
    

 

 

 
 
This is an electronic reprint of the original article.  
This reprint may differ from the original in pagination and typographic detail. 
 

Author(s): 

 

 

Title: 

 

Year: 

Version:  

 

Please cite the original version: 

 

 

  

 

 

All material supplied via JYX is protected by copyright and other intellectual property rights, and 
duplication or sale of all or part of any of the repository collections is not permitted, except that 
material may be duplicated by you for your research use or educational purposes in electronic or 
print form. You must obtain permission for any other use. Electronic or print copies may not be 
offered, whether for sale or otherwise to anyone who is not an authorised user. 

 

A GPU-Accelerated Augmented Lagrangian Based L1-mean Curvature Image
Denoising Algorithm Implementation

Myllykoski, Mirko; Glowinski, Roland; Kärkkäinen, Tommi; Rossi, Tuomo

Myllykoski, M., Glowinski, R., Kärkkäinen, T., & Rossi, T. (2015). A GPU-Accelerated
Augmented Lagrangian Based L1-mean Curvature Image Denoising Algorithm
Implementation.  In M. Gavrilova, & V. Skala (Eds.), WSCG 2015 : 23rd International
Conference in Central Europe on Computer Graphics, Visualization and Computer
Vision'2015 : Full Papers Proceedings (pp. 119-128). Union Agency. Computer
Science Research Notes.
http://wscg.zcu.cz/WSCG2015/!_2015_WSCG_Full_Papers_proceedings.pdf

2015



A GPU-Accelerated Augmented Lagrangian Based L1-mean
Curvature Image Denoising Algorithm Implementation

Mirko Myllykoski1

University of Jyväskylä
mirko.myllykoski@jyu.fi

Roland Glowinski2

University of Houston
roland@math.uh.edu

Tommi Kärkkäinen1

University of Jyväskylä
tommi.karkkainen@jyu.fi

Tuomo Rossi1

University of Jyväskylä
tuomo.j.rossi@jyu.fi

Abstract
This paper presents a graphics processing unit (GPU) implementation of a recently published augmented La-
grangian based L1-mean curvature image denoising algorithm. The algorithm uses a particular alternating direction
method of multipliers to reduce the related saddle-point problem to an iterative sequence of four simpler minimiza-
tion problems. Two of these subproblems do not contain the derivatives of the unknown variables and can therefore
be solved point-wise without inter-process communication. In particular, this facilitates the efficient solution of
the subproblem that deals with the non-convex term in the original objective function by modern GPUs. The two
remaining subproblems are solved using the conjugate gradient method and a partial solution variant of the cyclic
reduction method, both of which can be implemented relatively efficiently on GPUs. The numerical results indi-
cate up to 33-fold speedups when compared against a single-threaded CPU implementation. The pointwise treated
subproblem that takes care of the non-convex term in the original objective function was solved up to 76 times
faster.

Keywords
augmented Lagrangian method, GPU computing, image denoising, image processing, mean curvature, OpenCL

1 INTRODUCTION

Image denoising, or more generally noise reduction, is
a process in which a given noisy signal, such as a dig-
ital image, is cleared from excess noise. This process
has numerous applications since all recording devices
have some traits that make them susceptible to interfer-
ence. For example, thermal noise effecting digital im-
age sensors is a typical source of interference in digital
photography. The noise must be removed, or at least
significantly reduced, before essential information can
be successfully extracted from an image.

Image denoising methods are divided into multiple sub-
categories. For example, wavelet methods are based
around the idea of decomposing the image into the
wavelet basis and shrinking (or otherwise modifying)
the wavelet coefficients in order to denoise the image.
A somewhat similar approach is to process the image
in the frequency domain using the fast Fourier trans-
formation (FFT) method. Statistical methods, on the
other hand, utilize local statistical information, such as

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

median and mean, from the neighboring pixels that fall
within an appropriately selected window.

The most relevant sub-category to the topic of this pa-
per is referred to as variational-based methods. These
methods treat the noisy image as a discretely differen-
tiable function and denoise the image using derivate in-
formation. In more formal terms, let Ω be a rectangu-
lar domain of R2 and the function f : Ω→ R repre-
sent the given noisy image. We want to find a func-
tion u : Ω→ R that is a representative of the desired
denoised image. A variety of variational-based tech-
niques have been developed and a significant propor-
tion of them (see, e.g., [Mum94, Rud92]) are based on
solving an unconstrained minimization problem of the
form {

u ∈V,
J (u)≤J (v),∀v ∈V,

(1)

where

J (v) = εJr(v)+J f (v), (2)

V is a suitable function space, and ε > 0. Here Jr is so-
called regularization term and J f is so-called fidelity

1 University of Jyväskylä, Department of Mathematical Infor-
mation Technology, P.O. Box 35, FI-40014 University of
Jyväskylä, Finland.

2 University of Houston, Department of Mathematics, Houston,
TX 77204, USA.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 119 ISBN 978-80-86943-65-7



term whose role is to fit the obtained solution u to the
noisy data f . The work in this field of research is aimed
primarily at finding a suitable regularization term that
is able to detect noise but preserves as much relevant
information as possible.

During the last two decades, the variational-based im-
age denoising scene has been dominated to a large ex-
tent by Rudin–Osher–Fatemi (ROF) method [Rud92]
which uses the following objective function:

J (v) = ε

∫
Ω

|∇v|dx+
1
2

∫
Ω

| f − v|2 dx. (3)

Here,
∫

Ω
|∇v|dx is so-called total variation norm (TV

norm) and the function space V made out of func-
tion whose total variation is bounded (a.k.a BV space).
This very popular method has, however, some well-
known drawbacks, such as the loss of image contrast,
the smearing of corners, and the staircase effect.

Some attempts to remedy these drawbacks have led to
higher-order variational-models which seek to take ad-
vantage of the higher-order derivatives. One approach
suggested by Zhu and Chan [Zhu12] is to treat an image
v : Ω→ R as a surface in Ω×R and utilize the surface
mean curvature information in the regularization term.
More specifically, the surface in question is defined by
the equation Fv(x,y,z) = v(x,y)− z = 0 and the mean
curvature of the function Fv is given by

κ(Fv) =−∇· ∇Fv

|∇Fv|
=−∇· ∇v√

1+ |∇v|2
. (4)

All in all, the objective function used in the model sug-
gested by Zhu and Chan is of the form:

J (v) = ε

∫
Ω

|κ(Fv)|dx+
1
2

∫
Ω

| f − v|2 dx. (5)

This model is commonly known these days as the L1-
mean curvature denoising model. As noted in [Zhu12],
this model has the ability to remove noise without the
undesirable drawbacks associated with the ROF model.
However, the non-convex and non-smooth nature of the
objective function (5) makes the problem very difficult
to solve.

1.1 Related work
Although the model suggested by Zhu and Chan is very
difficult to solve as noted above, effective solution al-
gorithms for this particular formulation have been pro-
posed, for example, in [Zhu13] and [Myl15]. The
solution algorithm presented in [Zhu13] uses an aug-
mented Lagrangian based approach and solves the aris-
ing saddle-point problem using a particular alternating
direction method of multipliers. This leads to an itera-
tive sequence of five simpler minimization problems.

These subproblems can be solved using explicit for-
mulas and the FFT method. The solution algorithm
presented in [Myl15] uses the same alternating direc-
tion approach as [Zhu13] but relies on a different type
of augmented Lagrangian functional. Two of the four
arising subproblems can be solved pointwise using the
Newton’s method, a bisection search algorithm, and ex-
plicit formulas. The two remaining subproblems can
be solved using the conjugate gradient method and a
partial solution variant of the cyclic reduction (PSCR)
method [Kuz85, Kuz96, Vas84, Val85].

It should be noted that the model suggested by Zhu
and Chan is closely related to the model depicted in
[Lys04]. The model uses the following regularization
term:

Jr(v) =
∫

Ω

∣∣∣∣∇· ∇v
|∇v|

∣∣∣∣dx. (6)

In [Lys04], the authors explained that their goal was to
minimize the “TV norm” of the unit normal vectors of
the level curves of the image. An alternative interpreta-
tion is that the regularization term (6) measures the to-
tal mean curvature at every level curve of the image. In
contrast, the regularization term in the model suggested
by Zhu and Chan measures the total mean curvature at
the surface defined by the image (graph).

From a practical point of view the most relevant con-
nection comes from the fact that the resulting model is
often regularized in such a way that |∇v| in (6) is re-
placed by |∇v|β =

√
|∇v|2 +β , β > 0. Thus, the solu-

tion algorithms developed for this denoising model and
its variants (see, e.g., [Bri10, Sun14, Yan14]) could be
in principle generalized for the model suggested by Zhu
and Chan by taking β = 1.

The solution algorithm presented in [Bri10] solves the
related Euler-Lagrange (EL) equation using a stabilized
fixed point method and a geometric multigrid (MG)
algorithm. The authors in [Sun14] aimed to improve
upon that by introducing an additional operator split-
ting step. They then moved on to solving the EL equa-
tions associated with the related constrained minimiza-
tion problem using a linearized fixed point method and
a nonlinear MG method. In [Yan14], the problem is
tacked with a relaxed fixed point method and a homo-
topy algorithm. The papers [Bri10, Sun14, Yan14] in-
cluded comparisons where the value of the parameter β

was varied (including the case β = 1). In other aspects
these three recent papers were mostly interested in the
case where the regularization term (6) is replaced by

Jr(v) =
∫

Ω

(
∇· ∇v
|∇v|β

)2

dx. (7)

and β � 1.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 120 ISBN 978-80-86943-65-7



1.2 Motivation and structure
Now that the overall context and main related works
have been dealt with, we can move on to the main topic
of this paper. We present a graphics processing unit
(GPU) implementation of the solution algorithm de-
picted in [Myl15] and compare the GPU implementa-
tion against a single-threaded CPU implementation.
Our main motivation is that the most demanding step in
the solution algorithm is a pointwise treated subprob-
lem that handles the non-convex term in the original
objective function. This makes the solution algorithm
very suitable for GPU computation since the solution of
this subproblem does not require inter-process commu-
nication. Thus, it is very likely that GPU-acceleration
would bring significant performance benefits.
The rest of this paper is organized as follows: Sec-
tion 2 describes the augmented Lagrangian based im-
age denoising algorithm closely following the presen-
tation in [Myl15]. Section 3 gives a brief introduction
to GPU computing and describes the GPU implementa-
tion. Section 4 presents the numerical results, compar-
isons, and discussion. The final conclusions are given
in Section 5.

2 SOLUTION ALGORITHM
2.1 Augmented Lagrangian formulation
Augmented Lagrangian techniques are a well-
established framework for analyzing (constrained)
optimization problems and deriving solution algo-
rithms for such problems. When applied to convex
minimization problems, the basic idea is to decompose
the problem with the help of auxiliary variables. This
so-called operator splitting operation effectively splits
the problem into subproblems which can be treated
separately using methods that are best suited for each
subproblem. This greatly improves the effectiveness of
the resulting solution algorithm.
The addition of these new auxiliary variables leads
to a new constrained minimization problem that has
the same minimizer as the original minimization prob-
lem. This constrained minimization is then associated
with a suitable augmented Lagrangian functional whose
saddle-point correspond to the minimizer of the con-
strained minimization problem. The saddle-points can
be solved by, for example, using an alternating direction
type approach. See, for example, [For83] for further in-
formation.
Although the objective function in the model suggested
by Zhu and Chan is not convex, we will now describe a
formal augmented Lagrangian formulation for the min-
imization problem similarly to [Myl15]. To begin with,
let us define

ϒ = [V ×E12×H(Ω;div)×L2(Ω)]

× [(L2(Ω))2× (L2(Ω))2×L2(Ω)],
(8)

where

H(Ω;div) =
{

q ∈ (L2(Ω))2 : ∇·q ∈ L2(Ω)
}

(9)

and

E12 =

{
(q1,q2) ∈

(
L2(Ω)

)2×2

: q2 =
q1√

1+ |q1|2

}
.

(10)

Following the remarks made in [Myl15], we take V =
H2(Ω). The minimization problem (1) with J defined
by (5) is associated with the following augmented La-
grangian functional L : ϒ→ R:

L (v,q1,q2,q3,ϕ; µµµ1,µµµ2,µ3)

= ε

∫
Ω

|ϕ|dx+
1
2

∫
Ω

| f − v|2 dx

+
r1

2

∫
Ω

|∇v−q1|2 dx+
∫

Ω

µµµ1 · (∇v−q1)dx

+
r2

2

∫
Ω

|q2−q3|2 dx+
∫

Ω

µµµ2 · (q2−q3)dx

+
r3

2

∫
Ω

|∇·q3−ϕ|2 dx

+
∫

Ω

µ3(∇·q3−ϕ)dx,

(11)

where (q1,q2) ∈ E12 and ri > 0, i = 1,2,3. Above, q1,
q2, q3, and ϕ are the previously mentioned auxiliary
variables, and µµµ1,µµµ2, and µ3 are called Lagrange mul-
tipliers. Note that the non-convex term q2 = q1√

1+|q1|2
is treated by projection in (10) and thus does not appear
in the augmented Lagrangian functional L .

Now, if we can find a saddle-point

ω = (u,p1,p2,p3,ψ;λλλ 1,λλλ 2,λ3) ∈ ϒ (12)

for the augmented Lagrangian L , that is

L (u,p1,p2,p3,ψ; µµµ1,µµµ2,µ3)

≤L (u,p1,p2,p3,ψ;λλλ 1,λλλ 2,λ3)

≤L (v,q1,q2,q3,ϕ;λλλ 1,λλλ 2,λ3),

(13)

for all (v,q1,q2,q3,ϕ; µµµ1,µµµ2,µ3) ∈ ϒ, then

p1 = ∇u, p2 =
p1√

1+ |p1|2
,

p3 = p2,ψ = ∇·p3,

(14)

and, more importantly, u is a local minimizer of the
minimization problem (1) with J defined by (5).

2.2 Subproblems
In [Myl15], the saddle-point problem (12) – (13) is
solved using a particular alternating direction method

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 121 ISBN 978-80-86943-65-7



of multipliers called ALG-2 [For83, Glo89]. The idea is
to minimize the augmented Lagrangian functional (11)
one variable at a time until the method converges. The
Lagrange multipliers are update accordingly after each
iteration.

Since we have five variables and two of the auxiliary
variables (q1 and q2) are coupled together, this leads
to an iterative sequential solution of four subproblems.
More precisely, the task of finding a saddle-point for the
augmented Lagrangian functional (11) is transformed
into one smooth but nonlinear and non-convex min-
imization problem in R2, one purely explicit point-
wise treated minimization problem, and two linear min-
imization problems with positive definite and symmet-
ric coefficient matrices.

Each outer iteration is defined as follows: Let
(un,pn

1,p
n
2,p

n
3,ψ

n;λλλ
n
1,λλλ

n
2,λ

n
3 ) ∈ ϒ be the output of the

previous iteration. The first subproblem minimizes the
augmented Lagrangian functional (11) with respect to
the pair (q1,q2) ∈ E12. Using the nonlinear relation in
(10), the function pn+1

1 can be solved pointwise from
the following non-convex minimization problem:

x = arg miny∈R2

[
|y|2

2

(
r1 +

r2

1+ |y|2

)

−

(
b1 +

b2√
1+ |y|2

)
·y

]
,

(15)

where b1,b2 ∈ R2 depend on the other variables. Or,
alternatively, by noticing that the following nonlinear
relation must hold

x = α

(
b1 +

b2√
1+ |x|2

)
, (16)

where α ≥ 0, we can write the two-dimensional mini-
mization problem (15) as

x =
ρ∣∣∣∣b1 +

b2√
1+ρ2

∣∣∣∣
b1 +

b2√
1+ρ2

 , (17)

where

ρ = arg minσ∈[0,∞)

[
σ2

2

(
r1 +

r2

1+σ2

)

−σ

∣∣∣∣b1 +
b2√

1+σ2

∣∣∣∣
]
.

(18)

In the second subproblem we minimize the augmented
Lagrangian functional (11) with respect to the variable
q3. More specifically, we solve the following linear

vector-valued minimization problems with positive def-
inite and symmetric coefficient matrix:

pn+1
3 ∈ H(Ω;div),

r2

∫
Ω

pn+1
3 ·q dx+ r3

∫
Ω

∇·pn+1
3 ∇·q dx

=
∫

Ω

(
r2pn+1

2 +λλλ
n
2
)
·q dx

+
∫

Ω

(r3ψ
n−λ

n
3 )∇·q dx,

∀q ∈ H(Ω;div).

(19)

The third subproblem minimizes the augmented La-
grangian functional (11) with respect to the variable ϕ

and is of the form:

ψ
n+1 = arg minϕ∈L2(Ω)

[
ε

∫
Ω

|ϕ| dx

+
r3

2

∫
Ω

|ϕ|2 dx−
∫

Ω

(
r3∇·pn+1

3 +λ
n
3
)

ϕ dx

]
.

(20)

The minimization problem (20) has a closed-form solu-
tion

ψ
n+1(x) =

1
r3

sgn(ξ (x))max(0, |ξ (x)|− ε), (21)

with ξ (x) = (r3∇·pn+1
3 +λ n

3 )(x).

The fourth subproblem minimizes the augmented La-
grangian functional (11) with respect to the variable v.
The subproblem can be written as the following linear
scalar-valued minimization problems with positive def-
inite, symmetric, and separable coefficient matrix:

un+1 ∈V,

r1

∫
Ω

∇un+1 ·∇v dx+
∫

Ω

(un+1− f ) v dx

=
∫

Ω

(
r1pn+1

1 −λλλ
n
1
)
·∇v dx,∀v ∈V.

(22)

Finally, the Lagrange multipliers are updated as fol-
lows:

λλλ
n+1
1 = λλλ

n
1 + r1(∇un+1−pn+1

1 ),

λλλ
n+1
2 = λλλ

n
2 + r2(pn+1

2 −pn+1
3 ),

λ
n+1
3 = λ

n
3 + r3(∇·pn+1

3 −ψ
n+1).

(23)

2.3 Finite element realization
The domain Ω is triangulated using a uniform finite ele-
ment triangulation Th. The function space V is approx-
imated by a piecewise linear finite element space

Vh =
{

v ∈C0(Ω̄) : v|T ∈ P1, ∀ T ∈Th
}
, (24)

where P1 is the space of the polynomials of two
variables of degree ≤ 1. The spaces (L2(Ω))2 and

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 122 ISBN 978-80-86943-65-7



H(Ω;div) are approximated by the following piecewise
constant finite element space:

Qh =
{

q ∈ (L∞)2 : q|T ∈ (P0)
2,∀ T ∈Th

}
, (25)

where P0 is the space of the constant functions. Clearly,
we have ∇Vh ⊂Qh.

Let {X j}Nh
j=1 be the set of vertices of Th and q∈Qh. The

divergence operator is approximated by using an appro-
priate discrete Green’s formula and the trapezoidal rule
as follows:

(divhq)(X j) =−
3
|Ω j|

∫
Ω j

q ·∇w j dx, (26)

where X j is a vertex that does not belong to ∂Ω, Ω j is
the polygon that is the union of those triangles of Th
that have X j as a common vertex, |Ω j| is the measure of
Ω j, and the shape function w j ∈Vh is uniquely defined
as {

w j(X j) = 1,
w j(Xk) = 0, k 6= j.

(27)

3 GPU IMPLEMENTATION
3.1 GPU computing and OpenCL
The GPU implementation presented in this paper is
written using the OpenCL framework. This section in-
troduces the reader to general OpenCL concepts and
terminology. Some additional information related to
Nvidia’s current hardware is provided since that infor-
mation is essential for the understanding of the imple-
mentation and obtained numerical results.

A contemporary high-end GPU contains thousands of
processing elements (cores) which are grouped into
multiple computing units. The processing elements in-
side the same computing unit share a fast (on-chip)
memory space called local memory which can be used
for sharing data among the processing elements. The
local memory is divided into 32-bit (or 64-bit) memory
banks organized in such a way that successive 32-bit (or
64-bit) words map to successive memory banks. Multi-
ple processing elements also share the same scheduler,
which means that the processing elements are executing
the program code in a synchronous manner. In addition
to the local memory, all processing elements can ac-
cess a much larger but slower (off-chip) memory space
called global memory. The global memory can serve
memory requests at the optimal rate when processing
elements are synchronously accessing data that is lo-
cated inside a same memory block.

GPU-side program code execution is based on the con-
cept of a special kind of subroutine called (OpenCL)
kernel. All work-items (threads) start from the begin-
ning of the kernel but each work-item is given a unique

index number which allows the execution paths of dif-
ferent work-items to branch off. The work-items are
grouped into work groups which are also given unique
index numbers and a work group can share a portion of
the local memory. Nvidia uses the term warp when re-
ferring to a set of work-items that are executed together
in a synchronized manner. Diverging execution paths,
also known as warp divergences, lead to a suboptimal
performance as all the necessary paths have to be evalu-
ated by the whole warp. In contemporary Nvidia GPUs
the warp size is 32 work-items.

3.2 General notes
The GPU implementation is principally identical with
the CPU implementation described in [Myl15] but the
low level details vary considerably. The less simpli-
fied two-dimensional form of the critical non-convex
subproblem (15) is initially solved using the Newton’s
method, whose solution candidate is then tested against
the explicit relation (16). If the solution candidate does
not fulfill the explicit relation, the implementation pro-
ceeds to the one-dimensional form (18) which is solved
using the bisection search algorithm as described in
[Myl15].

The linear vector-valued subproblem (19) is solved us-
ing the conjugate gradient algorithm without precon-
ditioning. While more generalized GPU implemen-
tations have been presented in the past (see, for ex-
ample, [Ame10, Bol03, Hel12]), the conjugate gradi-
ent solver used in the GPU implementation described
in this paper was tailored for this specific subproblem
and the matrix-vector multiplication operation was hard
coded into the kernels. The explicit subproblem (20) is
solved using the closed form solution (21) and the lin-
ear scalar-valued subproblem (22) is solved using the
PSCR method.

All computational operations are carried out in the
GPU side. The floating point division operation
was accelerated using a Newton-Raphson division
algorithm [Fly70] and an initial approximation that
leads to full double precision accuracy with only four
iterations [Par92].

3.3 Element numbering
The elements of the finite element space Vh are num-
bered in a row-wide fashion. This means that the co-
efficient matrix in the linear scalar-valued subproblem
(22) is block tridiagonal and presentable in a separable
form using so-called Kronecker matrix tensor product.
This is required by the PSCR method.

The numbering of the elements of the finite element
space Qh can be chosen more freely. Figure 1 shows
two possible numbering schemes. If the numbering
scheme shown on the left (referred to hereinafter as

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 123 ISBN 978-80-86943-65-7



x2

x1

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

x2

x1

19
1

28
10

20
2

29
11

21
3

30
12

22
4

31
13

23
5

32
14

24
6

33
15

25
7

34
16

26
8

35
17

27
9

36
18

Figure 1: Two possible numbering schemes for the el-
ements of the finite element space Qh (3 × 3 grid): the
dense numbering scheme (on the left) and the sparse
numbering scheme (on the right).

# # # # # # # #
#

#
# # # # # # # #
# # # # # # # # # # # # # #
# # # # # # # #

#
# # # # # # # #
# # # # # # # # # # # # # #
# # # # # # # #

#
# # # # # # # #
# # # # # # # #
# # # # # # # #

#
#

# # # # # # # #
#

# # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # #

#
# # # # # # # #

#
# # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # #

#
#

#
# # # # # # # #
# # # # # # # #

#
# # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # #
#

# # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # #
#

# # # # # # # #
# # # # # # # #

#

Figure 2: The non-zero elements of the coefficient ma-
trix in the linear vector-valued subproblem (19) when
the dense numbering scheme is used (4 × 4 grid).

# # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # #

# # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # #

# # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # #

#
#

#
#

#
#

#
#

# # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # #

# # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # #

# # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # #

#
# # # # # # # #

# # # # # # # #
# # # # # # # #

#
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # # # # # # # #

#
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
# # # # # # # # # # # # # #

#
# # # # # # # #

# # # # # # # #
# # # # # # # #

# # # # # # # #
# # # # # # # #

# # # # # # # #
#

# # # # # # # # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
#

# # # # # # # # # # # # # #
# # # # # # # # # # # # # #

# # # # # # # # # # # # # #
#

# # # # # # # #
# # # # # # # #

# # # # # # # #
#

Figure 3: The non-zero elements of the coefficient ma-
trix in the linear vector-valued subproblem (19) when
the sparse numbering scheme is used (4 × 4 grid).

the dense numbering scheme) is chosen, then the co-
efficient matrix in the linear vector-valued subproblem
(19) is of the form shown in Figure 2. On the one hand,
if the numbering scheme shown on the right (referred to
hereinafter as the sparse numbering scheme) is chosen,
then the coefficient matrix is of the form shown in Fig-
ure 3. Each numbering scheme has its own advantages
and disadvantages.

The dense numbering scheme leads to a more optimal
global memory access pattern during the solution of the
linear vector-valued subproblem (19) as the non-zero
elements of the coefficient matrix are packed tightly to
three bands and elements of each band can be shared
among work-items using the local memory. This is par-

ticularly important because many contemporary high
end GPUs have an extremely high peak floating-point
performance but a relatively low peak global memory
bandwidth. Thus, the use of the global memory should
be kept at minimum. The most significant downside of
this numbering scheme is that a straightforward imple-
mentation would lead to warp divergences throughout
the implementation. Most of these warp divergences
could be avoided by re-arranging the computational
tasks appropriately with the help of the local memory.
However, this re-arranging would complicate the im-
plementation considerably and introduce memory bank
conflicts in many places.

The sparse numbering scheme leads to a simpler im-
plementation but the pattern of non-zero elements in
the coefficient matrix is much more fragmented. This
means that less data can be shared between the work-
items using the local memory and, thus, the global
memory usage increases significantly. Despite this, the
sparse numbering scheme was chosen for the GPU im-
plementation described in this paper because it was not
clear whether this choice would lead to an actual global
memory bottleneck that would limit the performance
of the whole GPU implementation. In addition, if the
dense numbering scheme is chosen, then the increased
complexity in the other parts of the implementation
might negate the potential benefits. The reference CPU
implementation uses the dense numbering scheme be-
cause it allows more effective utilization of the CPU
caches.

3.4 PSCR implementation
The PSCR method [Kuz85, Kuz96, Vas84, Val85] is a
block cyclic reduction type direct solver which can be
applied to certain separable block tridiagonal linear sys-
tems. To put it briefly, the PSCR method solves the lin-
ear scalar-valued subproblem (22) by recursively elim-
inating block-rows from the corresponding linear sys-
tem and then solves the generated sub-systems in the
reverse order during so-called back substitution stage.
Each reduction and back substitution step produces a
large set of tridiagonal linear system.

The GPU implementation of the PSCR method used in
this paper is based on the radix-4 variant described in
[Ros99] and it is in many respects similar to the sim-
plified radix-4 block cyclic reduction GPU implemen-
tation presented in [Myl13]. However, the GPU imple-
mentation used in this paper is much more generalized
as the problem size can be arbitrary.

The arising tridiagonal subproblems are solved using
the cyclic reduction (CR) [Hoc65], the parallel cyclic
reduction (PCR) [Hoc81] and the Thomas [Con80]
methods. If a tridiagonal system does not fit into the
allocated local memory buffer,then the system size
is first reduced using the CR method and the global

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 124 ISBN 978-80-86943-65-7



memory data permutations depicted in [Myl13]. The
tridiagonal systems that do fit into the allocated local
memory buffer are solved using a CR-PCR-Thomas
hybrid method. The CR stage of the hybrid solver
uses the local memory data permutations depicted in
[Myl13]. The PCR stage further splits the reduced
tridiagonal systems into smaller subsystems which
are eventually solved using the Thomas method in a
manner similar to [Dav11, Kim11]. Somewhat similar
tridiagonal solver techniques have been used, for
example, in [Göd11, Lam12, Zha10].

4 NUMERICAL RESULTS

4.1 Test setting
GPU tests were carried out on a few years old con-
sumer level Nvidia GeForce GTX580 GPU and a
high-end computing orientated Nvidia Tesla K40c
GPU. The CPU implementation is the same as was
used in [Myl15]. It is written using C++ and Fortran. It
utilizes a single-threaded variant of the radix-4 PSCR
method presented in [Ros99]. CPU tests were carried
out using an Intel Xeon E5-2630 v2 (2.60GHz) CPU.
All the tests were performed using double precision
floating point arithmetic and ECC memory (excluding
the GTX580 GPU which does not support ECC).

Four test images (shown in Figure 4) were used in the
numerical tests: Test9, Lena, Boat, and Mercado. In
addition, four different sized versions of the test image
Mercado were included: 256 × 256, 512 × 512, 1024
× 1024, and 2048× 2048. The dimensions of the other
test images are 512 × 512. The original test images
were scaled to the range [0,1]. Two sets of noisy in-
put images were generated: uniformly distributed zero-
mean noise with the standard deviation σ = 0.025 and
uniformly distributed zero-mean noise with the stan-
dard deviation σ = 0.1.

Based on the remarks made in [Myl15], the following
initialization was used:

u0 = 0, q0
1 = q0

2 = q0
3 = 0, ψ

0 = 0,

λλλ
0
1 = λλλ

0
2 = 0, λ

0
3 = 0.

(28)

In the same way, the stopping criterion read as

|Lh(υ
n)−Lh(υ

n+1)|
|Lh(υn)|

< 10−4, (29)

where Lh is the discrete counterpart of the
augmented Lagrangian functional (11) and
υn = (un,pn

1,p
n
2,p

n
3,ψ

n;λλλ
n
1,λλλ

n
2,λ

n
3 ). The parame-

ter ε and the Lagrangian multipliers were coupled as
follows: ε = r0h, r1 = 10r0h, r2 = 5r0, and r3 = 5r0h2,
where r0 > 0. We took h = 0.005 for the spatial
discretization step.

4.2 Comparisons
Figure 4 shows the original test images, the generated
input images (σ = 0.1), and the obtained output im-
ages. Table 1 shows the used parameter values, itera-
tion counts and execution times for the Intel Xeon CPU.
The input images and parameter values were the same
for the three platforms. In addition, as the GPUs used in
the numerical experiments are fully IEEE 754 compli-
ant, the iteration counts, objective function values, and
output images were also identical.

The “Whole” column shows the average total per iter-
ation execution times; the “Sub. #1”, “Sub. #2”, “Sub.
#3”, and “Sub. #4” columns show the average per it-
eration execution times for each subproblem; and the
“Misc.” column shows the combined average per itera-
tion execution times for augmentation term update ker-
nels and an objective function value computation ker-
nel. The CPU results show that a significant portion
of the total execution time goes to solving the critical
non-convex subproblem (15).

Tables 2 and 3 show the average per iteration execution
times and the obtained speedups for the GTX580 and
K40c GPUs, respectively. The GTX580 was on aver-
age 15.6 times faster than the Xeon CPU. The highest
speedups were obtained in the case of the synthetic test
image Test9 in which case the GTX580 GPU was up
to 21.5 times faster. The K40c GPU was on average
26.0 times faster than the Intel Xeon CPU and the Test9
test image was processed up to 33.7 times faster. Both
GPUs achieved the highest speedups in the case of the
critical non-convex subproblem (15). The K40c GPU
was at its best 76.0 times faster than the Intel Xeon CPU
at solving the subproblem.

4.3 Discussion
A significant portion of the total execution time still
goes to solving the critical non-convex subproblem (15)
but the gap between it and the linear vector-valued sub-
problems (19) has narrowed considerably. However,
even if we managed to overcome the potential global
memory bottleneck associated with the linear vector-
valued subproblems (19), the critical non-convex sub-
problem (15) would still dominate the total execution
time in such a degree that it probably would not be of
a significant improvement. Finally, the speedups ob-
tained with the Mercado test images show that GPU’s
computational resources can be utilized best when the
image size is relatively large.

Although the highest speedups were obtained in the
case of the critical non-convex subproblem (15), the
K40c GPU did not perform quite as well as expected.
One culprit might be the Newton-bisection hybrid
method which was used to solve the subproblem. For
example, in the case of the Lena (σ = 0.1) input image,
the Newton’s method had an average success rate of

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 125 ISBN 978-80-86943-65-7



Figure 4: From top to bottom: the original images, the noisy input images (σ = 0.1), and the obtained output
images. From left to right: Test9, Lena, Boat, and Mercado5123.

Image r0 Iter. Whole Sub. #1 Sub. #2 Sub. #3 Sub. #4 Misc.
Test9, σ = 0.025 0.005 103 0.6170 0.4489 0.0985 0.0031 0.0412 0.0206
Lena, σ = 0.025 0.002 77 0.7463 0.5676 0.1097 0.0031 0.0405 0.0206
Boat, σ = 0.025 0.001 75 0.7967 0.6154 0.1115 0.0031 0.0412 0.0206
Mercado256, σ = 0.025 0.002 125 0.1719 0.1335 0.0233 0.0008 0.0081 0.0050
Mercado512, σ = 0.025 0.002 143 0.6813 0.5147 0.0977 0.0031 0.0406 0.0206
Mercado1024, σ = 0.025 0.002 172 2.6356 1.9665 0.3869 0.0125 0.1670 0.0847
Mercado2048, σ = 0.025 0.002 169 10.691 7.7660 1.6705 0.0499 0.7866 0.3460
Test9, σ = 0.1 0.015 163 0.5985 0.4348 0.0942 0.0031 0.0412 0.0206
Lena, σ = 0.1 0.005 158 0.6881 0.5189 0.0997 0.0031 0.0412 0.0206
Boat, σ = 0.1 0.005 163 0.6889 0.5181 0.1013 0.0031 0.0412 0.0206
Mercado256, σ = 0.1 0.005 213 0.1692 0.1309 0.0232 0.0008 0.0082 0.0050
Mercado512, σ = 0.1 0.005 205 0.6778 0.5104 0.0979 0.0031 0.0412 0.0206
Mercado1024, σ = 0.1 0.005 208 2.6719 1.9906 0.3958 0.0125 0.1694 0.0857
Mercado2048, σ = 0.1 0.005 205 10.661 7.7299 1.6658 0.0500 0.7982 0.3458

Table 1: Parameter values, iteration counts, and average per iteration execution times (in seconds) for the Intel
Xeon CPU.

99.40%. This is perfectly fine for the CPU since the
cost of processing the remaining triangles using the
bisection search algorithm is neglectable. However,
on the basis of the same data, there is on average
16.59% probability that an individual warp contains
a work-item that has to process a triangle using the
bisection search algorithm. This has a significant
impact on the performance since the cost of processing
a single triangle in this way is the same as processing
similarly all the 32 triangles as the longest execution
path of work-items within the warp determines the cost
of completing the computational task assigned to this
warp.

The above does not, however, explain why the consid-
erably more powerful K40c GPU did not outperform

the GTX580 GPU in such a large extent as would have
been expected. The results could be partly explained
by the fact that, based on our measurements, the K40c
GPU is only 2-3 times faster than the GTX580 GPU at
performing special operations such as computing recip-
rocals and square roots. The Newton-Raphson division
algorithm improved performance less than 10%. In ad-
dition, we noticed that the K40c GPU was unusually
sensitive to how the work group size was chosen. The
critical non-convex subproblem (15) required us to set

3 The Mercado test image is based on the works of Diego
Delso and licensed under Wikimedia Commons license
CC-BY-SA 3.0 (http://creativecommons.org/licenses/by-
sa/3.0/legalcode).

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 126 ISBN 978-80-86943-65-7



Image Whole Sub. #1 Sub. #2 Sub. #3 Sub. #4 Misc.
Test9, σ = 0.025 0.0287 21.5 0.0147 30.5 0.0085 11.6 0.0002 17.7 0.0041 10.0 0.0012 17.3
Lena, σ = 0.025 0.0507 14.7 0.0357 15.9 0.0095 11.5 0.0002 17.7 0.0041 9.9 0.0012 17.3
Boat, σ = 0.025 0.0654 12.2 0.0501 12.3 0.0097 11.5 0.0002 17.7 0.0041 10.0 0.0012 17.4
Mercado256, σ = 0.025 0.0136 12.6 0.0095 14.0 0.0027 8.6 0.0001 14.1 0.0010 8.5 0.0003 17.1
Mercado512, σ = 0.025 0.0472 14.4 0.0335 15.4 0.0082 11.8 0.0002 17.9 0.0041 10.0 0.0012 17.3
Mercado1024, σ = 0.025 0.1681 15.7 0.1124 17.5 0.0296 13.1 0.0006 19.6 0.0208 8.0 0.0046 18.5
Mercado2048, σ = 0.025 0.6457 16.6 0.4095 19.0 0.1178 14.2 0.0025 20.0 0.0975 8.1 0.0182 19.0
Test9, σ = 0.1 0.0278 21.5 0.0142 30.6 0.0080 11.7 0.0002 17.8 0.0042 9.9 0.0012 17.2
Lena, σ = 0.1 0.0454 15.1 0.0312 16.6 0.0087 11.4 0.0002 17.8 0.0041 10.0 0.0012 17.3
Boat, σ = 0.1 0.0452 15.2 0.0310 16.7 0.0087 11.6 0.0002 17.8 0.0041 10.0 0.0012 17.3
Mercado256, σ = 0.1 0.0133 12.7 0.0093 14.1 0.0027 8.5 0.0001 14.2 0.0009 8.7 0.0003 17.1
Mercado512, σ = 0.1 0.0464 14.6 0.0325 15.7 0.0084 11.7 0.0002 17.9 0.0041 10.1 0.0012 17.3
Mercado1024, σ = 0.1 0.1726 15.5 0.1167 17.1 0.0303 13.1 0.0006 19.6 0.0203 8.3 0.0046 18.7
Mercado2048, σ = 0.1 0.6440 16.6 0.4075 19.0 0.1178 14.1 0.0025 20.0 0.0977 8.2 0.0182 19.0
Average speedup 15.6 18.2 11.8 17.8 9.3 17.7

Table 2: Average per iteration execution times (in seconds) and obtained speedups for the Nvidia GeForce GTX580
GPU.

Image Whole Sub. #1 Sub. #2 Sub. #3 Sub. #4 Misc.
Test9, σ = 0.025 0.0183 33.7 0.0059 76.0 0.0078 12.7 0.0001 29.7 0.0036 11.3 0.0009 23.3
Lena, σ = 0.025 0.0297 25.1 0.0163 34.8 0.0087 12.5 0.0001 29.5 0.0036 11.2 0.0009 23.4
Boat, σ = 0.025 0.0361 22.1 0.0225 27.3 0.0089 12.6 0.0001 29.5 0.0036 11.3 0.0009 23.4
Mercado256, σ = 0.025 0.0091 18.8 0.0045 29.4 0.0031 7.6 0.0000 16.6 0.0012 7.0 0.0003 17.1
Mercado512, σ = 0.025 0.0277 24.6 0.0153 33.6 0.0077 12.6 0.0001 29.9 0.0037 11.1 0.0009 23.2
Mercado1024, σ = 0.025 0.0970 27.2 0.0509 38.6 0.0262 14.8 0.0003 37.3 0.0163 10.2 0.0033 26.0
Mercado2048, σ = 0.025 0.3736 28.6 0.1841 42.2 0.1033 16.2 0.0012 40.6 0.0721 10.9 0.0127 27.2
Test9, σ = 0.1 0.0178 33.6 0.0057 75.7 0.0074 12.7 0.0001 29.5 0.0037 11.2 0.0009 23.3
Lena, σ = 0.1 0.0269 25.5 0.0143 36.3 0.0080 12.5 0.0001 29.6 0.0036 11.4 0.0009 23.4
Boat, σ = 0.1 0.0272 25.4 0.0144 35.9 0.0080 12.6 0.0001 29.7 0.0037 11.2 0.0009 23.2
Mercado256, σ = 0.1 0.0088 19.1 0.0045 29.3 0.0031 7.6 0.0000 16.0 0.0010 8.4 0.0003 18.2
Mercado512, σ = 0.1 0.0274 24.8 0.0149 34.2 0.0077 12.6 0.0001 29.8 0.0037 11.2 0.0009 23.2
Mercado1024, σ = 0.1 0.0996 26.8 0.0530 37.5 0.0267 14.8 0.0003 37.5 0.0162 10.4 0.0032 26.4
Mercado2048, σ = 0.1 0.3721 28.7 0.1826 42.3 0.1033 16.1 0.0012 40.7 0.0721 11.1 0.0127 27.2
Average speedup 26.0 40.9 12.7 30.4 10.6 23.5

Table 3: Average per iteration execution times (in seconds) and obtained speedups for the Nvidia Tesla K40c GPU.

the work group size as low as 64 work-items. In turn,
the GTX580 GPU performed just fine when the work
group size was set as high as 512 work-items. This sug-
gest that Nvidia’s OpenCL compiler might have prob-
lems with resource management. In general, the com-
piler seems to generate less optimal code for the K40c
GPU in many situations. It also appears that the K40c
GPU does not perform well in situations where the solu-
tion of a subproblem requires multiple kernel launches.

5 CONCLUSIONS

This paper presented a GPU implementation of an aug-
mented Lagrangian based L1-mean curvature image de-
noising algorithm and numerical results obtained while
comparing the GPU implementation against a single-
threaded CPU implementation. Up to 33-fold speedups
were obtained, the average speedup being 26-fold. The
pointwise handled non-convex subproblem predictably
benefited most from the GPU-acceleration. The numer-
ical results indicate that GPUs provide demonstrable
benefits in the context of the higher-order variational-
based image denoising algorithms and alternating di-
rection type augmented Lagrangian methods.

6 ACKNOWLEDGMENTS
The authors thank anonymous reviewers for their valu-
able feedback. The presentation of our paper was sig-
nificantly improved thanks to their comments and sug-
gestions. The research of the first author was sup-
ported by the Academy of Finland (grant #252549), the
Jyväskylä Doctoral Program in Computing and Math-
ematical Sciences (COMAS), and the Foundation of
Nokia Corporation.

7 REFERENCES
[Ame10] Ament, M., Knittel, G., Weiskopf, D., and

Strasser, W. A parallel preconditioned conjugate
gradient solver for the Poisson problem on a
multi-GPU platform. In: 18th Euromicro Inter-
national Conference on Parallel, Distributed and
Network-Based Processing (PDP), pp. 583–592,
IEEE, 2010.

[Bri10] Brito-Loeza, C., Chen, K. Multigrid algorithm
for high order denoising. SIAM J. Imaging Sci.,
3(3), pp. 363–389, 2010.

[Bol03] Bolz, J., Farmer, I., Grinspun, E., and
Schröoder, P. Sparse matrix solvers on the GPU:
conjugate gradients and multigrid. ACM Trans.
Graph., 22(3), pp. 917–924, 2003.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 127 ISBN 978-80-86943-65-7



[Con80] Conte, S. D., and de Boor, C. Elementary
numerical analysis: an algorithmic approach.
Mcgraw-Hill College, 1980.

[Dav11] Davidson, A., Zhang, Y., and Owens, J. D. An
auto-tuned method for solving large tridiagonal
systems on the GPU. In: Proceedings of the 25th
IEEE International Parallel and Distributed Pro-
cessing Symposium, pp. 956–965, IEEE, 2011.

[Fly70] Flynn, M. On division by functional iteration.
IEEE T. Comput., C19(8), pp. 702–706, 1970.

[For83] Fortin, M., and Glowinski, R. Augmented La-
grangian methods: applications to the numeri-
cal solution of boundary value problems. North-
Holland, Amsterdam, 1983.

[Glo89] Glowinski, R., and Le Tallec, P.. Augmented
Lagrangian and operator-splitting methods in non-
linear mechanics. SIAM, Philadelphia, 1989.

[Göd11] Göddeke, D., and Strzodka, R. Cyclic reduc-
tion tridiagonal solvers on GPUs applied to mixed
precision multigrid. IEEE T. Parall. Distr., Spe-
cial Issue: High Performance Computing with
Accelerators, 22(1), pp. 22–32, 2011.

[Hel12] Helfenstein, R., and Koko, J. Parallel precon-
ditioned conjugate gradient algorithm on GPU. J.
Comput. Appl. Math., 236(15), pp. 3584–3590,
2012.

[Hoc65] Hockney, R. W. A fast direct solution of Pois-
son’s equation using Fourier analysis. J. Assoc.
Comput. Mach., 12(1), pp. 95–113, 1965.

[Hoc81] Hockney, R. W., and Jesshope, C. R. Par-
allel computers: architecture, programming and
algorithms. Bristol, UK, 1981.

[Kim11] Kim, H.-S., Wu, S., Chang. L., and Hwu W.
W. A scalable tridiagonal solver for GPUs. In:
42nd International Conference on Parallel Pro-
cessing, pp. 444–453, IEEE Computer Society,
Los Alamitos, CA, USA, 2011.

[Kuz85] Kuznetsov, Y. A. Numerical methods in sub-
spaces. Vychislitel’-nye Processy i Sistemy II. 37,
pp. 265–350, 1985.

[Kuz96] Kuznetsov, Yu. A., and Rossi, T. Fast direct
method for solving algebraic systems with separa-
ble symmetric band matrices. East-West J. Numer.
Math., 4, pp. 53–68, 1996.

[Lam12] Lamas-Rodriguez, J., Arguello, F., Heras,
D.B., and Boo, M. Memory hierarchy optimiza-
tion for large tridiagonal system solvers on GPU.
In: IEEE 10th International Symposium on Paral-
lel and Distributed Processing with Applications
(ISPA), pp. 87–94, IEEE Press, Piscataway, NJ,
USA, 2012.

[Lys04] Lysaker, M., Osher, S., Tai, X.-C. Noise re-
moval using smoothed normals and surface fit-

ting. IEEE T. Image Process., 13(10), pp. 1345 –
1357, 2004.

[Mum94] Mumford, D. Elastica and computer vision.
Algebraic geometry and its applications, pp. 491–
506, Springer-Verlag, New York, 1994.

[Myl13] Myllykoski, M., Rossi, T., and Toivanen, J.
Fast Poisson solvers for graphics processing units.
In: Applied Parallel and Scientific Computing,
Manninen, P., and Öster, P. (eds.), Lecture Notes
in Computer Science, 7782, pp. 265–279, 2013.

[Myl15] Myllykoski, M., Glowinski, R., Kärkkäinen,
T., and Rossi, T. A new augmented Lagrangian
approach for L1-mean curvature image denoising.
SIAM J. Imaging Sci., 8(1), pp. 95–125, 2015.

[Par92] Parker, A., and Hamblen, J.O. Optimal value
for the Newton-Raphson division algorithm. In-
form. Process. Lett., 42(3), pp. 141–144, 1992.

[Ros99] Rossi, T., and Toivanen T. A parallel fast di-
rect solver for block tridiagonal systems with sep-
arable matrices of arbitrary dimension. SIAM J.
Sci. Comput. 20(5), pp. 1778–1796, 1999.

[Rud92] Rudin, L., Osher, S., and Fatemi, E. Nonlin-
ear total variation based noise removal algorithms.
Phys. D, 60(1–4), pp. 259–268, 1992.

[Sun14] Sun, L., and Chen, K. A new iterative algo-
rithm for mean curvature-based variational image
denoising. BIT, 54(2), pp. 523–553, 2014.

[Vas84] Vassilevski, P. Fast algorithm for solving a
linear algebraic problem with separable variables.
C.R. Acad. Bulgare Sci., 37, pp. 305–308, 1984.

[Val85] Vassilevski, P. Fast algorithm for solving dis-
crete Poisson equation in a rectangle. C.R. Acad.
Bulgare Sci., 38, pp. 1311–1314, 1985.

[Yan14] Yangab, F., Chenc, K., Yub, B., Fang, D. A
relaxed fixed point method for a mean curvature-
based denoising model. Optim. Method Softw,
29(2), pp. 274 – 285, 2014.

[Zha10] Zhang, Y. and Cohen, J., and Owens, J. D.
Fast tridiagonal solvers on the GPU. In: Proceed-
ings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming
PPoPP 10, pp. 127–136, ACM Press, New York,
NY, USA, 2010.

[Zhu12] Zhu, W., and Chan, T. Image denoising us-
ing mean curvature of image surface. SIAM J.
Imaging Sci., 5(1), pp. 1–32, 2012.

[Zhu13] Zhu, W., Tai, X.-C., and Chan, T. Augmented
Lagrangian method for a mean curvature based
image denoising model. Inverse Probl., 7(4), pp.
1409–1432, 2013.

WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision

Full Papers Proceedings 128 ISBN 978-80-86943-65-7


