hosenexperimentally.In the test results to be reported, we say that the optimization terminatedsu

essfully if� the problem was solved with the desired a

ura
y. That is, wk � ",where wk = 12k~�kk2+ ~�k in PNEW, PBUN, and PBNCGC, wk = ~�TkDk~�k+2~�k in PVAR, wk = 2 ~�TkDk~�k + 4~�k in LMBM (note that also 12k~�kk2 +~�k � 103"), and wk = krf(xk)k=maxf1; kxkkg in L-BFGS.21

In addition, for the programs PVAR, PNEW, PBUN and LMBM we say that theoptimization terminated su

essfully if� jfk+1 � fkj � 1:0 � 10�8 in 10 subsequent iterations.Otherwise, we say that the optimization failed.The results of the smooth experiments are summarized in Figure 1 and inTable 3. In Figure 1, we give the average CPU time elapsed for problemsin proportion to the number of variables for ea
h of the six programs (notethat we have naturally
al
ulated some extra data points to obtain a realisti
�gure). In Table 3, we have
al
ulated the average number of iterations (Ni)and fun
tion evaluations (Nf) needed for problems of di�erent sizes. Theproblems where the optimization has failed (fail) are not in
luded in the data.Sin
e for almost every tested program there existed one problem in the setof 22 problems that needed mu
h more iterations than the others, we alsoremoved in ea
h
ase the problems that used the largest and the smallestnumber of iterations. In addition, we give the number of the ina

urateresults o

urred (#) within the 22 problems. That is, the number of problemswhere optimization has not failed but the pre
ision of the result is more thantwo signi�
ant digits greater than the desired a

ura
y of the solution. Theblanks in the table mean that the problems were not tested in these
ases.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

C
P

U
 ti

m
e

el
ap

se
d

(s
ec

)

Number of variables

PNEW
PVAR
PBNCGC
PBUN
L−BFGS
LMBM

Figure 1: Average CPU time elapsed for smooth problems.22

Table 3: Average results with 22 smooth problems.Program/n 10 100 1000 10000Ni/Nf/fail Ni/Nf/fail Ni/Nf/fail Ni/Nf/failPVAR 34/35/0 170/179/0 1668/1885/0(1) {PNEW 20/21/0 35/38/0 20/21/3 {PBUN 71/73/0 216/218/1(4) 1407/1410/1(7) {PBNCGC 80/99/0 338/428/0 2414/4131/0 {L-BFGS 36/45/0 181/212/1 960/998/3 13142/14522/5(1)LMBM 31/34/0 92/105/0 338/355/0 6432/7587/0(1)(#) Number (#) of ina

urate results obtained.To sum up, all the tested programs worked well for small- and medium-s
aleproblems (n � 100) but with large-s
ale problems the programs other thanthose using the limited memory approa
h be
ame
omputationally ineÆ
ient(see Figure 1). The new limited memory bundle program LMBM was the mosteÆ
ient method in all the
ases. It found the lo
al minimum in a reliableway and in our experiments it was also very robust while, for example, PVARand PBUN were very sensitive to the
hoi
e of internal parameters. Also thelimited memory BFGS program L-BFGS was eÆ
ient with both small- andlarge-s
ale smooth problems. However, when the dimension of the problemsin
reased, L-BFGS had some diÆ
ulties with the line sear
h and it failed tosolve some of the problems.Nonsmooth test problems. The programs for nonsmooth optimization(that is, all the programs in Table 2 ex
ept L-BFGS) were tested also withthe ten nonsmooth minimization problems 1{10 des
ribed in Se
tion 3. Thenumbers of variables used were 10, 100 and 1000.We tested the programs with di�erent sizes of bundles (m�). For the bundle-Newton program PNEW and for both the proximal bundle programs PBUN andPBNCGC, the sizes of bundles used were 10 and 100, and for the variable metri
bundle programs PVAR and LMBM, the sizes of bundles were 2 and 100. ForLMBM, the maximum number of stored
orre
tions (m
) was set to 7.In our nonsmooth experiments, the following values of parameters were used:� For
onvex problems 1{5, the distan
e measure parameter
 = 0 wasused with the programs PBUN, PBNCGC, and LMBM.With PNEW, the distan
e measure parameter
 = 0:001 was used sin
ethe value of
 has to be positive (see [13℄).With PVAR, the
onvex version of the program was used.23

� For non
onvex problems 6{10, the distan
e measure parameter
 =0:50 was used with all the programs and we used the non
onvexversion of the program PVAR.� The stopping parameter " = 10�5 was used in all the
ases.� Otherwise, the default parameters were used with all the programs.� In addition to the stopping
riteria already mentioned, we terminatedthe experiments if the CPU time elapsed ex
eeded half an hour.The average results of the nonsmooth experiments are summarized in Table 4.For all the programs, we �rst give the results obtained with the smaller bundleand then below the results obtained with the larger bundle. The average CPUtime elapsed (time) is given in se
onds. Otherwise, the results are given asbefore and in ea
h
ase we have removed from the data the problems thatused the largest and the smallest number of iterations.Table 4: Average results with 10 nonsmooth problems.Program/n 10 100 1000Ni/Nf/fail time Ni/Nf/fail time Ni/Nf/fail timePVAR 185/200/1 0.006 589/597/2 0.29 17782/6497/3(3) 902.6181/86/0 0.005 303/311/1 0.26 1713/1717/3(1) 156.61PNEW 80/89/1 0.014 296/314/3 3.26 164/273/1(2) 1324.1290/98/0 0.084 144/158/2 8.33 73/146/1(2) 957.61PBUN 101/105/0 0.007 840/918/1 0.30 913/1031/4 10.1756/59/0 0.007 222/230/2 0.73 1958/2010/1 46.13PBNCGC 55/64/0 0.005 16799/16957/3 7.94 139526/139545/0(1) 906.2041/50/0 0.005 269/307/1 2.61 3337/3348/1 771.85LMBM 583/3113/0 0.031 373/1176/0 0.08 420/1374/0 0.76126/152/0 0.008 238/269/0(1) 0.10 232/283/1(1) 1.38(#) Number (#) of ina

urate results obtained.For smooth problems, the average results (see Table 3 and Figure 1) givequite a realisti
 impression of the behavior of the programs. However, fornonsmooth problems, the average results given in Table 4 may be misleadingespe
ially when the size of the problems is large. For example, with 1000variables, the proximal bundle program PBNCGC either used the whole timelimit available (in problems 1, 3, 4, 8 and 10) or then solved the problemreally fast (in problems 2, 5, 6, 7 and 9). In fa
t, PBNCGC (with m� = 100)was the most eÆ
ient program tested with three problems (that is, problems2, 6 and 7). The same kind of an e�e
t
an also be seen with the other24

proximal bundle program PBUN, although it never needed the whole timelimit and, on the other hand, it was the most eÆ
ient program only with oneproblem (in problem 1). PBUN was also the only program that
ould solveproblem 1 with 1000 variables properly within the given time limit. Withall the other problems our new program LMBM, was the most eÆ
ient methodwith 1000 variables. In fa
t, LMBM was usually the most eÆ
ient program alsowith 100 variables but the di�eren
es were not substantial in these
ases. Inall the
ases, LMBM outperformed the original variable metri
 bundle programPVAR and the bundle Newton program PNEW already with 100 variables.With large-s
ale problems, our new program LMBM usually needed less iter-ations and fun
tion evaluations than the other programs ex
ept the bundleNewton program PNEW whi
h, however, was the most time-
onsuming of theprograms tested due to matrix operations. Thus, LMBM should be an eÆ
ientmethod also in the
ases where the fun
tion and the subgradient evaluationsare expensive.Now, let us for a while
on
entrate only on our new program LMBM sin
e inlarge-s
ale
ases it usually outperforms the other bundle programs tested.We tested LMBM with di�erent sizes of bundles and with di�erent maximumnumbers of stored
orre
tions. The sizes of the bundles were the same asbefore, that is m� = 2 and m� = 100, and the maximum numbers of stored
orre
tions were set to 3, 7, and 15. In what follows, we denote these di�erentmodi�
ations by LMBM(3), LMBM(7), and LMBM(15).In Table 5, we report the results obtained with the di�erent modi�
ationsof our new program for ea
h nonsmooth problem with 1000 variables. Asbefore, we �rst give the results obtained with the smaller bundle and thenbelow the results obtained with the larger bundle. At the bottom of Table 5,we give the average results
al
ulated exa
tly as in Table 4. Our goal is toidentify the
lasses of problems for whi
h our new program is e�e
tive. Inaddition, we are interested in the best values for the maximum number ofstored
orre
tions and the size of the bundle.It
an be seen in Table 5 that our new program had serious diÆ
ulties withproblem 1. These diÆ
ulties were quite predi
table, sin
e there exists onlyone nonzero
omponent in the subgradient ve
tor of the obje
tive fun
tionat ea
h iteration. In pra
ti
e, this means that the approximation of theinverse of the Hessian matrix be
omes sparse, and thus, the sear
h dire
tionmay be quite ina

urate. Also smooth limited memory methods have beenreported to be best suited for problems where the Hessian matrix is not verysparse [12℄. 25

Table 5: Results with the nonsmooth problems with 1000 variables.LMBM(3) LMBM(7) LMBM(15)P Ni/Nf Time Ni/Nf Time Ni/Nf Time1 2390162/2390383� 1800.00 1627489/2098714� 1800.00 914774/915235� 1800.00fail { fail { fail {2 326/1007� 70.78 61/135� 9.49 104/263� 18.49322/417� 30.00 62/102� 7.28 63/104� 7.363 167/528 0.12 152/422 0.13 223/587 0.27138/163 0.36 153/195 0.44 203/303 0.774 158/483 0.22 250/820 0.43 263/825 0.5432/33 0.03 125/159 0.35 219/331 0.965 32/87 0.04 150/424 0.22 169/372 0.2232/38 0.04 81/89 0.14 58/60 0.096 536/537 0.22 538/539 0.22 538/539 0.23529/531 2.16 529/531 2.13 529/531 2.137 283/1179 2.19 417/1672 3.33 237/431 0.99237/244� 1.17 168/183 2.56 183/224 0.928 416/1319 0.28 710/2462 0.64 1351/3315 1.62230/308 0.79 479/650 2.08 1749/2192 9.009 149/351 0.10 92/103 0.06 142/238 0.11159/162 0.52 143/143 0.38 127/268 0.3010 774/4312� 0.71 1049/4509 1.07 867/3062 1.17276/342� 1.00 477/559� 2.73 366/467� 1.64Aver. 351/1215 9.33 420/1374 0.76 474/1171 0.64Aver. 199/239 4.84 232/283 1.38 241/318 2.01* An ina

urate result obtained.The program LMBM had also some diÆ
ulties with problem 2. With all thetested versions, the optimization was terminated before the minimum pointwas a
tually a
hieved. The reason for this premature termination is that atevery iteration, the subgradient ve
tor of the obje
tive fun
tion is of the form�(1=i; 1=(i+1); : : : ; 1=(i+ n� 1)), where i is the index of the max-fun
tion.When i is large, the norm of the subgradient be
omes small and we stopthe
omputation. For some reason, the approximation of the inverse of theHessian matrix does not prevent this termination. Anyhow, this kind of adiÆ
ulty is very easy to avoid: we just have to tighten the se
ond stopping
riterion in (22).All the other problems 3{10 were solved su

essfully with our new programLMBM. In all these
ases, the subgradient ve
tor of the obje
tive fun
tion
on-tains many nonzero entries and the values of these
omponents depend on the
urrent iteration point xk. However, also with these problems, there o

urredsome ina

urate results espe
ially with the version LMBM(3). The
omputa-tional times used with LMBM(3) were usually little smaller than those withLMBM(7) or LMBM(15) but the di�eren
es were insigni�
ant. When
omparingthe versions LMBM(7) and LMBM(15), there was no a substantial di�eren
e in26

the a

ura
y of the program. Thus, we
an say that the maximum numberof stored
orre
tions should be at least 7.The numbers of iterations and fun
tion evaluations needed with LMBM wereusually signi�
antly smaller when the size of the bundle was large. This isdue to the fa
t that the sele
tion of the initial step size is more a

uratewhen a larger bundle is used. On the other hand, ea
h individual iterationwas more
ostly when the size of the bundle was in
reased. In pra
ti
e, thismeans that for problems with expensive obje
tive fun
tion and subgradientevaluations, it is better to use larger bundles, and thus, fewer iterations andfun
tion evaluations.We
on
lude from these experiments that our new method is best suited forproblems with dense subgradient ve
tors where
omponents depend on the
urrent iteration point xk (that is, the
omponents are not
onstants). Inaddition, we
on
lude that the maximum number of stored
orre
tions shouldbe at least 7.Image restoration problem. Finally, we tested the nonsmooth optimiza-tion programs with a
onvex image restoration problem (see [10℄). Sin
e forproblems 1{10, the results of our new program with a small maximum num-ber of stored
orre
tions (m
 = 3) were quite ina

urate, we only tested theimage restoration problem with m
 = 7 and m
 = 15. The stopping param-eter " = 10�4 was used with all the programs. Otherwise, the parameterssimilar to the
onvex problems 1{5 were used.In Figures 2 and 3, we give the CPU times elapsed with the problem witha di�erent number of variables. In addition, we give some more spe
i�edresults for the problem with 100, 500, and 1000 variables in Table 6, wheref denotes the value of the obje
tive fun
tion at termination.From the numeri
al results, we
an
on
lude the superiority of the limitedmemory bundle program LMBM when
omparing the
omputational times (seeFigures 2 and 3). In all the
ases, it used signi�
antly less CPU time than theother programs. However, the a

ura
y of the new program was somewhatdisappointing. The minima of the obje
tive fun
tion found with LMBM wereusually a little bit greater than with the other programs (espe
ially thosefound with the proximal bundle programs PBNCGC and PBUN). In all the
ases,the result obtained with our new program LMBM be
ame more a

urate whenthe maximum number of stored
orre
tions or the size of the bundle wasin
reased (see Table 6). 27

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

C
P

U
 ti

m
e

el
ap

se
d

(s
ec

)

Number of variables

PNEW
PBUN
PBNCGC
PVAR
LMBM(15)
LMBM(7)

Figure 2: CPU time elapsed for the problem with small bundles.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

C
P

U
 ti

m
e

el
ap

se
d

(s
ec

)

Number of variables

PNEW
PBUN
PBNCGC
PVAR
LMBM(15)
LMBM(7)

Figure 3: CPU time elapsed for the problem with large bundles.28

Table 6: Results for the image restoration problem.Program/n 100 500 1000Ni/Nf f Ni/Nf f Ni/Nf fPVAR 370/370 0.79751 1787/1787 4.87495 3281/3281 9.86366266/266 0.79750 1689/1689 4.86216 2932/2932 9.80222PNEW 993/1138 0.79752 998/1185 4.87698 267/293 11.39220242/250 0.79750 773/861 4.87243 110/121 12.36375PBUN 45232/51461 0.79750 196206/233754 4.86189 377092/480182 9.761722281/2310 0.79750 71081/79933 4.86200 43136/48470 9.76818PBNCGC 5900/5901 0.79751 25568/25569 4.86194 116058/116059 9.76172300/301 0.79751 3590/3591 4.86194 9913/9914 9.76184LMBM(7) 392/821 0.79845 2280/2545 4.89094 5792/6121 9.82068643/710 0.79827 3486/3524 4.87367 11642/11677 9.80511LMBM(15) 333/779 0.79824 3543/4341 4.87126 8534/9133 9.80616502/608 0.79823 5388/5522 4.86814 12148/12246 9.78286Note that the results obtained with this pra
ti
al problem di�er a lot fromthose obtained before with smooth problems and with nonsmooth prob-lems 1{10 espe
ially with the program PBUN. In all the
ases, PBUN usedmu
h more iterations and fun
tion evaluations than the other proximal bun-dle program PBNCGC (see Table 6). It was also very time-
onsuming (seeFigures 2 and 3) while with smooth problems and with problems 1{10 it wasthe most eÆ
ient of the
urrent bundle programs tested. On the other hand,the variable metri
 bundle program PVAR was the most eÆ
ient of the
urrentbundle programs, while with a
ademi
 problems it was very time-
onsuming.Also LMBM behaved a little di�erently with the pra
ti
al problem than before:In ea
h
ase it used more iterations and fun
tion evaluations when the largerbundle was used. However, as said before, also the results obtained withLMBM be
ame more a

urate when the size of the bundle was in
reased.We
on
lude from these experiments that our new method was usually themost eÆ
ient method for large-s
ale problems. With smooth problems, thenew limited memory bundle program LMBM was almost twi
e as fast as thelimited memory variable metri
 program L-BFGS that has been developed forsmooth large-s
ale minimization. In addition, for example, with 1000 vari-ables, LMBM was on an average about 5 times faster than the fastest bundleprogram PBUN and 250 times faster than the original variable metri
 bundleprogram PVAR. For nonsmooth problems these di�eren
es were even more per-
eptible. For example, for the image restoration problem with 500 variables,LMBM was about 30 times faster than PVAR, 100 times faster than the proxi-mal bundle program PBNCGC, 450 times faster than the other proximal bundleprogram PBUN and 750 times faster than the bundle-Newton program PNEW.29

5 Con
lusionsIn this paper, we have introdu
ed a new limited memory bundle method fornonsmooth large-s
ale optimization. We have also tested the performan
eof this new method with di�erent minimization problems. The numeri
alexperiments
on�rm that the new method is eÆ
ient and reliable for bothsmooth and nonsmooth optimization problems. With large numbers of vari-ables it usually used signi�
antly less CPU time than the other programstested.With smooth problems, the a

ura
y of the new program was
omparable tothe other programs tested. However, with nonsmooth problems, the minimafound with the limited memory bundle program were often slightly greaterthan those of the other programs and there o

urred some ina

urate resultsespe
ially with a small maximum number of stored
orre
tions. Thus, we
on
lude that the maximum number of stored
orre
tions should be at least 7.Our numeri
al experiments showed that the limited memory bundle methodworks well for both
onvex and non
onvex minimization problems. Yet, it isbest suited for problems with dense subgradient ve
tors where
omponentsdepend on the
urrent iteration point.Although the new method is quite useful already, there is a lot of further workrequired before the idea is
omplete. Possible areas of future developmentin
lude the following: alternative ways of s
aling the updates (espe
ially, theSR1 update),
onstraint handling (simple bounds, linear
onstraints, nonlin-ear
onstraints), and parallelized version of the program.A
knowledgementsWe would like to thank Dr. Ladislav Luk�san and Dr. Jan Vl�
ek for thepermission to use and modify their variable metri
 bundle software to makethe method suitable for large-s
ale optimization.This work was �nan
ially supported by COMAS Graduate S
hool of theUniversity of Jyv�askyl�a, TEKES and A
ademy of Finland grant #65760.
30

Referen
es[1℄ R. H. Byrd, J. No
edal, and R. B. S
hnabel. Representations of quasi-Newton matri
es and their use in limited memory methods. Mathemat-i
al Programming, 63:129{156, 1994.[2℄ F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley-Inters
ien
e,New York, 1983.[3℄ R. Flet
her. Pra
ti
al Methods of Optimization. John Wiley and Sons,Chi
hester, se
ond edition, 1987.[4℄ A. Griewank and P. L. Toint. Partitioned variable metri
 updates forlarge stru
tured optimization problems. Numeris
he Mathematik, 39:119{137, 1982.[5℄ A. Grothey. De
omposition Methods for Nonlinear Non
onvex Optimiza-tion Problems. PhD Thesis, University of Edinburgh, 2001.[6℄ M. Haarala. Bundle Methods for Large-S
ale Nonsmooth Optimization.PhLi
 Thesis, University of Jyv�askyl�a, Department of Mathemati
alInformation Te
hnology, 2003.[7℄ J.-B. Hiriart-Urruty and C. Lemar�e
hal. Convex Analysis and Mini-mization Algorithms II. Springer-Verlag, Berlin, 1993.[8℄ K. C. Kiwiel. Methods of Des
ent for Nondi�erentiable Optimization.Le
ture Notes in Mathemati
s 1133. Springer-Verlag, Berlin, 1985.[9℄ T. G. Kolda, D. P. O'Leary, and L. Nazareth. BFGS with update skip-ping and varying memory. SIAM Journal of Optimization, 8(4):1060{1083, 1998.[10℄ T. K�arkk�ainen, K. Majava, and M. M. M�akel�a. Comparison of formu-lations and solution methods for image restoration problems. InverseProblems, 17(6):1977{1995, 2001.[11℄ C. Lemar�e
hal. Nondi�erentiable optimization. In G. L. Nemhauser,A. H. G. Rinnooy Kan, and M. J. Todd, editors, Optimization, pages529{572. North-Holland, Amsterdam, 1989.[12℄ D. C. Liu and J. No
edal. On the limited memory BFGS method forlarge s
ale optimization. Mathemati
al Programming, 45:503{528, 1989.31

[13℄ L. Luk�san and J. Vl�
ek. A bundle-Newton method for nonsmooth un
on-strained minimization. Mathemati
al Programming, 83:373{391, 1998.[14℄ L. Luk�san and J. Vl�
ek. Globally
onvergent variable metri
 method for
onvex nonsmooth un
onstrained minimization. Journal of OptimizationTheory and Appli
ations, 102:593{613, 1999.[15℄ L. Luk�san and J. Vl�
ek. Sparse and partially separable test problems forun
onstrained and equality
onstrained optimization. Te
hni
al Report767, Institute of Computer S
ien
e, A
ademy of S
ien
es of the Cze
hRepubli
, Prague, 1999.[16℄ L. Luk�san and J. Vl�
ek. Introdu
tion to nonsmooth analysis. Theory andalgorithms. Te
hni
al Report DMSIA 1/2000, University of Bergamo,2000.[17℄ L. Luk�san and J. Vl�
ek. NDA: Algorithms for nondi�erentiable op-timization. Te
hni
al Report 797, Institute of Computer S
ien
e,A
ademy of S
ien
es of the Cze
h Republi
, Prague, 2000.[18℄ L. Luk�san and J. Vl�
ek. Test problems for nonsmooth un
onstrainedand linearly
onstrained optimization. Te
hni
al Report 798, Institute ofComputer S
ien
e, A
ademy of S
ien
es of the Cze
h Republi
, Prague,2000.[19℄ M. M. M�akel�a. Survey of bundle methods for nonsmooth optimization.Optimization Methods and Software, 17(1):1{29, 2002.[20℄ M. M. M�akel�a and P. Neittaanm�aki. Nonsmooth Optimization: Analysisand Algorithms with Appli
ations to Optimal Control. World S
ienti�
Publishing Co., Singapore, 1992.[21℄ J. No
edal. Updating quasi-Newton matri
es with limited storage.Mathemati
s of Computation, 35(151):773{782, 1980.[22℄ N. Z. Shor. Minimization Methods for Non-Di�erentiable Fun
tions.Springer-Verlag, Berlin, 1985.[23℄ P. L. Toint. On sparse and symmetri
 matrix updating subje
t to alinear equation. Mathemati
s of Computation, 31(140):954{961, 1977.[24℄ J. Vl�
ek and L. Luk�san. Globally
onvergent variable metri
 methodfor non
onvex nondi�erentiable un
onstrained minimization. Journal ofOptimization Theory and Appli
ations, 111(2):407{430, 2001.32

