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Many practical optimization problems involve nonsmooth (that is, not necessarily
differentiable) functions of hundreds or thousands of variables. In such problems,
the direct application of smooth gradient-based methods may lead to a failure due
to the nonsmooth nature of the problem. On the other hand, none of the current
general nonsmooth optimization methods is efficient in large-scale settings. In
this paper, we introduce a new limited memory variable metric -based bundle
method for nonsmooth large-scale optimization. In addition, we introduce a new
set of academic test problems for large-scale nonsmooth minimization. Finally, we
give some encouraging results from numerical experiments using both academic
and practical test problems.
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1 Introduction

In this paper, we describe a limited memory bundle algorithm for solving

large nonsmooth (nondifferentiable) unconstrained optimization problems.
We write this problem as

minimize f(x)

{ (1)

subject to x € R",

where the objective function f : R" — R is supposed to be locally Lipschitz
continuous and the number of variables n is supposed to be large.



Nonsmooth optimization problems of type (1) arise in many fields of applica-
tions, for example, in image restoration (see, e.g., [10]) and in optimal control
(see, e.g., [20]). The direct application of smooth gradient-based methods to
nonsmooth problems may lead to a failure in convergence, in optimality con-
ditions, or in gradient approximation (see, e.g., [11]). On the other hand,
direct methods, for example, Powel’s method (see, e.g., [3]) employing no
derivative information, are quite unreliable and become inefficient when the
size of the problem increases.

The methods for solving nonsmooth optimization problems can be divided
into two main classes: subgradient methods (see, e.g., [22]) and bundle meth-
ods (see, e.g., [7, 8, 16, 19, 20]). They are all based on the assumption that
at every point x € R", we can evaluate the value of the objective function
f(x) and an arbitrary subgradient & € R” from the subdifferential (see [2])

Jdf (x) = conv{ ll}m Vf(x;) | x; — x and Vf(x;) exists }, (2)

where “conv” denotes the convex hull of a set.

At the moment, bundle methods are regarded as the most effective and reli-
able methods for nonsmooth optimization (see, e.g., [19]). Thus, we begin by
giving a short review of standard bundle methods to point out the basic ideas
and to motivate the need of solvers for large-scale nonsmooth optimization
problems.

The basic idea of bundle methods is to approximate the subdifferential of the
objective function by gathering the subgradients from previous iterations into
a bundle. We suppose that, in addition to the current iteration point xj, we
have some auxiliary points y; € R" (from previous iterations) and a bundle
of subgradients §; € df(y;) available for j € J,, where J} is a nonempty
subset of {1,...,k}. We approximate the objective function f by using a
piecewise linear function

felx) = %%X{ fxi) + EJT(X - Xp) — 5;6 H (3)

where ¥ > 0 is a so-called subgradient locality measure (see, e.g., [20]).
A search direction can be determined as

di = arg min{ fi(x +d) + 5" Md }, (4)

where the role of the stabilizing term %dTMkd is to guarantee the existence
of the solution d; and to keep the approximation local enough. The regular
and symmetric n xn -matrix M, is intended to accumulate information about



the curvature of the objective function f in a ball around x;. In the most
frequently used proximal bundle method, the matrix M is diagonal of the
form M, = u,l, where I is the identity matrix and the weighting parameter
u > 0 (see, e.g., [20]).

The minimization of problem (4) is equivalent (see, e.g., [20]) to the (smooth)

quadratic subproblem of finding the solution (dj,vx) € R**! of
minimize %dTMkd + v (5)
subject to —Bf + dTﬁj <wv forall j€ J.

By duality this is equivalent to finding Lagrange multipliers )\f for j € Ji
that solve the quadratic dual problem

(

T
minimize (Z /\.yfj) M, (Z /\7‘%) + 2 A8y
J€Tk JETk JETk 6
subject to > A; =1 and (6)
J€Tk

)‘j > 0, for all 7€ T

\

A new auxiliary point yj; is defined by y.1 = x5 + t%dk, where t’f{ € (0,1]
is an appropriately chosen step size (see, e.g., [8]). A serious step

Xk4+1 = Yi+1 (7)

is taken if y;,; is significantly better than x;, in other words,

Flyre1) < f(xp) +enthop, (8)

where £, € (0,1/2) is a fixed line search parameter and vy, which is the
solution of the problem (5), represent the predicted descent of f at x; (see,
e.g., [19]). Otherwise, a null step is taken that keeps the current iteration
point unchanged (xj41 = xx) but the information about the objective func-
tion is increased by adding a new subgradient €, ; € 0f(yy+1) into a bundle.
The global convergence of bundle methods with a limited number of stored
subgradients can be guaranteed by using a subgradient aggregation strategy,
which accumulates information from the previous iterations (see [8]).

In their present form, bundle methods are efficient for small- and medium-
scale problems. However, their computational demand expands in large-
scale problems with more than 1000 variables. This is explained by the fact
that bundle methods need relatively large bundles to be capable of solving
the problems efficiently. In other words, the size of the bundle has to be
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approximately the same as the number of variables and, thus, the quadratic
subproblem (6) becomes very time-consuming to solve.

In variable metric bundle methods introduced by Luksan and Vlcek [14, 24],
the search direction is calculated by using the variable metric approximation
of the inverse of the Hessian matrix (D = M, ' in (6)). The idea of the
methods is to use only three subgradients: one calculated at the current
iteration point x;, one calculated at the new auxiliary point y,.;, and an
aggregated one, containing information from previous iterations. Thus, the
dimension of the normally time-consuming quadratic subproblem (6) is only
three and it can be solved with simple calculations. However, variable metric
bundle methods use dense approximations of the Hessian matrix to calculate
the search direction and, thus, also these methods become inefficient when
the dimension of the problem increases.

We have not found any general bundle-based solver for large-scale nonsmooth
optimization problems from the literature. Thus, we can say that at the
moment the only possibility to optimize nonsmooth large-scale problems is
to use some subgradient methods. However, the basic subgradient methods
suffer from some serious disadvantages: a nondescent search direction may
occur, there exists no implementable stopping criterion, and the convergence
speed is poor (not even linear) (see, e.g., [11]). On the other hand, the
more advanced variable metric based subgradient methods (see, e.g., [22])
using dense matrices suffer from the same drawbacks than the variable metric
bundle methods. This means that there is an evident need of reliable and
efficient solvers for nonsmooth large-scale optimization problems.

In this paper, we introduce a new limited memory bundle method for large-
scale nonsmooth unconstrained minimization. The method is a hybrid of
the variable metric bundle methods [14, 24] and the limited memory variable
metric methods (see, e.g., [1, 21]), where the latter have been developed for
smooth large-scale optimization. The new method uses all the ideas of the
variable metric bundle method but the search direction is calculated using
a limited memory approach. Thus, the time-consuming quadratic subprob-
lem (6) appearing in the standard bundle methods need not to be solved.
Furthermore, we use only few vectors to represent the variable metric approx-
imation of the Hessian matrix and, thus, we avoid storing and manipulating
large matrices as is the case in variable metric bundle methods. These im-
provements make the limited memory bundle method suitable for large-scale
optimization. Namely, the number of operations needed for the calculation
of the search direction and the aggregate values is only linearly dependent on
the number of variables while, for example, with the original variable metric
bundle method, this dependence is quadratic.
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This paper is organized as follows: In the following section we introduce the
new limited memory bundle method. In Section 3, we introduce a new set
of academic test problems for large-scale nonsmooth minimization. Then, in
Section 4, we analyze numerical experiments concerning some existing bun-
dle methods and our new method. The numerical results to be presented
demonstrate the usability of the new method with both smooth and nons-
mooth large-scale minimization problems. Finally, in Section 5, we conclude
by giving a short summary of the performance of the methods tested.

2 Limited Memory Bundle Method

In this section, we present a new method for large-scale nonsmooth uncon-
strained optimization. The method will be called the limited memory bundle
method and its basic idea is very simple. We use all the ideas of variable
metric bundle methods but the variable metric approximation of the Hessian
matrix is calculated by using a limited memory approach. This means that
we use some ideas essential to bundle methods, namely the utilization of null
steps, simple aggregation of subgradients, and subgradient locality measures,
but the search direction is calculated by using the limited memory variable
metric updates. The basic idea of this limited memory approach is that the
variable metric update of the approximated Hessian is not constructed explic-
itly. The updates use the information of the last few iterations to implicitly
define a variable metric approximation. In practice, this means that the ap-
proximation of the Hessian matrix is not as accurate as that of the original
variable metric bundle methods but both the storage space required and the
number of operations used are significantly smaller. In smooth large-scale
settings, there exist also some other possibilities to deal with the variable
metric approximation of the Hessian matrix (see, e.g., [4, 23]). However, we
chose this limited memory approach to be adopted for nonsmooth problems
because it does not need any information of the structure of the problem
or its Hessian. Thus, the only assumption required is that the objective
function f is locally Lipschitz continuous.

Next, we go through the algorithm step by step and describe both its theo-
retical properties and some details of the implementation. In what follows,
we use the following notations: the current iteration is denoted by k£ and
the approximation of the inverse of the Hessian matrix is denoted by D,
the subgradient of the objective function is denoted by & and an aggregate
subgradient to be described in Subsection 2.3 is denoted by é



2.1 Direction Finding

In this subsection, we describe how to find the search direction d; by using
the limited memory bundle method. The basic idea in direction finding is the
same as with the limited memory variable metric methods (see, e.g., [1]) and
the approximations D, are formed implicitly by using the limited memory
variable metric updates.

However, due to the usage of null steps some modifications similar to variable
metric bundle methods [14, 24| have to be made: After a null step, the
approximation Dy is formed by using the limited memory SR1 update (see,
e.g., [1]), since this update formula gives us a possibility of preserving the
boundedness of the generated matrices (that is, the eigenvalues of the matrix
lie in the compact interval not containing zero) (see, e.g., [24]). In addition,
we use an aggregate subgradient ék to calculate the search direction

d, = —Di€,. (9)

Because the boundedness of the generated matrices is not required after
a serious step (see [24]), the more efficient limited memory BFGS update
formula (see, e.g., [1]) is used to compute the approximation Dy of the inverse
of the Hessian. The search direction dj is calculated by using the original
subgradient &, € 0f(xy). Thus, after a serious step, the search direction is
defined by

dy = — Dyt (10)

Note that the matrix Dj, is not formed explicitly but the search direction dy
is calculated using the limited memory approach to be described in Subsec-
tion 2.6.

2.2 Line Search

Next, we consider how to calculate a new iteration point x;; when the search
direction d; has been calculated. Similarly to the standard bundle methods
and the variable metric bundle methods, we use the line search procedure
(see, e.g., [24]) that generates two points
Xpy1 = Xp + th dy and (11)
Vi1 = Xp + tpdy,

where t%, € (0,%], t& € [0,tk] are step sizes, t¥ € [timin, tmae) is the initial
step size, and t,,4, > 1 and t,,;, € (0, 1) are the upper and the lower bounds

6



for the initial step size t¥, respectively. Note that in standard bundle meth-
ods the initial step size t¥ is equal to 1 at every iteration (see, e.g., [20]).
However, similarly to the original variable metric bundle method, we have
the possibility to use step sizes greater than 1 here, since the information
about the objective function included in the matrix Dy, is not sufficient for a
proper step size determination in the nonsmooth case (see [24]). The initial
step size t¥ is selected by using a bundle containing auxiliary points and cor-
responding function values and subgradients. The procedure used is exactly
the same as in the original variable metric bundle method for nonconvex ob-
jective functions. The detailed description of the selection of this step size
can be found in [24].

A necessary condition for a serious step to be taken is to have

th=t">0 and F(yu) < flxi) — enthuws, (12)

where £, € (0,1/2) is a fixed line search parameter and wy > 0 represents
the desirable amount of descent of f at x; (note that this parameter is not
the same as vy in (8)). If the required condition (12) is satisfied, we set

Xk+1 = Yk+1 (13)
and a serious step is taken. A null step is taken, if
th>th =0 and — By +di €y > —eRws, (14)

where e € (¢7,1) is a fixed line search parameter, §,., € 0f(yk+1), and
Pr+1 is the subgradient locality measure similar to bundle methods (see, e.g.,
[19]), that is,

Br+1 = max{|f(xk) - f(Yk+1) + (Yk+1 - Xk)T£k+1)‘7 ’7||Yk+1 - XkHw }= (15)

where v > 0 is a distance measure parameter and w > 1 is a locality measure
parameter supplied by the user. The distance measure parameter v can be
set to zero when f is convex.

In the case of a null step, we set
Xk4+1 — Xk (16)

but information about the objective function is increased because of the
auxiliary point y;41 and the auxiliary subgradient &, , € 0f(y+1) that we
store.

The step sizes t% and t% for the limited memory bundle method can be
determined by using the line search procedure quite similar to that at the



original variable metric bundle method [24]. However, in order to avoid
many consecutive null steps, we have added an additional interpolation step.
That is, we look for more suitable step sizes t¥ and t% by using an extra
interpolation loop if necessary. The role of this additional step is that if we
have already taken a null step at the previous iteration, we rather try to find
a step size suitable for a serious step (that is, so that (12) is valid) even if
the condition (14) required for a null step was satisfied.

Note that under some semismoothness assumptions, the line search procedure
used is guaranteed to find the step sizes t¥ and %, such that exactly one of
the two possibilities, serious step or null step, occurs (see [24]).

2.3 Subgradient Aggregation

In this subsection, we describe the aggregation procedure used with the lim-
ited memory bundle method. In principle, the aggregation procedure is the
same as that with the original variable metric bundle methods [14, 24]. How-
ever, since the matrix D, is not formed explicitly here, the practical im-
plementation of the aggregation procedure differs from that of the original
method.

The aggregation procedure uses three subgradients and two locality measures.
We denote by m the lowest index j satisfying x; = x;, (that is, m is the index
of the iteration after the latest serious step). Suppose that we have the cur-
rent subgradient §,, € 0f(xy), the auxiliary subgradient &,,, € 0f(yx+1),
and the current aggregate subgradient ék (note that 51 = £,) available. In
addition, suppose that we have the current locality measure S, (see (15))
and the current aggregate locality measure fj, from the previous iteration
(note that B, = 0). The quite complicated quadratic subproblem (6) ap-
pearing in the standard bundle methods reduces to the minimization of the
function

©(A1, Aoy Ag) = (M€, + Aoy + )\3ék)TDk()\1€m + A&y + )\351@) (17)
+ 2(Xo Bt + )\3/3)1@),

where \; > 0 for i € {1,2,3} and 327, \; = 1. The optimal values \¥,
i € {1,2,3} can be calculated by using simple formulae (see [24]). However,
since we do not form the matrix Dy explicitly, we have to use limited memory
BFGS (the first null step after any serious step) or SR1 (more than one
consecutive null steps) update to implicitly define the approximation of the
inverse of the Hessian matrix.



Now the next aggregate subgradient ékﬂ is defined as a convex combination
of the three subgradients mentioned above:

ék+1 = M¢,, + )\IQCEIC—I—I + )‘gék (18)

and the next aggregate locality measure (441 as a convex combination of the
two locality measures:

Bk+] = )\IQCBkJr] + )\]ngk- (19)

Note that the aggregate values are computed only if the last step was a null
step. Otherwise, we set €, = &1 € Of (Xk4+1) and fy41 = 0.

2.4 Stopping Criterion

For smooth functions, a necessary condition for a local minimum is that
the gradient has to be zero and by continuity it becomes small when we
are close to an optimal point. This is no longer true when we replace the
gradient by an arbitrary subgradient. Due to the subgradient aggregation,
we have quite a useful approximation to the gradient, namely the aggregate
subgradient £€,. However, as a stopping criterion, the direct test ||€,] < &,
for some € > 0, is too uncertain, if the current piecewise linear approximation
(see (3)) is too rough. Therefore, we use the approximation Dy of the inverse
of the Hessian matrix and the aggregate subgradient locality measure [y
to improve the accuracy of the norm of the aggregate subgradient. The
aggregate subgradient locality measure 3, approximates the accuracy of the
current linearization: If the value of the locality measure is large, then the
linearization is rough. On the other hand, if the value is near zero, then the
linearization is quite accurate and, thus, we can stop the algorithm if the
norm of the aggregate subgradient is small enough.

Since in practice the matrix Dy is not formed explicitly we use the direction
vector d = — D&, instead. Hence, the stopping parameter wy, at iteration
k is defined by

wy = —2&, dy + 45, (20)

The multipliers 2 and 4 in (20) are chosen experimentally such that the
accuracy of the new method would be approximately the same as with the
other bundle methods. Note that the parameter wy is also used during the
line search procedure (see (12)) to represent the desirable amount of descent.
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This first part of our stopping criterion is quite similar to that of the original
variable metric bundle method. However, in practice the limited memory
approximation Dy of the inverse of the Hessian matrix is not very accurate
and computational experiments showed that some accidental terminations
may occur (that is, the optimization was terminated before the minimum
point was actually achieved). Thus, we added a second stopping parameter
qr, which does not depend on the matrix Djy. The second stopping parameter
is similar to that in standard bundle methods (see, e.g. [20]), that is

l.r- -
qk = §€k€k+[3k- (21)
Now, the stopping criterion is given by:
If wy < e and ¢, < 10%¢, for given £ > 0, then stop. (22)

As before, the multiplier 10? above is chosen experimentally.

2.5 Algorithm

We are now ready to present the limited memory bundle method for nons-
mooth large-scale unconstrained optimization.

Algorithm 1. (Limited Memory Bundle Method).

Data:  Select the upper and the lower bounds t,,,, > 1 and ¢, € (0,1)
for serious steps. Select positive line search parameters ¢;, € (0,1/2)
and €g € (er,1). Choose the final accuracy tolerance ¢ > 0, the
distance measure parameter v > 0 (v = 0 if f is convex), and the
locality measure parameter w > 1.

Step 0: (Initialization.) Choose a starting point x; € R". Set $; = 0 and
y1 = x;. Compute

fi = f(x1) and
& € af(xl)-

Set the iteration counter k£ = 1.

Step 1: (Serious step initialization.) Set the aggregate subgradient £, =&,
and the aggregate subgradient locality measure §; = (0. Set an index
for the serious step m = k.
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Step 2:

Step 3:

Step 4:

Step 5:

(Direction finding.) Compute
dj, = — D€,

by a limited memory BFGS update, if m = k (Algorithm 3) and by
a limited memory SR1 update, otherwise (Algorithm 2). Note that

d1 — —51.

(Stopping criterion.) Calculate wy, and g, by (20) and (21), respec-
tively. If wy, < ¢ and ¢, < 10%¢, then stop.

(Line search.) Calculate the initial step size t5 € [t,in, tmaz ). Deter-
mine the step sizes th € (0,t¥] and 5 € [0, %] to take either a serious
step or a null step (that is, check whether (12) or (14) is valid). Set
the corresponding values

Xpy1 = X + thdy,
Yietr1 = Xg + t%dk,
Jre1 = f(Xk+1)=
€ii1 € Of(Yit1)

Set up = &, — &, and s = ypy1 — x3 = thd,. If t§ > 0 (serious
step), set Bky1 = 0, k = k+1, and go to Step 1. Otherwise, calculate
the locality measure By by (15).

(Aggregation.) Determine multipliers \f > 0,4 € {1,2,3}, 327 M\ =
1 that minimize the function (17), where Dy is obtained by the lim-
ited memory BFGS update, if m = k and by the limited memory
SR1 update, otherwise. Set

ék+1 = M€, + )\12651”1 + )‘]‘;ék and
Br41 = )‘gﬁk+1 + )\Igﬁk-

Set £k =k + 1 and go to Step 2.

Note that in Steps 2 and 5, the matrices Dy are not formed explicitly but the
search direction dy, and the aggregate values &, ;, and 3,1, are calculated
using the difference vectors u; and sy.

As mentioned in Subsection 2.3, the aggregation procedure uses only three
subgradients and two locality measures to calculate the new aggregate values.
In practice, this means that the minimum size of the bundle m; is 2 and a
larger bundle is used only for the selection of the initial step size (see [24]).
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2.6 Matrix Updating

Finally, we need to consider how to update the approximation Dj of the
inverse of the Hessian matrix and thus, how to find the search direction d.
Note that until this point, the procedures described are very similar to those
of the original variable metric bundle method [24].

We use a compact representation of limited memory matrices (see [1]), since
in addition to the BFGS updating formula, we need the SR1 updating formula
and for SR1 updates, there exists no recursive updating formula analogous to
that given in [21]. Moreover, the compact representation of limited memory
matrices facilitates the possibility to generalize the method for constrained
optimization.

The basic idea of the limited memory matrix updating is that instead of
storing the matrices Dy, we use the information of the last few iterations
to implicitly define the approximation of the inverse of the Hessian. This is
done by storing a certain number of correction pairs (s;, u;), (i < k), where

S = Y11 — Xg and (23)

U, = €k+1 - fm-

Here, as before, y; . is the current auxiliary iteration point, x; is the current
iteration point, and &, ; and &, are the corresponding subgradients of these
points (m is the index of the iteration after the latest serious step). When
the storage space available is used up, the oldest corrections are deleted to
make room for new ones. All the subsequent iterations are of this form: one
correction pair is deleted and a new one is inserted.

Let us denote by m, the maximum number of stored corrections supplied by
the user (3 < m,) and by my = min{ k—1, m. } the current number of stored
corrections. We assume that the maximum number of stored corrections m,.
is constant, although it is possible to adapt all the formulae of this subsection
to the case where m,. varies at every iteration (see, e.g., [9]).

The n x my -dimensional correction matrices Sy, and Uy are defined by
Sk = [Skfmk . Skfl] and (24)
Uk = [uk,mk S llk,l] .

These correction matrices are used to implicitly define the approximation of
the inverse of the Hessian matrix at each iteration. When a new auxiliary
iteration point yj; is generated, the new correction matrices Sy1 and Uy,
are obtained by deleting the oldest corrections sj_,,, and uy_,,, from S; and
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Uk if mgy1 = my, (that is, £ > m,) and by adding the most recent corrections
s and uy to the matrices. Thus, except for the first few iterations, we always
have the m, most recent correction pairs (s;, u;) available.

We define the inverse limited memory BFGS update by the formula (see [1])

—I\NT T -1 —I\T T
Dy, =9I + [Sk 04Uy] {(Rk ) (Gt 09U U B (7,) } [ Sk ] .

-Rr,! 0 UL
(25)
Here, Ry is an upper triangular matrix of order my given by the form
Sk e 14i) E (W e —144) ifi < g
(Rk)” — ( k k ]+Z) ( k k ]+.7) — ] (26)
' 0 otherwise,
C} is a diagonal matrix of order my such that
Cy = diag [SLW Wk gy -5 Sp U 1], (27)
and the multiplier ¥ > 0 is given by
g 15k—1
79k = 28
up o ug (28)

In addition, we define the inverse limited memory SR1 update (see [1]) by
Dy = Ol — (0Uy — Si) (09U Uy, — Ry, — R, + Cr) ' (0,U — Sk)",  (29)

where instead of (28) we use the value 9, = 1 for every k.

Next, we describe some procedures for updating the limited memory BFGS
and SR1 matrices. In addition to the two n X mj -matrices Sy and Uy, the
my, X my, -matrices Ry, U,;FUk, and C} are stored. Since in practice my is
clearly smaller than n, the storage space required by these three auxiliary
matrices is insignificant but the savings in computational efforts are con-
siderable. We also give some ideas of how the search direction d; can be
calculated by using these different updates. After discussing the calculations
separately, we then link them together.

At the k-th iteration, we have to update the limited memory representation
of Dy to get Dy. Thus, we delete a column from Sy ; and U, ; and add
a new column to each of these matrices. Then, we make the corresponding
updates to Ry, 1, Ul Uy_1, and Cy_,. These updates can be done in O(m3)
operations by storing a small amount of additional information, namely the
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my-vectors S} €, and U] €, from the previous iteration. For example,
the new triangular matrix Ry, is formed from Ry, (see (26)) by deleting the
first row and the first column if m; = m;_; and by adding a new column to
the right and a new row to the bottom of the matrix. The new column is
given by

Syap1 =Sy (5 = &) (30)

and the new row has the value zero in its first m; — 1 components. The
product S}u; ; can be computed efficiently since we already know my — 1
components of ST'¢, from S &, We only need to calculate s} €, and
carry out the subtractions. The matrix U] U, can be updated in a similar
way. In this case, both the new column and the new row are given by U/ u;,_;.
The diagonal matrix C} is updated by deleting the first element of Cy_; and
adding s} _uy_; as the last element (note that Cy is stored as a vector).

Next, we give an efficient algorithm for updating the limited memory SR1 ma-
trix Dy and for computing the search direction d, = —Dkék. This algorithm
is used whenever the previous step was a null step. Suppose that the number
of current corrections is m; and that we have the current iteration point x;,
the previous corrections s, and u_1, the current (auxiliary) subgradient
¢, € Of(yi), the current aggregate subgradient &, the basic subgradient
£, € 0f(xx), the n x my, -matrices Sx_; and Uy_;, the my X my, -matrices
Ry 1, UL |Ug_+, and Cy_y, and the vectors S €, and Ul &, available.

Algorithm 2. (SR1 Updating and Direction Finding).

Step 1: 1f

-7
T
—d, w1 — & ysk1 <0,

then update the matrices (i.e., go to Step 2). Otherwise, skip the
updates, that iS, set Sk = Sk,h Uk = kal, Rk = kal, U]ZWUVIC ==
Ul \Up 1, Cy =Cy 1, STE,, =SSP &, and UlE, =U! €, and go
to Step 6.

Step 2: Obtain S, and Uy by updating Sy and Uj_;.

Step 3: Compute my-vectors S{ &, and U['¢,.

Step 4: Compute my-vectors S{u_; and Ul'ug_; by using the fact
w1 =& — &,

Store my-vectors Sy ¢,, and ULE,,.
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Step 5: Update my, X my, -matrices Ry, Ul Uy, and Cy.
Step 6: Set v, = 1.0.
Step 7: Compute my-vectors S;{ék and UkTék

Step 8: Compute

p = (GWULU, — Ry — R + C) (0 ULE, — SFE,).

Step 9: Compute .
dy = —0,€, + (Vp Ui — Sk)p.

Note that the condition (see Step 1)
~dlu;—&/s; <0 foralli=1,....k—1 (31)

assures the positive definiteness of the matrices obtained by the limited mem-
ory SR1 update (see [6]).

Due to the fact that after a serious step the aggregate subgradient ék =&, €
Jf(xx) and

Sp = Xgi1 — Xg and

U = €k+1 — &

(note that in the case of a serious step this representation of s, and uy is
not conflicting with (23)), the calculations used are very similar to those
given in [1]. In fact, all the calculations in [1] could be done by replacing the
gradient V f(x) by an arbitrary subgradient & € df(x). However, rather than
updating and inverting the upper triangular matrix R at every iteration, we
update and store the inverse R;].

We now give an efficient algorithm for updating the limited memory BFGS
matrix Dy and for computing the search direction d, = —Dy &, when the pre-
vious step was a serious step. Suppose that we have the current subgradient
€. € Of(xg), the previous subgradient &, ; € Of(xx_1), the my x my -

matrices Rki], U,;Ff]Uk,l, and C}_1, and the previous multiplier ¥, _; avail-
able.
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Algorithm 3. (BFGS Updating and Direction Finding).

Step 1:

Step 2:
Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

It
T
u, Sp—1 >0,

then update the matrices (i.e., go to Step 2). Otherwise, skip the
updates, that iS, set Sk = Sk,h Uk = kal, Rk = kal, U]ZWUVIC ==
Ul \Ug 1, Cp = Cy_y, and 9y = Y51, compute S€, and U], and
go to Step 7.

Obtain Sy and U, by updating Sy_; and Uy_;.
Compute and store my-vectors S}'€, and UTE,.

Compute my-vectors S/, and Ul'u;,_; by using the fact
w1 =&, — &

Update my X m; -matrices R,;], Ul'Uy, and Cy,.
If ul ,u;_; > 0, compute J;

T
U, Sk—1
V) = ————

= )
Uy Ug—1

Note that both u] ;s and u] ,u;_; have already been calculated.
Otherwise, set 9, = 1.0.

Compute two intermediate values

b1 = RI;]SZSIW
p2 = (R, )T (Cyp1 + UL Uppr — 9,ULEL).

Compute
di, = 9 Urp1 — Skp2 — Vi,

Note that the condition (see Step 1)

u/s; >0 foralli=1,...,k 1 (32)

assures the positive definiteness of the matrices obtained by the limited mem-
ory BFGS update (see, e.g., [1]).
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In order to use both the Algorithms 2 and 3 with the same stored information,
some modifications have to be made. Firstly, we have to update and store
both matrices Ry and R,;l at each iteration regardless of the update formula
we are using. In addition, since we use the same correction matrices Sy and
Uy for the calculations of both the BFGS and the SR1 updates, we have to
test both the positive definiteness conditions (31) and (32) in each case before
we update the matrices. However, numerical experiments have showed that
the simple skipping of the updates (see Algorithms 2 and 3, Step 1), if both
the required conditions are not satisfied, makes the method quite inefficient.
This is due to the fact that the BFGS update was usually skipped due to
condition (31) required for the SR1 update. Therefore, we use the most recent
corrections s;_; and u;_; to calculate the new search direction d; whenever
the required positive definiteness condition is valid but the matrices are not
updated unless both the conditions (31) and (32) are satisfied. In practice,
this means that the correction matrices Sy and Uy, may actually include some
indices smaller than k& — m; and that the number of the current corrections
used may be m; = m, + 1.

The new limited memory bundle method uses a limited memory approach
to calculate the search direction and it requires only three subgradients and
two locality measures to calculate the new aggregate values. Thus, the time-
consuming quadratic subproblem (6) appearing in standard bundle methods
needs not to be solved and the size of the bundle needs not to increase with
the dimension of the problem. Furthermore, both the search direction d,
and the aggregate values ék+1 and fj,1 can be computed implicitly using at
most O(nm,) operations. Assuming m, < n, this is much less than O(n?)
operations needed with the original variable metric bundle method, which
stores and manipulates the whole matrix D,. These improvements make
the limited memory bundle method suitable for large-scale problems. This
assertion is supported by numerical tests presented in Section 4.

3 Large-Scale Nonsmooth Test Problems

Many practical optimization applications involve nonsmooth functions of
many variables. However, there exist only few large-scale academic test prob-
lems for the nonsmooth case. For this reason, we now introduce a new set
of large-scale unconstrained minimization problems for nonsmooth optimiza-
tion.
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We have made 10 nonsmooth problems which all can be formulated with any
number of variables. The problems are constructed either by chaining and
extending small existing nonsmooth problems or by “nonsmoothing” large
smooth problems (that is, for example, by replacing the term z? with |x;]).
First, we give the formulation of the objective function f(x) and the starting
point x; for each problem. Then, we collect some details of the problems as
well as the references to the original problems in Table 1.

1. Generalization of MAXQ
f(x) = maxy <<y, 27

=i, fori=1,...,n/2 and
= —i, fori=n/2+1,...,n.

T

1
i
1
Z;

2. Generalization of MXHILB

21 777
J=1itj—1|"

f(x) = Mmaxj<i<n
xl =1, foralli=1,... ,n.

7

3. Chained LQ
flx) =0 max { —2; — 241, —2 — w1 + (22 + 22, — 1) }

2l =05, foralli=1,...,n.

4. Chained CB3 1
Fx) =30 max {af + 22, (2 - 2)2+ (2 mi40)?, 20 Tt ]
T, =2, foralli=1,... ,n.

5. Chained CB3 I1

Fx) = max { S (a4 r2) S0 (2 )+ (2 i)
Si (20 e )

T = 2, forallz=1,...,n.

18



6. Number of Active Faces
f(x) = maxi<i<n {g(— Z;; %), g9(xi) },

where g(y) = In (|y| + 1).
x) =1, foralli=1,... ,n.

7. Nonsmooth generalization of Brown function 2

1) =520 (I ).

b= 1, when mod (i,2) =1, (i=1,...,n) and
T =1, when mod (4,2) =0, (i =1,...,n).

e |
T 4 |

8. Chained MifHlin 2
f(x) = Z:‘;ll (—3:7; +2 (3:,2 + i, — 1) +1.75 ‘3:72 + i, — 1‘ )
xl =1, forallz=1,...,n.

9. Chained Crescent I

Fx) =max { 3017 (a2 + (i1 — 1)+ 20— 1),
S (=a? = (i — 1) i + 1) )

i j—

r} =—1.5, when mod (7,2) =1
x) = 2.0, when mod (i,2) =0, (i =1,...,n).

10. Chained Crescent 11

f(x) = Z:::; max {3312 + (Tig1 — 1)2 + Zip1 — 1,
*T? — (.’I?H,] — ].)2 + Ti41 + 1}

'=—1.5, when mod (,2)=1, (i=1,...,n) and
when mod (,2) =0, (i =1,...,n).

s:g.dﬂ [y
I

Do

=

The details of the problems are given in Table 1, where P denotes the prob-
lem number, f(x*) is the minimum value of the objective function, and the
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Table 1: Test problems

P f(x*) Convex Original problem and reference
1 0.0 + MAXQ, n = 20, see, e.g., [20]

2 0.0 + MXHILB, n = 50, see, e.g., [18]
3 —(n—1)V2 + LQ, n = 2, see, e.g., [20]

4 2(n—1) + CB3, n = 2, see, e.g., [20]

5 2(n—1) + CB3, n = 2, see, e.g., [20]

6 0.0 ~ See[5]

7 0.0 — Generalization of Brown function 2, see, e.g., [15]
8 varies® — Mifflin 2, n = 2, see, e.g., [20]

9 0.0 - Crescent, n = 2, see, e.g., [20]
10 0.0 — Crescent, n = 2, see, e.g., [20]

* o f(x*) ~ —6.51 for n = 10, f(x*) ~ —70.15 for n = 100 and f(x*) ~ —706.55 for n = 1000.

symbols — (nonconvex) and + (convex) denote the convexity of the prob-

lems. Also the references to the original problem in each case are given in
Table 1.

4 Numerical Experiments

In order to get some information of how the new method works in practice
when compared to other nonsmooth methods, we tested different existing
programs with several problems. In this section, we first introduce the tested
software. Then, we give the results from the numerical experiments and draw
some conclusions.

4.1 Tested Software

In this subsection, we first introduce the programs used in our experiments.
The experiments were performed in a SGI Origin 2000/128 supercomputer
(MIPS R12000, 600 Mflop/s/processor). The algorithms were implemented
in FORTRANT7 with double-precision arithmetic. The pieces of software
tested are presented in Table 2. None of the nonsmooth optimization pro-
grams PVAR, PBUN, PNEW, and PBNCGC has been developed for large-scale op-
timization. On the other hand, we wanted to get some information of the
behavior of the new program LMBM especially with large-scale problems. For
this reason, we used the smooth large-scale optimization program L-BFGS
as a benchmark. Thus, all the programs were first tested with 22 smooth
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Table 2: Tested pieces of software

Software  Author(s) Method Reference
PVAR Luksan & Vlcek Variable metric bundle [14, 24]
PNEW Luksan & Vlcek Bundle-Newton [13]

PBUN Luksan & Vlcek Proximal bundle [17]
PBNCGC Mikela Proximal bundle [20]
L-BFGS Nocedal Limited memory BFGS [12, 21]
LMBM Haarala Limited memory bundle

minimization problems, which all could be formulated with any number of
variables. A detailed description of these problems can be found in [15].
Then, the programs for nonsmooth optimization (that is, all the programs in
Table 2 except L-BFGS) were tested with 10 nonsmooth minimization prob-
lems described earlier. Finally, the programs for nonsmooth optimization
were tested with a practical nonsmooth image restoration problem. A de-
tailed description of the problem can be found in [10].

4.2 Numerical Results

Smooth test problems. All the programs given in Table 2 were first
tested with 22 smooth problems with the numbers of variables 10, 100 and
1000 and in case of the limited memory programs L-BFGS and LMBM also with
10 000 variables.

We tested the bundle programs PVAR, PNEW, PBUN, PBNCGC, and LMBM with
relatively small sizes of the bundle (m¢). That is, mg = 10 for the bundle-
Newton program PNEW and for both the proximal bundle programs PBUN
and PBNCGC, and m, = 2 for the variable metric bundle programs PVAR and
LMBM. For the limited memory programs L-BFGS and LMBM, the maximum
number of stored corrections (m.) was set to 7. As a stopping parameter,
we used € = 107% in all the cases. The other parameters used were chosen
experimentally.

In the test results to be reported, we say that the optimization terminated
successfully if

e the problem was solved with the desired accuracy. That is, wy < &,
where wy, = L[|€,]|? + 3 in PNEW, PBUN, and PBNCGC, wy = &, Di€, +
20 in PVAR, wy, = 2€&, D&, + 45, in LMBM (note that also 1||&,]|? +
Br < 10%), and wy, = ||V f(x)||/ max{1, ||xx||} in L-BFGS.
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In addition, for the programs PVAR, PNEW, PBUN and LMBM we say that the
optimization terminated successfully if

o |fir1 — fr] <1.0-107% in 10 subsequent iterations.

Otherwise, we say that the optimization failed.

The results of the smooth experiments are summarized in Figure 1 and in
Table 3. In Figure 1, we give the average CPU time elapsed for problems
in proportion to the number of variables for each of the six programs (note
that we have naturally calculated some extra data points to obtain a realistic
figure). In Table 3, we have calculated the average number of iterations (Ni)
and function evaluations (Nf) needed for problems of different sizes. The
problems where the optimization has failed (fail) are not included in the data.
Since for almost every tested program there existed one problem in the set
of 22 problems that needed much more iterations than the others, we also
removed in each case the problems that used the largest and the smallest
number of iterations. In addition, we give the number of the inaccurate
results occurred (#) within the 22 problems. That is, the number of problems
where optimization has not failed but the precision of the result is more than
two significant digits greater than the desired accuracy of the solution. The
blanks in the table mean that the problems were not tested in these cases.

10 : -
I 1 —- PNEW
| 1 4 = PVAR
9 | h ¢| = = PBNCGC
- 4 | — — PBUN
— L-BFGS
— | MBM

CPU time elapsed (sec)
o
T

0 100 200 300 400 500 600 700 800 900 1000
Number of variables

Figure 1: Average CPU time elapsed for smooth problems.
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Table 3: Average results with 22 smooth problems.

Program/n 10 100 1000 10000
Ni/Nf/fail  Ni/Nf/fail Ni/Nf/fail Ni/Nf/fail

PVAR 34/35/0 170/179/0  1668/1885/0(1) -

PNEW 20/21/0 35/38/0 20/21/3

PBUN 71/73/0  216/218/1(Y)  1407/1410/1(D

PBNCGC 80/99/0 338/428/0 2414/4131/0 -

L-BFGS 36/45/0 181/212/1 960/998/3 13142/14522/5(1)

LMBM 31/34/0 92/105/0 338/355/0 6432/7587,/0(1)

(#) Number (#) of inaccurate results obtained.

To sum up, all the tested programs worked well for small- and medium-scale
problems (n < 100) but with large-scale problems the programs other than
those using the limited memory approach became computationally inefficient
(see Figure 1). The new limited memory bundle program LMBM was the most
efficient method in all the cases. It found the local minimum in a reliable
way and in our experiments it was also very robust while, for example, PVAR

limited memory BFGS program L-BFGS was efficient with both small- and
large-scale smooth problems. However, when the dimension of the problems
increased, L-BFGS had some difficulties with the line search and it failed to
solve some of the problems.

Nonsmooth test problems. The programs for nonsmooth optimization
(that is, all the programs in Table 2 except L-BFGS) were tested also with
the ten nonsmooth minimization problems 1 10 described in Section 3. The
numbers of variables used were 10, 100 and 1000.

We tested the programs with different sizes of bundles (mg). For the bundle-
Newton program PNEW and for both the proximal bundle programs PBUN and
PBNCGC, the sizes of bundles used were 10 and 100, and for the variable metric
bundle programs PVAR and LMBM, the sizes of bundles were 2 and 100. For
LMBM, the maximum number of stored corrections (m,.) was set to 7.

In our nonsmooth experiments, the following values of parameters were used:
e For convex problems 1-5, the distance measure parameter v = 0 was
used with the programs PBUN, PBNCGC, and LMBM.

With PNEW, the distance measure parameter v = 0.001 was used since
the value of 7 has to be positive (see [13]).

With PVAR, the convex version of the program was used.
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For nonconvex problems 6 10, the distance measure parameter v =
0.50 was used with all the programs and we used the nonconvex
version of the program PVAR.

The stopping parameter € = 10~° was used in all the cases.

Otherwise, the default parameters were used with all the programs.

In addition to the stopping criteria already mentioned, we terminated
the experiments if the CPU time elapsed exceeded half an hour.

The average results of the nonsmooth experiments are summarized in Table 4.
For all the programs, we first give the results obtained with the smaller bundle
and then below the results obtained with the larger bundle. The average CPU
time elapsed (time) is given in seconds. Otherwise, the results are given as
before and in each case we have removed from the data the problems that
used the largest and the smallest number of iterations.

Table 4: Average results with 10 nonsmooth problems.

Program/n 10 100 1000
Ni/Nf/fail  time Ni/Nf/fail time Ni/Nf/fail time
PVAR 185/200/1  0.006 589/597/2 0.29 17782/6497/3(3) 902.61
81/86/0 0.005 303/311/1 0.26 1713/1717/3() 156.61
PNEW 80/89/1 0.014 296/314/3 3.26 164/273/1(2) 1324.12
90/98/0 0.084 144/158/2 8.33 73/146/1(2) 957.61
PBUN 101/105/0  0.007 840/918/1 0.30 913/1031/4 10.17
56/59/0 0.007 222/230/2 0.73 1958/2010/1 46.13
PBNCGC 55/64/0 0.005 16799/16957/3  7.94 139526/139545/0(1)  906.20
41/50/0 0.005 269/307/1 2.61 3337/3348/1 771.85
LMBM 583/3113/0  0.031 373/1176/0 0.08 420/1374/0 0.76
126/152/0  0.008  238/269/0(1) 0.10 232/283/1(1) 1.38

(#) Number (#) of inaccurate results obtained.

For smooth problems, the average results (see Table 3 and Figure 1) give
quite a realistic impression of the behavior of the programs. However, for
nonsmooth problems, the average results given in Table 4 may be misleading
especially when the size of the problems is large. For example, with 1000
variables, the proximal bundle program PBNCGC either used the whole time
limit available (in problems 1, 3, 4, 8 and 10) or then solved the problem
really fast (in problems 2, 5, 6, 7 and 9). In fact, PBNCGC (with me = 100)
was the most efficient program tested with three problems (that is, problems
2, 6 and 7). The same kind of an effect can also be seen with the other
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proximal bundle program PBUN, although it never needed the whole time
limit and, on the other hand, it was the most efficient program only with one
problem (in problem 1). PBUN was also the only program that could solve
problem 1 with 1000 variables properly within the given time limit. With
all the other problems our new program LMBM, was the most efficient method
with 1000 variables. In fact, LMBM was usually the most efficient program also
with 100 variables but the differences were not substantial in these cases. In
all the cases, LMBM outperformed the original variable metric bundle program
PVAR and the bundle Newton program PNEW already with 100 variables.

With large-scale problems, our new program LMBM usually needed less iter-
ations and function evaluations than the other programs except the bundle
Newton program PNEW which, however, was the most time-consuming of the
programs tested due to matrix operations. Thus, LMBM should be an efficient
method also in the cases where the function and the subgradient evaluations
are expensive.

Now, let us for a while concentrate only on our new program LMBM since in
large-scale cases it usually outperforms the other bundle programs tested.
We tested LMBM with different sizes of bundles and with different maximum
numbers of stored corrections. The sizes of the bundles were the same as
before, that is m¢ = 2 and mg = 100, and the maximum numbers of stored
corrections were set to 3, 7, and 15. In what follows, we denote these different
modifications by LMBM(3), LMBM(7), and LMBM(15).

In Table 5, we report the results obtained with the different modifications
of our new program for each nonsmooth problem with 1000 variables. As
before, we first give the results obtained with the smaller bundle and then
below the results obtained with the larger bundle. At the bottom of Table 5,
we give the average results calculated exactly as in Table 4. Our goal is to
identify the classes of problems for which our new program is effective. In
addition, we are interested in the best values for the maximum number of
stored corrections and the size of the bundle.

It can be seen in Table 5 that our new program had serious difficulties with
problem 1. These difficulties were quite predictable, since there exists only
one nonzero component in the subgradient vector of the objective function
at each iteration. In practice, this means that the approximation of the
inverse of the Hessian matrix becomes sparse, and thus, the search direction
may be quite inaccurate. Also smooth limited memory methods have been
reported to be best suited for problems where the Hessian matrix is not very
sparse [12].
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Table 5: Results with the nonsmooth problems with 1000 variables.

LMBM(3) LMBM(7) LMBM(15)
P Ni/Nf Time Ni/Nf Time Ni/Nf Time
1 2390162/2390383* 1800.00  1627489/2098714* 1800.00  914774/915235* 1800.00
fail fail fail

2 326/1007* 70.78 61/135* 9.49 104/263* 18.49
322/417* 30.00 62/102* 7.28 63/104* 7.36

3 167/528 0.12 152/422 0.13 223/587 0.27
138/163 0.36 153/195 0.44 203/303 0.77

4 158/483 0.22 250/820 0.43 263/825 0.54
32/33 0.03 125/159 0.35 219/331 0.96

5 32/87 0.04 150/424 0.22 169/372 0.22
32/38 0.04 81/89 0.14 58/60 0.09

6 536/537 0.22 538/539 0.22 538/539 0.23
529/531 2.16 529/531 2.13 529/531 2.13

7 283/1179 2.19 417/1672 3.33 237/431 0.99
237/244* 1.17 168/183 2.56 183/224 0.92

8 416/1319 0.28 710/2462 0.64 1351/3315 1.62
230/308 0.79 479/650 2.08 1749/2192 9.00

9 149/351 0.10 92/103 0.06 142/238 0.11
159/162 0.52 143/143 0.38 127/268 0.30

10 774/4312* 0.71 1049/4509 1.07 867/3062 1.17
276/342* 1.00 477/559* 2.73 366/467* 1.64

Aver. 351/1215 9.33 420/1374 0.76 474/1171 0.64
Aver. 199/239 4.84 232/283 1.38 241/318 2.01

*  An inaccurate result obtained.

The program LMBM had also some difficulties with problem 2. With all the
tested versions, the optimization was terminated before the minimum point
was actually achieved. The reason for this premature termination is that at
every iteration, the subgradient vector of the objective function is of the form
+(1/i,1/(i+1),...,1/(i+n—1)), where i is the index of the max-function.
When 7 is large, the norm of the subgradient becomes small and we stop
the computation. For some reason, the approximation of the inverse of the
Hessian matrix does not prevent this termination. Anyhow, this kind of a
difficulty is very easy to avoid: we just have to tighten the second stopping
criterion in (22).

All the other problems 3-10 were solved successfully with our new program
LMBM. In all these cases, the subgradient vector of the objective function con-
tains many nonzero entries and the values of these components depend on the
current iteration point x,. However, also with these problems, there occurred
some inaccurate results especially with the version LMBM(3). The computa-
tional times used with LMBM(3) were usually little smaller than those with
LMBM(7) or LMBM(15) but the differences were insignificant. When comparing
the versions LMBM(7) and LMBM(15), there was no a substantial difference in
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the accuracy of the program. Thus, we can say that the maximum number
of stored corrections should be at least 7.

The numbers of iterations and function evaluations needed with LMBM were
usually significantly smaller when the size of the bundle was large. This is
due to the fact that the selection of the initial step size is more accurate
when a larger bundle is used. On the other hand, each individual iteration
was more costly when the size of the bundle was increased. In practice, this
means that for problems with expensive objective function and subgradient
evaluations, it is better to use larger bundles, and thus, fewer iterations and
function evaluations.

We conclude from these experiments that our new method is best suited for
problems with dense subgradient vectors where components depend on the
current iteration point x, (that is, the components are not constants). In
addition, we conclude that the maximum number of stored corrections should
be at least 7.

Image restoration problem. Finally, we tested the nonsmooth optimiza-
tion programs with a convex image restoration problem (see [10]). Since for
problems 1 10, the results of our new program with a small maximum num-
ber of stored corrections (m,. = 3) were quite inaccurate, we only tested the
image restoration problem with m. = 7 and m, = 15. The stopping param-
eter ¢ = 107! was used with all the programs. Otherwise, the parameters
similar to the convex problems 1 5 were used.

In Figures 2 and 3, we give the CPU times elapsed with the problem with
a different number of variables. In addition, we give some more specified
results for the problem with 100, 500, and 1000 variables in Table 6, where
f denotes the value of the objective function at termination.

From the numerical results, we can conclude the superiority of the limited
memory bundle program LMBM when comparing the computational times (see
Figures 2 and 3). In all the cases, it used significantly less CPU time than the
other programs. However, the accuracy of the new program was somewhat
disappointing. The minima of the objective function found with LMBM were
usually a little bit greater than with the other programs (especially those
found with the proximal bundle programs PBNCGC and PBUN). In all the cases,
the result obtained with our new program LMBM became more accurate when
the maximum number of stored corrections or the size of the bundle was
increased (see Table 6).
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Figure 2: CPU time elapsed for the problem with

small bundles.
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Figure 3: CPU time elapsed for the problem with large bundles.
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Table 6: Results for the image restoration problem.

Program/n 100 500 1000
Ni/Nf f Ni/Nf f Ni/Nf f
PVAR 370/370 0.79751 1787/1787 4.87495 3281/3281 9.86366
266,266 0.79750 1689/1689 4.86216 2932/2932 9.80222
PNEW 993/1138  0.79752 998/1185 4.87698 267/293 11.39220
242/250 0.79750 773/861 4.87243 110/121 12.36375
PBUN 45232/51461  0.79750  196206/233754  4.86189  377092/480182  9.76172
2281/2310  0.79750  71081/79933  4.86200  43136/48470  9.76818
PBNCGC 5900/5901  0.79751  25568/25569  4.86194  116058/116059  9.76172
300/301 0.79751 3590/3591 4.86194 9913/9914 9.76184
LMBM(7) 392/821 0.79845 2280/2545 4.89094 5792/6121 9.82068
643/710 0.79827 3486/3524 4.87367  11642/11677  9.80511
LMBM(15) 333/779 0.79824 3543/4341 4.87126 8534/9133 9.80616
502/608 0.79823 5388/5522 4.86814  12148/12246  9.78286

Note that the results obtained with this practical problem differ a lot from
those obtained before with smooth problems and with nonsmooth prob-
lems 1 10 especially with the program PBUN. In all the cases, PBUN used
much more iterations and function evaluations than the other proximal bun-
dle program PBNCGC (see Table 6). It was also very time-consuming (see
Figures 2 and 3) while with smooth problems and with problems 1-10 it was
the most efficient of the current bundle programs tested. On the other hand,
the variable metric bundle program PVAR was the most efficient of the current
bundle programs, while with academic problems it was very time-consuming.

Also LMBM behaved a little differently with the practical problem than before:
In each case it used more iterations and function evaluations when the larger
bundle was used. However, as said before, also the results obtained with
LMBM became more accurate when the size of the bundle was increased.

We conclude from these experiments that our new method was usually the
most efficient method for large-scale problems. With smooth problems, the
new limited memory bundle program LMBM was almost twice as fast as the
limited memory variable metric program L-BFGS that has been developed for
smooth large-scale minimization. In addition, for example, with 1000 vari-
ables, LMBM was on an average about 5 times faster than the fastest bundle
program PBUN and 250 times faster than the original variable metric bundle
program PVAR. For nonsmooth problems these differences were even more per-
ceptible. For example, for the image restoration problem with 500 variables,
LMBM was about 30 times faster than PVAR, 100 times faster than the proxi-
mal bundle program PBNCGC, 450 times faster than the other proximal bundle
program PBUN and 750 times faster than the bundle-Newton program PNEW.
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5 Conclusions

In this paper, we have introduced a new limited memory bundle method for
nonsmooth large-scale optimization. We have also tested the performance
of this new method with different minimization problems. The numerical
experiments confirm that the new method is efficient and reliable for both
smooth and nonsmooth optimization problems. With large numbers of vari-
ables it usually used significantly less CPU time than the other programs
tested.

With smooth problems, the accuracy of the new program was comparable to
the other programs tested. However, with nonsmooth problems, the minima
found with the limited memory bundle program were often slightly greater
than those of the other programs and there occurred some inaccurate results
especially with a small maximum number of stored corrections. Thus, we
conclude that the maximum number of stored corrections should be at least 7.

Our numerical experiments showed that the limited memory bundle method
works well for both convex and nonconvex minimization problems. Yet, it is
best suited for problems with dense subgradient vectors where components
depend on the current iteration point.

Although the new method is quite useful already, there is a lot of further work
required before the idea is complete. Possible areas of future development
include the following: alternative ways of scaling the updates (especially, the
SR1 update), constraint handling (simple bounds, linear constraints, nonlin-
ear constraints), and parallelized version of the program.
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