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Abstract5

Purpose: To eliminate or reduce the error to Pareto optimality that arises in6

Pareto surface navigation when the Pareto surface is approximated by a small7

number of plans.8

Methods: We propose to project the navigated plan onto the Pareto surface9

as a post-processing step to the navigation. The projection attempts to find10

a Pareto optimal plan that is at least as good as or better than the initial11

navigated plan with respect to all objective functions. An augmented form12

of projection is also suggested where dose-volume histogram constraints are13

used to prevent that the projection causes a violation of some clinical goal.14

The projections were evaluated with respect to planning for intensity modu-15

lated radiation therapy delivered by step-and-shoot and sliding window, and16

spot-scanned intensity modulated proton therapy. Retrospective plans were17

generated for a prostate and a head and neck case.18

Results: The projections led to improved dose conformity and better sparing19

of organs at risk (OARs) for all three delivery techniques and both patient cases.20

The mean dose to OARs decreased by 3.1Gy on average for the unconstrained21

form of the projection and by 2.0Gy on average when dose-volume histrogram22

constraints were used. No consistent improvements in target homogeneity were23

observed.24

Conclusions: There are situations when Pareto navigation leaves room for25

improvement in OAR sparing and dose conformity, for example if the approx-26

imation of the Pareto surface is coarse or the problem formulation has too27

permissive constraints. A projection onto the Pareto surface can identify an28

inaccurate Pareto surface representation and, if necessary, improve the quality29

of the navigated plan.30
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2 1 INTRODUCTION

1 Introduction31

Radiation therapy treatment planning is generally guided towards fulfilment of a set32

of physician-defined plan evaluation criteria. These criteria are sometimes incompat-33

ible, and the treatment planner is therefore asked to find a suitable tradeoff between34

the conflicting ones. The main tool that planners then have at their disposal are35

weights associated with the objective functions that drive the treatment plan op-36

timization. These weights often need extensive tuning before the optimized plan37

meets approval [14,32], which can be time-consuming. Inefficient plan preparation is38

undesirable because it can cause a time lag between diagnosis and the first treatment39

fraction and poses a risk that plan quality is compromised in the interest of time.40

Pareto surface navigation is an alternative planning technique that has recently41

entered clinical use, see, e.g., Craft [9] and references therein. This technique avoids42

a priori prioritization of the objectives. A representation of all the possible tradeoffs43

between the objectives is instead calculated, which the planner or physician can ex-44

plore through linear interpolation of the precalculated plans’ doses. Studies indicate45

that this form of navigation generally permits an acceptable plan to be identified46

within a time frame of tens of minutes or less [12, 30]. The mathematical basis for47

Pareto surface navigation is multicriteria optimization, meaning optimization with48

multiple objectives where any feasible solution such that no objective can be im-49

proved without deteriorating at least one of the others is consider optimal (Pareto50

optimal), see, e.g., Miettinen [21].51

The benefits of navigation are at the cost of that interpolation between precal-52

culated plans introduces an error to Pareto optimality. Algorithms exist that can53

bound the magnitude of this error [4,5,27], but the number of plans that are required54

to maintain a given error bound increases exponentially with the number of objec-55

tives in the worst case (because hypervolume grows exponentially with increasing56

dimension). To some relief, studies report that the relation between the required57

number of plans and the number of objectives is more benign for radiation therapy58

optimization [8, 10]. Nevertheless, Craft and Bortfeld [10] and Bokrantz [4] both59

observed approximation errors above 10% for representations with less than about60

20 plans, and that up to about 75 plans are needed to reduce the error below 5%.61

These studies considered between five to ten objectives.62

In view of these concerns, we present a technique that eliminates or reduces the63

error to Pareto optimality through the minimization of a projective distance between64

the navigated plan and the Pareto surface. We use a formulation of this projection as65

in Nakayama [23], which attempts to find a plan that is at least as good as or better66

than the navigated plan with respect to all objectives. We also suggest an augmented67

formulation where constraints are imposed on maintained dose-volume histogram68

(DVH) quality. We quantify the dosimetric benefit of the suggested technique by69

application to planning for step-and-shoot intensity-modulated radiation therapy70

(ss-IMRT), sliding window intensity-modulated radiation therapy (sw-IMRT), and71

spot-scanned intensity-modulated proton therapy (IMPT).72
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2 Methods73

2.1 Pareto surface-based planning74

We formulate treatment planning for radiation therapy as a multicriteria optimiza-75

tion problem with n objective functions f1, . . . , fn that are to be minimized with76

respect to the vector of variables x. The minimization occurs over a feasible set X77

that represents the physical limitations of the delivery method and, possibly, con-78

straints on the planned dose, according to79

minimize
x

f(x) =
[

f1(x) · · · fn(x)
]T

subject to x ∈ X .
(1)

We understand optimality to this formulation in a Pareto sense, meaning that a80

feasible x∗ is Pareto optimal if there is no feasible x such that fi(x) ≤ fi(x
∗) for81

i = 1, . . . , n, with a strict inequality for at least one index i. A feasible x∗ is82

called weakly Pareto optimal if there is no feasible x such that fi(x) < fi(x
∗) for83

i = 1, . . . , n.84

Formulation (1) has an infinite number of Pareto optimal solutions in general. To85

solve this problem from a practical perspective therefore entails to select the single,86

best preferred, Pareto optimal solution. We perform this selection by Pareto surface87

navigation, meaning that a representative set of Pareto optimal solutions x1, . . . , xm88

is first calculated and a convex combination x̄ =
∑m

j=1 λjxj of these solutions then89

selected, where the components of λ need to be nonnegative and sum to unity.90

The selection is guided by a navigation interface that permits the priorities of each91

objective to be continuously adjusted using associated slider bar controls. The sliders92

are coupled to an algorithm that updates λ accordingly, see, e.g., Craft et al. [11] and93

Monz et al. [22]. For the navigation to be valid, we assume that X is a nonempty94

and convex set and that all functions f1, . . . , fn are convex and bounded on X .95

2.2 Projection onto the Pareto surface96

The navigated plan x̄ is feasible thanks to the assumed convexity of formulation (1).97

It also has objective values that are bounded by Jensen’s inequality for convex func-98

tions, i.e., fi(
∑m

j=1 λjxj) ≤
∑m

j=1 λjfi(xj) for i = 1, . . . , n, as illustrated in Figure 199

for the case m = n = 2. The figure also shows that the image of the Pareto opti-100

mal solutions in the objective space forms a connected surface in the boundary of a101

convex set [28, Proposition 2.3], but the surface is not convex itself, because convex102

surfaces are generally not convex sets. The navigated point f(x̄) is therefore merely103

known to lie between the Pareto surface and the set of objective vectors that can be104

formed as convex combinations of the known points f(x1), . . . , f(xm).105

To mitigate that the navigated plan x̄ in general is not Pareto optimal, we pro-106

pose to convert this plan into a Pareto optimal plan with at least as good or better107

performance in all objectives. Specifically, we propose to solve the following opti-108
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Figure 1: Continuous navigation between two Pareto optimal solutions x1 and x2.
The shaded area indicates the feasible objective space f(X ), the thick solid line
indicates the set of Pareto optimal solutions, the thin solid line indicates the set of
convex combinations of x1 and x2, and the dashed line indicates the upper bound on
the navigated objective values from Jensens’ inequality. The componentwise error
between a navigated plan and the Pareto surface is indicated by a square.

mization problem as a post-processing step to the navigation:109

minimize
x

max
i=1,...,n

{

fi(x)− fi(x̄)

fi(x̄)− z∗i

}

subject to x ∈ X ,
(2)

where z∗ is the ideal point, i.e., z∗i = minj=1,...,m fi(xj) for i = 1, . . . , n. This formu-110

lation is a variant of an achievement function suggested by Wierzbicki [31], which111

projects the navigated point f(x̄) along a ray towards the ideal objective function112

vector z∗, see Figure 2. The particular achievement function that is used in (2) has113

been used previously by Nakayama [23]. Buchanan and Gardiner [7] observed that114

decision makers tend to prefer this form of minimization of the distance to the ideal115

point over maximization of the distance from the worst feasible point if the reference116

point is attainable, as is the case for f(x̄).117

The navigated plan x̄ is a feasible solution to (2) with an objective value of118

zero. An optimal solution x∗ to (2) therefore satisfies fi(x
∗) ≤ fi(x̄) for i = 1, . . . , n,119

meaning that x∗ is as least as good as or better than the navigated plan with respect120

to all objectives. Further, x∗ is weakly Pareto optimal because the achievement121

function in (2) is strictly increasing [21, Theorem 3.5.4]. If solutions that are weakly122

Pareto optimal but not Pareto optimal are to be avoided, it is possible to augment the123

objective function of (2) with the term ρ
∑n

i=1 fi(x)/(fi(x̄)−z∗i ) for some sufficiently124

small positive scalar ρ, as discussed in Miettinen [21, Section 5.8]. Addition of125

this term makes the objective function strongly increasing, which ensures Pareto126

optimality [21, Theorem 3.5.4]. With regard to numerical stability, observe that127
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the denominator in (2) can approach zero if the navigated point f(x̄) becomes very128

close to the ideal point z∗ in some component. The ideal point should therefore for129

numerical purposes be replaced with an utopian objective vector that is better by130

some small but numerically significant positive value [21, Definition 2.4.2].131

f(x1)

f(x2)z∗

z̄

–Rn

+

ẑ

f1(x)

f 2
(x

)

Figure 2: Projection of a navigated plan onto the Pareto surface. The point z̄ = f(x̄)
is shifted towards z∗ along the dashed line until it intersects with the boundary of
the feasible objective space. The projected point ẑ is nondominated, as illustrated
by that no other point is contained in the cone −R

n
+ that emanates from this point.

2.3 Dose-volume histogram constraints132

A commonly used formulation for radiation therapy optimization is penalization of133

the deviation from the desired dose to each anatomical structure, see, e.g., Oelfke134

and Bortfeld [26]. Objective functions of this type cannot capture all aspects of135

plan quality, for instance, they do not take the three-dimensional shape of the dose136

into account nor the biological effect of the irradiation. It is therefore possible for137

a clinician to judge a plan obtained from formulation (1) as worse than the initial138

navigated plan even though it is better as measured by all objectives f1, . . . , fn. To139

mitigate any deterioration in plan quality not captured by the objectives, we consider140

an augmented version of formulation (2) that prevents deterioration with respect to141

clinical goals. We restrict ourselves to consider clinical goals that are related to the142

DVH distribution of the navigated plan. Consequently, we introduce constraints143

that require each DVH curve of the projected plan to lie between the corresponding144

DVH curve for the navigated plan and a vertical line that intersects the dose axis at145

the prescription level for targets and at zero for organs at risk (OARs), see Figure 3.146

These requirements ensure that a DVH criterion that is satisfied by the navigated147

plan cannot become violated after the projection.148

The DVH requirements are implemented using functions that impose a one-sided149

penalty on the error between the DVH curves associated with the current dose d150
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Figure 3: Feasible DVH region (shaded areas) for projection onto the Pareto surface
under DVH constraints. The thick solid lines indicates the DVH of the navigated
plan.

and the navigated dose d̄. The one-sidedness prevents penalization of when d has151

better normal tissue sparing or target coverage than d̄. To define the DVH functions152

mathematically, let D(·; d) be the function that parametrizes the DVH curve for153

some subvolume V along the cumulative volume axis, i.e.,154

D(v; d) = max

{

d′ ∈ R :
|q ∈ V : d(q) ≥ d′|

|V|
≥ v

}

,

where v denotes cumulative volume in percent, d(q) is the dose to some point q ∈ V ,
and |V| is the volume of V . In other words, D(v; d) is the DVH point associated with
the some dose d and cumulative volume v. Let also d̂ denote the prescription level for
targets and zero for OARs, v̂ denote the cumulative volume such that d̂ = D(v̂, d̄),
and (·)+ denote the positive part operator max{·, 0}. Then, a min reference DVH
constraint takes the form

∫ 1

v̂

(

D(v; d̄)−D(v; d)
)

+
dv ≤ 0,

while a max reference DVH constraint takes the form

∫ v̂

0

(

D(v; d)−D(v; d̄)
)

+
dv ≤ 0.

The requirements in Figure 3 are implemented by assignment of a max reference155

DVH constraint to each OAR, and assignment of a min reference DVH and max156

reference DVH constraint to each target. Similar reference DVH functions have157

been used previously in Bokrantz [3] and Fredriksson [13].158

The use of DVH constraints leads to a nonconvex optimization formulation. An159

optimization solver can therefore not guarantee more than convergence to a locally160

optimal point. Some studies have, however, shown that the nonconvexity of DVH161
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functions does not lead to severe local optimality effects in practice [18,20,33], pos-162

sibly because the nonconvexities disappear or become negligible due to the physical163

properties of radiation delivery [9]. Regardless of convergence, the introduction of164

additional constraints implies that the projected solution in general lies in the interior165

of the feasible objective space and not on the Pareto surface itself.166

2.4 Computational study167

The projections were evaluated with respect to three delivery techniques: ss-IMRT,168

sw-IMRT, and IMPT; and two tumor sites: prostate and head and neck. We first169

outline our numerical implementation, then describe the studied patient cases and170

delivery techniques, and finally summarize our set of evaluation criteria.171

2.4.1 Numerical optimization172

The projections were implemented as an add-on to the multicriteria optimization173

module in RayStation v2.4 (RaySearch Laboratories, Stockholm, Sweden) [1]. This174

treatment planning system’s optimization solver (a quasi-Newton sequential quadratic175

programming method) requires a continuously differentiable objective and constraints.176

The nondifferentiability of the maximum in (2) was handled by the addition of 1+ ǫ,177

with ǫ being a positive infinitesimal value, to the arguments of the maximization178

(so that they become positive, see also Nakayama [24, Remark 3.1]), followed by a179

substitution a smooth power mean function for the maximum operator according to180

max
i=1,...,n

{xi} ≈

(

1

n

n
∑

i=1

xpi

)1/p

. (3)

This approximation approaches the exact maximum of some positive x1, . . . , xn as181

p → ∞. A parameter value of p = 10 was used for all numerical experiments in182

this paper, guided by the close relationship between (3) and an equivalent uniform183

dose (EUD) functions (the EUD is the power mean of the dose, with the power p184

determined by the EUD parameter a, cf. Niemerko [25]). An EUD function with185

an EUD parameter of about 10 is common for serial organs such as the spinal cord186

where the risk for complication highly depends on the maximum dose value, see,187

e.g., Thieke et al. [29].188

The approximation (3) means that the results in Section 2.2 do not hold rig-
orously for our numerical implementation. In particular, it is possible that the
projection can lead to a mild degradation in objective function value compared to
the navigated point for some objectives. Nevertheless, formulation (3) amounts to
minimization of a strongly increasing achievement function, and it therefore finds
Pareto optimal points [21, Theorem 3.5.4]. If it is critical to maintain objective
function values exactly, then an everywhere differentiable epigraph reformulation
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of (2) according to

minimize
x,t

t

subject to
fi(x)− fi(x̄)

fi(x̄)− z∗i
≤ t, i = 1, . . . , n,

x ∈ X ,

could be preferable to (3). The auxiliary nonlinear constraints of this formulation,189

however, makes it more computationally expensive to solve than formulation (2)190

combined with the approximation (3).191

2.5 Patient data and machine model192

Retrospective planning was performed with respect to the following two patient193

cases:194

• A prostate cancer patient with a prescribed dose of 59.2Gy to the prostate195

and seminal vesicles, with a simultaneous boost of 74Gy to the prostate. Con-196

sidered critical structures were the bladder and rectum.197

• A head and neck cancer patient with a prescribed dose of 66Gy, 60Gy, and198

50Gy to the primary target, high risk nodal regions, and low risk nodal regions,199

respectively. Considered critical structures were the brainstem, parotid glands,200

and spinal cord.201

Treatment planning for IMRT was performed with respect to a Varian 2100202

linear accelerator (Varian Medical Systems, Palo Alto, California), with ten static203

segments per field for ss-IMRT and 320 dynamic control points per field for sw-IMRT.204

A coplanar five-field setup was used for the prostate case and a coplanar seven-field205

setup used for the head and neck case. Planning for IMPT was for the prostate case206

performed with respect to two coplanar and parallel-opposed fields and for the head207

and neck case performed with respect to two coplanar fields with a perpendicular208

setup. A dose grid resolution of 3 × 3 × 3mm3 was used for all calculations. The209

optimizations were performed with respect to least-squares penalties on the deviation210

in voxel dose or EUD from a scalar-valued reference level, see Appendix A for a211

complete list functions and Bokrantz [3, Appendix C] for mathematical definitions.212

2.6 Treatment plan generation213

A total of 2n Pareto optimal plans was generated per delivery technique and pa-214

tient case. RayStation uses the algorithm in Bokrantz and Forsgren [3] for this215

calculation. A single plan was then selected by Pareto surface navigation, and the216

projection finally applied with or without DVH constraints. Deliverable plans were217

for comparative purposes generated without performing any projection. Minor dif-218

ferences between the studied delivery techniques are elaborated in the following three219

subsections.220
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2.6.1 Step-and-shoot IMRT221

The plans in the Pareto surface representation were generated by fluence map opti-222

mization with respect to dose calculated using a singular value decomposition (SVD)223

of pencil beam kernels, similar to Bortfeld et al. [6]. The navigated plan was made224

deliverable by an optimization where the error in DVH due to the conversion was225

minimized, see Bokrantz [3]. This minimization was performed with leaf positions226

and segment weights as variables, see Hårdemark et al. [15], with the SVD dose aug-227

mented with intermediate and final dose calculations performed using a collapsed228

cone (CC) algorithm, see, e.g., Ahnesjö [2]. The projection was performed using the229

same set of variables and dose calculation algorithms.230

2.6.2 Sliding window IMRT231

The calculation of the Pareto surface representation and the projection were both232

performed with fluence as variables. The projected plan was converted to control233

points by sliding window conversion, see, e.g., Kamath [19]. All dose distributions234

were calculated by SVD.235

2.6.3 IMPT236

The calculation of the Pareto surface representation and the projection were both237

performed with spot weights as variables. All dose distributions were calculated238

using a pencil beam algorithm.239

2.7 Evaluation criteria240

Plan quality was assessed with respect to a selection of dose-volume statistics. The
dose to OARs was assessed in terms of dose-to-volume levels Vx (the fractional
volume of a structure that receives a dose greater than or equal to xGy), volume-to-
dose levels Dx (the minimum dose such that the associated isodose volume contains
x% of the volume of a structure), and mean dose levels D̄. The planned dose to
target structures was assessed in terms of a homogeneity index (HI) [17] according
to

HI = (D2 − D98) /D50,

and a conformity index (CI) [16] according to

CI = VExternal
95% /VPTV,

where V95% is the volume contained within the isodose volume defined at 95% of241

the prescription level and VPTV the total volume of all targets with prescription level242

greater than or equal to the prescription level of the structure to which the index243

refers.244



10 3 RESULTS

3 Results245

Our numerical results are summarized by the DVHs in Figure 4 and the dose statistics246

in Tables 1 and 2. Results are shown for plans subject to no projection, subject247

to a projection without DVH constraints, and subject to a projection under DVH248

constraints. Planning target volumes (PTVs) are designated by their prescription249

level in subscript.250

Table 1: Dose statistics for the prostate case. Values where the projection resulted
in a relative improvement of 5% are indicated in bold.

Plan PTV74 PTV59.2 Bladder Rectum
HI CI HI CI D10 D̄ D10 D̄

[%] [%] [%] [%] [Gy] [Gy] [Gy] [Gy]
ss-IMRT No projection 8.2 117.6 27.9 111.1 55.6 26.6 56.1 31.9

Projected 8.9 115.7 27.6 107.7 54.6 24.4 54.1 26.4

DVH proj. 8.4 116.1 27.7 108.1 55.3 25.4 54.4 28.2

sw-IMRT No projection 7.9 117.0 27.3 108.7 54.1 24.9 56.2 33.5
Projected 9.2 117.0 27.3 109.0 54.7 23.6 54.7 25.5

DVH proj. 7.8 116.3 27.1 108.0 54.1 24.2 55.7 28.6

IMPT No projection 7.5 115.3 26.4 111.6 54.5 13.4 55.3 16.5
Projected 8.6 114.1 27.0 103.8 53.7 12.3 55.9 14.8

DVH proj. 7.7 115.1 26.8 104.8 54.1 13.0 55.2 14.2

Table 2: Dose statistics for the head and neck case. Values where the projection
resulted in a relative improvement of 5% or more are indicated in bold.
Plan PTV66 PTV60 PTV50 L Parotid R Parotid

HI CI HI CI HI CI V30 D̄ V30 D̄
[%] [%] [%] [%] [%] [%] [%] [Gy] [%] [Gy]

ss-IMRT No projection 6.8 132.4 12.0 160.1 18.6 152.7 52.1 34.2 29.1 22.4
Projected 6.6 127.4 11.3 147.8 18.8 138.2 49.4 30.7 30.0 21.9
DVH proj. 6.3 127.2 11.6 151.7 18.5 144.0 51.1 32.2 28.7 21.9

sw-IMRT No projection 6.4 124.3 10.4 145.0 19.3 136.5 52.2 35.6 28.6 22.5
Projected 6.8 124.1 10.1 141.9 18.8 134.4 46.9 30.1 29.6 21.9
DVH proj. 6.9 123.5 10.0 141.8 19.1 133.5 47.4 30.3 28.0 21.5

IMPT No projection 9.2 132.4 12.7 132.3 16.8 127.8 45.7 26.8 21.3 18.3
Projected 8.4 126.8 11.2 127.5 16.9 117.5 38.2 22.5 20.0 15.2

DVH proj. 8.4 129.9 12.3 128.5 16.8 120.8 44.1 25.6 20.8 17.9

The projection of a navigated plan onto the Pareto surface led to improved OAR251

sparing and better dose conformity for all three delivery techniques and both patient252

cases. The improved OAR sparing was most pronounced in the low and moderate253

dose regions whereas the high dose regions generally did not improve much, see,254

e.g., D10 for the bladder and rectum of the prostate case in Table 1. The largest255

improvements in dose conformity occurred for low-dose targets, see, e.g., PTV59.2256

of the IMPT plan for the prostate case and PTV50 and PTV60 of the ss-IMRT and257

IMPT plan for the head and neck case. The improvements in target homogeneity258

were very minor, except for PTV66 of the IMPT plan of the head and neck case.259

A projection without DVH constraints only in rare instances led to a deterioration260

in some dose statistics. Such occurrences are the reduced homogeneity for PTV74261

of the ss-IMRT and sw-IMRT plan for the prostate case, the increase of D10 for the262
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Figure 4: DVH results for projections onto Pareto surface. Plans projected without
DVH constraints are indicated by solid lines, plans projected with DVH constraints
indicated by dashed lines, and plans generated without performing the projection
indicated by dotted lines.
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rectum of the IMPT plan for the prostate case, and the decrease in homogeneity for263

PTV66 of the sw-IMRT plan for the head and neck case. These deteriorations did264

not occur when DVH constraints were used; however, the improvements where then265

smaller overall.266

Table 3 further quantifies the main observed effect of the projections, namely267

that the OAR sparing was improved but at a mild dose increase in the high dose268

regions of OARs unless DVH constraints were used. The improved sparing of OARs269

is in the tabulated data quantified by two-sided DVH curve differences while vio-270

lations of the navigated DVH are quantified by one-sided DVH curve differences.271

Clearly, a projection onto the Pareto surface poses a tradeoff between the degree272

of plan improvement and the acceptable violation of the navigated DVH. The aver-273

age decrease in dose to OARs and the average violation of the navigated DVH was274

3.13Gy and 0.18Gy, respectively. These figures should be contrasted to an average275

dose decrease for OARs at 1.98Gy and a vanishing small violation of the navigated276

DVH for projection with DVH constraints.277

Table 3: Mean two-sided and one-sided differences along the dose axis between DVH
curves of projected plans and corresponding plans generated without performing any
projection.
Patient Prostate Head and neck
Plan Bladder Rectum L Parotid R Parotid

2-sided 1-sided 2-sided 1-sided 2-sided 1-sided 2-sided 1-sided
[Gy] [Gy] [Gy] [Gy] [Gy] [Gy] [Gy] [Gy]

ss-IMRT Projected -2.22 0.00 -5.52 0.00 -3.56 0.00 -0.56 0.65
DVH proj. -1.20 0.00 -3.70 0.00 -2.01 0.00 -0.48 0.00

sw-IMRT Projected -1.39 0.07 -8.04 0.00 -5.54 0.00 -0.55 0.45
DVH proj. -0.78 0.01 -4.93 0.00 -5.32 0.00 -0.95 0.00

IMPT Projected -1.03 0.16 -1.75 0.25 -4.26 0.05 -3.13 0.03
DVH proj. -0.42 0.00 -2.28 0.00 -1.21 0.00 -0.44 0.00

2-sided =
∫
1

0
(D(v, d)−D(v, d̄)) dv, 1-sided =

∫
1

0
(D(v, d)−D(v, d̄))+ dv.

4 Discussion278

Our results show that there exist situations when a projection onto the Pareto surface279

can improve OAR sparing and dose conformity of the navigated plan. This conclusion280

holds true both in the unconstrained case and if DVH constraints are used to preserve281

clinical goals. The DVH constraints were found effective for prevention of a dose282

increase in the high-dose region of OARs, but dampened the magnitude of the overall283

improvements. We therefore only recommend such constraints for structures where284

it is critical to maintain the navigated DVH exactly, e.g., if the dose to the structure285

only barely meets the clinical acceptance criteria. Another option is to first perform286

an unconstrained projection and then perform a second optimization that includes287

DVH constraints if necessary.288

The observed dose improvement due to the projections was of the order of several289

Grays. This magnitude is, however, a function of the approximation error to Pareto290

optimality for the navigate plan, which depends on the number of objectives, the291
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number of plans used to represent the Pareto surface, and how large dose variations292

that the set of constraints permit. Our study only covers a narrow spectrum of the293

possible values for these parameters: 8–10 objectives, 16–20 plans in the representa-294

tions, and a single set of constraints per patient case. The results should therefore295

not be extrapolated to conclude that Pareto surface navigation yields plans that are296

sub-optimal in terms of OAR sparing in general. Rather, we envisage that the pro-297

jections can be used as a learning tool (for example in the training of practitioners),298

which can identify situations when Pareto surface representations are inaccurate.299

Finally, note that the projections are unnecessary if it is possible to calculate such300

dense Pareto surface representations that the navigated plan is nearly error-free. If301

this is the case, however, then it is likely that the plan optimization times are so302

short that they are perceived as occurring in real time. The advance of real-time303

optimization would permit Pareto surface navigation where the navigated plan is304

generated on-the-fly instead of being interpolated from a set prealculated plans.305

5 Conclusions306

We have presented a method that eliminates or reduces the error to Pareto optimality307

that arises during Pareto surface navigation. The error is removed through mini-308

mization of a projective distance to the ideal point in the objective function space.309

An augmented form of the projection was also suggested where the DVH distribu-310

tion of the projected solution is required to be at least as good as that of the initial311

navigated plan. Empirical results with respect to two clinical cases and three de-312

livery techniques show that the projections can lead to improved OAR sparing and313

better dose conformity at maintained, or slightly improved, target coverage. The314

main mechanism behind the improvements observed in this study was a reduction315

of the low to moderate dose to healthy structures.316

A Optimization problem formulations317

The optimization formulations that were used in the numerical experiments are sum-318

marized in Tables 4 and 5.319

Table 4: Optimization formulation for the prostate case. The reference dose level
of a function is denoted d̂. The constraints used during proton and photon therapy
planning are indicated by “Pr” and “Ph” in subscript, respectively.

Objectives Constraints

Structure Function d̂ [Gy] Structure Function d̂Ph [Gy] d̂Pr [Gy]
PTV74 Min dose 74.00 PTV74 Min dose 66.60 68.00

Uniform dose 74.00 Min 95% DVH 71.78 72.52
PTV59.2 Min dose 59.20 Max dose 81.04 79.92
PTV59.2 - PTV74 Uniform dose 59.20 PTV59.2 Min dose 53.28 53.28
Bladder Max EUD a = 2 0.00 Min 95% DVH 56.24 56.24
Rectum Max EUD a = 2 0.00 PTV59.2 - PTV74 Max 5% DVH 66.50 65.71
PTV shell [5, 15]mm Max EUD a = 2 0.00 External Max dose 81.04 79.92
External Dose fall-off 2 cm 74.00
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Table 5: Optimization formulation for the head and neck case. The reference dose
level of a function is denoted d̂. The constraints used during proton and photon
therapy planning are indicated by “Pr” and “Ph” in subscript, respectively.

Objectives Constraints

Structure Function d̂ [Gy] Structure Function d̂Ph [Gy] d̂Pr [Gy]
PTV66 Min dose 66.00 PTV66 Min dose 59.40 60.72

Uniform dose 66.00 Min 95% DVH 62.70 63.36
PTV60 Min dose 60.00 Max dose 72.60 72.60

Uniform dose 60.00 PTV60 Min dose 54.00 55.20
PTV50 Min dose 50.00 Min 95% DVH 57.00 57.60

Uniform dose 50.00 Max 5% DVH 66.00 66.00
L Parotid Max EUD a = 1 0.00 PTV50 Min dose 45.00 45.00
R Parotid Max EUD a = 1 0.00 Min 95% DVH 47.50 47.50
PTV shell [5, 15]mm Max EUD a = 2 0.00 Max 5% DVH 57.50 55.00
External Dose fall-off 2 cm 66.00 Brainstem Max dose 52.00 52.00

Spinal cord Max dose 48.00 48.00
External Max dose 72.60 72.60
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