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Abstract: In applied investigations, the invariance of the Lyapunov dimension under a
diffeomorphism is often used. However, in the case of irregular linearization, this fact was
not strictly considered in the classical works. In the present work, the invariance of the
Lyapunov dimension under diffeomorphism is demonstrated in the general case. This fact is
used to obtain the analytic exact upper bound of the Lyapunov dimension of an attractor of
the Shimizu–Morioka system.
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1. Introduction

Two well-known definitions of Lyapunov exponents are the upper bounds of the exponential growth
rate of the norms of linearized system solutions (LCEs) [1] and the upper bounds of the exponential
growth rate of the singular values of the fundamental matrix of a linearized system (LEs) [2]. These
definitions usually give the same values (e.g., for a “typical” regular system that satisfies the conditions
of the Oseledets theorem). For a particular system, the LCEs and LEs may be different. Lyapunov [1]
considered linearizations with bounded coefficients and introduced the class of regular linearizations:
for regular linearization, the sum of LCEs equals the lower bound of the exponential growth rate of the
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normal fundamental matrix determinant (otherwise, the linearization is called irregular). Any regular
linearization has exact LCEs (i.e., upper and lower bounds in the definition coincide), which are equal to
LEs. In general, it can be shown that the ordered LEs are majorized by the ordered LCEs. More detailed
discussions and examples can be found in [3–5]. Various characteristics of chaotic behavior are based
on Lyapunov exponents. The sum of positive Lyapunov exponents is used [6,7] as the characteristic of
the Kolmogorov–Sinai entropy rate [8,9]. Another measure of chaotic behavior is the Kaplan–Yorke or
Lyapunov dimension, which is defined via the singular values or LEs [10–12].

It is well known that a homeomorphism can change dimensions based on the space metric [13]. Thus,
the question arises whether the Lyapunov dimension is invariant under changes (see, e.g., [14], “Is
the Dimension of Chaotic Attractors Invariant under Coordinate Changes?”; and [15–17]). Since the
singular values and LEs are defined via the linearization of a system, the smooth changes of variables
are of interest.

In the applied investigations, the invariance of the Lyapunov dimension under diffeomorphism is
often used. However, in the case of irregular linearization, this fact is not strictly considered (see, e.g.,
the surveys [18,19]). In the present work, it is demonstrated in the general case that while singular values
may not be invariant under changes of coordinates, the Lyapunov dimension of an attractor is invariant
under diffeomorphism. This fact is used to obtain the exact formula of the Lyapunov dimension of an
attractor of the Shimizu–Morioka system.

2. Lyapunov Dimension

Consider a continuously-differentiable mapping F defined on an open set U ⊂ Rn. Denote by TxF
the Jacobian matrix of the mapping F at the point x. The continuous differentiability of F implies that:

F (x+ h)− F (x) = (TxF )h+ o(h) (1)

By assumption, K ⊂ U is a bounded invariant set: FK = K.
Denote by αj(A) the singular numbers of (n×n)-matrixA, such that α1(A) ≥ α2(A) ≥ . . . ≥ αn(A).

Consider the relation:
ωd(A) = α1(A)α2(A) . . . αj(A)αsj+1(A),

where d = j + s, s ∈ [0, 1], j ∈ N, j ∈ [1, n].
We also write a well-known Horn inequality:

ωd(AB) ≤ ωd(A)ωd(B). (2)

Definition 1. We say that a local Lyapunov dimension of the mapping F at the point x ∈ K is a number:

dimL(F, x) = j + s,

where j is the largest integer number from [0, n], such that:

α1(TxF )α2(TxF ) . . . αj(TxF ) ≥ 1

and a number value s ∈ [0, 1) is as follows:

α1(TxF )α2(TxF ) . . . αj(TxF )αsj+1(TxF ) = 1.



Entropy 2015, 17 5103

By definition, dimL(F, x) = 0 if α1(TxF ) < 1, and dimL(F, x) = n if α1(TxF )α2(TxF )

. . . αn(TxF ) ≥ 1.

Definition 2. [20,21] The Lyapunov dimension of the mapping F on the set K is a number:

dimL(F,K) = sup
K

dimL(F, x).

Definition 3. A local Lyapunov dimension of a one-parameter group of mappings F t at the point x ∈ K
is a number:

dimL x = lim sup
t→+∞

dimL(F t, x).

Definition 4. The Lyapunov dimension of mappings F t on the set K is a number:

dimLK = sup
K

dimL x.

Consider a differential equation:
dx

dt
= f(x), x ∈ Rn (3)

with a continuously-differentiable vector-function f(x). Suppose that for any initial value x0, there exists
a solution of Equation (3) x(t, x0), defined on t ∈ [0,+∞). Here, x(0, x0) = x0.

Denote by F t(x0) = x(t, x0) a shift operator along the solutions of Equation (3) and suppose that the
set K ⊂ Rn is bounded and invariant: F tK = K, ∀t ∈ R1. TxF t is the Jacobian matrix of the mapping
F t at the point x.

Consider a differential equation:
dy

dt
= g(y), y ∈ Rn (4)

with a continuously-differentiable vector function g(y). Suppose that for any initial value y0, there exists
a solution of Equation (4) y(t, y0), defined on t ∈ [0,+∞). Here, y(0, y0) = y0.

Denote by F̃ t(y0) = y(t, y0) a shift operator along the solutions of Equation (4) and suppose that the
set K̃ ⊂ Rn is bounded and invariant: F̃ tK̃ = K̃, ∀t ∈ R1. TyF̃ t is the Jacobian matrix of the mapping
F̃ t at the point y.

Consider a transformation of coordinates of system (3) Q : x 7−→ y:

y = Q(x).

Suppose that Q is a diffeomorphism between the set K and the set K̃, i.e., x ∈ K, y ∈ K̃.
Hence, for a certain point y, there exists an inverse mapping Q−1 : y 7−→ x that is continuously

differentiable in the neighborhood of y.

x = Q−1(y).

Under the above assumptions, we state the following assertions.

Lemma 1. If for TxF t sup
x∈K

ωd0(TxF
t) < 1, then for the Lyapunov dimension of mapping F t of the set

K, the following estimate:
dimL(F t, K) ≤ j + s, (5)
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is satisfied. Here, j + s = d < d0, s = sup
x∈K

∑j
i=1 µi
|µj+1| , 0 < s ≤ 1, j is the largest integer: j ∈ [1, n];

µi = LEi(x), LEi(x) are Lyapunov exponents (LEs),
∑j

i=1 µi > 0, µj+1 < 0.

Proof. Consider an arbitrary number s0: 0 < sup
x∈K

∑j
i=1 µi
|µj+1| < s0 ≤ 1.

Recall that:
µi = lim sup

t→∞

1

t
ln|αi(TxF t)|

k∑
i=1

µi ≥ lim sup
t→∞

1

t
lnωk(TxF

t).

Here, ωk(TxF t) = α1(TxF
t)α2(TxF

t) . . . αk(TxF
t).

Using the well-known relation ωd(TxF t) = ω1−s
j (TxF

t)ωsj+1(TxF
t), we obtain:

lim sup
t→∞

1

t
ln(ω1−s0

j (TxF
t)ωs0j+1(TxF

t))

≤ lim sup
t→∞

1

t
ln(ω1−s0

j (TxF
t)) + lim sup

t→∞

1

t
ln(ωs0j+1(TxF

t))

≤ (1− s0)
j∑
i=1

µi + s0

j+1∑
i=1

µi

= µj+1(s0 −
∑j

i=1 µi
−µj+1

) < 0.

It follows that the inequality:

lim sup
t→∞

1

t
lnωd0(TxF

t) < 0

is satisfied for:
ωd0(TxF

t) < 1, ∀x ∈ K.

Thus, the assertion of the lemma sup
x∈K

ωd0(TxF
t) < 1 holds true.

From the definition of the Lyapunov dimension, we obtain that for all d < d0, Relation (5) is
satisfied.

Theorem 1. The Lyapunov dimension of the mapping F t of the set K is invariant with respect to the
diffeomorphism Q : K −→ K̃. Namely,

dimL(F t, K) = dimL(F̃ t, K̃). (6)

Proof. For the mappings F t and F̃ t (t > 0), Relation (1) is satisfied.
Then, the continuous differentiability of F̃ t and the properties of diffeomorphism Q imply the

following chain of relations:

Ty0F̃
t(ỹ− y0) + o(hy) = F̃ t(ỹ)− F̃ t(y0) = Q[F t(Q−1(ỹ))]−Q[F t(Q−1(y0))] = Ty0Q(ỹ− y0) + o(hy),

(7)
where ỹ = y0 + hy, x̃ = x0 + hx, Q−1(y0) = x0, Q−1(ỹ) = x̃,

Ty0Q =
∂Q

∂x

∣∣∣∣∣
F (x0)

TxF
t

∣∣∣∣∣
Q−1(y0)

∂Q−1

∂y

∣∣∣∣∣
y0

. (8)
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The continuous differentiability of the inverse mapping Q−1 (property of diffeomorphism) implies
the following relation:

∂Q−1

∂y

∣∣∣∣∣
y0

=

(
∂Q

∂x

)−1∣∣∣∣∣
Q−1(y0)=x0

. (9)

Taking into account (9) and (8) in Relation (7), we obtain:

Ty0F̃
t =

∂Q

∂x

∣∣∣∣∣
F (x0)

Tx0F
t

(
∂Q

∂x

)−1∣∣∣∣∣
x0

. (10)

Thus, for the nonsingular matrix ∂Q
∂x

(det(∂Q
∂x

) 6= 0), Relation (10) is satisfied.

Denote ω̄d(TuF t) = sup
u∈K

ωd(TuF
t), Qx = ∂Q

∂x
, (Qx)

−1 =
(
∂Q
∂x

)−1
. Consider the following relations:

TyF̃
T = TyF̃

kτ = (TF̃ (k−1)τ F̃ t) (TF̃ (k−2)τ F̃ t) . . . (TyF̃
t), (11)

where τ = T
k

, k ∈ N.
With provision for (10), Relation (11) can be rewritten as:

TyF̃
kτ =

(
QFkτTF (k−1)τF t

(
QF (k−1)τ

)−1)(
QF (k−1)τTF (k−2)τF t

(
QF (k−2)τ

)−1)
. . .
(
QF (x)TyF

tQx
−1
)
.

Applying Horn Inequality (2) to the last relation, we obtain the estimate:

ωd(TyF̃
kτ ) ≤ ωd

(
QFkτ

)
ωd

(
TF (k−1)τF t

)
ωd

(
TF (k−2)τF t

)
. . . ωd

(
TyF

t
)
ωd

(
Qx
−1
)
.

This implies that:

ω̄d(TyF̃
kτ ) ≤ ω̄d

(
QFkτ

)[
ω̄d

(
TxF

t
)]k

ω̄d(Qx
−1). (12)

In the last inequality, the following estimates ω̄d(Qx
−1) ≤ m1, ω̄d

(
QFkτ

)
≤ m2, ω̄d(TxF t) < 1,

where m1,m2 ∈ R+, are satisfied.
Repeating all of the above operations for the inverse transformation x = Q−1(y), we obtain relations

similar to (10):

Tx0F
t =

(
∂Q

∂x

)−1∣∣∣∣∣
F (x0)

Ty0F̃
t ∂Q

∂x

∣∣∣∣∣
x0

and (12):

ω̄d(TxF
kτ ) ≤ ω̄d

((
QFkτ

)−1)[
ω̄d(TyF̃

t)

]k
ω̄d(Qx), (13)

where ω̄d(Qx) ≤ l1, ω̄d
(

(QFkτ )
−1
)
≤ l2, ω̄d(TyF̃ t) < 1, l1, l2 ∈ R+. Suppose that M =

max(m1, m2, l1, l2).
Then, Relations (12) and (13) take the form:

ω̄d(TyF̃
kτ ) ≤M

[
ω̄d

(
TxF

t
)]k

. (14)
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and:

ω̄d(TxF
kτ ) ≤M

[
ω̄d(TyF̃

t)

]k
, (15)

respectively. Taking into account the assertion of the lemma, we obtain:

sup
y∈K̃

ωd(TyF̃ t)
∣∣∣
t→∞
→ 0, lim

t→∞
sup
y∈K̃

ωd(TyF̃ t) = 0,

and:
sup
x∈K

ωd(TxF
t)
∣∣∣
t→∞
→ 0, lim

t→∞
sup
x∈K

ωd(TxF
t) = 0,

as k →∞.
Denote dimL(F t, K) = D1, dimL(F̃ t, K̃) = D2.
Suppose that D1 < D2 and that d is an arbitrary number: D1 < d < D2. Consider the transformation

Q. Then, from (14) and the definition of the Lyapunov dimension, it follows that D2 ≤ d, but this
contradicts the initial assumption. Consequently, the inequality must be valid:

D2 ≤ D1. (16)

Suppose now that for inverse transformation Q−1, D2 < d < D1. Then, from (15), it follows that
D1 ≤ d. This is in contrast with the above assumption. Consequently:

D1 ≤ D2. (17)

Relations (16) and (17) imply the assertion of the theorem:

dimL(F t, K) = dimL(F̃ t, K̃).

In addition, this implies that:

lim
t→∞

sup
y∈K̃

ωd(TyF̃ t) = 0⇔ lim
t→∞

sup
x∈K

ωd(TxF
t) = 0.

Thus, if Q is a diffeomorphism, then the change of coordinates of dynamical system y = Q(x)

preserves the Lyapunov dimension of mapping F t on compact sets.

3. Lyapunov Dimension of the Shimizu–Morioka System

Consider the Shimizu–Morioka system [22] of the form:

ẋ = y,

ẏ = x− λy − xz,
ż = −αz + x2,

(18)

where α, λ are the positive parameters.
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Using the diffeomorphism:
x −→ x,

y −→ y,

z −→ z − x2

2
,

(19)

System (18) can be reduced to the following system:

ẋ = y,

ẏ = x− λy − xz +
x3

2
,

ż = −αz + xy +
(

1 +
α

2

)
x2,

(20)

where α, λ are the positive parameters of System (18). We say that System (20) is a transformed
Shimizu–Morioka system.

The following assertion is valid [23–27].

Theorem 2. Suppose that for the integers j ∈ [1, n] and s ∈ [0, 1], there exist a continuously
differentiable function υ(x) and a nonsingular matrix S, such that:

λ1(x, S) + λ2(x, S) + . . .+ λj(x, S) + sλj+1(x, S) + υ̇(x) < 0, ∀x ∈ Rn. (21)

Then, dimLK ≤ j + s.

Here, υ̇ = Lfυ, υ(x) is a Lyapunov function.
Further, for System (20), the following will be proven.

Theorem 3. Suppose that K is a bounded invariant set of System (20): (0, 0, 0) ∈ K and that the
following relations:

λ− 4 ≤
√

10 +
3

α
− 13α, λ <

1

α
− α, 4− λ ≤

√
8 + 15α− 8α2 − 24α3

2α(α + 1)
(22)

are satisfied. Then:

dimLK = 3− 2(λ+ α)

λ+
√

4 + λ2
. (23)

Proof. Consider a nonsingular matrix:

S =

 −
1
k

0 0

λ− α 1 0

0 0 1

 ,

where k = 1√
1−α(α−λ)

.

Then:

SJS−1 =

 α− λ − 1
k

0

−k(3
2
x2 − z)− 1

k
−α −x

−k(ax+ y) x −α

 ,
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J =

 0 1 0
3
2
x2 + 1− z −λ −x

(2 + α)x+ y x −α

 ,

where J is the Jacobian matrix of the right-hand side of System (20), a = 2 + 2α− λ.
The characteristic polynomial of the matrix:

1

2

(
SJS−1 +

(
SJS−1

)∗) (24)

takes the form:

(α + Λ)
[
Λ2 + λΛ− k2

16

(
3x2 − 2z +

4

k2

)2
− k2

4
(ax+ y)2 − 1− 1

k2

]
.

Here, ∗ denotes a transposition sign. This implies that the eigenvalues of Matrix (24) are the numbers:

λ2 = −α, λ1,3 = −1

2
λ± 1

2

√
w1(x, y, z),

where w1(x, y, z) = k2(ax+ y)2 + k2

4
(3x2 − 2z + 4

k2
)2 + (2α− λ)2. Obviously, λ1 ≥ λ2 ≥ λ3.

We choose the Lyapunov function to be of the form:

υ(x, y, z) =
1− s

4
√

4 + λ2
V (x, y, z),

where:

V (x, y, z) = µ1(2y
2−2xy−x4 +2x2z)+µ2x

2− 4

α
z+µ3(z

2−x2z+
x4

4
+xy)+µ4(z

2 +y2− x
4

4
−x2).

Here, µ1, µ2, µ3, µ4 are running parameters, s ∈ [0, 1).
Inequality (21) takes the form:

2(λ1 + λ2 + sλ3 + υ̇) = −(1 + s)λ− 2α + (1− s)
√

4 + λ2 + w(x, y, z) +
(1− s)V̇
2
√

4 + λ2
< 0,

where w(x, y, z) = k2(ax+ y)2 + 6x2 + k2

4
(3x2 − 2z)2 − 4z.

Using the inequality:
√
p+ q ≤ √p+

q

2
√
p
,∀p > 0, p+ q > 0,

we obtain the estimate:

2(λ1 + λ2 + sλ3 + υ̇) = −(1 + s)λ− 2α + (1− s)
√

4 + λ2 +
1− s

2
√

4 + λ2
(w(x, y, z) + V̇ ) < 0. (25)

We have:
w + V̇ = B1x

2 +B2xy +B3y
2 + C1x

4 + C2x
2z + C3z

2,

where:
B1 = 4− 4

α
+ k2a2 − 2µ1 + µ3,

B2 = 2ak2 − 4

α
+ 2(2 + λ)µ1 + 2µ2 − λµ3,

B3 = k2 − 2(2λ+ 1)µ1 + µ3 − 2λµ4,

C1 =
9

4
k2 + (α + 1)µ1 −

1

2
(α + 1)µ3,

C2 = −3k2 + 2(1− α)µ1 + (2α + 1)µ3 + (2 + α)µ4,

C3 = k2 − 2αµ3 − 2αµ4.
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Condition:
w + V̇ ≤ 0 (26)

is satisfied for all x, y, z, if and only if the following inequalities hold true:

B1 ≤ 0, 4B1B3 −B2
2 ≥ 0, (27)

C1 ≤ 0, 4C1C3 − C2
2 ≥ 0. (28)

We represent the second inequality from (27) in the form:

4B1B3 ≥ (B̃2 + 2µ2)
2, (29)

where B̃2 = 2ak2 − 4
α

+ 2(2 + λ)µ1 − λµ3.
Inequality (29) is solvable with respect to µ2 if B1B3 ≥ 0. This implies that (27) is equivalent to the

system of inequalities:
B1 ≤ 0,

B3 ≤ 0.
(30)

The second inequality in (30) is valid under certain µ4 > 0 if 2µ1 ≥ 1
2λ+1

(k2 + µ3). Then, from (30),
we obtain:

2µ1 ≥ 4− 4

α
+ k2a2 + µ3,

2µ1 ≥
1

2λ+ 1
(k2 + µ3).

(31)

Now, we represent the second inequality from (28) as:

4C1(C̃3 − 2αµ4)−
[
C̃2 + (2 + α)µ4

]2
≥ 0, (32)

where:
C̃2 = −3k2 + 2(1− α)µ1 + (2α + 1)µ3, C̃3 = k2 − 2αµ3.

Inequality (32) is solvable with respect to µ4 if the discriminant of its left-hand side is nonnegative.
This implies that:

4α2

(2 + α)2
C2

1 +
2α

2 + α
C1C̃2 + C1C̃3 ≥ 0.

Since C1 ≤ 0, for the last inequality to be valid, it is sufficient that:

4α2

(2 + α)2
C1 +

2α

2 + α
C̃2 + C̃3 ≤ 0

is satisfied. The latter is equivalent to:

2µ1 ≤ µ3 −
k2(1− α)2

α
. (33)

For the sake of convenience, we assume µ̃1 = 2µ1
k2
, µ̃3 = µ3

k2
. Then, from the first inequality in (28)

and Inequalities (31) and (33), we obtain a system of linear inequalities with respect to µ̃1 and µ̃3:

µ̃1 ≥
4α− 4

αk2
+ a2 + µ̃3, (34)
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µ̃1 ≥
1

2λ+ 1
(1 + µ̃3), (35)

µ̃1 ≤ −
9

2(α + 1)
+ µ̃3, (36)

µ̃1 ≤ −
(1− α)2

α
+ µ̃3. (37)

Suppose µ̂3 =
1

2λ+1
− 4α−4

αk2
−a2

1− 1
2λ+1

. Then, from (36) and (37), we obtain:

µ̃1 − µ̂3 ≤ −
9

2(α + 1)

µ̃1 − µ̂3 ≤ −
(1− α)2

α
.

This implies two cases:

1)− 9

2(α + 1)
≤ −(1− α)2

α
, if

3−
√

7

2
≤ α ≤ 3 +

√
7

2

2)− (1− α)2

α
≤ − 9

2(α + 1)
, if 0 < α ≤ 3−

√
7

2
.

From (34) and (36), it follows that:

4α− 4

αk2
+ a2 +

9

2(α + 1)
≤ 0.

Then:

4−

√
8 + 15α− 8α2 − 24α3

2α(α + 1)
≤ λ ≤ 4 +

√
8 + 15α− 8α2 − 24α3

2α(α + 1)
. (38)

From (34) and (37), it follows that:

4α− 4

αk2
+ a2 +

(1− α)2

α
≤ 0.

Then:

4−
√

10 +
3

α
− 13α ≤ λ ≤ 4 +

√
10 +

3

α
− 13α.

This means that (26) is valid if (38) and the inequality:

λ ≤ 4 +

√
10 +

3

α
− 13α

are satisfied. Thus, this implies that Inequality (26) is satisfied if and only if System (34)–(37) is solvable
with respect to µ̃1 and µ̃3 = µ̂3, where µ̃1 ≥ 0, µ̂3 ≥ 0, µ̃1 ≤ µ̂3.

In turn, (25) is satisfied if (26) is valid, i.e., when λ < 1
α
− α and:

s >

√
4 + λ2 − (λ+ 2α)

λ+
√

4 + λ2
. (39)

Thus, under Condition (22), we obtain the matrix S, the function υ(x, y, z) and a number s,
satisfying (39), such that (25) is valid.
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Consequently, dimLK ≤ 2 + s for all s, satisfying (39). This implies that:

dimLK ≤ 3− 2(λ+ α)

λ+
√

4 + λ2
. (40)

At the same time, considering the linearization of System (20) in a neighborhood of the points
(0, 0, 0), we obtain:

dimL(0, 0, 0) = 3− 2(λ+ α)

λ+
√

4 + λ2
.

This relation and (40) yield Relation (23).
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Figure 1. Self-excited local attractors in: (a) System (18) for α = 0.375, λ = 0.81; (b)
System (20) for α = 0.375, λ = 0.81.
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For α = 0.375, λ = 0.81, classical Shimizu–Morioka System (18) possesses a strange self-excited
local attractor of the Lorenz type (Figure 1a); for α = 0.191450, λ = 0.81, it changes to the self-excited
local attractor of the Burke and Shaw type (Figure 2a). Transformed System (20) demonstrates similar
types of local attractors under the same values of parameters α and λ (Figure 1b and Figure 2b). Here,
numerical estimations of the Lyapunov dimension by the code from [28] (2.0749, Figure 1b; 2.0059,
Figure 2b) are consistent with the analytic exact upper bound for the Lyapunov dimension given by (40)
(the corresponding values are 2.2014 and 2.3251, respectively).

−1
−0.5

0
0.5

1
1.5

−1

−0.5

0

0.5

1

1.5
0

0.5

1

1.5

2

2.5

3

x

α=0.19145, λ=0.81

y

z

(a)

−1
−0.5

0
0.5

1
1.5

−1

−0.5

0

0.5

1

1.5
0

0.5

1

1.5

2

2.5

3

x

α=0.19145, λ=0.81

y

z

(b)

Figure 2. Self-excited local attractors in: (a) System (18) for α = 0.191450, λ = 0.81,
“Burke and Shaw-like”; (b) System (20) for α = 0.191450, λ = 0.81, “Burke and
Shaw-like”.
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Thus, using the diffeomorphism (19), which saves the Lyapunov dimension of an invariant bounded
set K, it is possible to state that for classical Shimizu–Morioka System (18), the set K has the same
Lyapunov dimension as System (20).

Remark 1. An oscillation can generally be easily numerically localized if the initial data from its open
neighborhood in the phase space lead to a long-term behavior that approaches the oscillation. Therefore,
from a computational perspective, it is natural to suggest the following classification of attractors
[29–32], which is based on the simplicity of finding their basins of attraction in the phase space: an
attractor is called a self-excited attractor if its basin of attraction intersects with any open neighborhood
of an equilibrium; otherwise, it is called a hidden attractor. For a self-excited attractor, its basin of
attraction is connected to an unstable equilibrium, and therefore (standard computational procedure),
self-excited attractors can be localized numerically by the standard computational procedure: by
constructing a solution using initial data from an unstable manifold in a neighborhood of an unstable
equilibrium, observing how it is attracted and visualizing the oscillation. In contrast, the basin of
attraction for a hidden attractor is not connected to any equilibrium. For example, hidden attractors
are attractors in systems with no equilibria or with only one stable equilibrium (a special case of the
multi-stability: the coexistence of attractors in multi-stable systems). Well-known examples of the hidden
oscillations are nested limit cycles in the 16th Hilbert problem (see, e.g., [32,33]) and counterexamples to
the Aizerman and Kalman conjectures on the absolute stability of nonlinear control systems [32,34–36].

4. Conclusion

In the present work, the invariance of the Lyapunov dimension under diffeomorphism is strictly
proven. For the attractor of the Shimizu–Morioka system, a smooth change of coordinates is suggested
and a Lyapunov function constructed, which allow one to obtain the analytic exact upper bound
for the Lyapunov dimension. Similar results for some other Lorenz-like systems can be found,
e.g., in [28,37,38].
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