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Abstract
Weconsider theZ2 topology of theDirac lines, i.e., lines of band contacts, on an example of graphite.
Four lines—threewith topological charge N 11 = each and onewith N 11 = - —merge together near
theH-point and annihilate due to summation law1 1 1 1 0+ + - = . Themerging point is similar
to the real-space nexus, an analog of theDiracmonopole at which theZ2 strings terminate.

1. Introduction

Dirac points in 2D systems andDirac lines in 3D are examples of the exceptional points and lines of level crossing
analyzed by vonNeumann andWigner [1]. They are typically protected by symmetry and are described by theZ2
topological invariant (see [2]). Close to the 2DDirac point with nontrivial topological chargeN1, the energy
spectrum after deformation can be represented by the 2 2´ matrix H c p px yDirac 1 2( )s s=  , where the Pauli

matrices 1,2s describe the pseudo-spin induced in the vicinity of the level crossing. This gives rise to the conical
spectrumnear theDirac point E E c p0 ∣ ∣=  ^ . ForDirac lines in 3D, the components px and py are in the
transverse plane.

TheDiracHamiltonian anticommutes with 3s , which allows us to have the analytic form for the topological
chargeN1, see e.g. review [3]:

N
l

H Htr p p
d

4 i
. 1

C
l1 3 Dirac

1
Dirac∮ · ( ) ( ) ( )⎡⎣ ⎤⎦p

s= ¶-

HereC is an infinitesimal contour inmomentum space around theDirac point or theDirac line. The topological
chargeN1 in equation (1) is integer: N 11 = for sign+ and N 11 = - for sign−. However, the integer-valuedness
emerges only in the vicinity of theDirac point or line. In general, the summation rule is 1 1 2 0+ = º . This
means that theDirac linewith N 21 = can be continuously deformed to the trivial configuration.

In time reversal symmetric superconductors, due to chiral symmetry theDirac linesmay have zero energy
and thus correspond to the nodal lines in the spectrum. Such lines exist in cuprate superconductors. According
to the bulk-boundary correspondence the nodal linesmay produce a dispersionless spectrumon the boundary
—theflat bandwith zero energy [4–6]. If time reversal symmetry is violated (for example, by supercurrent), the
Dirac line acquires a nonzero energy, a Fermi surface is formed, and theDirac line lives inside the Fermi surface.
In cuprate superconductors, the Fermi surfaces created by supercurrent aroundAbrikosov vortices give rise, at
zero temperature, to the finite density of states proportional to B , whereB is themagnetic field [7].

Examples of semimetals with 2DDirac points and 3DDirac lines are provided by graphene and graphite,
correspondingly. In thesematerials the spin–orbit interaction can be ignored, and one can consider them as
spinlessmaterials. In graphene there are twoDirac points in the Brillouin zone. If graphene is treated as spinless,
oneDirac point has N 11 = + and another one has N 11 = - (for spinful electrons these are N 21 = + and
N 21 = - , correspondingly).

In rhombohedral graphite (ABCABC... stacking) twoDirac points of graphene layers generate twowell-
separatedDirac lines. Each has a formof a spiral and is characterized by the topological charge N 11 = + or
N 11 = - [8, 9]. TheseDirac lines have nonzero energy and live inside the chains of the hole and electron Fermi
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surfaces, discussed byMcClure (see figure 2 in [10]). The projection of the spiral to the top or bottom surface of
graphite determines the boundary of the (approximate) surfaceflat band [8, 9]. Thisflattening of the spectrum
has been recently observed in epitaxial rhombohedralmultilayer graphene[11].

2. Bilayer graphene

In Bernal graphite (ABAB... stacking) the geometry of theDirac lines is essentially different from rhombohedral
graphite, because Bernal graphite is the 3D extension of bilayer graphenewithAB stacking. Let us hence start by
describing the bilayer graphenewith AB stacking.

Since in each graphene layer the topological charges are N 11 = + and N 11 = - in the two valleys, in bilayer
graphene the charges are summed up giving rise to trivial topological charges N 2 01 = + º and
N 2 01 = - º . Interaction between the layersmay lead to several possible scenarios of the geometry of the
fermionic spectrum in bilayer graphene:

(i) If there is some special symmetry, such as the fundamental Lorentz invariance, one obtains a doubly
degenerate conical spectrum.However, in bilayer graphene there is no symmetrywhich could support such
a scenario.

(ii) The topological charge N 21 = gives rise to the Dirac fermions with parabolic energy spectrum near the
Dirac point, E E mp 20

2=  ^ (figure 1(left)). Such a spectrumbelongs to the trivial element of the group
Z2, that is why the neglected hopping elements destroy the parabolic spectrum. TheDirac point disappears,
andfinite gap (theDiracmass) emerges.

(iii) The Dirac point with N 21 = + splits into twoDirac points, each with N 11 = + and with conical spectrum
(see [12] for the relativistic 3+1 system). Such splitting, however, violates the hexagonal symmetry of
graphene.

(iv) The splitting of the N 21 = + Dirac point, which is consistent with the hexagonal symmetry, is in
figure 1(right). The N 21 = + Dirac point splits into fourDirac conical points: the central Dirac point has
N 11 = - , while three others with N 11 = + each are connected by theC3 symmetry, seefigure 1(right).
This is called the trigonal warping. The topological charges N 11 =  belong to the nontrivial element of
the groupZ2. That is why eachDirac point is topologically stable and is not destroyed by addition of the
neglected hopping elements, if they obey the time reversal and sublattice symmetry.

The bilayer graphene chooses the scenario (iv)with the trigonal warping [13, 14], which prohibits the
annihilation of theDirac point due to splitting into the topologically stableDirac points with N 11 =  .
Altogether the Brillouin zone of the bilayer graphene contains 8Dirac conical points.

Figure 1.Z2-topology ofDirac points in bilayer graphene. Left: dirac point with quadratic spectrum characterized by topological
invariant N 21 = . Since the topological invariant is trivial inZ2 topology, such a spectrum is unstable towards the gap formation, or to
splitting. Right: splitting to topologically stableDirac points due to trigonal warping.
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3. From topology of bilayer graphene to Bernal graphite

The trigonal warping also stabilizes theDirac lines in the Bernal graphite (ABAB... stacking). Altogether the
Brillouin zone of the Bernal graphite contains 8Dirac lines [15, 16], which originate from8Dirac conical points
of bilayer graphene. TheseDirac lines have finite energy and live inside the Fermi surface of graphite.

However, the topologically stableDirac lines appear only in a certain region ofmomenta pz. Outside that
region the scenario (ii)without theDirac lines takes place. Thismeans that there exists an exceptional point in
the spectrum, at which four topologically stableDirac linesmerge together and annihilate each other [15, 16].
Such a point is a direct analog of the nexus, a point in the real spacewhere theZ2 orZ4 topological defectsmerge
and annihilate each other, see figure 2(top) [18].

Let usfind this exceptional point. According to D h6 symmetry of graphite, theDirac lines are situated in the
verticalmirror planes, and thus the exceptional point is on theH-K-H line in the Brillouin zone at p Pz *= .

TheHamiltonian of Bernal graphite is a 3D extension of the 2DHamiltonian describing bilayer graphene:

H
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This corresponds to a rotated version of that written in [10] (wewrite theHamiltonian in a basis spanned by the
two layers×sublattice points, whereas [10]writes it in the eigenbasis defined by the strongest interlayer
couplings), but we assume that the intralayer coupling 0g dominates over the other terms, and therefore also
make the p·s approximation for each layer.Here p p pe ix y

i = +f ; p a pcos 2z z( ) (( ) )pG = , where a is the
distance between theK-point andH-point in the Brillouin zone of graphite and p 0z = at theK-point so that

K 1( )G = and H 0( )G = . The function p p 2z z2 2
2( ) ( )g g= G describes the coupling across two layers andΔ

denotes the locally brokenA-B sublattice symmetry, which still preserves the global A-B symmetry. The

Figure 2.Real-space andmomentum space nexus. Top left: real-space nexus in the dipole locked superfluid 3He-A, where vortices are
described byZ2-topology. Two vortices, with N 11 = each,merge together at the hedgehog in the field of the orbitalmomentum
vector l̂ and annihilate each other since N 2 01 = º . Top right: real-space nexus in the dipole unlocked superfluid 3He-A, where
vortices are described byZ4-topology. Four half-quantumvortices, with N 1 21 = each,merge together at the hedgehog and
annihilate each other. Bottom: illustration of the topology of themomentum-space nexus in graphite. Dirac lines obey theZ2-
topology. FourDirac lines, with N 11 = + , N 11 = + , N 11 = + and N 11 = - , merge together at an exceptional point of the spectrum
and annihilate each other, because N 1 1 1 1 2 01 = + + - = º .
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coefficients 3,4g are related to the original tight-binding coefficients [10] 3,4g̃ via 3,4 3,4 0˜g g g= . In graphite,
0.13g » and 0.014g » [17].We neglect spin–orbit coupling and belowwe set v 1F = for simplicity.

Hamiltonian (2) is invariant under time reversal symmetry (complex conjugation) combinedwith reflection
fromplane p 0y = (f f - ). This symmetry supports theZ2 topology ofDirac points in graphene

(figure 1(right)) andDirac lines in graphite.

4. Point ofmerging ofDirac lines

Since themerging point P* is on theH-K-H line, we consider theHamiltonian at p= 0which has the following
form (we consider only the traceless part):

H p p H p p H p p

f p g p

f p

f p

g p f p

f p p g p p
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This can be rewritten in terms of the Paulimatrices is and it :

H p p f p g p0, . 4z z z3 3 2 2 1 1( ) ( ) ( )˜ ( ) ( )t s t s t s= = + -

Let us introduce newmatrices 3 3t̃ t= - , 1 1t̃ t= - , 2 2t̃ t= and the ‘total spin’ J 1

2
( )s t= + :

H p p f p g p g p0, , 5z z z z3 3)(( ) ( ) ( ) ( )˜ ˜ · ˜ ( )s tt s= = - + +

J J J2 1 3 , 2 1. 63 3 3
2· ˜ ( ) ˜ ( )s t t s= + - = -

TheHamiltonian at p= 0 can be expressed in terms of quantumnumbers J and J3:

H p f p g p J g p J J0 2 1 2 1 3 . 7z z z3
2( )( ) ( ) ( ) ( )˜ ( ) ( ( ) ) ( )= = - + - + + -

The exceptional point p Pz *= is at f p g p 0z z( ) ( )+ = , where three branches of the spectrumwith J= 1 are
degenerate. Its position is determined by equation

p p2 0. 8z z2 1( ) ( ) ( )g gD - + G =

In other notations this is the known equation for the exceptional point in graphite, see e.g. [16]. It is situated in
the vicinity of theH-point. Away from this point, two branches with J 13 =  remain degenerate for all pz. Close
to the exceptional point

H p J p P J g P0, 1 2 1 , 9z 3
2( )( ) ( )˜ ( ) ( )* *l= = » - - - +

where f P g P( ) ( )* *l = ¢ + ¢ .
The exceptional point P* is themerging point of fourDirac lines living in the symmetry planes at p Pz *< .

At p p PH z *> > the spectrum remains degenerate: the branches with J 13 = + and J 13 = - have the same
energy. But these are the band contact lines rather than theDirac lines: the branches have the same sign of energy
counted from the line position, as distinct from p Pz *< , where the touching branches have energies with
opposite sign, which is the characteristics of aDirac line (see figure 3). Thismeans that at p Pz *= a band
inversion occurs. The band inversion simultaneously happens for the branchwith quantumnumbers J= 1 and
J 03 = .

5. 2DDirac fermions atH-point

To see that the topology at p p PH z *> > is trivial, let us consider the px y plane containing theH-point. Since

p 0H( )G = , theHamiltonian at the plane p pz H= is

H p H p p p,
1

2
. 10H x y2 3 3 1 2( )( )˜ ( ) ( )g t s s s= D - + +
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It represents two copies ofmassive 2D fermionswithDirac spectrum:

E p M p M p,
1

2
. 11H

2 2
2( )( )˜( ) ( )g=  + = D -

and thus two doubly degenerate branches. In addition to the contact line of J 1z =  branches, the other two
branches, J= 1, J 03 = and J J 03= = , contact each other. TheHamiltonian (10) has trivialN1 topology. Due
to continuity, the topology in the plane slightly below theH-point is also trivial. This demonstrates that at
p p PH z *> > there are noDirac lines. Instead there are band-contact lines, with trivial topological charge
N 01 = . Thus the exceptional point P* is the point ofmerging of fourDirac lines.

Figure 3. (a)Positions of theDirac lines in the energy spectrum are seen as the points inmomentum spacewhere the two eigenenergies
meet (plotted for p 0.5z( )G = ). (b)Cut through the 0f = axis revealing the positions of two of theDirac lines.With a large ∣ ∣D they
shift towards lower values of p. (c) Same as previous butwith p 2z 1( ) gG = - D , showing also the higher-energy branches. Now the
finite-momentumDirac lines are too close to the center point to be visible. (d)Dispersion at the nexus, p 2z 1( ) ( )gG = -D ; (e) above
the nexus, p 4z 1( ) ( )gG = -D and (f) at theH-point p 0z( )G = . Thefigures are computedwith 0.05 1gD = - , 0.13g = ,

02 4g g= = .
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6. Finite-energyDirac lines

Let us consider the occurrence of theDirac lines at afinite energy. For simplicity, we neglect pz2 ( )g and 4g , as
they do not change the qualitative behavior of theDirac lines close to the nexus. In this case, the characteristic
equation for the bulk spectrum reads

p p p p p p4 4 8 cos 3 16 0.

12

z z
2 2 3

3
2 2

1
2 2 3

1 3
2 2

1
2

3
2 4( ) ( ) ( ) ( )( ) ( ) ( )

( )

   g g g g f g g+ D - + - D - - + G + G =

This has four solutions for ò. Let us analyze the solutions for three cases: (a) p Pz∣ ∣ * , (b) p Pz∣ ∣ *= , and (c),
p p P

H z∣ ∣ * > . The relevant eigensolutions for a specific set of parameters in the three cases are plotted in
figure 3.

For region (a), there are two eigenenergies pz1 ( ) g»  G , and two closer to zero. The latter two are plotted in
figures 3(a), (b) for afixed pz( )G . Two low-energy solutions touch at specific points in the transversemomentum
direction, either at p= 0 and close to cos 3 1( )f = - , p p p4 z0 1 3

2( )g g= = G , which is the exact position of the
Dirac line for 0D = . For smallΔ, theDirac lines atfinitemomentumobtain afinite energy

p1 1 1 4 z3
2 2[ ( ( ))] g= D - + DG and slightly shift the line away from p p0= . TheDirac line character

however persists. Figure 3(c) shows all four eigenenergies in region (a). Here the splitting of the two low-energy
lines is not visible as they are quite close to each other.

For p Pz *= , the four solutions are plotted infigure 3(d). For lowΔ and p, the energies are given by

p p, . 131,2
2 2

3,4 ( ) = D  D + = 

There are hence two gapped and quadratic and two gapless linear branches, and three of themmeet at
p 0 = = .
Above the nexus (region (c)), wemay first set p 0z( )G = , i.e., consider theHpoint. There, the finite-energy

solutions are given by (shifted by a constant energy from equation (11))

p
1

2
4 , 14a b,

2 2( ) ( ) = D  + D

The energies, plotted infigure 3(f), are doubly degenerate, but the degeneracy is lifted for afinite pz( )G , yielding
two pairs of quadratic branches, the gap depending on the precise value of pz( )G . The lifting of this degeneracy is
shown infigure 3(e).

7.Nexus

In the real space, the nexus is a kind of aDiracmonopole that terminates cosmic strings (the so-calledZ-string in
the StandardModel) [19]. In chiral superfluid 3He-A the nexus is a hedgehogwhich terminates vortices with the
Z2 orZ4 topology (figure 17.3 in the book [18] andfigure 2(top)). In the dipole-locked

3He-A the homotopy
group for vortices isZ2. That is why two vortices can terminate at the hedgehog in thefield of the orbital
momentumvector l̂ , which is the analog of theDiracmagneticmonopole.

In the samemanner theDirac lines can be described by theZ2 group, and if so, theymay terminate on aDirac
monopole in some field. If the invariantN1 belongs to theZ2 group, whichmeans that N 21 = and N 01 = are
equivalent, then by some transformation of hopping elements the line described by even N k21 = can disappear.
The lineswith N 11 =  are stable. Butwhen four such linesmeet each other, their total charge is even, and thus
theymay annihilate each other. This also happens, since at p Pz *> the band contact lines are topologically
trivial, N 01 = .

So, the point p Pz *= represents the nexus inmomentum space, see figure 2(bottom). It is distinct from the
3DWeyl point inmomentum space, which also represents themomentum-space analog of aDiracmonopole.
Such amonopole contains theDirac string: a singularity in the Berry phase which terminates at themonopole,
see figure 11.4 in [18]. But this string is not observable.

8. Conclusion

TheDirac lines are suggested to exist in different semimetals [20–26]. Thematerials withDirac lines are
important, because theymay have an (approximate)flat band on the boundary or at the interface between
materials with different topological properties. The high density of states in the flat band provides a possible
route to room-temperature superconductivity [27].

However, the Bernal graphite is a very instructive example. Its spectrumdemonstrates the possible interplay
of several relevant topological invariants. One of them characterizes the local line element as in [2]. Another one
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is the global invariant, which characterizes for example the closed nodal ring as a whole: it is the same invariant
which characterizes the 3DDirac orWeyl point obtained by shrinking the nodal ring. There are also the
topological invariants that characterize the Fermi surface(s). These include the local invariant of the Fermi
surface [18] and the topology of the shape of the Fermi surface [28]. All thismay combine to produce exotic
topological patterns. The interplay ofWeyl point and Fermi surface topologies with exchange of the Berry flux,
when two Fermi surfaces contact each other, have been discussed in [26, 29]. The Bernal graphite provides an
example of the interplay of Dirac lines in themirror planes, an exceptional point (nexus), and Fermi surfaces
with touching points between electron and hole pockets, see [15, 16].
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