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Molecules with complex internal structure in time-dependent periodic potentials are studied by using short
Rubinstein-Duke model polymers as an example. We extend our earlier work on transport in stochastically
varying potentials to cover also deterministic potential switching mechanisms, energetic efficiency, and non-
uniform charge distributions. We also use currents in the nonequilibrium steady state to identify the dominating
mechanisms that lead to polymer transportation and analyze the evolution of the macroscopic state �e.g., total
and head-to-head lengths� of the polymers. Several numerical methods are used to solve the master equations
and nonlinear optimization problems. The dominating transport mechanisms are found via graph optimization
methods. The results show that small changes in the molecule structure and the environment variables can lead
to large increases of the drift. The drift and the coherence can be amplified by using deterministic flashing
potentials and customized polymer charge distributions. Identifying the dominating transport mechanism by
graph analysis tools is found to give insight in how the molecule is transported by the ratchet effect.
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I. INTRODUCTION

Theoretical research on Brownian motors and the ratchet
effect has flourished since the early 1990s �1–4�. Most stud-
ies have been limited to simple systems with one or two
coupled particles, whereas research of more complicated sys-
tems has escalated in recent years �5–15�. Due to the in-
creased complexity of the models with internal structure, nu-
merical methods play a more important part. This is due to
the fact that the ratchet effect occurs in a far from equilib-
rium environment and only simple model systems can be
analyzed exactly �see, e.g., �16,17��.

The internal structure is an important aspect for many
real-life molecular motors �e.g., the well-studied kinesin
�18��. For systems with nonhomogeneous potentials, internal
states usually play a more important part than in “traditional”
transport driven by biased external forces �such as a constant
electric field�. Even single-particle systems based on the
ratchet effect have been shown to display many phenomena,
of which the current inversion phenomenon is one of the
most interesting. Current inversions are found to be rather
common and can usually be generated by tuning of variables
�e.g., diffusion constant, friction, potential shape, and/or pe-
riod� �1,19–26�. In view of this, it is reasonable to assume
that systems with internal dynamics possess even more sur-
prising properties and knowledge of the correlation between
internal states and transport would enable artificial engineer-
ing of the molecules and to boost wanted properties such as
the velocity. An intriguing possibility considered in this pa-
per is the control of electrophoresis �27� by modifying the
internal charge distribution of the molecule. Because of the
large number of parameters and different models, it is hard to
compare results from different works and form any universal
rules about the current or energetic properties for the ratchet
effect. Things get even more complicated for complex mol-
ecules, for which the results are even more model dependent.

Therefore, we think that it is necessary to at least develop
some general methodology for how to systematically study
and monitor the behavior of these systems. This is indeed
one of the key themes of this work.

We have recently studied polymers using the Rubinstein-
Duke �RD� model in time-dependent periodic potentials �28�.
The RD model �29� is a good prototype of a complex mol-
ecule since the size of a linear polymer can be easily varied,
it is strongly correlated, and the model has been actively
studied for 2 decades �30–36�. There has also been interest
toward polymers as Brownian motors recently �5,6,37�. In
Ref. �28�, we presented a general “toolbox” based on the
numerical solutions for master equations and found current
inversions for the RD model in the flashing ratchet and trav-
eling potentials. In this paper, we extend our work and meth-
odology by considering the efficiency, different potential
time-dependency schemes, nonhomogeneous charge distri-
butions, and the dynamics of the internal states leading to the
macroscopic transport properties. We formulate the operators
and master equations that are then solved with suitable nu-
merical tools that fall into areas of linear algebra, integration,
optimization, and graph analysis. Due to the nature of the
ratchet effect, most observables that we are interested in
�such as drifts and conformational changes� are very small.
Therefore, we find that a discrete space model that allows
numerically exact solutions provides a very useful frame-
work in this context.

It is found that, like in many other studies on the ratchet
effect before, varying certain model parameters has a large
effect on the velocity, coherence, and energetic efficiency.
We take this aspect a step further by doing multiple-
parameter optimization for the RD model in order to maxi-
mize the steady-state drift. If the internal states and the
movement of the polymer are tightly correlated �such as in
the RD model�, changing the parameters increases the impor-
tance of some molecule conformations over the others. We
demonstrate this by comparing the expected values for cer-
tain characteristic macroscopic properties for polymers, such
as head-to-head and total length. We also identify and com-
pare the most important microscopic conformations of the*janne.kauttonen@jyu.fi

PHYSICAL REVIEW E 81, 041112 �2010�

1539-3755/2010/81�4�/041112�13� ©2010 The American Physical Society041112-1

http://dx.doi.org/10.1103/PhysRevE.81.041112


polymer that are responsible for the currents in different situ-
ations.

This paper is organized as follows. In Sec. II, a math-
ematical framework and notations are defined and in Sec. III,
we go through the numerical methodology. In Secs. IV and
V, we present our results for transport properties and exam-
ine their microscopic origin. In the Appendix, the operator
algebra involved is discussed in detail. Our conclusions are
given in Sec. VI.

II. MODEL

We study the transport of the RD polymer �29� and its
modification, the free motion �FM� polymer �28�, in tempo-
rally and spatially changing driving potentials. Essentially,
the RD model consists of connected Markovian random
walkers �reptons� in continuous time �see Fig. 1�. Each rep-
ton carries a charge that interacts with the potential. The
model was originally developed to study the reptation pro-
cess of the polymer in a restrictive medium �gel�. However,
in the context of this study, the model is primarily used as a
good prototype of a molecule with a large number of internal
states. To study the importance of the bulk motion, the as-
sumption of the reptation can be relaxed, which results in the
FM model. The complexity of the polymers can be increased
by considering arbitrary charges of the reptons. In the fol-
lowing section, formal definitions of the model are given for
the implementation for numerical computations. Readers not
interested in the technical details may skip this part and pro-
ceed to Sec. II B.

A. Stochastic generator and operators

Consider a one-dimensional discrete Markovian random
process in continuous time �38�. After the transition rates
between all the allowed states �i , j� in the system are given
�elements Hi,j�, the stochastic matrix H can be defined. For
molecular motors, this matrix includes all the internal con-
formations and spatial positions of the molecule in the po-
tential �39–41�. In the case of the Markovian stochastically
driven potential, it also includes the states of the external
potential. We consider systems with stochastic �type 1� and
deterministic potential switching schemes with sudden �type
2� and smooth �type 3� switchings. The potential V�x , t� is
assumed to be L and T periodic in space and time �for sto-
chastic switching, T is the expectation value�. The stochastic
matrix for the polymer dynamics is

H = �
s=1

S ��
l=1

L �Al,s + �
y
�By,l,s + �

i=1

N−2

Mi,y,l,s	
 +
1

Ts
�n̂s − ĥs��

for the type 1 and

H�t� = �
l=1

L �Al�t� + �
y
�By,l�t� + �

i=1

N−2

Mi,y,l�t�	
 �1�

for the deterministic case, where Ts is the expected lifetime
of the potential Vs, and q�RN the repton charges. The
switching of the potential is assumed to be cyclic, i.e., V1

→V2→¯→Vs→V1. The operators n̂s and ĥs create transi-
tions between the potential states, and the operators A, B, and
M determine the dynamics of the head �A and B� and middle
�M� reptons. The detailed definitions of these operators are
given in the Appendix �see also Ref. �28��. In Fig. 1, we have
an illustration of the six-repton polymer in one of its con-
figurations. We fix the direction of the motion such that up
arrows indicate the positive direction and vice versa.

The type 2 operator now becomes

H�t� =�
H1, t � �0,T1�
H2, t � �T1,T1 + T2�
]

HS, t � ��
i=1

S−1

Ti,T	 ,
and for the type 3 we choose V�x , t�=Vmax�x�sin2��t /T�. The
types 2 and 3 potentials are more reasonable for artificial
molecular motors that have external driving mechanisms
�e.g., electric potential�, whereas the type 1 occurs most
likely in nature �e.g., adenosine triphosphate �ATP�-driven
motors�. After the generator is defined, the dynamics is given
by the master equation dP�t� /dt=H�t�P�t�, where the ele-
ments of the probability vector P�t� include all the individual
states y of the system. The stationary state Pstat for the type 1
generator means that HPstat=0 and for types 2 and 3 that
Pstat�t�= Pstat�t+T�. From Pstat, all expected values, such as
the drift v, can be computed. The effective diffusion coeffi-
cient Deff is found by solving another stationary state for the
diffusion equation �see Ref. �28��. After solving v and Deff,
the Peclet number can be computed from Pe= �v�

Deff
.

Although the drift and Peclet number are the most studied
properties, they tell nothing about the internal dynamics of
the molecule. More specific measurements are needed. For a
discrete model, individual states, which we call microstates,
can be bunched together to define the macrostates. Within
the operator formalism, the general form of such macrostate
operator is

Ô = �
k

�k �
y�Fk

n̂y , �2�

where �k is the corresponding value of the macrostate �e.g.,
the polymer length�, n̂y is a microstate operator, and Fk is a
�large� collection of microstates. For the RD-type model,
there are 3N−1 microstates, for which the operators have the
form

1 2 3

4

5

6 V(1,t)

V(2,t)

V(3,t)

FIG. 1. �Color online� Illustration of a single configuration of
the six-repton �N=6� polymer in the external potential V�x , t� with
available moves shown by arrows. The moves with blue �gray�
arrows are only available in the FM model.
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n̂y = �
i=1

N−1

ng�y,i�,

where the function g�y , i� defines the state �A, B, or �� of
each bond i between the reptons i and i+1. We define the
following four macrostate operators for the RD-type model:
the zero-bond count �number of � bonds�, the kink count
�number of AB or BA bond pairs�, the head-to-head length
�distance between first and last reptons�, and the total length
�maximum distance between two reptons�. The head-to-head
and total lengths are calculated in the potential direction �the
only spatial direction for the one-dimensional model� and for
the fully accumulated polymer they both are zero. The cor-
responding operator definitions of these observables are
found in the Appendix. Separating the head-to-head and the
total lengths is important since the polymer can take a U
shape. For example, for the configuration in Fig. 1, the val-
ues for �k of these operators would be 2 for zero bonds
�formed by reptons 1–3�, 1 for kinks �reptons 3–5�, 1 for the
head-to-head length, and 2 for the total length.

B. Selection of the rates

Despite the large number of studies with discrete state
Brownian motors, the importance of choosing the rates Hi,j
has not got much attention. By demanding the local detailed
balance �no net currents in equilibrium�, the usual choices
for the rates are �42,43�

1

�
Hi,j = �min�1,e�Ej−Ei�/kBT� �Metropolis�

e�Ej−Ei�/2kB �exponential�
�1 + e�Ei−Ej�/kBT�−1 �Kawasaki� ,


where � sets the time scale and 1 /kBT is the Boltzmann
factor. Both of these constants and the lattice constant are set
to 1 in this paper. All three definitions lead to the required
Pi=exp�−Ei� /Z distribution in equilibrium, but generate the
different kinds of dynamics when applied to ratchet systems
�far from equilibrium� such that the microstate energy Ei
contains the potential. To demonstrate this, we have plotted
in Fig. 2 the stationary-state drift and diffusion coefficient of
the eight-repton RD polymer in the type 1 flashing ratchet
and traveling potential �model parameters are listed in the
beginning of the Sec. IV�. Although all three curves for
flashing and traveling potentials share a similar shape, the
scales are different and large differences can be seen in the
limit where the temporal period T→0. Being fast and
simple, the Metropolis form is usually the favorite choice for
the rates. But especially with ratchet systems, it can be a
poor choice since it does not take into account the slope of
the downhill moves �rate being limited to 1� that is important
for the dynamics. This is also true for the Kawasaki form,
since it is basically just a smoothened Metropolis function.
Since there is no single correct choice for the rates �based on
theory�, the selection must be made on experimental or
model-specific grounds. Only exponential �in flashing
ratchet� and Metropolis �in traveling potential� dynamics
lead to zero drift in this limit, which is a physically more
realistic situation and is also consistent with the single

Brownian particle model �44�. Therefore, we choose these
rates in this study.

C. Nonuniform charge distributions

The usual assumption in the studies concerning polymer
transport is that all monomers are identical, i.e., they carry
identical charge and mass. We relax this assumption and
study the effect of the nonuniform charge distributions along
reptons. Previous works on the RD model have considered
some aspects of this. In Ref. �34�, a magnetophoresis model
�i.e., one charged head repton� was considered and in Ref.
�45�, it was shown that when it comes to the drift velocity, all
charge distributions are equivalent in small fields �i.e., linear-
response regime� �65�. In Ref. �46�, it was noticed that the
drift in constant field depends strongly on the position of the
charged repton within the polymer and in Ref. �35�, nonho-
mogeneously charged RD polymers in large fields were stud-
ied. Recent study of the dimer in the periodic potential shows
that if the connected particles are nonidentical, directed drift
can be generated even in the symmetric potential �7�.

We want to find the best possible charge distributions q
for the RD and FM polymers by finding the largest possible
drifts. This leads to a multidimensional, nonlinear con-
strained optimization problem with constrains coming from
the charges qi. We choose �iqi=Q and qi�0, where the first
constraint simply sets the total charge corresponding to an
uniformly charged polymer and the second one fixes the sign
of the charges. The optimal charge distribution gives some
�indirect� information about the polymer conformations and
reptons that dominate the transport �i.e., have the largest im-
pact on the drift�. Lastly, we note that optimization has been
carried out for some single-particle systems �47–49�.

III. NUMERICAL METHODS

A. Network analysis

The stochastic matrix H can be also treated as a graph
with vertices �states� and edges �transitions� that can be ana-
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FIG. 2. �Color online� Effect of the jump-rate scheme. The drift
velocity and the diffusion coefficient of the eight-repton RD poly-
mer as a function of the temporal period T in the type 1 flashing
ratchet �left� and the traveling potential �right�, with exponential
�blue dash-dotted lines�, Metropolis �black solid lines�, and Ka-
wasaki �red dashed lines� rates.
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lyzed to gain more detailed information of the transport pro-
cess, as described in this section. Graphs and statistical phys-
ics have a long history due to the close similarities between
stochastic systems and electric circuits and in the seminal
work of Schnakenberg in 1970s, many important results be-
tween these two were presented �50� �see �51� for some re-
cent developments�. Most of the works on this subject deal
with the relations between steady state, rates, probability
fluxes, and entropy. We are however interested in finding the
optimal paths within a current graph, which has not gained
interest within previous works. Such ideas have however
risen in other disciplines such as microbiology �52�. In the
following, only basic knowledge of the graph theory is ex-
pected �see, e.g., �53��. For simplicity, we consider only type
1 scheme where the time dependency of the stationary state
does not need to be explicitly dealt with thus making the
numerical computations easier.

After the stationary state Pstat of H is found, the net cur-
rents �edge weights� between the states can be computed. In
addition to the stationary state and stochastic generator, we
make use of the matrix Hsign which carries the information
about the direction and magnitude for the transitions in H.
For the RD-type model, the elements of Hsign are �a /N for
all polymer state transitions, where a is the lattice constant
and the factor 1 /N results from the center-of-mass motion,
and zero for the potential state transitions �present only for
the type 1 system� �for additional details, see Ref. �28��. The
graphs G and Gsign are then formed as follows. Let wi,j
= Pstat�i�Hi,j − Pstat�j�Hj,i ∀ i , j. If wi,j �0, there exists a di-
rected edge i→ j in G and Gsign with weights wi,j and wi,j

sign

= �Hi,j
signwi,j. With the sign in front of the weights wi,j

sign, one
chooses the direction of interest of the transport �see below�.
The weights wi,j are probability flows and the weights wi,j

sign

are mean displacement flows in the stationary state.
Let �k be a path i1→ i2→¯→ ik in the graph with ix

� iy ∀ x�y �the path is nonintersecting� and �k�j�= ij. We
then look for the path�s�

max
�k

�
i=1

k−1
1

k
X�k�i+1�,�k�i� ¬ max

�k

f��k� , �3�

with X being wi,j or wi,j
sign. The resulting path computed with

wi,j contains transitions that lead to the largest mean prob-
ability flow and we denote it by �̃k. Similarly with wi,j

sign, one
gets the path with the largest mean probability flow and we
denote it by �̃k

sign. We call these paths the dominating pro-
cesses. The function f is known as the target function. If the
system is closed �periodic�, the process must eventually re-
turn to its starting state and a cycle is formed, in which case
�k=�1. Since the potentials we study are indeed periodic, we
concentrate on closed systems from now on. For the cycle
�̃k

sign, the target function defines the mean cycle velocity, i.e.,
vc=�i=1

k−1wyi+1,yi

sign , where yi= �̃k
sign�i�.

Whether there is a difference between �̃ and �̃sign depends
on the details of the system. It may turn out that �̃ only
includes transitions that are not responsible for the directed
molecule transportation, but instead results from the non-
transporting diffusive motion. Formally, this means that

�i=1
k−1H�̃k�i+1�,�̃k�i�

sign =0, which we call a stationary process, as

the net transport for the cycle is zero. This is indeed typical
for the ratchet transport, since the molecule spends most of
its time near the minima of the potential, being unable to
move until the suitable state of the potential and molecule
conformation is reached. Therefore, �̃sign carries more inter-
esting information as it takes into account the directions and
magnitude of the moves. If the path has a property
�i=1

k−1H�k�i+1�,�k�i�
sign �0, we call it a transporting process. It is

not guaranteed that the dominating process is a transporting
process in either case.

In the literature, the problem in Eq. �3� for cycles is
known as the optimum cycle ratio problem �see, e.g., �54��.
The graphs G and Gsign may include all states of the system
or a fraction of them with the rest summed over, hence the
level of the coarse graining can be chosen. For example, if
one is interested only on the molecule internal dynamics,
summing over all states of the potential may turn out useful.
For a RD-type model, this would mean that the dimension of
the graph is reduced by a factor of 1 /SL, which also makes
the numerical optimization easier.

The dominating processes simply give a collection of the
most probable transitions that the molecule can go through
successively, thus giving information about the types of pro-
cesses that are important. The probability for the �complex�
molecule to precisely follow such fixed paths is of course
very small. Because of this, it would be hard and time con-
suming to try to identify dominating processes from the
simulation or experimental data. Our proposed graph analy-
sis is simple and can in principle be done for all finite dis-
crete stochastic nonequilibrium systems which have nonzero
currents. Whether this analysis is worth the effort �i.e., if �̃
does contain interesting information� depends on the com-
plexity of the system and the importance of the molecule
internal dynamics to the transport process.

B. Motor efficiency

The efficiency of the molecular motor is an important
aspect, especially for nonartificial molecular motors that
have limited energy available. In the literature, there are sev-
eral definitions of the efficiency for Brownian motors �see,
e.g., Refs. �1,55–59�. Here we adopt the basic thermody-
namic definition that relies on the constant load force F on
the polymer, which means that the output power of the motor
is vF. The input power Win comes from turning the potential
on, thus forcing the polymer periodically in a higher-energy
state depending on its location. This approach is different
from the model where the molecule gains constant amount of
energy by, e.g., ATP hydrolysis. We assume that the energy is
dissipated when the polymer goes back to lower-energy state,
i.e., this energy is not taken into account by reducing it from
the input energy. By assuming that transitions between po-
tentials of type 1 system are cyclic �i.e., V1→V2→¯VS
→V1�, the input power for stochastic and deterministic po-
tential schemes can be written as
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Win = ��
s=1

S

�
�s

max�0,Es+1��� − Es����Ts
−1P��s� , type 1

�
�

1

T
�

t=0

T

dt max�0,
dE�t,��

dt

P��,t� , types 2 and 3,

where � and every �s include L3N−1 states. Since the type 2
potential has discontinuities in t, one can define dE�t ,�� /dt
ª�s=1

S �Es+1���−Es������t−�k=1
s Tk�. The efficiency is defined

by 	= vF
Win

.
Although the efficiency of the flashing ratchet model is

very low for single particles �see, e.g., Ref. �56��, it can be
greatly increased for some many-particle systems as shown
in the recent work �12,13�. Besides the efficiency, we are
also interested in the stopping force Fstop which, when ap-
plied, causes the average drift go to zero. It is expected that
the stopping force gets larger as N increases as seen in Ref.
�5�.

C. Algorithms

When dealing with large linear systems �of the order of
105 states and beyond�, one must really pay attention to the
convergence properties and therefore the choice of the nu-
merical methods are important. In this paper, we have three
types of numerical problems to solve Pstat. For the fully sto-
chastic system �type 1�, we used the Arnoldi and bigradient
stabilized �BiGradStab� methods �drift and diffusion�, for on/
off deterministic system �type 2� adaptive Runge-Kutta 4–5
method, and for smooth continuously deterministic system
�type 3� quasiminimal residual �QMR� method. The solution
of the type 1 problem is a straightforward eigenstate compu-
tation, the other two are more involved integration problems.
All computations were performed in MATLAB with a modern
desktop computer. Solving stationary states for the types 2
and 3 potentials were the most time-consuming parts of the
computations.

When solving the stationary state for type 1, a random
initial vector is good enough choice, but for types 2 and 3,
this is not the case. A better initial guess is needed to reduce
the computation time. We found that the stationary state of
the mean-field operator �HMF=�kxkHk, with xk=Tk /T� is
easy to compute and a good one to begin with. In many
cases, previous solutions can be also used �e.g., when vary-
ing T�. A random initial state however serves as a good check
of the numerics, since the results must not depend on the
choice of the initial state.

The stationary solution for the type 3 can be found with
the same manner as for the type 2 �RK45�, which however
requires that the operator is available for all t� �0,T� and are
either rebuild every step or loaded from the memory. The
other way �which we used� is to solve the larger linear equa-
tion problem as a first-order discretization in times

H�t�P�t� �
P�t + 
t� − P�t − 
t�

2
t
, �4�

where 
t=T /M, with M being the number of discretization
steps. We found that M =30. . .60 is accurate enough. In the

matrix form, this leads to the problem H̃P̃=A, where H̃ in-
cludes H�t� for all M time steps and the discretization opera-
tor, and the normalization is preserved with Ai=1 ∀ i
=LY ,2LY , . . . ,MLY, otherwise zero. As before, the time-
dependent diffusion coefficient is found by solving another
linear problem. For these linear systems, the QMR method
turned out to be well converging �LSQR is also a fool-proof
method, but very slow�.

To maximize or minimize the velocity v�q ,T� for charges
and the temporal period, nonlinear optimization can be car-
ried out with the standard sequential quadratic programming
method. To find the velocity, the generator H�q ,T� must be
constructed several hundred or thousand times because of
changes in the transition rates. Efficient implementation pre-
sumes that this process is fast, which is achieved, for ex-
ample, by manipulating the required matrix elements directly
in the memory instead of rebuilding the whole matrix. The
choice of the initial state is crucial �as usual for optimization
problems� and a random state is used with several repetitions
to confirm the global optimal point. A symmetric initial
charge distribution easily leads to a local optimal point with
a symmetric charge distribution �as seen in Sec. IV C�. If q is
fixed, optimization can be replaced by interpolation since
function v�T� is very smooth.

The best known exact algorithms to find the optimal cycle
ratio have the complexity O�nm� �60�, where n and m are
number of vertices and edges, but in practice, these algo-
rithms are not the fastest ones �54�. We applied an improved
version of the Howard’s method �61� implemented in the
BOOST C++ library. There also exist brute-force methods to
efficiently find �enumerate� all cycles in graphs �62�, but this
approach is limited to very small networks and/or cycle
lengths. We also tested a simple greedy algorithm where we
begin from a single edge with the largest weight and start to
grow the path by always choosing the edge with the largest
weight available at the moment until the path form a cycle
�i.e., crosses itself�. This method however works poorly and
an optimal solution is found only for very simple cases �e.g.,
a polymer in strong static field�, where the results are also
easy to guess beforehand. In general situations, the optimal
path contains transitions that cannot be chosen by a simple
greedy algorithm.
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IV. RESULTS FOR THE DIFFERENT POTENTIAL
AND POLYMER TYPES

Since both RD and FM models include a large number of
parameters, some of them must be fixed, primarily those that
have a minimal qualitative impact on the results. In addition
to N �reptons�, other parameters in the models have the fol-
lowing interpretations:

�i� The environment↔ the potential V�x , t�=V�x+L , t+T�.
�ii� The medium↔ tube deformation � �0 for RD, 1 for

FM�.
�iii� The polymer internal fine-structure↔charges in q.
The single most important parameter is the period T of the

potential, which is also one of the easiest one to control in
experimental setups. The parameter � models the porosity
and viscosity of the medium by either restricting polymer
strictly into the reptation tube ��=0� or not ��=1�. As be-
fore in Ref. �28�, we set S=2 and L=3 to achieve a both
maximal N /L ratio and keep feasible matrix sizes. The flash-
ing ratchet is V1�1�=Vmax, V1�2�=Vmax /2, V1�3�=0, and
V2�x�=0 ∀ x, and the traveling potential V1�1�=V2�2�
=Vmax and zero for V1�2�, V1�3�, V2�1�, and V2�3�. In Fig. 2
of Ref. �28�, there is an illustration of these potentials. Time
symmetry parameter x=T1 /T is fixed to 1/2 for the flashing
ratchet potential and 1/4 for the traveling one. The maximum
potential strength Vmax has only a small effect on the results
and is set to unity �with one exception in Fig. 7� �66�. The
direction of the potentials is set up in such way that the
expected “main drift” is always positive and the inverse drift
�if present� is negative.

With the definitions in Sec. II, we study the following
three types of time-dependent potentials:

�i� Type 1: stochastic on-off switching.
�ii� Type 2: deterministic on-off switching.
�iii� Type 3: deterministic smooth cosine-type modulation.

A. Comparison of time-dependency schemes

First, we compare the differences of the potential time-
dependency schemes in the flashing ratchet potential, for
which the differences are more distinct. In Fig. 3, we have
plotted v and Pe of N=5 and 9 �similar behavior is observed
for other values of N� RD and FM polymers as a function of
T for all three time-dependency schemes.

Some clear differences between the schemes can be seen.
The maxima for the drift and the Peclet numbers are reached
for smaller T for type 1 than for types 2 and 3. The type 2
scheme has the largest v and type 3 the smallest, and the
same goes for Pe. However, this order changes for the in-
verse drifts, where types 2 and 3 are equally good. The time-
dependency scheme turns out to have an effect on the current
inversion phenomena, since the type 3 scheme is able to
invert all RD polymers with N�2, whereas types 1 and 2
only those with N�5. Despite this, the differences between
types 2 and 3 are small �type 2 being slightly “better”� and
we now concentrate only on types 1 and 2.

B. Motor efficiency and stopping force

In Figs. 4 and 5, we show the maximum efficiency 	max
=max 	�T� of the RD and FM polymers as a function of a
load force F=�i=1

N Eqi, where E is the field strength, with
flashing ratchets and traveling potentials of the types 1 and 2.
The points where 	max�F�=0 for F�0 define the stopping
forces Fstop. Insets of the figures show the same data scaled
with F�=F /Fstop and 	max

� =	max�F�� /max 	max�F�� for each
polymer size, which reveal the shapes of the curves.

We notice that for the FM polymers, the efficiency is gen-
erally larger and they can maintain their drift in an opposing
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field better than the RD polymers in the ratchet. When plot-
ted as a function of E, there is a constant stopping field for
all N�3 FM polymers in both potentials with values around
−0.0026 �−0.0016� for type 1 and −0.0038 �−0.0043� for
type 2 ratchet �traveling� potentials. This results from the fact
that the reptons of the FM polymer are less correlated than
those of the RD polymer and the FM polymer thus behaves
more independently. For the ratchet, the type 2 scheme is
found to be 2–4 times more efficient and can withstand al-
most double load force when compared to the type 1. The
stopping force is larger for FM polymers. For the traveling
potential, differences are more drastic. As for the type 2
scheme, the stopping force is about 2 times and the effi-
ciency almost 1 order of magnitude larger when compared to
the type 1 scheme. Rescaled curves reveal that despite the
large differences in scales, shapes of the curves are almost
identical for all polymer lengths and both types.

The numerical values of the efficiency are very small.
This is a generally known trait especially for flashing ratchet
models �56�, but it also results from the choice of the rates,
since the velocity plays dominating role for the efficiency.
By the use of the optimized parameters �e.g., Vmax,x ,q�, ef-
ficiency could be increased by 2 orders of magnitude. Re-
sults show that Fstop increases as a function of N, which is in
agreement with some previous works �5,12�. The efficiency
	max however decreases as the polymer gets longer for all
other but the type 1 traveling ratchet, which is surprising.

C. Nonuniform charge distributions

Extensive computations were carried out to find the
charge configurations with the largest possible v in forward
and backward transport and Pe for various polymers and pa-
rameters. It was found that changes in the drift are so large
that one can safely limit to maximizing v alone, since in this
case Pe is dominated by the drift. In the following, some of
the optimization results are presented for the eight-repton
polymers in the type 1 potentials. The basic model with a
uniform charge distribution �qi=1 ∀ i� is also shown for
comparison.

In Fig. 6, the properties of the RD polymer in the flashing
ratchet are plotted as a function of T with configurations that
give maximum drifts for positive �forward� and negative
�backward� directions, and the corresponding optimization
results are called either positive or negative. We found that
the positive direction is always maximized by putting all
charge near either of the heads, but charging the head reptons
does not necessarily lead to the largest current. This holds for
both RD and FM polymers for all studied polymer lengths up
to N=13 at least. In this situation, only one repton feels the
potential and very large transition rates are generated by the
exponential function �see Sec. II B�. This one repton then
forces the whole polymer to advance.

The optimal charge distributions in the negative direction
are more interesting, since the large accumulations of the
charge are not seen and the charge is distributed over several
reptons. Symmetric distribution results that neither of the
heads are leading and are forced to compete with each other.
This would be very inefficient in constant-field transport. Re-

peating the optimization computation several times, addi-
tional distributions very close to the first one are found.
Similar local optima are also found in other cases, which
complicate the search for the global optimal distribution.
This is demonstrated in Fig. 7, where we fix T=exp�5.5� and
show the drifts given by the three local optimal distributions
as a function Vmax for the RD polymer in the flashing ratchet.
At Vmax�1.126, the nonsymmetric distribution becomes the
fastest one.

In Figs. 8 and 9, we show the same analysis for the trav-
eling potential. For RD polymers, the optimal distributions
have no “clear” or symmetric structure. Only near-optimum
symmetric distributions are found. As seen above for the
flashing ratchet, the negatively optimized polymers are actu-
ally faster in both directions when compared to the uniformly
charged polymers.

In conclusion, the charge distribution has a large effect on
the polymer transport velocity and coherence on the flashing
and traveling potentials. Since the drifts generated by the
ratchet effect are generally very small and difficult to ob-
serve, this could be of interest from the point of view of
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applications. In the next section, we show that different dis-
tributions also lead to different kinds of transport mecha-
nisms.

V. RESULTS FOR THE INTERNAL DYNAMICS
OF THE POLYMERS

A. Time evolution of the observables

To gain better insight in the internal dynamics of the poly-
mer, we now turn to the expected values of the four observ-
ables Z �zero bond�, G �total length�, K �kinks�, and H �head-
to-head distance� for the RD polymer. In Figs. 10 and 11, we
have plotted the stationary-state time evolution of the ob-
servables against each other with the eight-repton RD poly-
mer in the type 2 ratchet and traveling potentials with several
values of T. The previously found optimized charge distribu-

tions are used. Note that these distributions are only approxi-
mately optimal for the type 2 potentials, but this approxima-
tion is found to be very good. For small T, the observables
are near their mean-field values �large spots in the figures�,
which are independent of t. For very large T, the curves
“freeze” �bold lines� since the stationary states are reached
before the potential is switched.

For the ratchet, the maximum positive current �black
lines� is a result of small changes in the polymer average
shape, which is caused by the fact that only a single near-
head repton is charged and the rest of the polymer is in pure
random motion. The maximum negative current �blue �light
gray� lines� however is a result of more complex processes,
which cause much more variation in the average shape, even
more than for a polymer with uniformly distributed charges
�red �gray� lines� with all the reptons charged. There is al-
most one-to-one correlation between G−H pair �as ex-
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pected�, which results that the phase trajectories for the G
−Z and H−Z pairs are almost indistinguishable, and there-
fore the pairs G−H and G−Z are not presented here. The
connections between other pairs are more involved, espe-
cially between H−K and G−K. For them, the current inver-
sion is seen as a deformation of loops between K−Z, H−K,
and G−K pairs for uniform and negatively optimized poly-
mers �no current inversion for positively optimized poly-
mer�.

For the traveling potential, the curves are more distin-
guished from each other and are more complicated. There are
fast deformations in the curves as the time goes on. There is
a clear similarity between Figs. 10 and 11. Positively opti-
mized polymers have the smallest spread in the observables
and negatively optimized the largest. This is similar behavior
as seen for the flashing ratchet, albeit the potential and the
charge distributions are very different. The results show that
there is a clear connection between the average polymer drift
magnitude and direction, and shape deformations. Deforma-
tions during ratcheting for one’s part depend strongly on the
charge distributions.

In Figs. 12 and 13, we have plotted the relaxation of the
observables in the flashing ratchet and the traveling potential
for the eight-repton RD polymer with uniform and optimized

charge distributions. Data are the same as shown in Figs. 10
and 11 for the large T limit �bold lines�. For the observables,
the largest changes are observed in roughly the same time
scale, around ln�t��2. Stationary values for observables for
the positively optimized polymer in the flashing ratchet are
independent of the potential state �on or off�. In addition to
the kink dynamics, large differences are shown in zero-bond
dynamics. Note that for positively optimized polymer, values
remain unchanged during “on→off” switching and are
therefore not shown in the figure. This is because, in the
steady state, the potential has no effect on the conformations
of the polymer, which would require more than one charged
reptons. For the traveling potential, the time evolution of the
observables is more complex.

B. Network analysis

To further understand the formation of the net drift, we
now turn to the network analysis of the steady-state currents.
We concentrate on the RD polymer of the type 1 in the
flashing ratchet and the traveling potential with uniform and
optimized charge distributions. The temporal periods T are
chosen such that they result in the maximum current �four
values of T for both potential types�. The graphs Gsign con-
taining the steady-state net currents between the states are
then computed. We have summed over all the potential states
�SL degrees of freedom� so that only the internal states of the
polymer remain. After these steps, we have eight different
graphs with 5832 nonzero directed edges in each of them.

Let us first analyze these Gsign graphs by defining the
arrays S with elements Si �i=1. . .5832� that contain all edge
weights of the graphs Gsign in an increasing order. In Fig. 14,
we show Si and their cumulative sums. The total drift v is
then recovered as the sum of all Si �cf. Figs. 6 and 8� and a
nonzero drift is produced when the S curves are tilted due to
the external forces. Although the system is far from equilib-
rium, only a slight tilt is observed and there are no single
dominating edges.
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We now turn to the dominating transport cycles of the
polymer motion by analyzing the paths in Gsign. This results
in cycles with lengths of the order of 10. It is found that the
common transportation type is such that we call “s1−s2
scheme” consisting of cyclically accumulated �lengths s1 and
s2, with �s1−s2�=1� and elongated parts of the polymer. Cor-
responding to the direction of moves, this scheme can be
either positive �up� or negative �down�. To illustrate the
scheme, we have sketched the positive 4–5 scheme in Fig.
15. The numbered arrows indicate the order and direction of
the corresponding repton moves. After all marked moves are
done, the initial state is recovered and the cycle is repeated.
In the five situations out of eight studied here, the dominat-
ing cycle is the s1−s2 scheme.

In Fig. 16, we show the remaining three situations that are
not of the type above. Note that for negative transport in the
ratchet with the uniform charge distribution, the mechanism
is almost the negative 4–5 scheme.

In Table I, we have collected the core results of this sec-
tion. For comparison, there is a ratio of the average cycle
drift vc divided by the average drift by the all transitions
vall=v /5832 in the last column. This ratio is significantly
larger for uniformly charged polymers, indicating that the
optimization process increases the drifts for large number of
paths and makes differences between paths smaller. It is also
somewhat surprising that there is not much difference be-

tween the leading mechanisms for forward or backward mo-
tion, and for uniformly charged polymer in ratchet, it is ac-
tually the same. One can therefore conclude that the current
inversion for the RD model is not caused by some abrupt
“phase transition,” but gradual changes in the probability dis-
tribution along internal states.

We carried out a similar analysis also for the full system
without summing over S and L, in which case cycles have up
to 30 states and there are some modifications to the pure s1
−s2 schemes. However, these cycles are too lengthy to be
reported here. It was found that sometimes, summing over
the potential states is necessary to find a nonstationary cycle
and sometimes the summing leads to stationary cycle.

VI. DISCUSSION

We have analyzed the properties of Rubinstein-Duke
polymers with some modifications, including tube breaking
and nonuniform charge distributions, in time-dependent po-
tentials. The aim of this work was to further study the prop-
erties of complex molecules in out-of-equilibrium conditions
and especially the ratchet effect.

In the first part of the study, we extended the previous
work reported in Ref. �28� by considering deterministic
ratcheting mechanisms, the energetic efficiency, and opti-
mized charge distributions of the polymers. It was found that
the deterministically flashing potential is superior when com-
pared to a smoothly varying and stochastic potential for ve-
locity, coherence, and efficiency. However, despite “scaling
differences” in drift and diffusion, the time-dependency
scheme seems to have a minor effect on the qualitative re-
sults. By using the stochastic scheme, we computed the op-
timal charge distributions to maximize the steady-state ve-
locity in flashing ratchets and traveling potentials. The
differences between these and the uniformly charged poly-
mers were found to be drastic. Changing the charge distribu-
tion also changes the mechanism of how the polymer re-
shapes itself with respect to the potential.

In the second part, the current inversion phenomenon was
investigated in detail by using the optimal charge distribu-

TABLE I. Dominating cycle types for polymers in ratchet and
traveling potentials for forward �F� and backward �B� transports,
with uniform �unif.� and optimized �optim.� charge distributions.

Case Cycle vc /vall

Ratchet potential

Unif. F Pos. 4–5 46,4

Unif. B Neg. 4–5 554

Optim. F Pos. 2–3 6,5

Optim. B Fig. 16�c� 164

Traveling potential

Unif. F Fig. 16�b� 60,0

Unif. B Fig. 16�a� 371

Optim. F Pos. 2–3 29,4

Optim. B Neg. 1–2 91,3
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FIG. 15. Illustration of the positive 4–5 scheme for the eight-
repton polymer. Arrows and numbers indicate the direction and the
order of the transition for the corresponding reptons. For clarifica-
tion, the process is shown here in two parts.
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tions. The expected values of certain macroscopic observ-
ables �e.g., length and zero-bond count� were computed and
large differences between differently charged polymers were
found. To find how the polymer actually moves in the non-
equilibrium steady state, we proposed a simple graph analy-
sis method to find most probable series of state transitions
�=path� based on the probability currents. For a periodic sys-
tem, such a path is found as a solution of the optimal cycle
ratio problem. This method is suitable in situations where a
huge network is generated by some automated fashion or
measurements and cannot be analyzed “manually” �e.g., Ki-
nesin network in Ref. �63��. This method was then used to
identify the dominating processes of the polymer transport
and was found to be very useful to piece together polymer
motion. However, the general usefulness of this analysis de-
pends on the model and it would be of interest to test it for
other complex out-of-equilibrium systems and also with non-
periodic boundary conditions.
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APPENDIX: DETAILS OF THE OPERATORS

In this appendix, the polymer state operators are ex-
plained in more details with some practical aspects of con-
structing them.

1. Definition of Eq. (1)

The explicit definitions of the operators in Eq. �1� are as
in Ref. �28�, but due to the arbitrary charge distributions,
there is an additional charge dependency in the functions L
and R,

Al�q� = �R�q,l� + L�l��ñ�,1,l − R�q,l�ã1,l
† − L�q,l�b̃1,l

† + L�q,l�ñA,1,l − L�q,l�ã1,l + R�q,l�ñB,1,l − R�q,l�b̃1,l,

By,l�q� = �R�q,l + f�N − 1,y�� + L�q,l + f�N − 1,y���n�,N−1,y,l − R�q,l + f�N − 1,y��aN−1,y,l
† − L�q,l + f�N − 1,y��bN−1,y,l

†

+ L�q,l + f�N − 1,y��nA,N−1,y,l − L�q,l + f�N − 1,y��aN−1,y,l + R�q,l + f�N − 1,y��nB,N−1,y,l − R�q,l + f�N − 1,y��bN−1,y,l,

Mi,y,l�q� = R�q,l + f�i,y���nA,i,y,ln�,i+1,y,l + n�,i,y,lnB,i+1,y,l − ai,y,lai+1,y,l
† − bi,y,l

† bi+1,y,l� + L�q,l + f�i,y���n�,i,y,lnA,i+1,y,l

+ nB,i,y,ln�,i+1,y,l − ai,y,l
† ai+1,y,l − bi,y,lbi+1,y,l

† � + �R�q,l + f�i,y���nA,i,y,lnB,i+1,y,l + n�,i,y,ln�,i+1,y,l − ai,y,lbi+1,y,l

− bi,y,l
† ai+1,y,l

† � + �L�q,l + f�i,y���nB,i,y,lnA,i+1,y,l + n�,i,y,ln�,i+1,y,l − bi,y,lai+1,y,l − ai,y,l
† bi+1,y,l

† � ,

where �=0 for RD polymers and �=1 for FM polymers,
and

ã1,l = cl
+a1 ã1,l

† = cl
−a1

†,

b̃1,l = cl
−b1 b̃1,l

† = cl
+b1

†,

ñz,1,l = nlnz,1,

xi,y,l = nl��
j=1

i−1

ng�y,j�,j	xi,

nz,i,y,l = nl��
j=1

i−1

ng�y,j�,j	nz,i,

with x� �a ,b ,a† ,b†� and z� �A , � ,B�. The function g�y , i�
� �A , � ,B� gives the state of the ith bond in the configura-
tion y and the function f ,

f�i,y� = �
j=1

i

��y�nA,i − nB,i��y�, 1 � i � N − 1,

gives the position of the repton i+1 in marker-centered co-
ordinates. The detailed forms of the functions g and f depend
on the selection of the state basis. With these functions, the
formal definitions for the macrostate observables, i.e., zero
bonds, kinks, head-to-head length, and the total length, of the
N repton polymer are

y � Fnz

Z : # �1 � i � N;g�y,i� = �� = nz,

y � Fnk

K : # �1 � i � N − 1;g�y,i� = A/B ∧ g�y,i + 1� = B/A�

= nk,

y � Fnh

H :�f�N − 1,y�� = nh,

y � Fng

G :max
k,l

�f�k,y� − f�l,y�� = ng, k,l = 1,2, . . . ,N − 1

where nz ,nh ,ng=0,1 , . . . ,N−1 and nk=0,1 , . . . ,N−2. One
can verify that #Fi

G� #Fi
H holds for all i. By using above

sets F and Eq. �2�, measure operands can be constructed and
expected values computed. The practical procedure to form
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all the required operators, especially the previous observ-
ables, is explained below.

2. Operator construction

Since the stochastic generator and measurement operands
used in this work are slightly more complex than in the pre-
vious works regarding the RD model, we show in some de-
tails how the idea of the recursive operator construction work
in the current case. Whereas small operands can always be
build directly, recursive construction is practically a must for
large systems and nowadays widely used in density matrix
renormalization group �DMRG� computations �34,64�. For
simplicity, we concentrate only on �discrete� state measure
operators, which in the natural basis are diagonal matrices.

Let �O1
i , . . . ,Oyi

i � be a set of macrostate operators for the
system with i sites, which includes all the necessary opera-
tors that are required when adding a new site. Here, site is a
general term, which, for example, could mean single-particle
states for classical systems and spin states for quantum sys-
tems. By using the usual product state formalism, assume
that the new sites are added on the right such that
�new state�= �old state� � �new site�. The basic algorithm to
add new sites �until N� goes as follows:

�1� Build an initial set of operand�s� Oy
1, where y

=1, . . . ,y1.
�2� For all m=2,3 , . . . ,N and y=1, . . . ,ym, build

Oy
m = �

�k,j�=K�ym−1,y�
Ok

m−1
� n̂j .

�3� Build the full operand

ON = �
y=1

yN

�yOy
N,

where ym is the total number of operands required for the
size m system. The details of how to construct a new set of
state operators for the enlarged system by joining the states
of the new site and the old operators are hidden in the func-
tion K�ym−1 ,y�. The complexity of this function and the num-
ber of required operators ym depends on the type of the
operand. Practically, it is the ym that determines the compu-
tational effort needed to build large operators, since K is
more or less just keeping book of how to join operators.

We now concentrate on the RD-type model for which
sites mean bond states between the reptons. The polymer
state operators have the following values for ym, given with
brief explanations:

�i� Zero bonds: ym=m+1 �number of zero-bonds�.
�ii� Kinks: ym=max�3,3�m−1�� �number of kinks and

state of the rightmost bond�.

�iii� Head-to-head length: ym=2m+1 �signed distance be-
tween the heads�.

�iv� Total length: ym= �1− I��3I−2m−7�� �1+m��3
+m� /3, where I= � m+4

3 � �see example below�.
The number of required operands is therefore �m2 for

total length and �m for others.
We now consider a concrete example for a total length

operator, which is the most complex operator used in this
paper. When one enlarges the size of this operator with new
particles, one must keep track of the maximum distances of
the rightmost repton from all the other reptons. For example,
in Fig. 1, these distances would be 2 �from repton nr. 4� and
0 �no any reptons below�. We define these as up �u� and
down �d� distances. Total distance is then d+u.

In Fig. 17, we show all nine microstates of the three-
repton polymer. Since there are five combinations for u and d
distances, the macrostate operators O�2,0�

2 ,O�0,2�
2 , . . . ,O�0,1�

2

are formed with each of them including one or more mi-
crostates. This is shown in the figure with red numbers in
�d ,u� plane. When a new repton is added, function K is used
to combine old macrostate operators with state operators of
the new site ��nA ,n� ,nB�� and hence the number of mac-
rostate operators is increased by three. Examples of the
required operations include O�2,0�

3 =O�1,0�
2

� nA and O�1,1�
3

=O�2,0�
2

� nB. After addition, there are 27 microstates in eight
macrostate operators �blue numbers in the figure�. Note that
in the actual computations, only the information about the d
and u values is needed. Here, the tracking of the microstates
was done for illustration purposes only. As more reptons are
added, the “triangle” that presents available �d ,u� states gets
larger.
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