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In this paper we present a timely application of the proton-neutron deformed quasiparticle random-phase
approximation (pn-dQRPA), designed to describe in a consistent way the 1+ Gamow-Teller states in odd-
odd deformed nuclei. For this purpose we apply a projection before variation procedure by using a single-
particle basis with projected angular momentum, provided by the diagonalization of a spherical mean field plus
quadrupole-quadrupole interaction. The residual Hamiltonian contains pairing plus proton-neutron dipole terms in
particle-hole and particle-particle channels, with constant strengths. As an example we describe the two-neutrino
double-beta (2νββ) decay of 150Nd to the ground state of 150Sm. The experimental (p,n) type of strength in 150Nd
and the (n,p) type of strength in 150Sm are reasonably reproduced and the 2νββ decay matrix element depicts a
strong dependence upon the particle-particle strength gpp . The experimental half-life is reproduced for gpp = 0.05.
It turns out that the measured half-lives for 2νββ transitions between other deformed superfluid partners with
mass numbers A = 82,96,100,128,130,238 are reproduced with fairly good accuracy by using this value of gpp .
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I. INTRODUCTION

One of the important topics in both nuclear physics and
particle physics is the investigation of nuclear double-β
decays [1,2]. The neutrinoless mode, 0νββ decay, is especially
interesting due to its potential to explore physics beyond the
standard model, in particular to discover the fundamental
nature of the neutrino and describing in a reasonable way
the 1+ Gamow-Teller states its absolute mass scale. The
major problem here is to relate quantitatively the potential
experimental discoveries to the neutrino properties since this
has to be done through the nuclear matrix elements (NMEs)
which depend on detailed many-body features of nuclei [3].
At present there are many models that are able to tackle the
problem of double-β decay in medium-heavy and heavy nu-
clei. All these models have their deficiencies and strong points
concerning the model space, configurations, deformation,
shell closures, etc. For recent reviews and analyses of these
models see [4–7]. The traditionally used microscopic model
for double-β calculations is the proton-neutron quasiparticle
random-phase approximation (pn-QRPA) [8]. Mostly the
pn-QRPA based on a spherical mean field has been used in the
calculations. However, many β and double-β decaying nuclei
are more or less deformed and therefore it is very important
to extend the description to a deformed mean field. This is
the starting point of the deformed pn-QRPA (pn-dQRPA).
Most earlier approaches describe Gamow-Teller β decays
by using a pn-dQRPA phonon in the intrinsic system of
coordinates, i.e., in terms of pairs of Nilsson quasiparticles
coupled to a K = 1 spin projection. The physical observables,
like β-decay transition probabilities, are then estimated by
rotating the intrinsic phonon to the laboratory system of
coordinates [9,10]. This formalism was applied in order to

describe the 1+ Gamow-Teller states and 2νββ decay in several
papers [11–14].

Let us mention that this projection after variation procedure
restores only the symmetry of the phonon, by leaving the pn-
dQRPA ground state deformed. A more consistent approach is
to use a single-particle (sp) basis with good angular momen-
tum, i.e., a projection before variation procedure. One way to
obtain this basis consists in projecting good angular momen-
tum from the product between a coherent state, describing the
deformed core, and a spherical sp state [15]. The pn-dQRPA
phonon, describing Gamow-Teller β decays, is built by using
pairs of these quasiparticles that are “dressed by deformation”,
coupled to the spin J = 1 [16,17]. In Ref. [18] this approach
was generalized, by considering all allowed spherical sp states
in order to build a sp state “dressed by deformation”. A partic-
ular case is the adiabatic limit, which coincides with the usual
Nilsson wave function rotated to the laboratory frame. We suc-
cessfully described the available experimental B(E2) values
for collective states in the range 50 � Z � 100 in even-even
nuclei, by using the adiabatic version of this formalism [18].

II. THEORETICAL BACKGROUND

In order to describe the 1+ Gamow-Teller states in odd-odd
deformed nuclei, we will generalize this formalism to the pn-
dQRPA case. To this purpose we will perform the following
steps:

(i) we built a deformed sp basis with good angular
momentum, by diagonalizing a deformed mean field;

(ii) we then transform dipole β-decay operators in this
deformed sp representation;
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(iii) we introduce quasiparticle representation separately
for protons and neutrons and then we diagonalize
dipole-dipole interaction within the pn-dQRPA;

(iv) we finally compute Gamow-Teller transitions.

A. Deformed single-particle basis

We use a deformed sp basis with good angular momen-
tum [18]

a
†
τεjm(�) =

∑
Jk

X Jk
τεj

[DJ∗
.0 (�)c†τk

]
jm

, (1)

in terms of normalized Wigner functions DJ
M0 (the dot denotes

that the M projection is used for angular momentum coupling)
and spherical creation operators c

†
τk , describing the eigenstates

of a spherical nuclear plus proton Coulomb mean field. The
expansion coefficients X , together with eigenvalues ε, are
found by diagonalizing a quadrupole-quadrupole interaction.
In the adiabatic approach, where the expansion coefficients are
proportional to standard Nilsson coefficients, one has j = K ,
where K is the spin projection on the intrinsic symmetry axis.

B. Dipole proton-neutron β-decay operators

The dipole operators describing Gamow-Teller β decays
are given by

D−
1μ = 1√

3

∑
pn

(p||σ ||n)[a†
pãn]1μ,

P −
1μ = 1√

3

∑
pn

(p||σ ||n)[a†
pa†

n]1μ. (2)

Here, σμ is the Pauli operator and the reduced matrix element
in the deformed basis (1) is given in terms of the standard
spherical matrix element by [18]

(p||σ ||n) = ĵpĵn

∑
J=even

∑
kpkn

X Jkp

τεpjp
X Jkn

τεnjn

× (−)kp−jnW (jpkpjnkn; J1)〈kp||σ ||kn〉, (3)

where ĵ = √
2j + 1 and W is the Racah symbol. In the

spherical limit with J = 0 it becomes the standard reduced
matrix element of the Pauli operator.

We use an ordinary monopole pairing plus a separa-
ble dipole-dipole proton-neutron interaction, with constant
strengths, in both the particle-hole (ph) and particle-particle
(pp) channels, i.e.,

H =
∑

p

(εp − λprot)Np − G
prot
pair

4

∑
pp′

P †
pPp′

+
∑

n

(εn − λneut)Nn − Gneut
pair

4

∑
nn′

P †
nPn′

+ gph

∑
μ

D−
1μ(D−

1μ)† − gpp

∑
μ

P −
1μ(P −

1μ)†, (4)

where the meaning of the short-hand notation is τ ≡ (τεj ),
τ = p,n. Here, the chemical potential for protons (neutrons)

is denoted by λprot (λneut). The deformed particle-number and
pairing operators are respectively given by [18]

Nτ = 2

2jτ + 1

∑
m

a†
τmaτm,

P †
τ = 2

2jτ + 1

∑
m

a†
τma

†
τ−m(−)jτ −m. (5)

Let us mention that any interaction can be expanded in
the multipole-multipole separable form, and therefore the
deformed representation of the one-body operator can be used
to build a general interaction.

C. Quasiparticle representation

We use the quasiparticle representation

a†
τm = uτα

†
τm + vτατ−m(−)jτ −m, (6)

where u and v are the BCS vacancy and occupation amplitudes,
respectively, in order to obtain the β-decay operators entering
the Hamiltonian (4). By using the dipole phonon



†
1μ(ω) =

∑
pn

{
Xω

pn

[
α†

pα†
n

]
1μ

− Yω
pn

[
α†

pα†
n

]†
1μ

}
, (7)

one obtains in a standard pn-dQRPA equations of motion
determining the eigenvalues ω and amplitudes Xω,Yω [18,19].
They formally coincide with the spherical pn-QRPA equa-
tions, but the pair basis in the phonon (7) couple proton and
neutron states with deformed sp spectra. Thus, in the present
approach the QRPA vacuum is spherical, in contrast to the
approximations adopted earlier where the spherical symmetry
of the phonon was restored after variation, still leaving the
vacuum itself deformed.

D. Gamow-Teller transitions

Gamow-Teller β decay transition matrix elements [19,20]
are given by

(ω||β−||0) =
∑
pn

(p||σ ||n)
[
upvnX

ω
pn + vpunY

ω
pn

]
,

(ω||β+||0) =
∑
pn

(p||σ ||n)
[
vpunX

ω
pn + upvnY

ω
pn

]
. (8)

We write the 2νββ Gamow-Teller matrix element as
follows [8]:

MGT =
∑
mn

(
0||β−||ωf

m

)〈
ω

f
m

∣∣ωi
n

〉(
ωi

n||β−||0)
Dm

, (9)

where the energy denominator is given by

Dm =
1
2

(
�exp + ω̃i

m + ω̃
f
m

) + Eex(1+
1 ) + �M

exp
i

mec2
. (10)

Here, ω̃m = ωm − ω1, �exp is the nuclear mass difference
between initial and final states, Eex(1+

1 ) is the experimental
energy of the first 1+ state in the intermediate odd-odd nucleus,
�M

exp
i is the measured difference of the mass energies of the

intermediate and initial nuclei, and mec
2 the electron rest mass.

Here we use as much as possible experimental information in
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constructing the energy denominator (10) in order to avoid
additional uncertainties rising from the description of nuclear
mass differences by the pn-dQRPA formalism. The overlap
between the initial 1+

n and final 1+
m states in Eq. (9), 〈ωf

m|ωi
n〉,

was estimated according to a relation similar to Eq. (29) of
Ref. [11], where we used pn-dQRPA amplitudes. This permits
the use of a different deformation in the initial and final nucleus
of double-β decay.

III. NUMERICAL APPLICATION

We now analyze the 2νββ decay process 150Nd → 150Sm
by using our pn-dQRPA formalism. To this purpose we
describe the 1+ states in the intermediate odd-odd nucleus
150Pm by using pn-dQRPA eigenstates for both the initial and
final nuclei. We use as spherical sp states c†τ the eigenstates
of the Woods-Saxon plus proton Coulomb mean field with the
universal parametrization of [21]. The deformed eigenstates
a
†
τm, given by Eq. (1), are obtained by diagonalizing the

quadrupole-quadrupole interaction in the adiabatic limit for
both the initial and final nuclei. The deformation parameters
βi

2 = 0.24 and β
f
2 = 0.21 were taken from Ref. [22]. The

u and v amplitudes were determined by solving the BCS
equations with monopole interaction and by reproducing the
experimental pairing gaps in the initial and final nuclei.

We then estimated the Gamow-Teller strength

B(GT±) = [gA(ω||β±||0)]2, (11)

as a function of the energy relative to the ground state of the
intermediate nucleus 150Pm. Here, gA is the effective axial-
vector strength. The dipole strength gph = 0.12 was chosen
to reproduce the experimental centroid of the Gamow-Teller
(p,n)-type strength B(GT−) in 150Nd [23], as can be seen
in Fig. 1(a). Here, the experimental data are given by filled
circles. The position of the centroid is insensitive to the
value of the gpp strength. Thus, in this figure we considered
gpp = 0. Here we choose the value of the effective axial-vector
constant gA = 0.8, which is consistent with the cumulative
Gamow-Teller strength, as can be seen from Fig. 1(b). In
Fig. 1(c) we plot the (n,p)-type B(GT+) strength in the final
nucleus 150Sm versus the excitation energy in 150Pm, and in
Fig. 1(d) the corresponding cumulative strength. As can be
seen, a reasonable agreement with the available experimental
data is achieved.

It is worth noting that the B(GT−) strength reproduces the
order of magnitude of experimental data in the low part of the
spectrum, as can be seen in Fig. 2.

We then estimated the magnitude of the 2νββ matrix
element, given by Eq. (9). Here, an important role is played by
the overlap between the initial and final BCS wave functions
with different deformations. In order to illustrate this point,
in Fig. 3 we plot the dependence of the BCS overlap versus
the deformation parameter of the final nucleus, by considering
for the initial nucleus a fixed value βi

2 = 0.3. By dashed/dot-
dashed lines are given proton/neutron BCS overlaps. One
notices a very strong decrease of the overlap by increasing
the difference between the two deformations. Even for the
same deformation the resulting overlap is around 0.85.
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FIG. 1. B(GT) strength versus the excitation energy in the
intermediate nucleus 150Pm. The experimental data [23] are plotted by
filled circles. (a) B(GT−) strength in 150Nd, (b) Cumulative B(GT−)
strength in 150Nd, (c) B(GT+) strength in 150Sm, and (d) Cumulative
B(GT+) strength in 150Sm.

In Fig. 4 we plot the 2νββ matrix element (9) as a function of
the particle-particle strength. By horizontal lines we indicated
the experimental area allowed by experimental errors and by
the range gA = 0.8–1.27 of the effective axial-vector coupling
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FIG. 2. Low-energy B(GT−) strength in 150Nd versus the exci-
tation energy in the intermediate nucleus 150Pm. The experimental
data [23] are plotted by filled circles.

054329-3



D. S. DELION AND J. SUHONEN PHYSICAL REVIEW C 91, 054329 (2015)

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3

FIG. 3. Overlap between the initial and final BCS wave functions
as a function of the quadrupole deformation of the final nucleus 150Sm
(solid line). The quadrupole deformation of the initial nucleus 150Nd
is taken to be βi

2 = 0.3. Proton/neutron overlaps are plotted by a
dashed/dot-dashed line.

coefficient. The value gA = 1.27 corresponds to the bare
value of gA. In order to point out to the importance of the
excitation energy Eex in Eq. (9), which is usually neglected in
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FIG. 4. Gamow-Teller 2νββ matrix element versus gpp for differ-
ent values of the excitation energy of the first 1+ state: Eex = 0 MeV
(solid line), Eex = 0.5 MeV (dashed line), Eex = 1 MeV (dot-dashed
line), Eex = 1.5 MeV (dotted line). The two horizontal lines denote
the allowed experimental area for the interval gA = 0.8–1.27.
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FIG. 5. Cumulative Gamow-Teller strength (12) versus the exci-
tation energy in 150Pm for gpp = 0 (solid line), gpp = 0.025 (dashed
line), and gpp = 0.05 (dot-dashed line).

most papers, we plotted this dependence for Eex = 0 MeV
(solid line), Eex = 0.5 MeV (dashed line), Eex = 1 MeV
(dot-dashed line), and Eex = 1.5 MeV (dotted line). Available
experimental data of Ref. [23], shown in Fig. 2, indicate that
Eex = (0–0.5) MeV. Thus, the value of the particle-particle
strength which reproduces the experimental value of the
double-β-decay strength is gpp ≈ 0.05. In order to point out the
importance of the pp strength for the double-β-decay matrix
element MGT, we plot in Fig. 5 the cumulative MGT strength

∑
MGT =

∑
Eex(1+)�ω

MGT(1+) (12)

versus excitation energy for gpp = 0 (solid line), gpp = 0.025
(dashed line), and gpp = 0.05 (dotted line). One notices a
strong dependence upon gpp, especially for the region beyond
the B(GT−) maximum in Fig. 1(a).

To further test our model, we computed the half-lives for
several superfluid 2νββ partners. with known experimental
half-life values. the results are given in the last column of
the Table I. In the fifth column of this table there are given
theoretical values estimated by using spherical approach, while
in the sixth column we used the deformed method. For both we
use gpp = 0.05 overall. We notice a significant improvement
by the deformed approach compared to the spherical one,
especially for nuclei with different deformations.

Finally, to put the presently introduced theory framework in
context we perform here a brief comparison with other recent
models that take into account the deformation in β-decay
and/or double-β-decay calculations. A very popular nuclear-
structure model is the proton-neutron interacting boson model,
IBA2. In Ref. [24] it has been used to compute 0νββ decay
rates of many cases of interest for experimental investigation.
In these calculations the closure approximation has been
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TABLE I. 2νββ emitters with charge and mass numbers given in
the first and second columns. Mother/daughter quadrupole deforma-
tion parameter [22] is given in the third/fourth column, theoretical
spherical/deformed half-life in fifth/sixth column and experimental
value in the last column.

Z A βL βR log10T
(sph)

th log10T
(def)

th log10Texp

34 82 0.150 0.070 18.83 19.05 19.96
40 96 0.220 0.080 17.71 18.95 19.36
42 100 0.240 0.160 17.70 18.63 18.85
52 128 0.000 0.140 24.99 24.70 24.30
52 130 0.000 −0.110 22.31 21.23 20.84
60 150 0.240 0.210 18.55 18.93 18.91
92 238 0.210 0.210 20.93 21.54 21.30

exploited since the IBA2 model cannot calculate the wave
functions of the intermediate odd-odd nucleus. While the 0νββ
decay rates are calculable in the closure approximation the
2νββ decay rates are not [3]. This is why the IBA2 model is
not suited for calculation of NMEs for 2νββ decays. Another
problem with IBA2 model is that it can only exploit a model
space of one major shell, thus leaving out the spin-orbit
partner orbitals in the adjacent major shells, known to be
very relevant for Gamow-Teller type of transitions occurring
in 2νββ decays. The projected Hartree-Fock-Bogoliubov
model (PHFB) of Ref. [25] has been used to compute both
2νββ and 0νββ decay rates for quite some time now. The
model is based on a deformed Hartree-Fock-Bogoliubov mean
field complemented by a ‘summation method’ to take into
account, in an effective way, the correlations beyond the mean
field. However, this model is still basically just a mean-field
model that is unable to calculate the wave functions of the
intermediate odd-odd nucleus. A third interesting model is
the mean-field model [26] based on a Gogny energy-density
functional. The sore point of this approach is the same as for
IBA2: both these models have to use closure approximation
thus excluding calculations of 2νββ decay rates. A further
model, designed to calculate Gamow-Teller and other nuclear
transitions is the projected shell model (PSM) [27]. In fact,

the basic philosophy of PSM is very close to the β-dQRPA
in that it also starts from a deformation dressed sp basis
with good spherical quantum numbers. Since the PSM is
applied to (axially) deformed nuclei the effectively deformed
sp wave functions lead to an efficient handling of nuclear
structure and small dimensions of the many-body model
space. It is also a multishell model suited to a description
of, e.g., parity-changing decay operators. As far as we know,
its feasibility for calculations of 2νββ decay properties has not
been tested yet.

IV. CONCLUSIONS

Concluding, we described the 1+ Gamow-Teller states
in odd-odd deformed nuclei within a consistent pn-dQRPA
framework, by using a sp basis with good angular momentum.
This particle-core basis is provided by the diagonalization of
a spherical mean field plus quadrupole-quadrupole interac-
tion. The main features of β-decay strengths are reasonably
described within a schematic pairing plus proton-neutron
dipole residual interaction in particle-hole and particle-particle
channels. We have confirmed the well known fact that the
2νββ matrix element for 150Nd strongly depends upon the
particle-particle strength. The value gpp ≈ 0.05 reproduces
the experimental half-life. By using this value of gpp the
experimental half-lives for superfluid emitters are rather well
reproduced by the deformed approach, clearly better than
the spherical one. The present projection-before-variation
approach is able to give a consistent description of a deformed
nucleus in the laboratory system of coordinates. It seems a
very promising procedure to describe, in a relative simple way,
deformed many-body systems.
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