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Abstract

Background: Collective analysis of the increasingly emerging gene expression datasets are required. The recently
proposed binarisation of consensus partition matrices (Bi-CoPaM) method can combine clustering results from
multiple datasets to identify the subsets of genes which are consistently co-expressed in all of the provided
datasets in a tuneable manner. However, results validation and parameter setting are issues that complicate the
design of such methods. Moreover, although it is a common practice to test methods by application to synthetic
datasets, the mathematical models used to synthesise such datasets are usually based on approximations which
may not always be sufficiently representative of real datasets.

Results: Here, we propose an unsupervised method for the unification of clustering results from multiple datasets
using external specifications (UNCLES). This method has the ability to identify the subsets of genes consistently
co-expressed in a subset of datasets while being poorly co-expressed in another subset of datasets, and to identify the
subsets of genes consistently co-expressed in all given datasets. We also propose the M-N scatter plots validation
technique and adopt it to set the parameters of UNCLES, such as the number of clusters, automatically. Additionally,
we propose an approach for the synthesis of gene expression datasets using real data profiles in a way which combines
the ground-truth-knowledge of synthetic data and the realistic expression values of real data, and therefore
overcomes the problem of faithfulness of synthetic expression data modelling. By application to those datasets,
we validate UNCLES while comparing it with other conventional clustering methods, and of particular relevance,
biclustering methods. We further validate UNCLES by application to a set of 14 real genome-wide yeast datasets
as it produces focused clusters that conform well to known biological facts. Furthermore, in-silico-based hypotheses
regarding the function of a few previously unknown genes in those focused clusters are drawn.

Conclusions: The UNCLES method, the M-N scatter plots technique, and the expression data synthesis approach
will have wide application for the comprehensive analysis of genomic and other sources of multiple complex
biological datasets. Moreover, the derived in-silico-based biological hypotheses represent subjects for future
functional studies.
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Background
Some genes’ expression profiles might be found well cor-
related in a single microarray dataset for many reasons
other than that they are co-regulated or that they func-
tion within the same pathway [1–3]. On the other hand,
consistent co-expression of the same subset of genes
across many independent datasets may indeed indicate a
higher likelihood of co-regulation and/or linked function
[1, 2, 4–6]. Some studies have used a core subset of genes
that are well known to participate in the target pathway as
a template, and then many microarray datasets were
mined for the genes that are consistently co-expressed
with that template of genes [2, 6]. One drawback of this
approach is that it cannot be applied without the availabil-
ity of a starting template of co-expressed genes. Another
significant shortcoming is that this approach is not able to
discover other subsets of genes that are also consistently
co-expressed in the same datasets but with different pro-
files from the starting template.
Unsupervised clustering methods do not require a

starting template. Conventional unsupervised clustering
algorithms, such as k-means [7], hierarchical clustering
[8], self-organising maps [9], and many others, tackle the
problem of identifying the genes that are co-expressed
within any single dataset. In contrast we have recently
proposed the binarisation of consensus partition matri-
ces (Bi-CoPaM) method [10], which has the unique
ability to address, in an unsupervised way, the research
question: which are the subsets of genes that are consist-
ently co-expressed over a set of genome-wide (or
filtered) datasets? Those datasets could have been gener-
ated under different conditions and biological contexts,
and even from different species [11].
Other types of external specifications can be proposed

to scrutinise the clustering results from multiple data-
sets. For instance, it is very useful to identify the subsets
of genes specifically consistently co-expressed in one
specific subset of datasets while being poorly consistently
co-expressed in another subset of datasets. Although, to the
authors’ knowledge, this research question has not been
answered in an unsupervised way previously, it has been
raised and discussed implicitly and explicitly in many
studies [2–4, 12–14]. However, biclustering methods, such
as Cheng and Church (CC) [15], Plaid [16], Bimax [17],
and others, mine a data matrix for the rows (correspond-
ing to genes) that show consistent co-expression across all
or some of the matrix columns (corresponding to sam-
ples). Although such methods were designed to mine a
single dataset, multiple datasets may be concatenated to
provide a single data matrix that is fed to biclustering
analysis.
Despite the Bi-CoPaM’s successful application in some

studies, it has been used where the number of clusters is
known based on a priori knowledge [18, 19]. Automatic
setting for the number clusters as well as the other pa-
rameters of the Bi-CoPaM was evident while proposing
the Bi-CoPaM but has not been resolved yet [10].
Another unresolved issue is the design of a validation
technique for the tunable results of the Bi-CoPaM [10].
The problem of requiring a manually pre-set number of
clusters is common to most clustering methods and has
been discussed thoroughly in the literature but with no so-
lution that suits the nature of the Bi-CoPaM [10, 20–22].
In this paper, we propose a new method named as the

unification of clustering results from multiple datasets
using external specifications (UNCLES). This method
unifies the clustering results from multiple datasets
under one of two types of external specifications. The
first unifies the clustering results from multiple datasets
to identify the subsets of genes consistently co-expressed
over all of the given datasets. The second type aims at
unifying such clustering results in order to identify the
subsets of genes consistently co-expressed over one subset
of datasets while being poorly co-expressed over another
subset of datasets. We also present a novel validation tech-
nique, based on the proposed M-N scatter plots, which
addresses the problem of setting the proper number of
clusters (K) as well as the tuning parameters for both
methods, the recently proposed Bi-CoPaM and the novel
UNCLES.

Methods
Synthetic data generation
We have selected the datasets under the GEO accession
numbers GSE18057 [23], GSE10124 [24], GSE12736
[25], and GSE9386 [26] whose clustering analysis have
been previously provided by the relevant references. The
four datasets were derived from the species Oryza sativa
(Asian rice), Xenopus laevis (African clawed frog), Homo
sapiens (human), and Zea mays (maize), respectively,
and their respective numbers of samples are 36, 6, 16,
and 24. We have produced six synthetic datasets, la-
belled as P1, P2, P3, N1, N2, and N3 based on these four
real datasets where P1 and P2 are respectively based on
the first 18 and the last 18 samples of GSE18057, P3 is
based on GSE10124, N1 is based on GSE12736, and N2
and N3 are based on the first and the last twelve samples
of GSE9386 respectively.
The gene names/probe identifiers of the original data-

sets were omitted and the artificial gene names g1 to
gGS were used instead, where GS is the artificial genome
size. Therefore the ith gene (gi) in each of the six syn-
thetic datasets is considered as the same gene whose ex-
pression profile is assumed to be measured in six
different microarray datasets. In each of the six datasets,
the artificial genes g1 to g75 were selected from one of
the defined clusters in the relevant study (cited in the
previous paragraph), i.e. the profiles of those 75 genes in
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Fig. 1 The structure of the six synthetic microarray datasets. The cluster C1 (g1 to g75) includes genes consistently co-expressed over all of the six
datasets, and the cluster C2 (g76 to g160) includes genes consistently co-expressed only in the positive set of datasets (P1, P2, and P3) while being
poorly co-expressed in the negative set of datasets (N1, N2, and N3). The rest of the genome (C0) includes genes poorly co-expressed everywhere
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Fig. 2 Synthetic data ground truth clusters C1 and C2 expression
profiles. Each plot in this grid of plots shows the normalised
expression profiles of the 75 and 85 genes respectively included in
the ground truth clusters C1 and C2 in each of the six synthetic
datasets. The horizontal axis is the samples axis whose range in
each subplot is equal to the number of samples of the corresponding
dataset. The vertical axis is the normalised expression value. Note that
C1 is consistently co-expressed in all of the six datasets while C2 is only
consistently co-expressed in the positive datasets P1, P2, and P3
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each of the datasets were previously confirmed to be co-
expressed in the literature; these genes have been la-
belled as the cluster C1 (Figs. 1 and 2). The 85 genes
g76 to g160 were selected in the same way but only in
the positive datasets P1, P2, and P3, and have been
labelled as the cluster C2 (Figs. 1 and 2). The rest of the
genome, i.e. g161 to gGS in P1, P2, and P3, and g76 to
gGS in N1, N2, and N3, were randomly selected from
the genes excluded from clustering analysis in the rele-
vant studies for being not differentially expressed, i.e.
poorly co-expressed everywhere, and have been labelled
as C0 (Fig. 1). We have generated data with the genome
sizes (GS) of 1200, 2000, 3000, 5000, and 7000 genes
respectively to create five sets of datasets.
For more realistic modelling, some genes (less than

ten to a few tens) from C0 in each of the datasets are
co-expressed with either C1 or C2 in the specific dataset
in which they occur without being consistently co-expressed
over the rest of the datasets, i.e. the genes of C1 are con-
sistently co-expressed in all of the six datasets, but in
each of the datasets individually, there are few more
genes that are also co-expressed with those 75 but that
differ from one dataset to another. The same applies to
C2 in the positive datasets.
All of the 30 produced datasets (six datasets for each

of the five genome sizes) are provided in Additional files
1, 2, 3, 4, and 5 alongside the membership of genes in
C1 or C2.

Bi-CoPaM
Binarisation of consensus partition matrices (Bi-CoPaM)
which has been recently proposed by Abu-Jamous et al.
[10], is applied to a set of transcriptomic datasets (e.g.
microarray datasets). This method does not combine the
datasets themselves; rather it performs clustering over
each one of the datasets independently in the first stage.
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Therefore, within a dataset all genes are homogeneous
in that they have the same experimental design, e.g.
number of samples/time points and distances between
time points. In a later stage of the processing, the result-
ing partitions from each of the datasets are combined
based on memberships and independent of the time pro-
files of the genes in their datasets, to produce one set of
clusters. This approach of projecting the datasets into
this invariant space of membership by clustering allows
us to analyse multiple heterogeneous datasets collect-
ively. Moreover, the datasets do not have to be time-
series, that is, the horizontal axis of the gene expression
profile may not represent time. For example, the data
points (samples) may represent samples from different
types of tissues instead. In any case, each dataset is clus-
tered independently, and when the resulting partition
matrices are combined afterwards, they are invariant to
the aforementioned variables and factors.
Bi-CoPaM is applied by following the following four

main steps:

(1)Individual partition generation: a partition (clustering
result) is generated for the same set of genes by using
one clustering algorithm on a selected dataset. By
applying C different clustering methods to L different
datasets measuring the expression for the same set of
genes, R =C × L partitions are generated. The same
number of clusters (K) should be used for all of these
partitions.

(2)Relabelling: each cluster from any individual partition
is mapped to its most similar cluster from each of the
other individual partitions. The clusters in each
partition are accordingly permutated such that the
clusters mapped to each other are aligned.

(3)Fuzzy consensus partition matrix (CoPaM) generation:
the fuzzy CoPaM is the average partition of the
relabelled partitions. A gene’s fuzzy membership value
in a cluster in the CoPaM matrix represents the ratio
of times in which this gene has appeared in that
particular clusters to the total number of individual
partitions.

(4)Binarisation: the fuzzy CoPaM is binarised to obtain
a binary consensus partition matrix by using one of
six proposed binarisation techniques.

We have used one of the six binarisation techniques ori-
ginally proposed by Abu-Jamous and colleagues [10],
which is the difference threshold binarisation (DTB).
Based on the fuzzy values in the CoPaM matrix, DTB as-
signs a gene to the cluster in which it has its maximum
fuzzy membership only if the difference between it and its
membership in the closest competitor cluster is not less
than the parameter δ. The gene is left unassigned from all
of the clusters otherwise. The value of δ can range from
zero to unity. When δ is zero, each gene is assigned to the
cluster in which it has its maximum membership, there-
fore no genes are unassigned from all of the clusters, and
the resulting clusters are complementary clusters that in-
clude the entire genome. When δ is equal to one, the gene
is assigned to a cluster only if its fuzzy membership value
in that cluster is equal to one, which only happens when
all of the individual partitions have included that gene in
that particular cluster consensually. Thus, δ is a tuning
parameter which tunes the tightness of the clusters from
being complementary clusters at (δ = 0) to the tightest
case which leaves most of the genes in the genome un-
assigned from all of the clusters at (δ = 1).
It is worth noting that this method, as described, does

not combine the datasets themselves; it rather combines
the partitions resulting from clustering each dataset
separately by various clustering methods. Therefore, the
datasets maybe heterogeneous in terms of the number
of samples (e.g. time-points), distances between time
points in time-series datasets, number of channels in the
microarray chip, laboratory, year, conditions, biological
context, technology (microarrays versus next-generation
sequencing (NGS)), and other factors. The key aspect
that has to be common between those datasets is that
they measure the expression (or any other quantity) for
the same set of genes.
Uncles
The unification of clustering results from multiple data-
sets using external specifications (UNCLES) is a novel
method which we propose in this paper. Although the
types of external specifications which would be proposed
can be many, we propose two types of external specifica-
tions in this study:
Type A: the multiple datasets are mined for the subsets

of genes consistently co-expressed in all of them. The Bi-
CoPaM method [10] can be configured to achieve this
objective by considering the difference threshold binarisa-
tion (DTB) technique with the tuning parameter δ ∊ [0, 1].
Type B: the multiple datasets are split into two subsets of

datasets, the positive subset (S+) and the negative subset
(S−). These are then mined for the subsets of genes consist-
ently co-expressed in S+ while being poorly consist-
ently co-expressed in S−. This is novel to the study.
A flow chart for type B is shown in Fig. 3. First, UNCLES

type A is applied to each of the two subsets of datasets, S+

and S−, separately by considering DTB binarisation with
the parameters δ+ and δ−, respectively. Then, all of the genes
which have been assigned to some cluster in the results of
analysing the negative subset of datasets (S−) are un-
assigned from all of the clusters in the results of analysing
the positive subset of datasets (S+). The resulting clusters are
said to be generated at the parameter pair of (δ+, δ−).
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Fig. 3 Flow chart summary for UNCLES with type B of external specifications
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The parameter δ+ controls how tight the clusters should
be in the S+ datasets for their genes to be included in the
result while the parameter δ− controls how tight the clus-
ters should be in the S− datasets for their genes to be
excluded. Therefore, the widest clusters are generated at
the pair (0, 1) and the tightest clusters are generated at (1,
ε) where ε is a very small real positive number. At the pair
(1, 0), or any pair (δ+, 0), the clusters are totally empty,
because, when δ− is equal to zero, all of the genes are
excluded from the clusters. Hence we can consider (1, ε)
as the tightest non-trivial case.
M-N scatter plot
In this paper, we propose the MSE-related metric (M) -
number of genes (N), i.e. the (M-N), scatter plots tech-
nique to select the best cluster(s) out of the pool of
clusters generated by UNCLES at different δ or (δ+, δ−)
values as well as when different numbers of clusters (K)
are used. This technique aims at minimising the dissimi-
larity between genes’ profiles in a cluster while maximis-
ing the number of genes included in it.
Given any dataset, the mean-squared error (MSE)

metric for the kth cluster (Ck) is:

MSEcluster kð Þ ¼ 1
D⋅Nk

X
xi∈Ck

xi−zkk k2; ð1Þ

where D is the number of dimensions of the datasets, i.e.
time- or data-points, Nk is the number of genes in the kth

cluster, {xi} is the set of normalised expression profiles of
genes included in the kth cluster, and zk is the average ex-
pression profile of the genes included in the kth cluster.
The MSE-related metric (M) is defined as:

(1)Type A: the average of the MSE values based on all
of the datasets.

(2)Type B: the average MSE values based on the S−

datasets subtracted from the average MSE values
based on the S+ datasets.
For both types A and B, the MSE-related metric should
be minimised to obtain better clusters.
The M-N scatter plot is a plot on which the clusters

are scattered, whose vertical axis is the logarithm of the
number of genes included in a cluster (N), and whose
horizontal axis is the MSE-related metric. Examples of
M-N scatter plots are in Fig. 4 (first and third columns).
The best cluster, based on our proposed technique, is
that whose point on the M-N scatter plot is closest in
distance to the top left corner after scaling both axes to
have the same length.
Both types of UNCLES need the number of clusters

(K) to be pre-set and fixed. The M-N scatter plot tech-
nique solves this problem by scattering all of the clus-
ters generated by UNCLES by using many K values at all
of the considered δ and (δ+, δ−) values on the same plot,
and then selecting the best single cluster of all of those
clusters.
If more than one best cluster is needed to be selected,

after selecting the first best cluster as described, all of
the scattered clusters on the plot which share some
genes with that selected cluster are removed, and the
closest cluster to the top left corner amongst the
remaining clusters is selected as the second best cluster.
This process of selection is repeated until the researcher
obtains the desired clusters. One possible termination
criteria can be that the next step’s cluster is significantly
farther than the previous one from the top left corner of
the M-N plot, and therefore there is a gap in quality.
This is thoroughly demonstrated in the analysis of Figs. 9
and 10.

F-P scatter plot
We propose a technique to evaluate the resulting clus-
ters while knowing the ground truth by using the false-
positive-rate (F) - scaled-p-value (P), i.e. the (F-P) scatter
plot. This technique has been used in this study to valid-
ate the results of our proposed UNCLES method and to
validate our proposed M-N scatter plots technique. For
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the F-P scatter plot to be applicable, the ground truth
must be known, and this is the case in our analysis of
the set of synthetic datasets in this study.
If the objective is to discover a subset of m genes from a

genome which containsM genes, and the adopted method
discovered N genes, n of which are true-positives, i.e.
members of the objective subset, then the p-value is de-
fined as the probability of obtaining such a result or a bet-
ter one randomly. This is expressed as:

p‐value ¼
XN
j¼n

N!

j! N‐jð Þ!
� �

� m
M

� �j
� M‐m

M

� �N‐j

: ð2Þ

We define the scaled p-value as the ratio of the loga-
rithm of the p-value to the logarithm of the best theoret-
ically possible p-value at the given genome size. This is
expressed as:

scaled p‐value ¼ log p‐valueð Þ
log m

GS= Þm:ð ð3Þ

The scaled p-value ranges from unity for the theoretic-
ally ideal result to zero for clusters which do not include
any of the true-positive genes.
Scaled p-values cannot capture the rate of false-

positive discoveries in the cluster under evaluation and
they might give better scores for clusters with very high
false-positive rates if they were significantly larger than
other clusters with much better false-positive rates. To
capture this fact, we propose using F-P scatter plots to
visualise the clusters while scattered on a plane consist-
ing of both dimensions, false-positive rates (F) and
scaled p-values (P). Both dimensions range between zero
and unity.
Examples of F-P scatter plots are in Fig. 4 (second and

fourth columns). The best theoretically possible cluster
occurs on the top left corner of the plot of a scaled
p-value of one and zero false-positives. The continuous
black curve marks the zero false-negatives cases, and
represents the theoretical upper limit for scaled p-values
at any fixed FPR value.
Statistical comparison between clustering methods based
on F-P plots
While comparing two methods, clusters that have at
least one true positive member are identified. Then, the
closest 50 % of these clusters to the top-left corner of
the corresponding F-P plot are considered for a t-test.
After that, t-test is applied to test if the two subsets of
distances are significantly different from each other. The
generated statistics are the mean (μ) of the signed differ-
ences between distances, its standard deviation (σ), and
the p-value. The mean of the signed differences ranges
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from −
ffiffiffi
2

p
to

ffiffiffi
2

p
because the diameter of the F-P plot isffiffiffi

2
p

. Closer values to −
ffiffiffi
2

p
indicate that the clusters gen-

erated by the first method have smaller distances from
the top left corner of the F-P plot and therefore are bet-
ter, while the opposite is true when the values are closer
to

ffiffiffi
2

p
. Mean values closer to zero indicate that both

methods’ results are similar to each other.

Results
We have performed two sets of experiments in order to
demonstrate the usefulness of the UNCLES method.
The first set uses a set of six synthetic datasets generated
by merging controlled parts of real datasets to preserve
real datasets statistics (i.e. contain real measured values),
and the second set of analyses uses 14 real budding yeast
datasets.

Synthetic data analysis
Synthetic datasets are commonly used in the validation
of new computational methods as their ground truth is
known and controlled beforehand. Many methods exist
in the literature to model microarray expression data
while considering different variables such as noise and
degraded synchronisation, and are then used to generate
synthetic datasets [27–30]. We have followed a different
procedure to overcome these concerns, and to produce
synthetic datasets that preserve the statistics of real data-
sets. As detailed in Methods, we have produced five sets
of datasets with the genome sizes (GS) of 1200, 2000,
3000, 5000, and 7000 genes respectively. Each of the five
sets includes six datasets labelled as P1, P2, P3, N1, N2,
and N3. The synthetic datasets include one cluster with
75 genes, C1, that is consistently co-expressed in all of
the six datasets, another cluster with 85 genes, C2, that
is specifically consistently co-expressed in the positive
datasets while being poorly co-expressed in the negative
datasets, and the rest of the genome, C0, that is poorly
consistently co-expressed everywhere (Fig. 2). All of the
produced synthetic datasets are available in Additional
files 1, 2, 3, 4, and 5.

Experimental setup
We have applied UNCLES to each of the five sets of syn-
thetic datasets generated with the five different genome
sizes (GS). Each of those sets of datasets has been
considered with all of the numbers of clusters (K) of
4, 8, 12, 16, 20, and 25. We have applied UNCLES
with both external specifications types A and B (see
Methods). Type A aims at identifying the subsets of
genes consistently co-expressed over all of the datasets,
and type B aims at identifying the subsets of genes spe-
cifically consistently co-expressed in the positive set of
datasets P1, P2, and P3, while being poorly consistently
co-expressed in the negative set of datasets N1, N2, and
N3. The used DTB δ values [10] for UNCLES type A are
zero to unity with steps of 0.1, and the (δ+, δ−) pair
values for the novel UNCLES type B are all possible
pairs while ranging each of the δ values from zero to
unity with steps of 0.1.
The individual clustering methods which have been

used to produce the initial partitions fed to the following
steps of UNCLES are k-means with KA initialisation [7],
self-organising maps (SOMs) [9], and hierarchical clus-
tering (HC) with Ward’s linkage [8]. Note that k-means
mines for spherical clusters, SOMs consider competition
between clusters while distributing their models (nodes)
over a grid with defined spatial relations, and HC con-
siders a hierarchical structure with a set of nested clus-
ters that are joined or split based on the level of
required resolution. In other words, we have considered
three very popular methods belonging to three different
families of clustering methods to maximise the diversity
in clustering criteria and therefore increase the signifi-
cance of the methods’ agreement, i.e. consensus.
Prior to clustering, it is important to ensure that the

datasets are normalised appropriately. As per the studies
from which the datasets were taken, the datasets P1, P2,
P3, and N1 are based on one-channel microarray plat-
forms and were normalised by quantile normalisation
[23–25], while the datasets N2 and N3 are based on
two-channel microarray platforms and were normalised
by background subtraction, print-tip loess normalisation
(within-array normalisation), and then between-array
scaling normalisation [26]. Adopting these normalisation
methods complies with the recommendation by the lit-
erature, such as the review by Roberts [31].
We also compared our results with the results of apply-

ing other methods to the same datasets. We have tested
k-means with KA initialisation [7], self-organising maps
(SOMs) [9], hierarchical clustering (HC) with Ward’s link-
age [8], and the ensemble clustering method relabeling
and voting [32]. These methods were applied separately to
each of the six datasets within each of the five sets of data-
sets at the adopted genome sizes (GS) 1200 to 7000 and
by considering the ten K values 4, 8, 12, 16, 20, 25, 50, 75,
100, and 125. The reason for using high K values for those
methods, as opposed to UNCLES, is that those methods
do not possess the unique feature of our method, which is
the ability to tune the results to obtain tighter clusters
while leaving most of the genes unassigned to any cluster.
In other words, for those methods to obtain clusters of
sizes that are comparable to the sizes of the ground truth
clusters (75 and 85), high K values are needed.

UNCLES results
The perfect result of 100 % specificity and 100 % sensi-
tivity would be obtained if the cluster C1 is discovered
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by type A of UNCLES, and that the cluster C2 is discov-
ered by type B. For any single set of datasets, i.e. for a
specific genome size (GS), there are 935 individual clus-
ters generated by type A by considering all of the K and
the δ values, and there are 10,285 individual clusters
generated by type B by considering all of the K and the
(δ+, δ−) pair values. Each of the other four clustering
methods has generated 2,610 individual clusters by con-
sidering all of the K values; remembering that those
methods have been applied to the six datasets separately,
not collectively.
M-N scatter plots (see Methods) for each of the con-

sidered genome sizes for UNCLES types A and B are
shown in Fig. 4 (the first and the third columns) while
marking the selected best cluster in each case with a
solid grey circle. To validate our approach, we have also
shown the ground-truth-dependent F-P scatter plots
(see Methods) for each of these cases in the second and
the fourth columns (Fig. 4). The selected clusters based
on the M-N scatter plots are also marked on the F-P
plots with solid grey circles.
The first, most relevant and most interesting observa-

tion is that in both types of external specifications A and
B, i.e. for clusters C1 and C2, and for all of the genome
sizes considered (GS), the clusters selected based on the
ground-truth-independent approach scored the best (M-
N plots), or very close to the best, scores in the ground-
truth-dependent approach (F-P plots) (Fig. 4). This not
only proves the ability of UNCLES to find the clusters of
genes that meet each of the proposed types of external
specifications A and B, but also proves the validity of
using the M-N scatter plots approach to select the best
clusters from the methods’ results.
All of the clusters generated by the other four cluster-

ing methods with which we compare our method, and
based on all of the datasets and K values, are scattered
on the sub-plots of the second and the fourth columns
in Fig. 4. For both C1 and C2, all of the clusters
Table 1 Clustering methods’ performance comparison

C GS UNCLES versus closest

C1 1,200 −0.81 ± 0.15 (9.3 × 10−

2,000 −0.88 ± 0.17 (7.3 × 10−

3,000 −0.93 ± 0.15 (1.6 × 10−

5,000 −0.92 ± 0.15 (7.6 × 10−

7,000 −0.77 ± 0.15 (3.6 × 10−

C2 1,200 −0.93 ± 0.15 (<10−255)

2,000 −0.92 ± 0.17 (<10−255)

3,000 −0.60 ± 0.15 (6.3 × 10−

5,000 −0.55 ± 0.13 (1.1 × 10−

7,000 −0.48 ± 0.13 (4.8 × 10−

*The format of the entries in these two columns is: μ ± σ (p-value) [method(s)]. The
most significantly separated pair of other clustering methods is the pair with the sm
generated by the other four methods, even at their best,
lag significantly behind many of the clusters generated
by our method including the ones selected by the M-N
plot approach (F-P plots in Fig. 4 and the third column
in Table 1). On the other hand, there is no similarly
significant difference among these four methods (the
fourth column in Table 1).
The black continuous curves in the F-P plots in Fig. 4

mark the upper theoretical boundary of the scaled p-value
at any given FPR value; this happens when the clustering
method does not miss any of the target genes, i.e. at zero
false-negatives. The top left corner represents the ideal
case which is when the discovered cluster has exactly all
of the target genes (75 genes for C1 and 85 genes for C2).
For any fixed cluster’s size, the best case is to have no
false-positives if the cluster’s size is less than or equal to
the number of target genes, and to have no false-negatives
if the cluster’s size is larger than or equal to the number of
target genes. These cases can be marked on the plots start-
ing from the bottom left corner for smallest clusters, and
then as clusters include more genes, their marks go up
along the vertical axis to the top left corner, and then slide
along the black curve towards the bottom right corner. Al-
most all of the cases of the cluster C1 generated by our
method occur on the aforementioned path and large por-
tions of the cases of the cluster C2 also occur on that path
as well (Fig. 4). Moreover, in many cases, our method has
been successful in finding the theoretically ideal cluster;
this has happened at almost all of the genome sizes for C1
and for the first two genome sizes for C2. The K and δ or
(δ+, δ−) values at which the best clusters were found for
each of the considered genome sizes are shown in Table 2.
Most of the clusters generated by our method in both

cases are irrelevant to the target clusters, i.e. they include
no true-positives, and they are shown as dense points at the
bottom right corners. Having high densities on the vertical
axis, the black continuous carve, and the bottom right cor-
ner, with low densities elsewhere, indicates that the results
competitor* Most separated pair of other methods*

61) [HC] −0.13 ± 0.17 (1.5 × 10−10) [HC, RV]
55) [HC] −0.15 ± 0.18 (1.7 × 10−11) [HC, RV]
68) [HC] −0.12 ± 0.16 (2.5 × 10−11) [SOMs, RV]
66) [HC] −0.09 ± 0.14 (1.9 × 10−8) [SOMs, RV]
54) [SOMs] −0.08 ± 0.12 (2.9 × 10−9) [SOMs, RV]

[SOMs] −0.04 ± 0.14 (5.8 × 10−7) [SOMs, RV]

[HC] −0.04 ± 0.12 (5.0 × 10−7) [HC, RV]
244) [HC] −0.03 ± 0.11 (6.7 × 10−5) [HC, RV]
234) [HC] −0.02 ± 0.09 (2.0 × 10−4) [HC, RV]
219) [HC] −0.02 ± 0.09 (1.3 × 10−3) [HC, RV]

closest competitor to UNCLES is the one with the largest p-value while the
allest p-value. See Methods for details



Table 2 UNCLES parameters for the clusters selected by the
M-N scatter plots for types A and B at each of the considered
GS values

Cluster GS K δ Cluster GS K δ+ δ-

C1 1,200 4 0.8 C2 1,200 4 0.7 0.8

2,000 4 0.7 2,000 8 0.6 0.7

3,000 12 0.4 3,000 4 0.7 0.8

5,000 4 0.7 5,000 20 0.3 0.6

7,000 4 0.8 7,000 8 0.5 0.8
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clearly separate the relevant cluster with its different tight-
ness levels from the rest of the irrelevant clusters.
There is general agreement between the ground-truth-

independent approach (M-N plots) and the ground-truth-
dependent approach (F-P plots). Slight perturbations in
the ground-truth-independent approach (M-N plots) have
been seen to lead to such slight perturbations in the
ground-truth-dependent approach (F-P plots). This dem-
onstrates the robustness of our approach in selecting the
best cluster in an independent manner of the known
ground-truth, i.e. the M-N plots approach.
To assess the uniqueness of type B further, we have ap-

plied UNCLES type A only to the datasets P1, P2, and P3.
As expected, and at all of the considered GS values, two
distinctly and equally high-quality clusters were identified
in this supplementary experiment representing the clus-
ters C1 and C2. Indeed both clusters are consistently co-
expressed in those three datasets. However, type B filters
out the cluster C1 because it requires an additional specifi-
cation to be satisfied, that is, for the cluster to be poorly
co-expressed in the negative datasets N1, N2, and N3.
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Fig. 5 Demonstration of the iterative process of selecting the best four clu
synthetic datasets with a GS of 1,200. The union of the scattered black squ
the clusters generated at all of the K values and at all of the δ or (δ+, δ-) va
closest to the top left corner. The red stars represent the clusters which sh
from the left to the right, the clusters marked by red stars are removed and
first four iterations for types A and B are shown in this Figure
For a further demonstration of the iterative process of
the M-N plots, we show the M-N plots for the first four it-
erations for both types A and B while analysing the set of
datasets with GS = 1,200 in Fig. 5. The plots in the first it-
eration, represented by the leftmost column in this Figure,
are identical to those shown in Fig. 4. The best cluster is
shown as a solid blue circle, the clusters which share at
least a single gene with that best cluster are shown as red
stars, while the rest of the clusters are shown as black
squares. The plots in the second iteration represent those
from the first iteration after removing the best cluster and
all of those clusters which have some overlap with it, i.e.
the solid blue circle and the red stars. The closest cluster
to the top left corner in the reduced M-N plot is identified
as the second best cluster, and the iterative process is re-
peated again. More about the stopping criteria of this
process are discussed and demonstrated in the analysis of
budding yeast data later in this article.

Weighting datasets by numbers of samples
In order to assess the effect of differences between datasets
in their number of samples / data-points, we have repeated
the experiment while weighting the datasets by their num-
bers of samples. Weighting takes place at the stage of com-
bining the relabelled individual partitions produced by
clustering each dataset separately by multiple methods.
More precisely, combining those partitions takes the form
of weighted averaging instead of ordinary averaging in order
to produce the fuzzy consensus partition matrix (CoPaM).
In this case, the fuzzy membership value of a given gene in
a given cluster is a weighted contribution of all datasets
proportional to their relative numbers of samples.
Iteration 3 Iteration 4

MSE−related metric MSE−related metric

sters from both types A and B using M-N plots while analysing the
ares and red stars in the M-N plots of the first column represents all of
lues. The big solid blue circle represents the best cluster, i.e. the cluster
are at least one gene with that best cluster. Moving through the plots
the process is repeated iteratively over the remaining clusters. The
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Fig. 6 shows the M-N scatter plots and the F-P scatter
plots resulted from this experiment in a similar format to
Fig. 4. It can be seen while comparing the two Figures that
the results are very similar. It is worth mentioning that the
number of samples in the six datasets P1, P2, P3, N1, N2,
and N3 is 18, 18, 6, 16, 12, and 12, respectively. Taken to-
gether, it has been demonstrated that the results of the UN-
CLES analysis do not change significantly by weighting the
datasets by the number of samples in this given range.
Robustness to gene expression perturbations
Measured gene expression values are composed of the ac-
tual gene expression in addition to various undesirable
components such as noise due to the inaccuracy of the bio-
logical setup of the experiments or the technical tolerance
of the technologies adopted (e.g. microarrays). Thus, if the
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same biological experiment was performed multiple times
to measure the expression of the same genes, it is expected
that the measured values will vary around a mean value
representing the actual expression.
We have undertaken an experiment to test the robust-

ness of our method’s results under such variations. This
has been done by adding a zero-mean Gaussian noise to
the expression values of all of the genes in all of the six
datasets and then applying UNCLES followed by the M-N
plots technique to them. The standard deviation of the
added Gaussian noise has been estimated for each sample
/ time-point in each of the datasets independently and
based on the data itself. Let the standard deviation at the
sample / time-point i of the dataset d be σdi, where
d ∈ {P1, P2, P3, N1, N2, N3} and i ∊ [1…Nd] such that Nd is
the number of samples / time-points in the dataset d. The
value of σdi is estimated by the following equation:
C2C2

F−P plotsM−N plots

enerated by UNCLES, weighted by datasets’ numbers of samples, and
lid grey circles, and their corresponding points in the F-P plots are
plots represent the clusters produced by the UNCLES method while
her methods
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Fig. 7 F-P scatter plots of the best C1 and C2 clusters selected by
the M-N plots after applying UNCLES types A and B to the synthetic
datasets with added noise. Each sub-plot is an F-P scatter plot with
ten points representing the best C1 or C2 cluster identified by each of
the ten repetitions of the experiment of adding noise to the datasets,
clustering by the UNCLES method, and cluster selection by the M-N
scatter plots. This experiment has been performed for each of the five
different adopted genome-sizes from 1,200 to 7,000. The scale of each
F-P plot, which has been omitted for clarity, is from zero to unity for
both dimensions
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where xdig is the genetic expression of the gene g at the
sample / time-point i in the dataset d and �xdiC1 and
�xdiC2 are the mean expression values of the genes in the
clusters C1 and C2 respectively at the sample/time-point
i in the dataset d.
The justification of this modelling of the standard de-

viation of the added noise is that the genes in the cluster
C1 are assumed to be co-expressed as per the studies
which produced the six datasets, and the genes in the
cluster C2 are assumed to be co-expressed as per the
studies which produced the positive datasets P1, P2, and
P3 (see Methods for details). However, the expression
profiles of the genes within those clusters are not
identical and do vary from each other due to the
aforementioned factors. Therefore, we consider that
the standard deviation observed in the genes within those
clusters at a given sample/time-point is representative of
the possible variation of any given gene at that sample/
time-point if measured multiple times under similar
conditions. It is worth noting that the datasets already
have noise as they have been assembled from real data-
sets and the added noise is an extra layer of noise to test
the method’s robustness further.
We have repeated this experiment of adding Gaussian

noise to the datasets followed by applying the UNCLES
method and the M-N scatter plots technique ten times
for each of the considered genome-sizes from 1,200 to
7,000. The first cluster selected by the M-N scatter plots
in each of the ten repetitions given an UNCLES type (A
(cluster C1) or B (cluster C2)) at a given genome-size
(GS) is plotted as a point on the relevant F-P scatter plot
in Fig. 7. Each sub-plot in this Fig. is related to a given
UNLES type and a GS value, while the ten points plotted
in any of those sub-plots represent the top clusters in
each of the ten repetitions of the experiment.
It can be seen in this Figure that, despite the added

noise, the results of type A (C1) at all GS values and the
results of type B (C2) at GS values up to 3000 are
extremely close to the ideal result represented by the
top-left corners of the F-P plots. Nonetheless, the results
of type B (C2) at high GS still show very good proximity
from the top-left corners in most of the repetitions, rela-
tive to those in Fig. 4. This experiment strongly demon-
strates the robustness of the UNCLES method coupled
with the M-N scatter plots under extra levels of noise.

Comparison with biclustering methods
Biclustering methods aim at finding genes that are co-
expressed, not necessarily in all of the provided data
samples, but at least in some of them. A bicluster is a
cluster defined by a subset of genes and a subset of data
samples (data matrix columns). Here, we compare our
UNCLES analysis of the synthetic datasets with eight dif-
ferent biclustering methods.
Biclustering methods can be applied only to a single
dataset. Therefore, and given any genome size (GS), we
have concatenated the six synthetic datasets horizontally
to produce a single data matrix with GS rows and 82
columns, where this number of the columns is the total
number of columns (samples) in all of the six datasets.
The profiles of the two ground-truth clusters C1 and C2
in the combined dataset are shown in Fig. 8. The first 42
columns belong to the three positive datasets P1, P2,
and P3, while the last 40 columns belong to the three
negative datasets N1, N2, and N3, and it can be clearly
seen in this Figure that C1 genes are consistently co-
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Fig. 8 Synthetic data ground truth clusters C1 and C2 combined expression profiles from all of the six datasets. The vertical dashed lines show
the boundaries between the samples belonging to each of the six datasets in their respective order of P1, P2, P3, N1, N2, and N3. C1 shows
consistent co-expression over all of the combined 82 samples (data matrix columns), while C2 shows consistent co-expression only over the first
42 samples
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expressed in all of the 82 columns (samples) while C2
genes are distinctly co-expressed in the first 42 ones.
Eight different biclustering methods were applied to

the combined datasets, namely Cheng and Church (CC)
[15], Plaid [16], Bimax [17], Spectral [33], FLOC [34],
XMOTIFS [35], large average sub-matrices (LAS) [36],
bipartite spectral graph partitioning (BSGP) [37]. At all
genome sizes, Spectral and XMOTIFS produced no
clusters, while CC produced a single trivial cluster that
encompasses the entire genome and all of the data sam-
ples. Comparison between the UNCLES method and the
five biclustering methods that neither produced no clus-
ters nor included the entire dataset in a single cluster is
shown in Table 3.
Table 3 shows two metrics for each method’s results

considering the clusters C1 and C2 based on each of the
five different considered genome sizes (GS). The first
metric is the shortest distance from the top left corner
of the F-P scatter plot; this ranges from 0.0 for the ideal
cluster to

ffiffiffi
2

p
≅1:41 for the worst possible cluster. The

second metric is the number of correctly identified data
matrix columns (data samples) out of the total number
of correct data matrix columns; for type A, all of the 82
samples (combined from the six datasets) represent the
correct samples, while for type B, the 42 samples origin-
ally belonging to the positive datasets P1, P2, and P3, are
the correct ones.
At all genome sizes, and for both types, type A (cluster

C1) and type B (cluster C2), the UNCLES results showed
the best performance (minimising the distance and max-
imising correctly identified data matrix columns / sam-
ples). The only exception is for C2 at the genome size
(GS) of 3,000 genes, where the LAS method scores a
subtly smaller distance than UNCLES. However, even at
that latest case, UNCLES’ F-P distance is 0.33 compared
to 0.32 for LAS, which indicates an insignificant differ-
ence between the two distances. Moreover, LAS and all
of the other biclustering methods have identified only
few data matrix columns out of the total number of cor-
rect columns.
Although all of the biclustering methods lag behind

UNCLES, it can be seen that Plaid, LAS, and BSGP,
perform relatively better than FLOC and Bimax. In gen-
eral, LAS shows more consistent quality across varying
genome sizes (GS) compared to Plaid and BSGP.

Budding yeast data analysis
Data and experimental setup
We have analysed two subsets of budding yeast datasets
(Table 4). The positive subset (S+) consists of eight yeast
cell-cycle datasets [38–41]. Each of these eight datasets
represents the genetic expression of the budding yeast
(Saccharomyces cerevisiae) genome over two cell-cycles.
The negative subset (S−) consists of six non-cell-cycle bud-
ding yeast datasets [42–44]. We found 4422 genes which
are included in each of 14 datasets and meet the allowed
missing values criterion (Table 4); these were the genes
to which we have applied our analysis.
Most of the datasets were normalised by the groups

who generated them in a manner which suits the nature
of the microarray chips used to produce them. However,
we have also ensured that the genes of all of the datasets
have a zero mean, and as recommended by the review
by Roberts [31], we have further normalised the one-
channel datasets by quantile normalisation and let them
have a unity standard deviation.



Table 3 Comparison between UNCLES and eight biclustering
methods

Cluster and s UNCLESab Plaida Bimaxa FLOCa LASa BGSPa

C1 1200 0.00 0.10 1.00 1.35 0.13 0.61

82/82 20/82 4/82 6/82 21/82 1/82

C1 2000 0.00 0.64 1.06 1.38 0.16 0.75

82/82 22/82 4/82 6/82 21/82 2/82

C1 3000 0.00 0.95 1.12 1.39 0.29 0.90

82/82 37/82 4/82 6/82 18/82 0/82

C1 5000 0.04 1.28 1.21 1.40 0.45 0.06

82/82 5/82 3/82 6/82 18/82 0/82

C1 7000 0.02 0.97 0.95 1.40 0.59 0.09

82/82 30/82 4/82 6/82 19/82 0/82

C2 1200 0.00 0.76 1.21 1.36 0.31 0.96

42/42 5/42 3/42 2/42 15/42 0/42

C2 2000 0.00 0.92 1.26 1.37 0.28 0.91

42/42 16/42 3/42 3/42 15/42 0/42

C2 3000 0.33 0.99 1.29 1.38 0.32 1.00

42/42 5/42 3/42 5/42 15/42 0/42

C2 5000 0.40 1.07 1.32 1.40 0.71 1.14

42/42 5/42 3/42 2/42 13/42 0/42

C2 7000 0.43 1.18 1.30 1.40 0.70 1.17

42/42 5/42 3/42 4/42 13/42 0/42
aEach cell in those columns includes two values – the first is the distance from
the top-left corner of the ground-truth-based F-P plots for the best cluster
found by each method; the ideal is zero and the maximum is

ffiffiffi
2

p
≅1:41; the

second value is the number of data samples (data matrix columns) which the
algorithms correctly found for the corresponding clusters out of the total number
of correct samples (82 for type A and 42 for type B)
bThe number of data matrix columns (samples) are prefixed for UNCLES while
being variable for biclustering methods

Table 4 Budding yeast microarray datasets

Name Genes Time
pts.

Total time
(min)

Missing values
allowed

Reference

S+

Cdc28 6223 17 160 1 / 17 [39]

Alpha 6178 18 119 1 / 18 [38]

Alpha-30 6266 25 120 1 / 25 [40]

Alpha-38 6266 25 120 1 / 25 [40]

Orl-wt1 5667 15 224 0/15 [41]

Orl-wt2 5667 15 224 0/15 [41]

Orl-mt1 5667 15 224 0/15 [41]

Orl-mt2 5667 15 224 0/15 [41]

S-

Sporulation 6118 7 690a 0/7 [42]

C-impulse 5667 15 420a 0 / 15 [44]

N-impulse 5667 15 420a 0 / 15 [44]

MMS-wt 6127 7 120a 1 / 7 [43]

Gamma-wt 6127 8 120a 1 / 8 [43]

Mock-wt 6127 4 90a 0 / 4 [43]
aThe time-points for these datasets were not sampled uniformly over the total
time interval
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While considering k-means with KA initialisation [7],
SOMs [9], and HC with Ward’s linkage [8] as starting
methods, we have applied UNCLES with both types A and
B of external specifications to these datasets. These two
types can be restated as finding the subsets of genes that
are generally consistently co-expressed in budding yeast
under various conditions and different biological contexts
for type A, and finding the subsets of genes that are specif-
ically consistently co-expressed in yeast cell-cycles while
losing such consistency under other biological conditions
for type B. These other conditions include sporulation,
carbon and nitrogen nutrient perturbation, and stress con-
ditions (Table 4). The adopted numbers of clusters (K)
have been 4, 8, 12, 16, 20, and 25 while the values of δ
(type A), δ+, and δ− (type B), range from zero to unity with
steps of 0.1. Therefore, there are 935 resulting clusters
from type A and 10,285 clusters from type B.

Clusters evaluation and selection
The M-N scatter plot for the 935 clusters of type A is
shown in the sub-plot (A1) in Fig. 9. The closest cluster
to the top-left corner is selected as the best cluster and
marked by a solid blue circle. All of the clusters which
share at least a single gene with A1 are considered as
other versions of it, are marked by red stars, and are
then excluded from the complete set of clusters. The
next M-N plot of type A shows the same clusters of the
first M-N plot after the exclusion of the best cluster and
the other versions of it, i.e. after excluding the solid blue
circle and the red stars. The best cluster for that second
iteration is selected by the same approach, named as A2,
and the process is repeated iteratively. Fig. 9 shows the M-N
plots for the first four iterations while selecting the best
clusters of both types A and B. Indeed, type B clusters
are labelled as B1, B2, etc.
Fig. 10 shows the distances of the selected clusters at

the first six iterations for both types A and B from the
top-left corners of the corresponding M-N scatter plots
(the M-N plots for the first four iterations are shown in
Fig. 9). It can be seen for type A that there is a large gap
between the first cluster (distance = 0.45) and the second
cluster (distance = 0.63). Therefore, we have selected the
cluster A1 as the only significant cluster for type A.
Although the same scenario can be seen in type B
(distance of B1 = 0.38, and distance of B2 = 0.51), there is
another gap between the second and the third clusters
(distance for B3 = 0.57). We have selected both clusters
B1 and B2 as the significant clusters of type B. It can be
clearly seen in Fig. 11 that A1 is consistently co-
expressed in all of the four datasets while B1 and B2 are
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Fig. 9 Demonstration of the iterative process of selecting the best four yeast clusters from both types A and B using M-N plots. The union of
the scattered black squares and red stars in the M-N plots of the first column represents all of the clusters generated at all of the K values and
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exclusively consistently co-expressed in the two repre-
sentative S+ datasets while being poorly co-expressed in
the two representative S− datasets. Thus, the results
match the original different external specifications set
for both types A and B.
Some researchers might choose to select more clusters

based on Fig. 10 than those we have chosen. We con-
sider this selection to be a study-specific issue on which
the decision is made based on the tolerance of cluster
quality that best serves the given requirements. For ex-
ample, one may choose to select the first four clusters in
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Fig. 10 Distances from the top left corners of the M-N plots for the
yeast clusters selected at the first six iterations for types A and B
the case of type A because there is a gap in distances be-
tween the fourth and the fifth clusters as seen in Fig. 10.
However, if a researcher terminates selection of clusters
after the third cluster, it can be argued that the fourth
cluster is not significantly different from the third for it
to be excluded while including the third.

Biological information-based validation
We have used the GO Term Finder tool of the Saccha-
romyces Genome Database to find the enriched bio-
logical processes in the clusters A1, B1, and B2
(Additional file 6). The most enriched processes in A1
are ribosome biogenesis (120/167 genes, p-value 4.6 ×
10−114) and many RNA processing processes like
ncRNA processing (99/167 genes, p-value 3.8 × 10−80),
rRNA processing (87/167 genes, p-value 1.6 × 10−75),
and RNA processing (99/167 genes, p-value 1.4 × 10−63).
The most enriched processes in B1 are DNA metabolic
process (65/203 genes, p-value 3.3 × 10−26), cell cycle (74/
203 genes, p-value7.8 × 10−25), and many other processes
related to DNA metabolism such as DNA replication (34/
203 genes, 1.2 × 10−19) and DNA repair (41/203 genes,
6.4 × 10−19). The most enriched processes in B2 are
chromosome organisation (21/62 genes, 8.4 × 10−9),
microtubule-based process (12/62 genes, 1.1 × 10−7), mi-
totic cell cycle (17/62 genes, 5.8 × 10−7), and chromosome
segregation (12/62 genes, 1.2 × 10−6).
Note that genes which participate in ribosome biogen-

esis and RNA processing processes have been previously
reported to be generally co-expressed in various types of
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conditions, and that they are generally up-regulated under
growth conditions but down-regulated under stress condi-
tions [6, 11]. This observation validates the identification
of this subset of genes (A1 in our results) as the most con-
sistently co-expressed subset of genes in budding yeast
over 14 different datasets. It can be clearly seen that the
clusters B1 and B2 are both enriched with cell cycle-related
processes, and that their profiles in the cell cycle datasets
are cyclic (Fig. 11). These facts resonate well with the
original question which has been addressed by type B of
our novel method. It can also be seen in Fig. 11 that there
is a phase shift between the cyclic profiles of B1 and B2.
By referring to the studies which generated these datasets
(Table 4), it can be seen that the cluster B1 peaks at the
transition between the stages of gap 1 and synthesis (G1/S
transition) while B2 peaks at late synthesis stage (S). The
enriched biological processes in both clusters are consist-
ent with this observation [38, 40].

Genes with unknown biological processes in A1 may be
involved in rRNA processing and ribosome biogenesis
There are seven, out of the 167, genes in A1 that have un-
known biological processes (GO Slim analysis in
Additional file 6). The seven genes are YBL028C, BMT2,
YCR016W, RRT14, CMS1, TMA16, and YDR514C. Des-
pite not being assigned to a known biological process,
many observations in the literature, as detailed below,
resonate well with their inclusion in this cluster enriched
with rRNA processing and ribosome biogenesis genes. In
terms of localisation, all seven genes’ products are localised
in the nucleus (p.v. 1.7 × 10−3) while the first four are also
localised in the nucleolus (p.v. 6.4 × 10−3), where ribosome
biogenesis actually occurs. YBL028C and TMA16 were
found to co-localise with the ribosome [45]. YBL028C,
YCR016W, and RRT14 are amongst the hundreds of genes
predicted by Wade and colleagues to be involved in ribo-
some biogenesis, but never confirmed [6]. BMT2 has been
found to methylate adenine (m1A) of the large subunit
(LSU) rRNA [46], and CMS1 is a putative subunit of the
90S preribosome processome complex [47].
To investigate co-regulation, we have used the MEME

tool to analyse the 300 DNA upstream base-pairs of the
genes included in this cluster [48]. The top two discov-
ered motifs were found in the upstream sequences of
149 and 133 out of 167 genes in A1 respectively with
the respective E-values of 1.2 × 10−334 and 5.9 × 10−112.
By using the TOMTOM tool, the first of motif was
found to match the binding sites of the transcription fac-
tors DOT6 (p.v. 6.9 × 10−6) and TOD6 (p.v. 2.4 × 10−4).
The second motif matches the ribosomal RNA processing
element (RRPE), which is the binding site of STB3 (p.v.
3.1 × 10−6). Those transcription factors are well known
regulators of the rRNA processing and ribosome biogen-
esis regulon [6, 49]. The first of those two motifs was
found in the upstream sequences of six out of the seven
genes with unknown processes, namely all but YCR016W,
while the second one was found in four of them, namely
YBL028C, BMT2, YCR016W, and TMA16.
In conclusion, those observations indicate that six out

of the seven genes with unknown biological processes in
A1, after excluding YCR016W, may be involved in ribo-
some biogenesis and/or rRNA processing, and that they
are co-regulated with them.

Genes with unknown biological processes in B1 may be
involved in the G1/S cell-cycle phase
The GO Slim analysis conducted in this study has re-
vealed that 24 out of the 203 genes included in the
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cluster B1 have not been assigned to any known bio-
logical process (Additional file 6). As this cluster shows
a cyclic expression which peaks at the G1/S phase tran-
sition of the cell-cycle (Fig. 11), we have compared its
contents with the cluster C1 identified and thoroughly
investigated in our recent study [18]. Interestingly, 17
out of 19 genes included in C1 at δ = 1.0 are also
included in B1 (Table 5). Those include the gene CMR1
(YDL156W) which was the main subject of that recent
study. Moreover, B1 includes more than half of the
genes included in C1 at all tightness levels. More im-
portantly, it virtually includes all of the genes hypothe-
sised in that study to be co-working with CMR1 such as
the three subunits of the replication factor A (RFA1,
RFA2, and RFA3) and most of the subunits of the DNA
polymerases [18].
More interesting findings have been observed when

we investigated the GO term enrichment in the 90 genes
included in B1 but not in C1 at any of its levels of
tightness as well as the 103 genes included in C1 even at
δ = 0.0 but not in B1. We will refer to those two subsets
of genes by using the set difference notation (B1 – C1)
and (C1 – B1), respectively. The (B1 – C1) subset is
enriched with the terms “cell-cycle process” (32/90
genes; p.v. 2.3 × 10−10), “DNA metabolic process” (25/90
genes; p.v. 1.3 × 10−7), and other related processes, while
12 out its 90 genes have unknown biological processes.
On the other hand, there are 41 genes, out of the 103, in
(C1 – B1), that have unknown biological processes, and
the most enriched known biological processes are “telo-
mere maintenance via recombination” (7/103 genes; p.v.
1.9 × 10−6), “DNA recombination” (13/103 genes; p.v.
2.1 × 10−4), and “DNA metabolic process” (20/103 genes;
p.v. 3.6 × 10−3). Thus, B1 is more focused than C1 on
the processes of interest in both studies, i.e. cell-cycle
and DNA metabolism processes.
We have also used the MEME tool to identify the

most enriched motifs in the upstream sequences of the
genes in B1. The top two motifs were found in the
upstream sequences of 179 and 117 genes with the E-
values of 2.2 × 10−109 and 5.0 × 10−64, respectively. By
using the TOMTOM tool, the first motif was found to
match binding sites of the transcription factors AZF1
(p.v. 1.1 × 10−5) and SFL1 (p.v. 3.9 × 10−4). Interestingly,
Table 5 Comparison between the B1 cluster in this study and
the C1 cluster in our previous study [18] at varying δ values

C1 δ value Total in C1 Also in B1 Not in B1

0.0 216 113 103

0.95 148 90 58

0.99 117 81 36

1.0 19 17 2

B1 includes 203 genes, 90 of which are not included in C1 even at δ = 0
the second motif was found to match the binding sites
of the transcription factors SWI4 (p.v. 1.8 × 10−5) and
MBP1 (p.v. 4.4 × 10−5), and the binding site of the tran-
scription factor complex MBP1/SWI6 (p.v. 9.0 × 10−5).
Those later transcription factors are well known regula-
tors of the cyclic genes peaking at the G1/S transition
[50, 51, 18], which is consistent with our findings.
Taken together, these findings and comparisons clearly

show that the new approach reconfirms the hypotheses
presented in our previous study regarding the gene
CMR1 (YDL156W). This study redefines the subset of
genes peaking at G1/S transition which may be involved
in cell-cycle and DNA metabolism processes. Therefore,
we hypothesise that the 24 genes included in this cluster
with unknown processes may be involved in the cell-
cycle G1/S phase progression through DNA metabolism,
and that they are expected to be co-regulated with the
other known genes in this cluster.

Discussion
We have proposed a new method, UNCLES, which unifies
the results of clustering analysis of multiple datasets based
on different types of external specifications. Although the
main context of this study considers transcriptomic data-
sets (e.g. microarray datasets), any other set of datasets
over which analogous questions can be asked are subject
to our method. We have defined two types of external
specifications; type A mines for the subsets of genes con-
sistently co-expressed in all of the included datasets, and
type B mines for the subsets of genes specifically consist-
ently co-expressed in one subset of datasets (S+) while
being poorly consistently co-expressed in another subset
of datasets (S−). We have also proposed a novel technique
to solve the problem of selecting the best cluster(s) out of
all of the generated results by both types of UNCLES at all
of the different tightness values. This novel technique,
which is based on the proposed M-N scatter plots, there-
fore solves the problems of setting the best number of
clusters (K) as well as the tuning parameters δ and (δ+,
δ−). Finally, our analysis of the real yeast datasets has
resulted in drawing in silico-based hypotheses which iden-
tify potential biological processes of a subset of genes with
previously unknown processes.

UNCLES types A and B objectives
Our results have demonstrated the unique ability of UN-
CLES to address the problem of identifying co-expressed
or not co-expressed elements across multiple datasets.
This has been done by two comprehensive sets of experi-
ments analysing synthetic datasets and real yeast datasets,
respectively. Type A is implemented by configuring the
recently proposed Bi-CoPaM method [10], while type B is
implemented by a sophisticated combination of a pair of
type A results.
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Previously, Piro [3] and Choi [13], and their respective
colleagues, used network-based approaches to identify the
genes which have differential co-expression between dif-
ferent types of datasets. Both studies’ approaches have
parts which cannot be applied in the absence of prior
knowledge on genes’ functions and roles. UNCLES can
therefore be clearly contrasted from those methods in that
it is completely unsupervised and only depends on the ex-
pression values included in the datasets.
Nilsson [2], Wade [6], and their collaborators started

with specific subsets of well-known core genes as tem-
plates then mined multiple datasets for genes that consist-
ently match the starting template [6, 2]. The two studies’
diverged in terms of the observed consistency of co-
expression of the core genes over the datasets; Wade and
colleagues observed consistent co-expression of their core
ribosome and rRNA biosynthesis (RRB) genes under vari-
ous conditions [6], while Nilsson and colleagues observed
the specific consistency of co-expression of their core
haem biosynthesis genes in blood-related datasets while
being poorly co-expressed elsewhere [2]. These studies’
statements, observations, and conclusions prove the im-
portance of addressing the two different questions ad-
dressed by the UNCLES method. Furthermore, although
those studies have raised those questions, they did not
provide a solution to them when they are asked in absence
of a well-known template of core genes, and not even
when the objective is to find more than one single cluster
other than the one which matches such starting template.
On the other hand, our results have demonstrated the
ability of our method to address those two questions in an
unsupervised way.
Other traditional unsupervised methods of co-expression

mining, such as the clustering methods k-means [7], self-
organising maps [9], and hierarchical clustering [8], and
even other consensus clustering methods such as relabel-
ling and voting [32] are statistically and functionally signifi-
cantly inferior than the UNCLES methods for defining co-
expressed subsets of genes across multiple datasets (Fig. 4
and Table 1). These other tested methods were designed to
partition all of the genes provided to them into a number
of clusters. They do not allow genes to be excluded from
all of the clusters and therefore they do not have the ability
of our method to start from an entire genome and end at
focused subsets of genes.
Contrary to traditional unsupervised clustering methods,

biclustering mines a data matrix of rows corresponding to
genes and columns corresponding to samples in order to
identify biclusters, where each bicluster is identified as a
subset of rows (genes) that are well co-expressed in a
subset of columns (samples). The identified clusters can
overlap in terms of their gene-content as well as sample-
content. One of the limiting factors of biclustering
methods when compared to UNCLES is that they are only
applicable when a single dataset is considered. Therefore,
if multiple datasets are considered, they need to be
concatenated in order to obtain a single dataset, which
requires homogeneity and standardisation. Another major
difference between biclustering methods and UNCLES is
that UNCLES aims at identifying the genes that are
consistently co-expressed in some given datasets or
distinctly in a pre-specified subset of them, while bicluster-
ing methods aim at identifying the genes that are co-
expressed in a variable subset of the given conditions
without abiding to a pre-specified subset. In many re-
search instances, the research question naturally specifies
the specific conditions in which consistent co-expression
is favourable, such as in our analysis of budding yeast data
where consistent co-expression has been favourable under
cell-cycle conditions in contrast to other conditions. In
such cases, UNCLES would be more relevant to be
applied.
Beside such fundamental differences between UNCLES

and biclustering, performance comparison has shown
that UNCLES outperforms biclustering methods in iden-
tifying the subsets of genes which meet each of the two
types of external specifications, A and B (Table 3). This
outperformance applies to both identifying the correct
subset of genes as well as identifying the correct subset
of data matrix columns (data samples).

Cluster evaluation using M-N scatter plots
The problems of cluster validation, K value setting, and δ
value setting (the parameter for DTB binarisation) were
stated in our recent proposal of the Bi-CoPaM method as
future work [10]. These problems, as well as the problem
of setting the parameter pair (δ+, δ−) for UNCLES type B,
have now been solved by the proposed M-N scatter plots
technique for cluster evaluation and selection.
We validated the M-N scatter plots technique by using

ground-truth-dependent cluster evaluation metrics. As
can be seen in our results (e.g. Fig. 4), the clusters that are
deemed to be best based on our proposed M-N scatter
plots also score the highest, or very close to the highest,
scores in the ground-truth-dependent metrics. Further-
more, the M-N scatter plots technique has been further
validated when it was applied to real yeast datasets and
provided specific clusters with high biological relevance.
This technique has addressed the problem of the de-

pendency of the MSE metric on the number of genes
within the cluster by restating the objective to be obtain-
ing the largest clusters which are still tight, and this
particular approach of dealing with clusters has made it
very suitable to evaluate the clusters of the UNCLES
method which have tunable levels of size and tightness. By
applying UNCLES with either type A or B many times
with various K values, and then putting all of the resulting
clusters in one pool for evaluation and selection by the M-
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N scatter plot approach, the problem of determining the
best K value has been solved. Finally, the M-N scatter plots
technique is robust across datasets with different genome
sizes, numbers and sizes of the selected clusters and bio-
logical contexts. It has been observed that slight variations
to the distribution of the clusters on an M-N plot would
lead to similar slight variations in the final selected cluster.

Synthesising datasets based on real data measurements
Our proposed approach for generating synthetic datasets
is based on using real data measurements in a controlled
manner. The genetic expression profiles in those data-
sets represent real data expression profiles including
all of real data implications, but with artificial gene
labels. This approach accommodates both realistic
modelling of real data and ground-truth knowledge
of synthetic data. This overcomes the problems which
normally appear in the mathematical models described
previously, that try to mimic real genetic expression and
its accompanying noise with least approximation errors
[27, 28, 30, 29].

Summary and conclusions
Our results have demonstrated the unique ability of our
proposed method, UNCLES, in answering two research
questions with both of its types A and B in an unsuper-
vised and robust manner. We have also proposed and
validated a novel M-N scatter plots technique for cluster
evaluation. This technique was successful in selecting
the best clusters while varying the number of clusters (K
value) as well as the δ and (δ+, δ−) values. Therefore, by
integrating this technique with the UNCLES method,
the method becomes automated and can proceed from
the input set of datasets and individual clustering
methods to the final few focused clusters without the
need to set any critical parameter. Additionally, we have
proposed an approach for expression data synthesis,
where although the ground-truth is controlled and
known, the actual data measurements are borrowed
from real datasets reflecting real rather than artificially
modelled values. Those sets of synthetic datasets, which
are available in Additional files 1, 2, 3, 4, and 5, have
been utilised to validate the UNCLES method and the
M-N plots technique while being compared to other
conventional clustering, consensus clustering, and
biclustering methods. Lastly, we have drawn biological
hypotheses, based on in silico UNCLES analysis, which
relate some budding yeast genes with some biological
processes in which they are potentially involved. These
hypotheses represent significant pilots for future focused
studies. UNCLES has the potential to be expanded by
producing more types of external specifications for the
unification of clustering results to meet other research
requirements. It is also now ready to be adopted by
biologists and other scientists to analyse diverse types of
datasets.
Additional files

Additional file 1: Synthetic data with the genome-size (GS) of 1,200.

Additional file 2: Synthetic data with the genome-size (GS) of 2,000.

Additional file 3: Synthetic data with the genome-size (GS) of 3,000.

Additional file 4: Synthetic data with the genome-size (GS) of 5,000.

Additional file 5: Synthetic data with the genome-size (GS) of 7,000.

Additional file 6: Results of budding yeast data analysis.
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