
Large-Sale Nonsmooth Optimization:New Variable Metri Bundle Algorithmwith Limited MemoryM. Haarala K. Miettinen M. M. M�akel�aDepartment of Mathematial Information Tehnology,University of Jyv�askyl�a, P.O. Box 35 (Agora),FIN-40014 University of Jyv�askyl�a, Finland.Many pratial optimization problems involve nonsmooth (that is, not neessarilydi�erentiable) funtions of hundreds or thousands of variables. In suh problems,the diret appliation of smooth gradient-based methods may lead to a failure dueto the nonsmooth nature of the problem. On the other hand, none of the urrentgeneral nonsmooth optimization methods is eÆient in large-sale settings. Inthis paper, we introdue a new limited memory variable metri -based bundlemethod for nonsmooth large-sale optimization. In addition, we introdue a newset of aademi test problems for large-sale nonsmooth minimization. Finally, wegive some enouraging results from numerial experiments using both aademiand pratial test problems.Keywords: Nondi�erentiable programming, large-sale optimization, bundlemethods, variable metri methods, limited memory methods, test problems.1 IntrodutionIn this paper, we desribe a limited memory bundle algorithm for solvinglarge nonsmooth (nondi�erentiable) unonstrained optimization problems.We write this problem as (minimize f(x)subjet to x 2 Rn ; (1)where the objetive funtion f : Rn ! R is supposed to be loally Lipshitzontinuous and the number of variables n is supposed to be large.1

Nonsmooth optimization problems of type (1) arise in many �elds of applia-tions, for example, in image restoration (see, e.g., [10℄) and in optimal ontrol(see, e.g., [20℄). The diret appliation of smooth gradient-based methods tononsmooth problems may lead to a failure in onvergene, in optimality on-ditions, or in gradient approximation (see, e.g., [11℄). On the other hand,diret methods, for example, Powel's method (see, e.g., [3℄) employing noderivative information, are quite unreliable and beome ineÆient when thesize of the problem inreases.The methods for solving nonsmooth optimization problems an be dividedinto two main lasses: subgradient methods (see, e.g., [22℄) and bundle meth-ods (see, e.g., [7, 8, 16, 19, 20℄). They are all based on the assumption thatat every point x 2 Rn , we an evaluate the value of the objetive funtionf(x) and an arbitrary subgradient � 2 Rn from the subdi�erential (see [2℄)�f(x) = onvf limi!1rf(xi) j xi ! x and rf(xi) exists g; (2)where \onv" denotes the onvex hull of a set.At the moment, bundle methods are regarded as the most e�etive and reli-able methods for nonsmooth optimization (see, e.g., [19℄). Thus, we begin bygiving a short review of standard bundle methods to point out the basi ideasand to motivate the need of solvers for large-sale nonsmooth optimizationproblems.The basi idea of bundle methods is to approximate the subdi�erential of theobjetive funtion by gathering the subgradients from previous iterations intoa bundle. We suppose that, in addition to the urrent iteration point xk, wehave some auxiliary points yj 2 Rn (from previous iterations) and a bundleof subgradients �j 2 �f(yj) available for j 2 Jk, where Jk is a nonemptysubset of f1; : : : ; kg. We approximate the objetive funtion f by using apieewise linear funtionf̂k(x) = maxj2Jkf f(xk) + �Tj (x� xk)� �kj g; (3)where �kj � 0 is a so-alled subgradient loality measure (see, e.g., [20℄).A searh diretion an be determined asdk = arg mind2Rnf f̂k(xk + d) + 12dTMkd g; (4)where the role of the stabilizing term 12dTMkd is to guarantee the existeneof the solution dk and to keep the approximation loal enough. The regularand symmetri n�n -matrixMk is intended to aumulate information about2

the urvature of the objetive funtion f in a ball around xk. In the mostfrequently used proximal bundle method, the matrix Mk is diagonal of theform Mk = ukI, where I is the identity matrix and the weighting parameteruk > 0 (see, e.g., [20℄).The minimization of problem (4) is equivalent (see, e.g., [20℄) to the (smooth)quadrati subproblem of �nding the solution (dk; vk) 2 Rn+1 of(minimize 12dTMkd + vsubjet to ��kj + dT�j � v for all j 2 Jk: (5)By duality this is equivalent to �nding Lagrange multipliers �kj for j 2 Jkthat solve the quadrati dual problem8>>>>><>>>>>:minimize 12 Pj2Jk �j�j!T M�1k Pj2Jk �j�j!+ Pj2Jk �j�kjsubjet to Pj2Jk �j = 1 and�j � 0; for all j 2 Jk: (6)
A new auxiliary point yk+1 is de�ned by yk+1 = xk + tkRdk, where tkR 2 (0; 1℄is an appropriately hosen step size (see, e.g., [8℄). A serious stepxk+1 = yk+1 (7)is taken if yk+1 is signi�antly better than xk, in other words,f(yk+1) � f(xk) + "LtkRvk; (8)where "L 2 (0; 1=2) is a �xed line searh parameter and vk, whih is thesolution of the problem (5), represent the predited desent of f at xk (see,e.g., [19℄). Otherwise, a null step is taken that keeps the urrent iterationpoint unhanged (xk+1 = xk) but the information about the objetive fun-tion is inreased by adding a new subgradient �k+1 2 �f(yk+1) into a bundle.The global onvergene of bundle methods with a limited number of storedsubgradients an be guaranteed by using a subgradient aggregation strategy,whih aumulates information from the previous iterations (see [8℄).In their present form, bundle methods are eÆient for small- and medium-sale problems. However, their omputational demand expands in large-sale problems with more than 1000 variables. This is explained by the fatthat bundle methods need relatively large bundles to be apable of solvingthe problems eÆiently. In other words, the size of the bundle has to be3

approximately the same as the number of variables and, thus, the quadratisubproblem (6) beomes very time-onsuming to solve.In variable metri bundle methods introdued by Luk�san and Vl�ek [14, 24℄,the searh diretion is alulated by using the variable metri approximationof the inverse of the Hessian matrix (Dk = M�1k in (6)). The idea of themethods is to use only three subgradients: one alulated at the urrentiteration point xk, one alulated at the new auxiliary point yk+1, and anaggregated one, ontaining information from previous iterations. Thus, thedimension of the normally time-onsuming quadrati subproblem (6) is onlythree and it an be solved with simple alulations. However, variable metribundle methods use dense approximations of the Hessian matrix to alulatethe searh diretion and, thus, also these methods beome ineÆient whenthe dimension of the problem inreases.We have not found any general bundle-based solver for large-sale nonsmoothoptimization problems from the literature. Thus, we an say that at themoment the only possibility to optimize nonsmooth large-sale problems isto use some subgradient methods. However, the basi subgradient methodssu�er from some serious disadvantages: a nondesent searh diretion mayour, there exists no implementable stopping riterion, and the onvergenespeed is poor (not even linear) (see, e.g., [11℄). On the other hand, themore advaned variable metri based subgradient methods (see, e.g., [22℄)using dense matries su�er from the same drawbaks than the variable metribundle methods. This means that there is an evident need of reliable andeÆient solvers for nonsmooth large-sale optimization problems.In this paper, we introdue a new limited memory bundle method for large-sale nonsmooth unonstrained minimization. The method is a hybrid ofthe variable metri bundle methods [14, 24℄ and the limited memory variablemetri methods (see, e.g., [1, 21℄), where the latter have been developed forsmooth large-sale optimization. The new method uses all the ideas of thevariable metri bundle method but the searh diretion is alulated usinga limited memory approah. Thus, the time-onsuming quadrati subprob-lem (6) appearing in the standard bundle methods need not to be solved.Furthermore, we use only few vetors to represent the variable metri approx-imation of the Hessian matrix and, thus, we avoid storing and manipulatinglarge matries as is the ase in variable metri bundle methods. These im-provements make the limited memory bundle method suitable for large-saleoptimization. Namely, the number of operations needed for the alulationof the searh diretion and the aggregate values is only linearly dependent onthe number of variables while, for example, with the original variable metribundle method, this dependene is quadrati.4

This paper is organized as follows: In the following setion we introdue thenew limited memory bundle method. In Setion 3, we introdue a new setof aademi test problems for large-sale nonsmooth minimization. Then, inSetion 4, we analyze numerial experiments onerning some existing bun-dle methods and our new method. The numerial results to be presenteddemonstrate the usability of the new method with both smooth and nons-mooth large-sale minimization problems. Finally, in Setion 5, we onludeby giving a short summary of the performane of the methods tested.2 Limited Memory Bundle MethodIn this setion, we present a new method for large-sale nonsmooth unon-strained optimization. The method will be alled the limited memory bundlemethod and its basi idea is very simple. We use all the ideas of variablemetri bundle methods but the variable metri approximation of the Hessianmatrix is alulated by using a limited memory approah. This means thatwe use some ideas essential to bundle methods, namely the utilization of nullsteps, simple aggregation of subgradients, and subgradient loality measures,but the searh diretion is alulated by using the limited memory variablemetri updates. The basi idea of this limited memory approah is that thevariable metri update of the approximated Hessian is not onstruted expli-itly. The updates use the information of the last few iterations to impliitlyde�ne a variable metri approximation. In pratie, this means that the ap-proximation of the Hessian matrix is not as aurate as that of the originalvariable metri bundle methods but both the storage spae required and thenumber of operations used are signi�antly smaller. In smooth large-salesettings, there exist also some other possibilities to deal with the variablemetri approximation of the Hessian matrix (see, e.g., [4, 23℄). However, wehose this limited memory approah to be adopted for nonsmooth problemsbeause it does not need any information of the struture of the problemor its Hessian. Thus, the only assumption required is that the objetivefuntion f is loally Lipshitz ontinuous.Next, we go through the algorithm step by step and desribe both its theo-retial properties and some details of the implementation. In what follows,we use the following notations: the urrent iteration is denoted by k andthe approximation of the inverse of the Hessian matrix is denoted by D,the subgradient of the objetive funtion is denoted by � and an aggregatesubgradient to be desribed in Subsetion 2.3 is denoted by ~�.5

2.1 Diretion FindingIn this subsetion, we desribe how to �nd the searh diretion dk by usingthe limited memory bundle method. The basi idea in diretion �nding is thesame as with the limited memory variable metri methods (see, e.g., [1℄) andthe approximations Dk are formed impliitly by using the limited memoryvariable metri updates.However, due to the usage of null steps some modi�ations similar to variablemetri bundle methods [14, 24℄ have to be made: After a null step, theapproximation Dk is formed by using the limited memory SR1 update (see,e.g., [1℄), sine this update formula gives us a possibility of preserving theboundedness of the generated matries (that is, the eigenvalues of the matrixlie in the ompat interval not ontaining zero) (see, e.g., [24℄). In addition,we use an aggregate subgradient ~�k to alulate the searh diretiondk = �Dk ~�k: (9)Beause the boundedness of the generated matries is not required aftera serious step (see [24℄), the more eÆient limited memory BFGS updateformula (see, e.g., [1℄) is used to ompute the approximationDk of the inverseof the Hessian. The searh diretion dk is alulated by using the originalsubgradient �k 2 �f(xk). Thus, after a serious step, the searh diretion isde�ned by dk = �Dk�k: (10)Note that the matrix Dk is not formed expliitly but the searh diretion dkis alulated using the limited memory approah to be desribed in Subse-tion 2.6.2.2 Line SearhNext, we onsider how to alulate a new iteration point xk+1 when the searhdiretion dk has been alulated. Similarly to the standard bundle methodsand the variable metri bundle methods, we use the line searh proedure(see, e.g., [24℄) that generates two pointsxk+1 = xk + tkLdk and (11)yk+1 = xk + tkRdk;where tkR 2 (0; tkI ℄, tkL 2 [0; tkR℄ are step sizes, tkI 2 [tmin; tmax) is the initialstep size, and tmax > 1 and tmin 2 (0; 1) are the upper and the lower bounds6

for the initial step size tkI , respetively. Note that in standard bundle meth-ods the initial step size tkI is equal to 1 at every iteration (see, e.g., [20℄).However, similarly to the original variable metri bundle method, we havethe possibility to use step sizes greater than 1 here, sine the informationabout the objetive funtion inluded in the matrix Dk, is not suÆient for aproper step size determination in the nonsmooth ase (see [24℄). The initialstep size tkI is seleted by using a bundle ontaining auxiliary points and or-responding funtion values and subgradients. The proedure used is exatlythe same as in the original variable metri bundle method for nononvex ob-jetive funtions. The detailed desription of the seletion of this step sizean be found in [24℄.A neessary ondition for a serious step to be taken is to havetkR = tkL > 0 and f(yk+1) � f(xk)� "LtkRwk; (12)where "L 2 (0; 1=2) is a �xed line searh parameter and wk > 0 representsthe desirable amount of desent of f at xk (note that this parameter is notthe same as vk in (8)). If the required ondition (12) is satis�ed, we setxk+1 = yk+1 (13)and a serious step is taken. A null step is taken, iftkR > tkL = 0 and � �k+1 + dTk �k+1 � �"Rwk; (14)where "R 2 ("L; 1) is a �xed line searh parameter, �k+1 2 �f(yk+1), and�k+1 is the subgradient loality measure similar to bundle methods (see, e.g.,[19℄), that is,�k+1 = maxfjf(xk)� f(yk+1) + (yk+1 � xk)T�k+1)j; kyk+1 � xkk! g; (15)where � 0 is a distane measure parameter and ! � 1 is a loality measureparameter supplied by the user. The distane measure parameter an beset to zero when f is onvex.In the ase of a null step, we set xk+1 = xk (16)but information about the objetive funtion is inreased beause of theauxiliary point yk+1 and the auxiliary subgradient �k+1 2 �f(yk+1) that westore.The step sizes tkL and tkR for the limited memory bundle method an bedetermined by using the line searh proedure quite similar to that at the7

original variable metri bundle method [24℄. However, in order to avoidmany onseutive null steps, we have added an additional interpolation step.That is, we look for more suitable step sizes tkL and tkR by using an extrainterpolation loop if neessary. The role of this additional step is that if wehave already taken a null step at the previous iteration, we rather try to �nda step size suitable for a serious step (that is, so that (12) is valid) even ifthe ondition (14) required for a null step was satis�ed.Note that under some semismoothness assumptions, the line searh proedureused is guaranteed to �nd the step sizes tkL and tkR suh that exatly one ofthe two possibilities, serious step or null step, ours (see [24℄).2.3 Subgradient AggregationIn this subsetion, we desribe the aggregation proedure used with the lim-ited memory bundle method. In priniple, the aggregation proedure is thesame as that with the original variable metri bundle methods [14, 24℄. How-ever, sine the matrix Dk is not formed expliitly here, the pratial im-plementation of the aggregation proedure di�ers from that of the originalmethod.The aggregation proedure uses three subgradients and two loality measures.We denote by m the lowest index j satisfying xj = xk (that is, m is the indexof the iteration after the latest serious step). Suppose that we have the ur-rent subgradient �m 2 �f(xk), the auxiliary subgradient �k+1 2 �f(yk+1),and the urrent aggregate subgradient ~�k (note that ~�1 = �1) available. Inaddition, suppose that we have the urrent loality measure �k+1 (see (15))and the urrent aggregate loality measure ~�k from the previous iteration(note that ~�1 = 0). The quite ompliated quadrati subproblem (6) ap-pearing in the standard bundle methods redues to the minimization of thefuntion'(�1; �2; �3) = (�1�m + �2�k+1 + �3~�k)TDk(�1�m + �2�k+1 + �3~�k) (17)+ 2(�2�k+1 + �3 ~�k);where �i � 0 for i 2 f1; 2; 3 g and P3i=1 �i = 1. The optimal values �ki ,i 2 f1; 2; 3 g an be alulated by using simple formulae (see [24℄). However,sine we do not form the matrixDk expliitly, we have to use limited memoryBFGS (the �rst null step after any serious step) or SR1 (more than oneonseutive null steps) update to impliitly de�ne the approximation of theinverse of the Hessian matrix. 8

Now the next aggregate subgradient ~�k+1 is de�ned as a onvex ombinationof the three subgradients mentioned above:~�k+1 = �k1�m + �k2�k+1 + �k3~�k (18)and the next aggregate loality measure ~�k+1 as a onvex ombination of thetwo loality measures: ~�k+1 = �k2�k+1 + �k3 ~�k: (19)Note that the aggregate values are omputed only if the last step was a nullstep. Otherwise, we set ~�k+1 = �k+1 2 �f(xk+1) and ~�k+1 = 0.2.4 Stopping CriterionFor smooth funtions, a neessary ondition for a loal minimum is thatthe gradient has to be zero and by ontinuity it beomes small when weare lose to an optimal point. This is no longer true when we replae thegradient by an arbitrary subgradient. Due to the subgradient aggregation,we have quite a useful approximation to the gradient, namely the aggregatesubgradient ~�k. However, as a stopping riterion, the diret test k~�kk < ",for some " > 0, is too unertain, if the urrent pieewise linear approximation(see (3)) is too rough. Therefore, we use the approximation Dk of the inverseof the Hessian matrix and the aggregate subgradient loality measure ~�kto improve the auray of the norm of the aggregate subgradient. Theaggregate subgradient loality measure ~�k approximates the auray of theurrent linearization: If the value of the loality measure is large, then thelinearization is rough. On the other hand, if the value is near zero, then thelinearization is quite aurate and, thus, we an stop the algorithm if thenorm of the aggregate subgradient is small enough.Sine in pratie the matrix Dk is not formed expliitly we use the diretionvetor dk = �Dk~�k instead. Hene, the stopping parameter wk at iterationk is de�ned by wk = �2~�Tkdk + 4~�k: (20)The multipliers 2 and 4 in (20) are hosen experimentally suh that theauray of the new method would be approximately the same as with theother bundle methods. Note that the parameter wk is also used during theline searh proedure (see (12)) to represent the desirable amount of desent.9

This �rst part of our stopping riterion is quite similar to that of the originalvariable metri bundle method. However, in pratie the limited memoryapproximation Dk of the inverse of the Hessian matrix is not very aurateand omputational experiments showed that some aidental terminationsmay our (that is, the optimization was terminated before the minimumpoint was atually ahieved). Thus, we added a seond stopping parameterqk, whih does not depend on the matrixDk. The seond stopping parameteris similar to that in standard bundle methods (see, e.g. [20℄), that isqk = 12~�Tk ~�k + ~�k: (21)Now, the stopping riterion is given by:If wk < " and qk < 103", for given " > 0, then stop. (22)As before, the multiplier 103 above is hosen experimentally.2.5 AlgorithmWe are now ready to present the limited memory bundle method for nons-mooth large-sale unonstrained optimization.Algorithm 1. (Limited Memory Bundle Method).Data: Selet the upper and the lower bounds tmax > 1 and tmin 2 (0; 1)for serious steps. Selet positive line searh parameters "L 2 (0; 1=2)and "R 2 ("L; 1). Choose the �nal auray tolerane " > 0, thedistane measure parameter � 0 (= 0 if f is onvex), and theloality measure parameter ! � 1.Step 0: (Initialization.) Choose a starting point x1 2 Rn . Set �1 = 0 andy1 = x1. Compute f1 = f(x1) and�1 2 �f(x1):Set the iteration ounter k = 1.Step 1: (Serious step initialization.) Set the aggregate subgradient ~�k = �kand the aggregate subgradient loality measure ~�k = 0. Set an indexfor the serious step m = k. 10

Step 2: (Diretion �nding.) Computedk = �Dk~�kby a limited memory BFGS update, if m = k (Algorithm 3) and bya limited memory SR1 update, otherwise (Algorithm 2). Note thatd1 = � ~�1.Step 3: (Stopping riterion.) Calulate wk and qk by (20) and (21), respe-tively. If wk < " and qk < 103", then stop.Step 4: (Line searh.) Calulate the initial step size tkI 2 [tmin; tmax). Deter-mine the step sizes tkR 2 (0; tkI ℄ and tkL 2 [0; tkR℄ to take either a seriousstep or a null step (that is, hek whether (12) or (14) is valid). Setthe orresponding valuesxk+1 = xk + tkLdk;yk+1 = xk + tkRdk;fk+1 = f(xk+1);�k+1 2 �f(yk+1):Set uk = �k+1 � �m and sk = yk+1 � xk = tkRdk. If tkL > 0 (seriousstep), set �k+1 = 0, k = k+1, and go to Step 1. Otherwise, alulatethe loality measure �k+1 by (15).Step 5: (Aggregation.) Determine multipliers �ki � 0, i 2 f1; 2; 3g,P3i=1 �ki =1 that minimize the funtion (17), where Dk is obtained by the lim-ited memory BFGS update, if m = k and by the limited memorySR1 update, otherwise. Set~�k+1 = �k1�m + �k2�k+1 + �k3~�k and~�k+1 = �k2�k+1 + �k3 ~�k:Set k = k + 1 and go to Step 2.Note that in Steps 2 and 5, the matries Dk are not formed expliitly but thesearh diretion dk, and the aggregate values ~�k+1, and ~�k+1 are alulatedusing the di�erene vetors uk and sk.As mentioned in Subsetion 2.3, the aggregation proedure uses only threesubgradients and two loality measures to alulate the new aggregate values.In pratie, this means that the minimum size of the bundle m� is 2 and alarger bundle is used only for the seletion of the initial step size (see [24℄).11

2.6 Matrix UpdatingFinally, we need to onsider how to update the approximation Dk of theinverse of the Hessian matrix and thus, how to �nd the searh diretion dk.Note that until this point, the proedures desribed are very similar to thoseof the original variable metri bundle method [24℄.We use a ompat representation of limited memory matries (see [1℄), sinein addition to the BFGS updating formula, we need the SR1 updating formulaand for SR1 updates, there exists no reursive updating formula analogous tothat given in [21℄. Moreover, the ompat representation of limited memorymatries failitates the possibility to generalize the method for onstrainedoptimization.The basi idea of the limited memory matrix updating is that instead ofstoring the matries Dk, we use the information of the last few iterationsto impliitly de�ne the approximation of the inverse of the Hessian. This isdone by storing a ertain number of orretion pairs (si;ui), (i < k), wheresk = yk+1 � xk and (23)uk = �k+1 � �m:Here, as before, yk+1 is the urrent auxiliary iteration point, xk is the urrentiteration point, and �k+1 and �m are the orresponding subgradients of thesepoints (m is the index of the iteration after the latest serious step). Whenthe storage spae available is used up, the oldest orretions are deleted tomake room for new ones. All the subsequent iterations are of this form: oneorretion pair is deleted and a new one is inserted.Let us denote by m the maximum number of stored orretions supplied bythe user (3 � m) and by mk = min f k�1; m g the urrent number of storedorretions. We assume that the maximum number of stored orretions mis onstant, although it is possible to adapt all the formulae of this subsetionto the ase where m varies at every iteration (see, e.g., [9℄).The n�mk -dimensional orretion matries Sk and Uk are de�ned bySk = �sk�mk : : : sk�1� and (24)Uk = �uk�mk : : : uk�1� :These orretion matries are used to impliitly de�ne the approximation ofthe inverse of the Hessian matrix at eah iteration. When a new auxiliaryiteration point yk+1 is generated, the new orretion matries Sk+1 and Uk+1are obtained by deleting the oldest orretions sk�mk and uk�mk from Sk and12

Uk if mk+1 = mk (that is, k > m) and by adding the most reent orretionssk and uk to the matries. Thus, exept for the �rst few iterations, we alwayshave the m most reent orretion pairs (si;ui) available.We de�ne the inverse limited memory BFGS update by the formula (see [1℄)Dk = #kI + �Sk #kUk� �(R�1k)T (Ck + #kUTk Uk)R�1k �(R�1k)T�R�1k 0 � � STk#kUTk � :(25)Here, Rk is an upper triangular matrix of order mk given by the form(Rk)ij = ((sk�mk�1+i)T (uk�mk�1+j) if i � j0 otherwise, (26)Ck is a diagonal matrix of order mk suh thatCk = diag [sTk�mkuk�mk ; : : : ; sTk�1uk�1℄; (27)and the multiplier #k > 0 is given by#k = uTk�1sk�1uTk�1uk�1 : (28)In addition, we de�ne the inverse limited memory SR1 update (see [1℄) byDk = #kI � (#kUk � Sk)(#kUTk Uk � Rk �RTk + Ck)�1(#kUk � Sk)T ; (29)where instead of (28) we use the value #k = 1 for every k.Next, we desribe some proedures for updating the limited memory BFGSand SR1 matries. In addition to the two n �mk -matries Sk and Uk, themk � mk -matries Rk, UTk Uk, and Ck are stored. Sine in pratie mk islearly smaller than n, the storage spae required by these three auxiliarymatries is insigni�ant but the savings in omputational e�orts are on-siderable. We also give some ideas of how the searh diretion dk an bealulated by using these di�erent updates. After disussing the alulationsseparately, we then link them together.At the k-th iteration, we have to update the limited memory representationof Dk�1 to get Dk. Thus, we delete a olumn from Sk�1 and Uk�1 and adda new olumn to eah of these matries. Then, we make the orrespondingupdates to Rk�1, UTk�1Uk�1, and Ck�1. These updates an be done in O(m2k)operations by storing a small amount of additional information, namely the13

mk-vetors STk�1�m and UTk�1�m from the previous iteration. For example,the new triangular matrix Rk is formed from Rk�1 (see (26)) by deleting the�rst row and the �rst olumn if mk = mk�1 and by adding a new olumn tothe right and a new row to the bottom of the matrix. The new olumn isgiven by STk uk�1 = STk (�k � �m) (30)and the new row has the value zero in its �rst mk � 1 omponents. Theprodut STk uk�1 an be omputed eÆiently sine we already know mk � 1omponents of STk �m from STk�1�m. We only need to alulate sTk�1�m andarry out the subtrations. The matrix UTk Uk an be updated in a similarway. In this ase, both the new olumn and the new row are given by UTk uk�1.The diagonal matrix Ck is updated by deleting the �rst element of Ck�1 andadding sTk�1uk�1 as the last element (note that Ck is stored as a vetor).Next, we give an eÆient algorithm for updating the limitedmemory SR1 ma-trix Dk and for omputing the searh diretion dk = �Dk~�k. This algorithmis used whenever the previous step was a null step. Suppose that the numberof urrent orretions is mk and that we have the urrent iteration point xk,the previous orretions sk�1 and uk�1, the urrent (auxiliary) subgradient�k 2 �f(yk), the urrent aggregate subgradient ~�k, the basi subgradient�m 2 �f(xk), the n � mk -matries Sk�1 and Uk�1, the mk � mk -matriesRk�1, UTk�1Uk�1, and Ck�1, and the vetors STk�1�m and UTk�1�m available.Algorithm 2. (SR1 Updating and Diretion Finding).Step 1: If �dTk�1uk�1 � ~�Tk�1sk�1 < 0;then update the matries (i.e., go to Step 2). Otherwise, skip theupdates, that is, set Sk = Sk�1, Uk = Uk�1, Rk = Rk�1, UTk Uk =UTk�1Uk�1, Ck = Ck�1, STk �m = STk�1�m, and UTk �m = UTk�1�m and goto Step 6.Step 2: Obtain Sk and Uk by updating Sk�1 and Uk�1.Step 3: Compute mk-vetors STk �k and UTk �k.Step 4: Compute mk-vetors STk uk�1 and UTk uk�1 by using the fatuk�1 = �k � �m:Store mk-vetors STk �m and UTk �m.14

Step 5: Update mk �mk -matries Rk, UTk Uk, and Ck.Step 6: Set #k = 1:0.Step 7: Compute mk-vetors STk ~�k and UTk ~�k.Step 8: Computep = (#kUTk Uk �Rk � RTk + Ck)�1(#kUTk ~�k � STk ~�k):Step 9: Compute dk = �#k~�k + (#kUk � Sk)p:Note that the ondition (see Step 1)�dTi ui � ~�Ti si < 0 for all i = 1; : : : ; k � 1 (31)assures the positive de�niteness of the matries obtained by the limited mem-ory SR1 update (see [6℄).Due to the fat that after a serious step the aggregate subgradient ~�k = �k 2�f(xk) and sk = xk+1 � xk anduk = �k+1 � �k;(note that in the ase of a serious step this representation of sk and uk isnot oniting with (23)), the alulations used are very similar to thosegiven in [1℄. In fat, all the alulations in [1℄ ould be done by replaing thegradientrf(x) by an arbitrary subgradient � 2 �f(x). However, rather thanupdating and inverting the upper triangular matrix Rk at every iteration, weupdate and store the inverse R�1k .We now give an eÆient algorithm for updating the limited memory BFGSmatrixDk and for omputing the searh diretion dk = �Dk�k when the pre-vious step was a serious step. Suppose that we have the urrent subgradient�k 2 �f(xk), the previous subgradient �k�1 2 �f(xk�1), the mk � mk -matries R�1k�1, UTk�1Uk�1, and Ck�1, and the previous multiplier #k�1 avail-able.
15

Algorithm 3. (BFGS Updating and Diretion Finding).Step 1: If uTk�1sk�1 > 0;then update the matries (i.e., go to Step 2). Otherwise, skip theupdates, that is, set Sk = Sk�1, Uk = Uk�1, Rk = Rk�1, UTk Uk =UTk�1Uk�1, Ck = Ck�1, and #k = #k�1, ompute STk �k and UTk �k, andgo to Step 7.Step 2: Obtain Sk and Uk by updating Sk�1 and Uk�1.Step 3: Compute and store mk-vetors STk �k and UTk �k.Step 4: Compute mk-vetors STk uk�1 and UTk uk�1 by using the fatuk�1 = �k � �k�1:Step 5: Update mk �mk -matries R�1k , UTk Uk, and Ck.Step 6: If uTk�1uk�1 > 0, ompute #k#k = uTk�1sk�1uTk�1uk�1 :Note that both uTk�1sk�1 and uTk�1uk�1 have already been alulated.Otherwise, set #k = 1:0.Step 7: Compute two intermediate valuesp1 = R�1k STk �k;p2 = (R�1k)T (Ckp1 + #kUTk Ukp1 � #kUTk �k):Step 8: Compute dk = #kUkp1 � Skp2 � #k�k:Note that the ondition (see Step 1)uTi si > 0 for all i = 1; : : : ; k � 1 (32)assures the positive de�niteness of the matries obtained by the limited mem-ory BFGS update (see, e.g., [1℄). 16

In order to use both the Algorithms 2 and 3 with the same stored information,some modi�ations have to be made. Firstly, we have to update and storeboth matries Rk and R�1k at eah iteration regardless of the update formulawe are using. In addition, sine we use the same orretion matries Sk andUk for the alulations of both the BFGS and the SR1 updates, we have totest both the positive de�niteness onditions (31) and (32) in eah ase beforewe update the matries. However, numerial experiments have showed thatthe simple skipping of the updates (see Algorithms 2 and 3, Step 1), if boththe required onditions are not satis�ed, makes the method quite ineÆient.This is due to the fat that the BFGS update was usually skipped due toondition (31) required for the SR1 update. Therefore, we use the most reentorretions sk�1 and uk�1 to alulate the new searh diretion dk wheneverthe required positive de�niteness ondition is valid but the matries are notupdated unless both the onditions (31) and (32) are satis�ed. In pratie,this means that the orretion matries Sk and Uk may atually inlude someindies smaller than k �mk and that the number of the urrent orretionsused may be mk = m + 1.The new limited memory bundle method uses a limited memory approahto alulate the searh diretion and it requires only three subgradients andtwo loality measures to alulate the new aggregate values. Thus, the time-onsuming quadrati subproblem (6) appearing in standard bundle methodsneeds not to be solved and the size of the bundle needs not to inrease withthe dimension of the problem. Furthermore, both the searh diretion dkand the aggregate values ~�k+1 and ~�k+1 an be omputed impliitly using atmost O(nm) operations. Assuming m � n, this is muh less than O(n2)operations needed with the original variable metri bundle method, whihstores and manipulates the whole matrix Dk. These improvements makethe limited memory bundle method suitable for large-sale problems. Thisassertion is supported by numerial tests presented in Setion 4.3 Large-Sale Nonsmooth Test ProblemsMany pratial optimization appliations involve nonsmooth funtions ofmany variables. However, there exist only few large-sale aademi test prob-lems for the nonsmooth ase. For this reason, we now introdue a new setof large-sale unonstrained minimization problems for nonsmooth optimiza-tion.
17

We have made 10 nonsmooth problems whih all an be formulated with anynumber of variables. The problems are onstruted either by haining andextending small existing nonsmooth problems or by \nonsmoothing" largesmooth problems (that is, for example, by replaing the term x2i with jxij).First, we give the formulation of the objetive funtion f(x) and the startingpoint x1 for eah problem. Then, we ollet some details of the problems aswell as the referenes to the original problems in Table 1.1. Generalization of MAXQf(x) = max1�i�n x2i .x1i = i, for i = 1; : : : ; n=2 andx1i = �i, for i = n=2 + 1; : : : ; n.2. Generalization of MXHILBf(x) = max1�i�n ���Pnj=1 xji+j�1���.x1i = 1, for all i = 1; : : : ; n.3. Chained LQf(x) =Pn�1i=1 max��xi � xi+1;�xi � xi+1 + (x2i + x2i+1 � 1)	.x1i = �0:5, for all i = 1; : : : ; n.4. Chained CB3 If(x) =Pn�1i=1 max� x4i + x2i+1; (2� xi)2 + (2� xi+1)2; 2e�xi+xi+1 	.x1i = 2, for all i = 1; : : : ; n.5. Chained CB3 IIf(x) = max�Pn�1i=1 �x4i + x2i+1� ;Pn�1i=1 ((2� xi)2 + (2� xi+1)2) ;Pn�1i=1 (2e�xi+xi+1)	.x1i = 2, for all i = 1; : : : ; n. 18

6. Number of Ative Faesf(x) = max1�i�n f g (�Pni=1 xi) ; g(xi) g,where g(y) = ln (jyj+ 1).x1i = 1, for all i = 1; : : : ; n.7. Nonsmooth generalization of Brown funtion 2f(x) =Pn�1i=1 �jxijx2i+1+1 + jxi+1jx2i+1�.x1i = �1, when mod (i; 2) = 1; (i = 1; : : : ; n) andx1i = 1, when mod (i; 2) = 0; (i = 1; : : : ; n).8. Chained Mi�in 2f(x) =Pn�1i=1 ��xi + 2 �x2i + x2i+1 � 1�+ 1:75 ��x2i + x2i+1 � 1�� �.x1i = �1, for all i = 1; : : : ; n.9. Chained Cresent If(x) = max�Pn�1i=1 �x2i + (xi+1 � 1)2 + xi+1 � 1� ;Pn�1i=1 ��x2i � (xi+1 � 1)2 + xi+1 + 1�	.x1i = �1:5, when mod (i; 2) = 1; (i = 1; : : : ; n) andx1i = 2:0, when mod (i; 2) = 0; (i = 1; : : : ; n).10. Chained Cresent IIf(x) =Pn�1i=1 max�x2i + (xi+1 � 1)2 + xi+1 � 1;�x2i � (xi+1 � 1)2 + xi+1 + 1	.x1i = �1:5, when mod (i; 2) = 1; (i = 1; : : : ; n) andx1i = 2:0, when mod (i; 2) = 0; (i = 1; : : : ; n).The details of the problems are given in Table 1, where P denotes the prob-lem number, f(x�) is the minimum value of the objetive funtion, and the19

Table 1: Test problemsP f(x�) Convex Original problem and referene1 0.0 + MAXQ, n = 20, see, e.g., [20℄2 0.0 + MXHILB, n = 50, see, e.g., [18℄3 �(n� 1)p2 + LQ, n = 2, see, e.g., [20℄4 2(n� 1) + CB3, n = 2, see, e.g., [20℄5 2(n� 1) + CB3, n = 2, see, e.g., [20℄6 0.0 � See [5℄7 0.0 � Generalization of Brown funtion 2, see, e.g., [15℄8 varies� � Mi�in 2, n = 2, see, e.g., [20℄9 0.0 � Cresent, n = 2, see, e.g., [20℄10 0.0 � Cresent, n = 2, see, e.g., [20℄* f(x�) � �6:51 for n = 10, f(x�) � �70:15 for n = 100 and f(x�) � �706:55 for n = 1000.symbols � (nononvex) and + (onvex) denote the onvexity of the prob-lems. Also the referenes to the original problem in eah ase are given inTable 1.4 Numerial ExperimentsIn order to get some information of how the new method works in pratiewhen ompared to other nonsmooth methods, we tested di�erent existingprograms with several problems. In this setion, we �rst introdue the testedsoftware. Then, we give the results from the numerial experiments and drawsome onlusions.4.1 Tested SoftwareIn this subsetion, we �rst introdue the programs used in our experiments.The experiments were performed in a SGI Origin 2000/128 superomputer(MIPS R12000, 600 Mop/s/proessor). The algorithms were implementedin FORTRAN77 with double-preision arithmeti. The piees of softwaretested are presented in Table 2. None of the nonsmooth optimization pro-grams PVAR, PBUN, PNEW, and PBNCGC has been developed for large-sale op-timization. On the other hand, we wanted to get some information of thebehavior of the new program LMBM espeially with large-sale problems. Forthis reason, we used the smooth large-sale optimization program L-BFGSas a benhmark. Thus, all the programs were �rst tested with 22 smooth20

Table 2: Tested piees of softwareSoftware Author(s) Method ReferenePVAR Luk�san & Vl�ek Variable metri bundle [14, 24℄PNEW Luk�san & Vl�ek Bundle-Newton [13℄PBUN Luk�san & Vl�ek Proximal bundle [17℄PBNCGC M�akel�a Proximal bundle [20℄L-BFGS Noedal Limited memory BFGS [12, 21℄LMBM Haarala Limited memory bundleminimization problems, whih all ould be formulated with any number ofvariables. A detailed desription of these problems an be found in [15℄.Then, the programs for nonsmooth optimization (that is, all the programs inTable 2 exept L-BFGS) were tested with 10 nonsmooth minimization prob-lems desribed earlier. Finally, the programs for nonsmooth optimizationwere tested with a pratial nonsmooth image restoration problem. A de-tailed desription of the problem an be found in [10℄.4.2 Numerial ResultsSmooth test problems. All the programs given in Table 2 were �rsttested with 22 smooth problems with the numbers of variables 10, 100 and1000 and in ase of the limited memory programs L-BFGS and LMBM also with10 000 variables.We tested the bundle programs PVAR, PNEW, PBUN, PBNCGC, and LMBM withrelatively small sizes of the bundle (m�). That is, m� = 10 for the bundle-Newton program PNEW and for both the proximal bundle programs PBUNand PBNCGC, and m� = 2 for the variable metri bundle programs PVAR andLMBM. For the limited memory programs L-BFGS and LMBM, the maximumnumber of stored orretions (m) was set to 7. As a stopping parameter,we used " = 10�6 in all the ases. The other parameters used were hosenexperimentally.In the test results to be reported, we say that the optimization terminatedsuessfully if� the problem was solved with the desired auray. That is, wk � ",where wk = 12k~�kk2+ ~�k in PNEW, PBUN, and PBNCGC, wk = ~�TkDk~�k+2~�k in PVAR, wk = 2 ~�TkDk~�k + 4~�k in LMBM (note that also 12k~�kk2 +~�k � 103"), and wk = krf(xk)k=maxf1; kxkkg in L-BFGS.21

In addition, for the programs PVAR, PNEW, PBUN and LMBM we say that theoptimization terminated suessfully if� jfk+1 � fkj � 1:0 � 10�8 in 10 subsequent iterations.Otherwise, we say that the optimization failed.The results of the smooth experiments are summarized in Figure 1 and inTable 3. In Figure 1, we give the average CPU time elapsed for problemsin proportion to the number of variables for eah of the six programs (notethat we have naturally alulated some extra data points to obtain a realisti�gure). In Table 3, we have alulated the average number of iterations (Ni)and funtion evaluations (Nf) needed for problems of di�erent sizes. Theproblems where the optimization has failed (fail) are not inluded in the data.Sine for almost every tested program there existed one problem in the setof 22 problems that needed muh more iterations than the others, we alsoremoved in eah ase the problems that used the largest and the smallestnumber of iterations. In addition, we give the number of the inaurateresults ourred (#) within the 22 problems. That is, the number of problemswhere optimization has not failed but the preision of the result is more thantwo signi�ant digits greater than the desired auray of the solution. Theblanks in the table mean that the problems were not tested in these ases.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

C
P

U
 ti

m
e

el
ap

se
d

(s
ec

)

Number of variables

PNEW
PVAR
PBNCGC
PBUN
L−BFGS
LMBM

Figure 1: Average CPU time elapsed for smooth problems.22

Table 3: Average results with 22 smooth problems.Program/n 10 100 1000 10000Ni/Nf/fail Ni/Nf/fail Ni/Nf/fail Ni/Nf/failPVAR 34/35/0 170/179/0 1668/1885/0(1) {PNEW 20/21/0 35/38/0 20/21/3 {PBUN 71/73/0 216/218/1(4) 1407/1410/1(7) {PBNCGC 80/99/0 338/428/0 2414/4131/0 {L-BFGS 36/45/0 181/212/1 960/998/3 13142/14522/5(1)LMBM 31/34/0 92/105/0 338/355/0 6432/7587/0(1)(#) Number (#) of inaurate results obtained.To sum up, all the tested programs worked well for small- and medium-saleproblems (n � 100) but with large-sale problems the programs other thanthose using the limited memory approah beame omputationally ineÆient(see Figure 1). The new limited memory bundle program LMBM was the mosteÆient method in all the ases. It found the loal minimum in a reliableway and in our experiments it was also very robust while, for example, PVARand PBUN were very sensitive to the hoie of internal parameters. Also thelimited memory BFGS program L-BFGS was eÆient with both small- andlarge-sale smooth problems. However, when the dimension of the problemsinreased, L-BFGS had some diÆulties with the line searh and it failed tosolve some of the problems.Nonsmooth test problems. The programs for nonsmooth optimization(that is, all the programs in Table 2 exept L-BFGS) were tested also withthe ten nonsmooth minimization problems 1{10 desribed in Setion 3. Thenumbers of variables used were 10, 100 and 1000.We tested the programs with di�erent sizes of bundles (m�). For the bundle-Newton program PNEW and for both the proximal bundle programs PBUN andPBNCGC, the sizes of bundles used were 10 and 100, and for the variable metribundle programs PVAR and LMBM, the sizes of bundles were 2 and 100. ForLMBM, the maximum number of stored orretions (m) was set to 7.In our nonsmooth experiments, the following values of parameters were used:� For onvex problems 1{5, the distane measure parameter = 0 wasused with the programs PBUN, PBNCGC, and LMBM.With PNEW, the distane measure parameter = 0:001 was used sinethe value of has to be positive (see [13℄).With PVAR, the onvex version of the program was used.23

� For nononvex problems 6{10, the distane measure parameter =0:50 was used with all the programs and we used the nononvexversion of the program PVAR.� The stopping parameter " = 10�5 was used in all the ases.� Otherwise, the default parameters were used with all the programs.� In addition to the stopping riteria already mentioned, we terminatedthe experiments if the CPU time elapsed exeeded half an hour.The average results of the nonsmooth experiments are summarized in Table 4.For all the programs, we �rst give the results obtained with the smaller bundleand then below the results obtained with the larger bundle. The average CPUtime elapsed (time) is given in seonds. Otherwise, the results are given asbefore and in eah ase we have removed from the data the problems thatused the largest and the smallest number of iterations.Table 4: Average results with 10 nonsmooth problems.Program/n 10 100 1000Ni/Nf/fail time Ni/Nf/fail time Ni/Nf/fail timePVAR 185/200/1 0.006 589/597/2 0.29 17782/6497/3(3) 902.6181/86/0 0.005 303/311/1 0.26 1713/1717/3(1) 156.61PNEW 80/89/1 0.014 296/314/3 3.26 164/273/1(2) 1324.1290/98/0 0.084 144/158/2 8.33 73/146/1(2) 957.61PBUN 101/105/0 0.007 840/918/1 0.30 913/1031/4 10.1756/59/0 0.007 222/230/2 0.73 1958/2010/1 46.13PBNCGC 55/64/0 0.005 16799/16957/3 7.94 139526/139545/0(1) 906.2041/50/0 0.005 269/307/1 2.61 3337/3348/1 771.85LMBM 583/3113/0 0.031 373/1176/0 0.08 420/1374/0 0.76126/152/0 0.008 238/269/0(1) 0.10 232/283/1(1) 1.38(#) Number (#) of inaurate results obtained.For smooth problems, the average results (see Table 3 and Figure 1) givequite a realisti impression of the behavior of the programs. However, fornonsmooth problems, the average results given in Table 4 may be misleadingespeially when the size of the problems is large. For example, with 1000variables, the proximal bundle program PBNCGC either used the whole timelimit available (in problems 1, 3, 4, 8 and 10) or then solved the problemreally fast (in problems 2, 5, 6, 7 and 9). In fat, PBNCGC (with m� = 100)was the most eÆient program tested with three problems (that is, problems2, 6 and 7). The same kind of an e�et an also be seen with the other24

proximal bundle program PBUN, although it never needed the whole timelimit and, on the other hand, it was the most eÆient program only with oneproblem (in problem 1). PBUN was also the only program that ould solveproblem 1 with 1000 variables properly within the given time limit. Withall the other problems our new program LMBM, was the most eÆient methodwith 1000 variables. In fat, LMBM was usually the most eÆient program alsowith 100 variables but the di�erenes were not substantial in these ases. Inall the ases, LMBM outperformed the original variable metri bundle programPVAR and the bundle Newton program PNEW already with 100 variables.With large-sale problems, our new program LMBM usually needed less iter-ations and funtion evaluations than the other programs exept the bundleNewton program PNEW whih, however, was the most time-onsuming of theprograms tested due to matrix operations. Thus, LMBM should be an eÆientmethod also in the ases where the funtion and the subgradient evaluationsare expensive.Now, let us for a while onentrate only on our new program LMBM sine inlarge-sale ases it usually outperforms the other bundle programs tested.We tested LMBM with di�erent sizes of bundles and with di�erent maximumnumbers of stored orretions. The sizes of the bundles were the same asbefore, that is m� = 2 and m� = 100, and the maximum numbers of storedorretions were set to 3, 7, and 15. In what follows, we denote these di�erentmodi�ations by LMBM(3), LMBM(7), and LMBM(15).In Table 5, we report the results obtained with the di�erent modi�ationsof our new program for eah nonsmooth problem with 1000 variables. Asbefore, we �rst give the results obtained with the smaller bundle and thenbelow the results obtained with the larger bundle. At the bottom of Table 5,we give the average results alulated exatly as in Table 4. Our goal is toidentify the lasses of problems for whih our new program is e�etive. Inaddition, we are interested in the best values for the maximum number ofstored orretions and the size of the bundle.It an be seen in Table 5 that our new program had serious diÆulties withproblem 1. These diÆulties were quite preditable, sine there exists onlyone nonzero omponent in the subgradient vetor of the objetive funtionat eah iteration. In pratie, this means that the approximation of theinverse of the Hessian matrix beomes sparse, and thus, the searh diretionmay be quite inaurate. Also smooth limited memory methods have beenreported to be best suited for problems where the Hessian matrix is not verysparse [12℄. 25

Table 5: Results with the nonsmooth problems with 1000 variables.LMBM(3) LMBM(7) LMBM(15)P Ni/Nf Time Ni/Nf Time Ni/Nf Time1 2390162/2390383� 1800.00 1627489/2098714� 1800.00 914774/915235� 1800.00fail { fail { fail {2 326/1007� 70.78 61/135� 9.49 104/263� 18.49322/417� 30.00 62/102� 7.28 63/104� 7.363 167/528 0.12 152/422 0.13 223/587 0.27138/163 0.36 153/195 0.44 203/303 0.774 158/483 0.22 250/820 0.43 263/825 0.5432/33 0.03 125/159 0.35 219/331 0.965 32/87 0.04 150/424 0.22 169/372 0.2232/38 0.04 81/89 0.14 58/60 0.096 536/537 0.22 538/539 0.22 538/539 0.23529/531 2.16 529/531 2.13 529/531 2.137 283/1179 2.19 417/1672 3.33 237/431 0.99237/244� 1.17 168/183 2.56 183/224 0.928 416/1319 0.28 710/2462 0.64 1351/3315 1.62230/308 0.79 479/650 2.08 1749/2192 9.009 149/351 0.10 92/103 0.06 142/238 0.11159/162 0.52 143/143 0.38 127/268 0.3010 774/4312� 0.71 1049/4509 1.07 867/3062 1.17276/342� 1.00 477/559� 2.73 366/467� 1.64Aver. 351/1215 9.33 420/1374 0.76 474/1171 0.64Aver. 199/239 4.84 232/283 1.38 241/318 2.01* An inaurate result obtained.The program LMBM had also some diÆulties with problem 2. With all thetested versions, the optimization was terminated before the minimum pointwas atually ahieved. The reason for this premature termination is that atevery iteration, the subgradient vetor of the objetive funtion is of the form�(1=i; 1=(i+1); : : : ; 1=(i+ n� 1)), where i is the index of the max-funtion.When i is large, the norm of the subgradient beomes small and we stopthe omputation. For some reason, the approximation of the inverse of theHessian matrix does not prevent this termination. Anyhow, this kind of adiÆulty is very easy to avoid: we just have to tighten the seond stoppingriterion in (22).All the other problems 3{10 were solved suessfully with our new programLMBM. In all these ases, the subgradient vetor of the objetive funtion on-tains many nonzero entries and the values of these omponents depend on theurrent iteration point xk. However, also with these problems, there ourredsome inaurate results espeially with the version LMBM(3). The omputa-tional times used with LMBM(3) were usually little smaller than those withLMBM(7) or LMBM(15) but the di�erenes were insigni�ant. When omparingthe versions LMBM(7) and LMBM(15), there was no a substantial di�erene in26

the auray of the program. Thus, we an say that the maximum numberof stored orretions should be at least 7.The numbers of iterations and funtion evaluations needed with LMBM wereusually signi�antly smaller when the size of the bundle was large. This isdue to the fat that the seletion of the initial step size is more auratewhen a larger bundle is used. On the other hand, eah individual iterationwas more ostly when the size of the bundle was inreased. In pratie, thismeans that for problems with expensive objetive funtion and subgradientevaluations, it is better to use larger bundles, and thus, fewer iterations andfuntion evaluations.We onlude from these experiments that our new method is best suited forproblems with dense subgradient vetors where omponents depend on theurrent iteration point xk (that is, the omponents are not onstants). Inaddition, we onlude that the maximum number of stored orretions shouldbe at least 7.Image restoration problem. Finally, we tested the nonsmooth optimiza-tion programs with a onvex image restoration problem (see [10℄). Sine forproblems 1{10, the results of our new program with a small maximum num-ber of stored orretions (m = 3) were quite inaurate, we only tested theimage restoration problem with m = 7 and m = 15. The stopping param-eter " = 10�4 was used with all the programs. Otherwise, the parameterssimilar to the onvex problems 1{5 were used.In Figures 2 and 3, we give the CPU times elapsed with the problem witha di�erent number of variables. In addition, we give some more spei�edresults for the problem with 100, 500, and 1000 variables in Table 6, wheref denotes the value of the objetive funtion at termination.From the numerial results, we an onlude the superiority of the limitedmemory bundle program LMBM when omparing the omputational times (seeFigures 2 and 3). In all the ases, it used signi�antly less CPU time than theother programs. However, the auray of the new program was somewhatdisappointing. The minima of the objetive funtion found with LMBM wereusually a little bit greater than with the other programs (espeially thosefound with the proximal bundle programs PBNCGC and PBUN). In all the ases,the result obtained with our new program LMBM beame more aurate whenthe maximum number of stored orretions or the size of the bundle wasinreased (see Table 6). 27

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

C
P

U
 ti

m
e

el
ap

se
d

(s
ec

)

Number of variables

PNEW
PBUN
PBNCGC
PVAR
LMBM(15)
LMBM(7)

Figure 2: CPU time elapsed for the problem with small bundles.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

C
P

U
 ti

m
e

el
ap

se
d

(s
ec

)

Number of variables

PNEW
PBUN
PBNCGC
PVAR
LMBM(15)
LMBM(7)

Figure 3: CPU time elapsed for the problem with large bundles.28

Table 6: Results for the image restoration problem.Program/n 100 500 1000Ni/Nf f Ni/Nf f Ni/Nf fPVAR 370/370 0.79751 1787/1787 4.87495 3281/3281 9.86366266/266 0.79750 1689/1689 4.86216 2932/2932 9.80222PNEW 993/1138 0.79752 998/1185 4.87698 267/293 11.39220242/250 0.79750 773/861 4.87243 110/121 12.36375PBUN 45232/51461 0.79750 196206/233754 4.86189 377092/480182 9.761722281/2310 0.79750 71081/79933 4.86200 43136/48470 9.76818PBNCGC 5900/5901 0.79751 25568/25569 4.86194 116058/116059 9.76172300/301 0.79751 3590/3591 4.86194 9913/9914 9.76184LMBM(7) 392/821 0.79845 2280/2545 4.89094 5792/6121 9.82068643/710 0.79827 3486/3524 4.87367 11642/11677 9.80511LMBM(15) 333/779 0.79824 3543/4341 4.87126 8534/9133 9.80616502/608 0.79823 5388/5522 4.86814 12148/12246 9.78286Note that the results obtained with this pratial problem di�er a lot fromthose obtained before with smooth problems and with nonsmooth prob-lems 1{10 espeially with the program PBUN. In all the ases, PBUN usedmuh more iterations and funtion evaluations than the other proximal bun-dle program PBNCGC (see Table 6). It was also very time-onsuming (seeFigures 2 and 3) while with smooth problems and with problems 1{10 it wasthe most eÆient of the urrent bundle programs tested. On the other hand,the variable metri bundle program PVAR was the most eÆient of the urrentbundle programs, while with aademi problems it was very time-onsuming.Also LMBM behaved a little di�erently with the pratial problem than before:In eah ase it used more iterations and funtion evaluations when the largerbundle was used. However, as said before, also the results obtained withLMBM beame more aurate when the size of the bundle was inreased.We onlude from these experiments that our new method was usually themost eÆient method for large-sale problems. With smooth problems, thenew limited memory bundle program LMBM was almost twie as fast as thelimited memory variable metri program L-BFGS that has been developed forsmooth large-sale minimization. In addition, for example, with 1000 vari-ables, LMBM was on an average about 5 times faster than the fastest bundleprogram PBUN and 250 times faster than the original variable metri bundleprogram PVAR. For nonsmooth problems these di�erenes were even more per-eptible. For example, for the image restoration problem with 500 variables,LMBM was about 30 times faster than PVAR, 100 times faster than the proxi-mal bundle program PBNCGC, 450 times faster than the other proximal bundleprogram PBUN and 750 times faster than the bundle-Newton program PNEW.29

5 ConlusionsIn this paper, we have introdued a new limited memory bundle method fornonsmooth large-sale optimization. We have also tested the performaneof this new method with di�erent minimization problems. The numerialexperiments on�rm that the new method is eÆient and reliable for bothsmooth and nonsmooth optimization problems. With large numbers of vari-ables it usually used signi�antly less CPU time than the other programstested.With smooth problems, the auray of the new program was omparable tothe other programs tested. However, with nonsmooth problems, the minimafound with the limited memory bundle program were often slightly greaterthan those of the other programs and there ourred some inaurate resultsespeially with a small maximum number of stored orretions. Thus, weonlude that the maximum number of stored orretions should be at least 7.Our numerial experiments showed that the limited memory bundle methodworks well for both onvex and nononvex minimization problems. Yet, it isbest suited for problems with dense subgradient vetors where omponentsdepend on the urrent iteration point.Although the new method is quite useful already, there is a lot of further workrequired before the idea is omplete. Possible areas of future developmentinlude the following: alternative ways of saling the updates (espeially, theSR1 update), onstraint handling (simple bounds, linear onstraints, nonlin-ear onstraints), and parallelized version of the program.AknowledgementsWe would like to thank Dr. Ladislav Luk�san and Dr. Jan Vl�ek for thepermission to use and modify their variable metri bundle software to makethe method suitable for large-sale optimization.This work was �nanially supported by COMAS Graduate Shool of theUniversity of Jyv�askyl�a, TEKES and Aademy of Finland grant #65760.
30

Referenes[1℄ R. H. Byrd, J. Noedal, and R. B. Shnabel. Representations of quasi-Newton matries and their use in limited memory methods. Mathemat-ial Programming, 63:129{156, 1994.[2℄ F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley-Intersiene,New York, 1983.[3℄ R. Flether. Pratial Methods of Optimization. John Wiley and Sons,Chihester, seond edition, 1987.[4℄ A. Griewank and P. L. Toint. Partitioned variable metri updates forlarge strutured optimization problems. Numerishe Mathematik, 39:119{137, 1982.[5℄ A. Grothey. Deomposition Methods for Nonlinear Nononvex Optimiza-tion Problems. PhD Thesis, University of Edinburgh, 2001.[6℄ M. Haarala. Bundle Methods for Large-Sale Nonsmooth Optimization.PhLi Thesis, University of Jyv�askyl�a, Department of MathematialInformation Tehnology, 2003.[7℄ J.-B. Hiriart-Urruty and C. Lemar�ehal. Convex Analysis and Mini-mization Algorithms II. Springer-Verlag, Berlin, 1993.[8℄ K. C. Kiwiel. Methods of Desent for Nondi�erentiable Optimization.Leture Notes in Mathematis 1133. Springer-Verlag, Berlin, 1985.[9℄ T. G. Kolda, D. P. O'Leary, and L. Nazareth. BFGS with update skip-ping and varying memory. SIAM Journal of Optimization, 8(4):1060{1083, 1998.[10℄ T. K�arkk�ainen, K. Majava, and M. M. M�akel�a. Comparison of formu-lations and solution methods for image restoration problems. InverseProblems, 17(6):1977{1995, 2001.[11℄ C. Lemar�ehal. Nondi�erentiable optimization. In G. L. Nemhauser,A. H. G. Rinnooy Kan, and M. J. Todd, editors, Optimization, pages529{572. North-Holland, Amsterdam, 1989.[12℄ D. C. Liu and J. Noedal. On the limited memory BFGS method forlarge sale optimization. Mathematial Programming, 45:503{528, 1989.31

[13℄ L. Luk�san and J. Vl�ek. A bundle-Newton method for nonsmooth unon-strained minimization. Mathematial Programming, 83:373{391, 1998.[14℄ L. Luk�san and J. Vl�ek. Globally onvergent variable metri method foronvex nonsmooth unonstrained minimization. Journal of OptimizationTheory and Appliations, 102:593{613, 1999.[15℄ L. Luk�san and J. Vl�ek. Sparse and partially separable test problems forunonstrained and equality onstrained optimization. Tehnial Report767, Institute of Computer Siene, Aademy of Sienes of the CzehRepubli, Prague, 1999.[16℄ L. Luk�san and J. Vl�ek. Introdution to nonsmooth analysis. Theory andalgorithms. Tehnial Report DMSIA 1/2000, University of Bergamo,2000.[17℄ L. Luk�san and J. Vl�ek. NDA: Algorithms for nondi�erentiable op-timization. Tehnial Report 797, Institute of Computer Siene,Aademy of Sienes of the Czeh Republi, Prague, 2000.[18℄ L. Luk�san and J. Vl�ek. Test problems for nonsmooth unonstrainedand linearly onstrained optimization. Tehnial Report 798, Institute ofComputer Siene, Aademy of Sienes of the Czeh Republi, Prague,2000.[19℄ M. M. M�akel�a. Survey of bundle methods for nonsmooth optimization.Optimization Methods and Software, 17(1):1{29, 2002.[20℄ M. M. M�akel�a and P. Neittaanm�aki. Nonsmooth Optimization: Analysisand Algorithms with Appliations to Optimal Control. World Sienti�Publishing Co., Singapore, 1992.[21℄ J. Noedal. Updating quasi-Newton matries with limited storage.Mathematis of Computation, 35(151):773{782, 1980.[22℄ N. Z. Shor. Minimization Methods for Non-Di�erentiable Funtions.Springer-Verlag, Berlin, 1985.[23℄ P. L. Toint. On sparse and symmetri matrix updating subjet to alinear equation. Mathematis of Computation, 31(140):954{961, 1977.[24℄ J. Vl�ek and L. Luk�san. Globally onvergent variable metri methodfor nononvex nondi�erentiable unonstrained minimization. Journal ofOptimization Theory and Appliations, 111(2):407{430, 2001.32

