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Abstract
We consider the Z, topology of the Dirac lines, i.e., lines of band contacts, on an example of graphite.
Four lines—three with topological charge N; = 1 each and one with N = —1—merge together near

the H-point and annihilate due to summationlaw1 4+ 1 + 1 — 1 = 0. The merging point is similar
to the real-space nexus, an analog of the Dirac monopole at which the Z, strings terminate.

1. Introduction

Dirac points in 2D systems and Dirac lines in 3D are examples of the exceptional points and lines of level crossing
analyzed by von Neumann and Wigner [1]. They are typically protected by symmetry and are described by the Z,
topological invariant (see [2]). Close to the 2D Dirac point with nontrivial topological charge Ny, the energy
spectrum after deformation can be represented by the 2 x 2 matrix Hpje = c(01p, £ o2p ) ), where the Pauli
matrices o0y , describe the pseudo-spin induced in the vicinity of the level crossing. This gives rise to the conical
spectrum near the Dirac point E = E, &+ c|p, |. For Diraclines in 3D, the components p, and p, are in the
transverse plane.

The Dirac Hamiltonian anticommutes with o3, which allows us to have the analytic form for the topological
charge N, see e.g. review [3]:

B di .
Ni=tr § = [ 03 Hitoe (9) o) | (1)

Here Cis an infinitesimal contour in momentum space around the Dirac point or the Dirac line. The topological
charge N; in equation (1) is integer: N; = 1 for sign + and N; = — 1 for sign —. However, the integer-valuedness
emerges only in the vicinity of the Dirac point or line. In general, the summationruleis1 + 1 = 2 = 0. This
means that the Diracline with N} = 2 can be continuously deformed to the trivial configuration.

In time reversal symmetric superconductors, due to chiral symmetry the Dirac lines may have zero energy
and thus correspond to the nodal lines in the spectrum. Such lines exist in cuprate superconductors. According
to the bulk-boundary correspondence the nodal lines may produce a dispersionless spectrum on the boundary
—the flat band with zero energy [4-6]. If time reversal symmetry is violated (for example, by supercurrent), the
Dirac line acquires a nonzero energy, a Fermi surface is formed, and the Dirac line lives inside the Fermi surface.
In cuprate superconductors, the Fermi surfaces created by supercurrent around Abrikosov vortices give rise, at
zero temperature, to the finite density of states proportional to /B, where Bis the magnetic field [7].

Examples of semimetals with 2D Dirac points and 3D Dirac lines are provided by graphene and graphite,
correspondingly. In these materials the spin—orbit interaction can be ignored, and one can consider them as
spinless materials. In graphene there are two Dirac points in the Brillouin zone. If graphene is treated as spinless,
one Dirac pointhas N; = +1and another one has N; = —1 (for spinful electrons these are N; = +2 and
N, = —2, correspondingly).

In rhombohedral graphite (ABCABC... stacking) two Dirac points of graphene layers generate two well-
separated Diraclines. Each has a form of a spiral and is characterized by the topological charge N = +1or
N; = —1[8,9]. These Dirac lines have nonzero energy and live inside the chains of the hole and electron Fermi

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


http://dx.doi.org/10.1088/1367-2630/17/9/093019
mailto:Tero.T.Heikkila@jyu.fi
mailto:volovik@boojum.hut.fi
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/9/093019&domain=pdf&date_stamp=2015-09-11
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/9/093019&domain=pdf&date_stamp=2015-09-11
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 17 (2015) 093019 T T Heikkilid and G E Volovik

Figure 1. Z,-topology of Dirac points in bilayer graphene. Left: dirac point with quadratic spectrum characterized by topological
invariant Nj = 2. Since the topological invariant is trivial in Z, topology, such a spectrum is unstable towards the gap formation, or to
splitting. Right: splitting to topologically stable Dirac points due to trigonal warping.

surfaces, discussed by McClure (see figure 2 in [10]). The projection of the spiral to the top or bottom surface of
graphite determines the boundary of the (approximate) surface flat band [8, 9]. This flattening of the spectrum
has been recently observed in epitaxial thombohedral multilayer graphene[11].

2. Bilayer graphene

In Bernal graphite (ABAB... stacking) the geometry of the Dirac lines is essentially different from rhombohedral
graphite, because Bernal graphite is the 3D extension of bilayer graphene with AB stacking. Let us hence start by
describing the bilayer graphene with AB stacking.

Since in each graphene layer the topological charges are Ny = +1and N; = —1in the two valleys, in bilayer
graphene the charges are summed up giving rise to trivial topological charges N} = + 2 = 0and
N, = —2 = 0. Interaction between the layers may lead to several possible scenarios of the geometry of the

fermionic spectrum in bilayer graphene:

(i) If there is some special symmetry, such as the fundamental Lorentz invariance, one obtains a doubly
degenerate conical spectrum. However, in bilayer graphene there is no symmetry which could support such
ascenario.

(ii) The topological charge N; = 2 gives rise to the Dirac fermions with parabolic energy spectrum near the
Diracpoint, E = Ey + pzl / 2m (figure 1(left)). Such a spectrum belongs to the trivial element of the group
Z,, that is why the neglected hopping elements destroy the parabolic spectrum. The Dirac point disappears,
and finite gap (the Dirac mass) emerges.

(iii) The Dirac point with N; = 42 splits into two Dirac points, each with Nj = +1 and with conical spectrum
(see[12] for the relativistic 341 system). Such splitting, however, violates the hexagonal symmetry of
graphene.

(iv) The splitting of the N; = 42 Dirac point, which is consistent with the hexagonal symmetry, is in
figure 1(right). The N; = +2 Dirac point splits into four Dirac conical points: the central Dirac point has
N; = —1, while three others with N; = +1 each are connected by the C; symmetry, see figure 1(right).
This is called the trigonal warping. The topological charges N; = £ 1 belong to the nontrivial element of
the group Z,. That is why each Dirac point is topologically stable and is not destroyed by addition of the
neglected hopping elements, if they obey the time reversal and sublattice symmetry.

The bilayer graphene chooses the scenario (iv) with the trigonal warping [13, 14], which prohibits the
annihilation of the Dirac point due to splitting into the topologically stable Dirac points with N} = +1.
Altogether the Brillouin zone of the bilayer graphene contains 8 Dirac conical points.
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topology of real-space nexus in 31e-A

I-hedgehog

nexus

N =1 vorlex N=1 vortex

topology of mementum-space nexus in graphite

exceptional

Figure 2. Real-space and momentum space nexus. Top left: real-space nexus in the dipole locked superfluid *He-A, where vortices are
described by Z,-topology. Two vortices, with N; = 1 each, merge together at the hedgehog in the field of the orbital momentum
vector 1 and annihilate each other since N; = 2 = 0. Top right: real-space nexus in the dipole unlocked superfluid *He-A, where
vortices are described by Z,-topology. Four half-quantum vortices, with N; = 1/2 each, merge together at the hedgehog and
annihilate each other. Bottom: illustration of the topology of the momentum-space nexus in graphite. Dirac lines obey the Z,-
topology. Four Diraclines, with Ny = +1, N; = +1, Ny = +1and N; = —1, merge together at an exceptional point of the spectrum
and annihilate each other,because Ny =1+ 1+1—-1=2=0.

3. From topology of bilayer graphene to Bernal graphite

The trigonal warping also stabilizes the Dirac lines in the Bernal graphite (ABAB... stacking). Altogether the
Brillouin zone of the Bernal graphite contains 8 Dirac lines [15, 16], which originate from 8 Dirac conical points
of bilayer graphene. These Dirac lines have finite energy and live inside the Fermi surface of graphite.

However, the topologically stable Dirac lines appear only in a certain region of momenta p,. Outside that
region the scenario (ii) without the Dirac lines takes place. This means that there exists an exceptional point in
the spectrum, at which four topologically stable Dirac lines merge together and annihilate each other [15, 16].
Such a point is a direct analog of the nexus, a point in the real space where the Z, or Z, topological defects merge
and annihilate each other, see figure 2(top) [18].

Let us find this exceptional point. According to Dgj, symmetry of graphite, the Dirac lines are situated in the
vertical mirror planes, and thus the exceptional point is on the H-K-H line in the Brillouin zone at p, = P*.

The Hamiltonian of Bernal graphite is a 3D extension of the 2D Hamiltonian describing bilayer graphene:

S e e ()
I R RS At I
ul(pJrepe ™ 250 (p)urpe  m(e) vepe it
- ZVIF(PZ) 7411(12)1’}:176_”> VvEpel? A

This corresponds to a rotated version of that written in [10] (we write the Hamiltonian in a basis spanned by the
two layers x sublattice points, whereas [ 10] writes it in the eigenbasis defined by the strongest interlayer
couplings), but we assume that the intralayer coupling ~, dominates over the other terms, and therefore also
make the o - p approximation for each layer. Here pel® = P+ ipy; L'(p,) = cos((m/2a)p,), where ais the
distance between the K-point and H-point in the Brillouin zone of graphite and p, = 0 at the K-point so that
I'(K) = land I'(H) = 0. The function 7, (p,) = 7, T'*(p,)/2 describes the coupling across two layers and A
denotes the locally broken A-B sublattice symmetry, which still preserves the global A-B symmetry. The

3
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coefficients 7; , are related to the original tight-binding coefficients [10] 4, , via v; , = %5 4/7- In graphite,

75 & 0.1and v, ~ 0.01[17]. We neglect spin—orbit coupling and below we set vz = 1 for simplicity.
Hamiltonian (2) is invariant under time reversal symmetry (complex conjugation) combined with reflection

from plane p,=00©@— —9). This symmetry supports the Z, topology of Dirac points in graphene

(figure 1(right)) and Dirac lines in graphite.

4. Point of merging of Dirac lines

Since the merging point P* is on the H-K-H line, we consider the Hamiltonian at p = 0 which has the following
form (we consider only the traceless part):

H(p=0,pz)=H(p=0,pz)—iTrH(p=0,pz)

fp) 0 o —2(p)
| oo —se) o 0
1 o o () o |
~2(p) 0 o f(r)
fe)= %(A ~n(r)) g(n)=21(r)- 3)
This can be rewritten in terms of the Pauli matrices o; and 7;:
A(p=0,p) =f(p.)m0s + g(p.)(m02 — Ti0). )
Let us introduce new matrices % = —73, % = —7i, % = 7 and the ‘total spin” J = %(0' + 1)
Alp=0.p) = —(f(n) +¢(r))pos + g (p)o - 7, 3)
o-F=2J+1) -3, Boy=25 — L ©
The Hamiltonian at p = 0 can be expressed in terms of quantum numbers J and J5:
Ap =0 =—(f(n.) +g(2)) (2 - 1) +g(p) @+ D - 3. @)

The exceptional point p, = P*isat f (p,) + g(p,) = 0, where three branches of the spectrum with /= 1 are
degenerate. Its position is determined by equation

A — 'yz(pz) + 271F(pz) =0. (8)

In other notations this is the known equation for the exceptional point in graphite, see e.g. [ 16]. It is situated in
the vicinity of the H-point. Away from this point, two branches with J; = =1 remain degenerate for all p,. Close
to the exceptional point

Ap=0,7=1~-A(p - P¥)(2 - 1) + g(P¥), ©

where A = f/(P*) + ¢'(P*).

The exceptional point P* is the merging point of four Dirac lines living in the symmetry planes at p, < P*.
At py; > p, > P* the spectrum remains degenerate: the branches with J; = +1and J; = —1have the same
energy. But these are the band contact lines rather than the Dirac lines: the branches have the same sign of energy
counted from the line position, as distinct from p, < P*, where the touching branches have energies with
opposite sign, which is the characteristics of a Dirac line (see figure 3). This means thatat p, = P*aband
inversion occurs. The band inversion simultaneously happens for the branch with quantum numbers J= 1 and

5 =0.

5.2D Dirac fermions at H-point

To see that the topology at p;; > p, > P*istrivial, let us consider the p, /y plane containing the H-point. Since
I'(py) = 0, the Hamiltonian at the plane p, = p,, is

H(p, H) = %(A - ’)/g(pH))T30'3 + P01+ p,02 (10)
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Figure 3. (a) Positions of the Dirac lines in the energy spectrum are seen as the points in momentum space where the two eigenenergies
meet (plotted for I'(p,) = 0.5). (b) Cut through the ¢ = 0 axis revealing the positions of two of the Dirac lines. With alarge | A | they
shift towards lower values of p. (c) Same as previous but with I'(p,) = —2A /v, showingalso the higher-energy branches. Now the

finite-momentum Dirac lines are too close to the center point to be visible. (d) Dispersion at the nexus, I'(p,) = —A/(2,); (¢) above
the nexus, I'(p,) = —A/(47;) and (f) at the H-point T'(p,) = 0. The figures are computed with A = —0.057;, 7, = 0.1,
%h="%=0.

It represents two copies of massive 2D fermions with Dirac spectrum:

Epy=+M? +p>, M= %(A - 'yz(pH)). (11)

and thus two doubly degenerate branches. In addition to the contactline of J, = %1branches, the other two
branches,J=1, J; = 0and J = J; = 0, contact each other. The Hamiltonian (10) has trivial N, topology. Due
to continuity, the topology in the plane slightly below the H-point is also trivial. This demonstrates that at

py > p, > P*thereare no Dirac lines. Instead there are band-contact lines, with trivial topological charge

N; = 0. Thus the exceptional point P* is the point of merging of four Dirac lines.
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6. Finite-energy Diraclines

Let us consider the occurrence of the Dirac lines at a finite energy. For simplicity, we neglect 7, (p,) and ~,, as
they do not change the qualitative behavior of the Dirac lines close to the nexus. In this case, the characteristic
equation for the bulk spectrum reads

(P2 + (A — 6)6)2 + (—4p37§(A — ) — dyie + 8pPyys cos(3q§))F2(pZ) + 16p27127§F(pZ)4 = 0.
(12)

This has four solutions for €. Let us analyze the solutions for three cases: (a) |p,| < P*,(b) |p,| = P*,and (c),
by = Ip.| > P*. Therelevant eigensolutions for a specific set of parameters in the three cases are plotted in
figure 3.

For region (a), there are two eigenenergies € ~ £v,I'(p,), and two closer to zero. The latter two are plotted in
figures 3(a), (b) for a fixed I"(p,). Two low-energy solutions touch at specific points in the transverse momentum
direction, either at p=0and close to cos(3¢)) = —1, p = p, = 47,7, 1*(p,), which is the exact position of the
Diracline for A = 0. For small A, the Dirac lines at finite momentum obtain a finite energy
e=A[l -1 / 1+ 47? AT?(p,))]and slightly shift the line away from p = p,. The Dirac line character
however persists. Figure 3(c) shows all four eigenenergies in region (a). Here the splitting of the two low-energy
lines is not visible as they are quite close to each other.

For p, = P*, the four solutions are plotted in figure 3(d). For low A and p, the energies are given by

€12 = A+ A + p2 y €34 = + p. (13)

There are hence two gapped and quadratic and two gapless linear branches, and three of them meet at
e=p=0.

Above the nexus (region (c)), we may first set I'(p,) = 0, i.e., consider the H point. There, the finite-energy
solutions are given by (shifted by a constant energy from equation (11))

€ap = %(A + [ap? + AZ), (14)

The energies, plotted in figure 3(f), are doubly degenerate, but the degeneracy is lifted for a finite I'(p, ), yielding
two pairs of quadratic branches, the gap depending on the precise value of I' (p, ). The lifting of this degeneracy is
shown in figure 3(e).

7.Nexus

In the real space, the nexus is a kind of a Dirac monopole that terminates cosmic strings (the so-called Z-string in
the Standard Model) [19]. In chiral superfluid *He-A the nexus is a hedgehog which terminates vortices with the
Z, or Z, topology (figure 17.3 in the book [18] and figure 2(top)). In the dipole-locked *He-A the homotopy
group for vortices is Z,. That is why two vortices can terminate at the hedgehog in the field of the orbital
momentum vector 1, which is the analog of the Dirac magnetic monopole.

In the same manner the Dirac lines can be described by the Z, group, and if so, they may terminate on a Dirac
monopole in some field. If the invariant N; belongs to the Z, group, which means that N = 2 and N; = 0 are
equivalent, then by some transformation of hopping elements the line described by even N; = 2k can disappear.
Thelines with Ny = =£1are stable. But when four such lines meet each other, their total charge is even, and thus
they may annihilate each other. This also happens, since at p, > P* the band contact lines are topologically
trivial, N; = 0.

So, the point p, = P* represents the nexus in momentum space, see figure 2(bottom). It is distinct from the
3D Weyl point in momentum space, which also represents the momentum-space analog of a Dirac monopole.
Such a monopole contains the Dirac string: a singularity in the Berry phase which terminates at the monopole,
see figure 11.4 in [ 18]. But this string is not observable.

8. Conclusion

The Dirac lines are suggested to exist in different semimetals [20-26]. The materials with Dirac lines are
important, because they may have an (approximate) flat band on the boundary or at the interface between
materials with different topological properties. The high density of states in the flat band provides a possible
route to room-temperature superconductivity [27].

However, the Bernal graphite is a very instructive example. Its spectrum demonstrates the possible interplay
of several relevant topological invariants. One of them characterizes the local line element as in [2]. Another one

6
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is the global invariant, which characterizes for example the closed nodal ring as a whole: it is the same invariant
which characterizes the 3D Dirac or Weyl point obtained by shrinking the nodal ring. There are also the
topological invariants that characterize the Fermi surface(s). These include the local invariant of the Fermi
surface [18] and the topology of the shape of the Fermi surface [28]. All this may combine to produce exotic
topological patterns. The interplay of Weyl point and Fermi surface topologies with exchange of the Berry flux,
when two Fermi surfaces contact each other, have been discussed in [26, 29]. The Bernal graphite provides an
example of the interplay of Dirac lines in the mirror planes, an exceptional point (nexus), and Fermi surfaces
with touching points between electron and hole pockets, see [15, 16].
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