

Ari Peltoniemi

TOWARDS A META-METHOD FOR THE
ENGINEERING OF SITUATIONAL EVALUATION
METHODS FOR DOMAIN-SPECIFIC MODELING

TOOLS

UNIVERSITY OF JYVÄSKYLÄ

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION SYSTEMS

2015

UNIVERSITY OF JYVÄSKYLÄ

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION SYSTEMS

2015

ABSTRACT

Peltoniemi, Ari
Towards a Meta-Method for the Engineering of Situational Evaluation Methods
for Domain-Specific Modeling Tools
Jyväskylä: University of Jyväskylä, 2014, 116 p.
Information Systems Science, Master’s Thesis
Supervisor: Leppänen, Mauri

Domain-Specific Modeling (DSM) is an approach to Information Systems De-
velopment (ISD) in which the abstraction level of development is raised from
the solution domain to the problem domain. DSM enables the automation of
ISD, particularly in narrow and well-established domains, in which the domain
concepts, rules and semantics can be meaningfully specified as constructs of
DSM languages. DSM tools provide facilities for DSM language specification
and application as well as model transformation. DSM tools are typically evalu-
ated by the industry for the justification of tool acquisitions. DSM tools are also
evaluated for research purposes. In order to assure the validity of the results, an
evaluation method must address the situational context of the evaluation as
well as its multi-disciplinary dimensions. The current literature provides very
limited support for the engineering of situational evaluation methods for DSM
tools. The primary objective of the study is to investigate how to methodically
support the engineering of situational evaluation methods for DSM tools. A
practical need for the method support was identified in a case study, in which
DSM tools were evaluated in an industrial context. The premise of the study
suggests that the application of Situational Method Engineering (SME) princi-
ples to the evaluation of DSM tools would provide a potential solution. The De-
sign Science Research (DSR) approach was applied as the research framework
for the study. Two artifacts were designed and evaluated, according to the prin-
ciples of DSR: 1) an evaluation criteria checklist for DSM tools, and 2) a baseline
method for the engineering of situational evaluation methods for DSM tools.
The checklist is designed for evaluators, to be used as a practical guideline in
the situational formulation of the evaluation criteria for DSM tools. The applica-
tion of the checklist also promotes the commensuration of the evaluation results.
The conceptual baseline method is designed to be instantiated by method engi-
neers in the engineering of situational evaluation methods for DSM tools. The
main contribution of the study is a design theory or a Meta-Method for the en-
gineering of situational evaluation methods for DSM tools. Meta-Method is
conceptually and empirically evaluated. Future research is required to confirm
the findings and further elaborate Meta-Method.

Keywords: domain-specific modeling, DSM tools, evaluation criteria, situation-
al evaluation method, method engineering, design science research, case study

TIIVISTELMÄ (FINNISH ABSTRACT)

Peltoniemi, Ari
Kohti metamenetelmää sovellusaluemallinnuksen välineiden tilannekohtaisten
arviointimenetelmien kehitykseen
Jyväskylä: Jyväskylän yliopisto, 2014, 116 s.
Tietojärjestelmätiede, pro gradu -tutkielma
Ohjaaja: Leppänen, Mauri

Sovellusaluemallinnus (Domain-Specific Modeling, DSM) on eräs ohjelmisto-
tuotannon lähestymistavoista, jossa sovelluskehityksen abstraktiotasoa noste-
taan ohjelmoinnista sovellusaluekeskeiseen mallinnukseen. DSM mahdollistaa
sovelluskehityksen automatisoinnin erityisesti kapeilla ja vakiintuneilla sovel-
lusalueilla, joiden käsitteet, säännöt ja merkitykset soveltuvat DSM-kielten kon-
struktioiksi. DSM-välineet tarjoavat työkaluja DSM-kielten määrittelyyn ja käyt-
töön sekä sovellusmallien transformaatioihin. Teollisuudessa DSM-välineiden
arviointeja tehdään tyypillisesti välinehankintojen valmistelun yhteydessä. Ar-
viointeja suoritetaan myös tieteellisen tutkimuksen näkökulmasta. Arviointitu-
losten validiteetin varmistamiseksi DSM-välineiden arviointimenetelmän tulee
ottaa huomioon arvioinnin tilannekohtainen konteksti sekä sen monitieteiset
dimensiot. Kirjallisuudessa esitetään hyvin rajoitetusti menetelmiä DSM-
välineiden tilannekohtaiseen arviointiin. Tämän tutkimuksen ensisijaisena ta-
voitteena on selvittää, miten DSM-välineiden arviointimenetelmien kehitystä
tilannekohtaisessa kontekstissa voidaan tukea menetelmällisesti. Menetelmätu-
en käytännön tarve todettiin teollisuusalan yritykselle suoritetun tapaustutki-
muksen yhteydessä. Tutkimus esittää ratkaisun lähtökohdaksi tilannekohtaisen
menetelmäkehityksen (Situational Method Engineering, SME) periaatteiden
soveltamista DSM-välineiden arviointiin. Tutkimusviitekehyksenä käytettiin
suunnittelutieteellistä lähestymistapaa, jonka mukaisesti on muodostettu ja ar-
vioitu kaksi artefaktia: 1) DSM-välineiden arviointikriteerien tarkistuslista, ja 2)
lähtökohtamenetelmä DSM-välineiden arviointimenetelmien tilannekohtaiseen
kehitykseen. Tarkistuslista on suunniteltu arvioijien praktiseksi ohjesäännöksi
DSM-välineiden arviointikriteeristöjen tilannekohtaiseen muodostamiseen sekä
arviointitulosten yhteismitallisuuden edistämiseen. Käsitteellinen lähtökohta-
menetelmä on suunniteltu menetelmäkehittäjien käyttöön, erityisesti DSM-
välineiden tilannekohtaisten arviointimenetelmien kehitykseen. Tutkimuksen
pääkontribuutio on esitettyjen artefaktien pohjalta muodostettu nk. suunnitte-
luteoria eli Metamenetelmä DSM-välineiden tilannekohtaisten arviointimene-
telmien kehitykseen. Metamenetelmä arvioitiin käsitteellisesti ja empiirisesti.
Metamenetelmän varmentamiseen ja kehittämiseen tarvitaan jatkotutkimusta.

Asiasanat: sovellusaluemallinnus, DSM-väline, arviointikriteeristö, tilannekoh-
tainen arviointimenetelmä, menetelmäkehitys, suunnittelutiede, tapaustutkim.

ACKNOWLEDGEMENTS

This research was conducted in the SCOPE project of the Department of Math-
ematical Information Technology, operating under the Faculty of Information
Technology at the University of Jyväskylä. SCOPE was funded by Tekes (the
Finnish Funding Agency for Technology and Innovation) as well as the Univer-
sity of Jyväskylä and Airbus Defense and Space. The research was also support-
ed by Research and Training Institute ReTI Foundation. I extend my sincere
gratitude and appreciation to these organizations and the many people who
made this thesis possible.

First, I would like thank my supervisor, Dr. Mauri Leppänen, who has pa-
tiently, insightfully, and proficiently guided me throughout the study. Second, I
would like to express my gratitude to Dr. Erkki Kurkinen and Mr. Antti Raunio
for facilitating the active industry-academia collaboration that was essential in
the conduct of the research. Third, I would like to thank Dr. Tommo Reti, who
facilitated the finalization of the thesis. Fourth, I would like to express my grati-
tude to Dr. Juha-Pekka Tolvanen for evaluating the thesis. Finally, I would like
to thank my family for the continuous support during the research process.

This thesis was prepared in various geographical locations such as
Jyväskylä and Kankaanpää, Finland, and Geneva, Switzerland. I am grateful for
the insights and support of my colleagues, friends, and acquaintances, who
have inspired and guided me in my academic and professional endeavors. I
have had a privileged opportunity to learn from exceptional individuals who
have profoundly contributed to my view and understanding of our discipline,
life, and the world. Thank you.

Jyväskylä
April 2015

Ari Peltoniemi

FIGURES

FIGURE 1 Design Science Research Framework .. 15

FIGURE 2 Research Process ... 17

FIGURE 3 Bridging the Abstraction Gap ... 19

FIGURE 4 Aligning Code and Models ... 20

FIGURE 5 DSML Components and their Relationships .. 21

FIGURE 6 Abstract Syntax of a Finite State Machine DSML 22

FIGURE 7 Concrete Syntax of a Finite State Machine DSML................................ 22

FIGURE 8 Concepts of Model Transformation ... 23

FIGURE 9 Model-to-Text Template Model Transformation 24

FIGURE 10 Demonstration-Based DSML Development Process 25

FIGURE 11 Four-Layer Architecture in DSM Tools ... 27

FIGURE 12 Content Context Process (CCP) Framework 44

FIGURE 13 Elements of ISD Tool Evaluation .. 44

FIGURE 14 Overview of ISO 14102 ... 47

FIGURE 15 2G Method for ISD Tool Evaluation .. 50

FIGURE 16 Concept Linking between Evaluation Frameworks 51

FIGURE 17 Situational Method Engineering Framework 59

FIGURE 18 Four-Layer Architecture in CAME Tools .. 60

FIGURE 19 Common Method Elements and their Interrelations 61

FIGURE 20 Main WorkUnits ... 61

FIGURE 21 Main Preparation WorkUnits .. 62

FIGURE 22 Main Structuring WorkUnits with Artifact I as a Guideline 63

FIGURE 23 Main Evaluation WorkUnits ... 64

FIGURE 24 Main Selection WorkProducts .. 64

FIGURE 25 Main WorkProducts ... 65

FIGURE 26 Main Producers ... 66

FIGURE 27 Decomposition of Artifact II .. 69

FIGURE 28 Conceptual Instantiation of Artifact II into Agile Usage Situation . 71

FIGURE 29 Three Classes of Grounding Action Knowledge 74

FIGURE 30 Relationships Among IS/IT Artifacts .. 77

FIGURE 31 Operational Framework for the Case Study 84

TABLES

TABLE 1 Design Science Research Guidelines .. 14

TABLE 2 Features of MDD Tools .. 31

TABLE 3 Requirements for MDD Tools ... 31

TABLE 4 Requirements for Metamodeling Tools ... 32

TABLE 5 Requirements for DSM Tools .. 32

TABLE 6 Criteria by Saraiva & da Silva (2008) and Vasiljević et al. (2013) 33

TABLE 7 Criteria by Pelechano et al. (2006) and Langlois et al. (2007) 34

TABLE 8 Criteria by Amyot et al. (2006) and Sivonen (2008) 35

TABLE 9 Criteria by de Smedt (2011) and El Kouhen et al. (2012) 35

TABLE 10 General Evaluation Criteria for Software Tools 37

TABLE 11 Evaluation Criteria for Tool Architecture ... 38

TABLE 12 Evaluation Criteria for Modeling Language Specification 39

TABLE 13 Evaluation Criteria for Modeling Language Application 40

TABLE 14 Selection of Evaluation Approach .. 53

TABLE 15 Activities of Kruchten (2004) and Lukman and Mernik (2008).......... 54

TABLE 16 Activities of Wheeler (2011) and Morera (2002) 54

TABLE 17 Classification of Activities of Existing Tool Evaluation Methods 56

TABLE 18 Situational Factors in Software Product Management 66

TABLE 19 Levels of Activities.. 76

TABLE 20 Design Theory Components ... 78

TABLE 21 Scientific Progress Criteria for Design Theories 79

TABLE 22 The Design Theory Components of ISO 14102 80

TABLE 23 The Design Theory Components of Meta-Method 81

TABLE 24 Iterations in the Case Study .. 85

TABLE 25 A Subset of the Evaluation Framework ... 86

CONTENTS

ABSTRACT .. 2

TIIVISTELMÄ (FINNISH ABSTRACT) ... 3

ACKNOWLEDGEMENTS .. 4

FIGURES .. 5

TABLES .. 6

CONTENTS ... 7

1 INTRODUCTION ... 10

1.1 Background and Motivation .. 10

1.2 Research Questions and Objectives .. 12

1.3 Research Methodology ... 13

1.3.1 Research Framework ... 13

1.3.2 Research Process ... 16

1.4 Structure of the Thesis ... 17

2 DOMAIN-SPECIFIC MODELING ... 18

2.1 Basic Concepts .. 18

2.2 Motivation for DSM Approach .. 19

2.3 Domain-Specific Modeling Languages ... 21

2.4 Model Transformation .. 23

2.5 Domain-Specific Modeling Language Development Process 24

2.6 Domain-Specific Modeling Tools .. 26

2.7 Summary ... 28

3 EVALUATION CRITERIA FOR DSM TOOLS ... 29

3.1 Evaluation of DSM Tools .. 29

3.2 Requirements for DSM Tools ... 30

3.3 Evaluation Criteria for DSM Tools in Previous Studies 33

3.4 A Classification of Evaluation Criteria ... 36

3.5 Artifact I - Evaluation Criteria Checklist for DSM Tools 36

3.5.1 General Evaluation Criteria for Software Tools........................... 37

3.5.2 Evaluation Criteria for Tool Architecture 38

3.5.3 Evaluation Criteria for Modeling Language Specification......... 39

3.5.4 Evaluation Criteria for Modeling Language Application 40

3.6 Summary ... 41

4 SOCIO-TECHNICAL DIMENSIONS AND METHODS OF EVALUATION42

4.1 Socio-Technical Dimensions of Evaluation .. 42

4.2 Existing Evaluation Methods ... 46

4.2.1 ISO 14102 Standard .. 47

4.2.2 2G Method ... 49

4.2.3 DESMET Method.. 51

4.2.4 More Evaluation Methods .. 53

4.3 Classification of Activities of Existing Evaluation Methods 55

4.4 Summary ... 57

5 ARTIFACT II – A BASELINE METHOD FOR THE ENGINEERING OF
SITUATIONAL EVALUATION METHODS FOR DSM TOOLS 58

5.1 Situational Method Engineering Foundation .. 58

5.2 Method Base ... 61

5.2.1 WorkUnit Elements .. 61

5.2.2 WorkProduct Elements ... 65

5.2.3 Producer Elements ... 65

5.3 Situational Factors ... 66

5.4 Construction Guidelines ... 67

5.5 Artifact II Decomposition ... 68

5.6 Conceptual Instantiation of Artifact II into an Agile Usage Situation69

5.7 Summary ... 71

6 EVALUATION OF META-METHOD .. 72

6.1 Evaluation Methodology .. 73

6.1.1 Grounding Approach .. 74

6.1.2 Empirical Approach ... 75

6.1.3 Conceptual Approach .. 76

6.1.4 Evaluation Criteria ... 78

6.2 Design Theorization .. 80

6.3 Empirical Evaluation ... 82

6.3.1 Situational Context ... 83

6.3.2 Iterations .. 85

6.3.3 Remarks ... 88

6.3.4 Utility ... 89

6.4 Conceptual Evaluation .. 90

6.4.1 Internal Consistency .. 90

6.4.2 External Consistency .. 92

6.4.3 Broad Purpose and Scope ... 93

6.4.4 Simplicity ... 93

6.4.5 Fruitfulness of New Research Findings .. 94

6.5 Summary ... 94

7 SUMMARY AND CONCLUSION ... 96

7.1 Summary ... 96

7.2 Conclusion .. 99

7.3 Limitations .. 99

7.4 Future Research .. 100

BIBLIOGRAPHY ... 101

APPENDIX 1 EVALUATION CRITERIA CHECKLIST 111

APPENDIX 2 CHECKLIST CRITERIA DECOMPOSITION 112

APPENDIX 3 BUILDING A BUSINESS CASE ... 115

10

1 INTRODUCTION

In this chapter the background and motivation for the thesis are first discussed.
Second, the research questions and objectives for the research are defined. Third,
the methodology for the research is discussed, including the research frame-
work and research process. Finally, we describe the structure of the thesis.

1.1 Background and Motivation

Domain-Specific Modeling (DSM) is an approach to Information Systems Devel-
opment (ISD) in which the abstraction level of development is raised from the
solution domain to the problem domain (Kelly & Tolvanen, 2008, p. 3). The ap-
proach aims to respond to challenges in productivity and quality in industrial
settings of ever increasing software system complexity and decreasing time to
market. DSM is applied in varied, often narrow and well-established domains
in which the concepts, rules, and semantics of the domain can be appropriately
captured in the specifications of DSM Languages (DSML), and where the auto-
mation of software artifact generation from models is viable (Kärnä et al., 2009).

DSM tools differ from conventional ISD tools by providing an additional
abstraction layer for DSML construction and the facilities for applying DSMLs
(Achilleos et al., 2007; Langlois et al., 2007). Furthermore, model transformation
facilities are utilized in the generation of software as well as other artifacts of
persistent quality from models (Czarnecki & Helsen, 2003). Some of the most
established DSM tools available are MetaEdit+ (Tolvanen et al., 2007), Eclipse
Modeling Tools (Gronback, 2009), and Obeo Designer (Obeo, 2014). Many of the
current DSM tools are based on open source components, upon which commer-
cial solutions are built by providing production-ready quality, comprehensive
customer support, and a streamlined user experience.

In practice, a diverse set of ISD tools can be considered when selecting a
DSM tool for a given situation, as there are various approaches to DSM tool im-

 11

plementation (Atkinson & Kühne, 2005; Mohagheghi & Haugen, 2010; Saraiva
& da Silva, 2008). DSM tools are provided with versatile architectures, capabili-
ties, and maturity levels, delivered as open source and/or commercial software
products. Ultimately, DSM tools must provide graphical facilities for language
specification and application as well as model transformation facilities (El Kou-
hen et al., 2012). In addition, a robust architecture, adequate user support, usa-
bility, reliability, and development life-cycle support are of essence (Kelly &
Tolvanen, 2008, p. 61).

The suitability of a specific DSM tool to a given situational context is a
multifaceted and non-trivial issue, as it is dependent on multiple factors, such
as interoperability and maturity of the tool, initial and operational costs as well
as various other technical and organizational domain requirements (Lukman &
Mernik, 2008). The wide range of heterogeneity among DSM tools and applica-
tion domains makes the selection of the optimal tool candidate challenging. A
method support that addresses the situational characteristics of the evaluation
context as well as appropriately formulated evaluation criteria are required for
the optimal execution of the evaluation effort (Lundell & Lings, 2002).

Evaluation is the process of determining the merit, worth, or significance
of things (Scriven, 2003). Evaluation criteria are a selected subset of properties
of things, by which the things are evaluated (Scriven, 2001). DSM tools are typi-
cally evaluated by the industry for the purpose of justifying the acquisition of a
tool. DSM tools are also evaluated for research purposes. To our knowledge,
there is no commonly accepted unified set of evaluation criteria or a method to
be considered in DSM tool evaluations. This implies that DSM tool studies have
no standard to be used as a reference for criteria formulation, nor a proven
method for measuring the selected criteria. Hence, the study results are often
rendered incommensurate. Many studies have been reported of using consider-
ably divergent means of evaluation (Amyot et al., 2006; De Smedt, 2011; El
Kouhen et al., 2012; Langlois et al., 2007; Pelechano et al., 2006; Saraiva & da
Silva, 2008; Sivonen, 2008; Vasiljević et al., 2013).

Evaluation efforts conducted in situational contexts face various facets of
complexity, propagated from the interactions of people, organizations, and
technology (Lundell & Lings, 2004b; Hevner et al., 2004). According to the
widely accepted CCP model (Stockdale, Standing, Love & Irani, 2008), evalua-
tion of Information Systems (IS) can be observed via three dimensions: Content,
Context, and Process. Lundell and Lings (2004) suggest three dimensions of in-
terest in situational evaluations of ISD tools: Stakeholders, Context, and Activi-
ty. Furthermore, Kitchenham (1996) suggests that the following sociological
dimensions affect the participants of such evaluation efforts: novelty effects and
expectation effects. As the evaluation of DSM tools is conducted in a situational
context, the aforementioned socio-technical dimensions affect the effort. A few
evaluation methods have been proposed that, to a varying extent, regard some
of these dimensions as issues of concern, such as ISO 14102 (ISO, 2008), 2G
(Lundell & Lings, 2003), RUP (Kruchten, 2004), and DESMET (Kitchenham,
1996).

 12

The main motivation of our work is to design artifacts that enable the
evaluation of DSM tools in a situational context. We seek the foundations for a
potential solution from the areas of Situational Method Engineering (SME)
(Henderson-Sellers et al., 2014,), existing evaluation methods for ISD tools (ISO,
2008; Kruchten, 2004; Lukman & Mernik, 2008; Wheeler, 2011; Morera, 2002;
Lundell & Lings, 2003; Kitchenham, 1996), and previous studies on the evalua-
tion of DSM tools (Amyot et al., 2006; De Smedt, 2011; El Kouhen et al., 2012;
Langlois et al., 2007; Pelechano et al., 2006; Saraiva & da Silva, 2008; Sivonen,
2008; Vasiljević et al., 2013). We seek the potential of SME to address the socio-
technical dimensions of evaluation in the method construction/tailoring stages
as situational factors. Our premise is that various proven characteristics that
SME provides for the engineering of ISD methods, such as flexibility, adaptabil-
ity, modularity, reusability, and reference to situational aspects (Bucher et al.,
2008), will also provide a useful foundation for the engineering of situational
evaluation methods for DSM tools. According to the principles of SME, such an
endeavor requires a reusable baseline method, from which the situational
methods are derived and enacted in the evaluations of DSM tools.

1.2 Research Questions and Objectives

The research problem of the thesis is: How to methodically support the engineering
and enactment of situational evaluation methods for DSM tools? The research prob-
lem is many-fold, as it addresses various facets of a baseline method: a method
base, situational factors, and construction guidelines. The method base includes
the method elements that represent the activities, outcomes, and roles that are
provided for the engineering of the situational evaluation methods. Further-
more, the preparation of the guidance for the activity of evaluation framework
development is one of the key concerns in our work. The situational factors are
the characteristics of the specific context in which the evaluation is conducted,
affecting the engineering of the situational evaluation methods. The construction
guidelines are the technical principles and techniques that are employed in the
construction/tailoring of the methods. The research problem can be decom-
posed into the following research questions:

 RQ1: What are Domain-Specific Modeling and DSM tools?

 RQ2: Which evaluation criteria are proposed in the literature for DSM
tools and how to classify them?

 RQ3: What are the situational factors affecting the engineering and en-
actment of the situational evaluation methods for DSM tools?

 RQ4: Which method elements are proposed in the literature for the eval-
uation of ISD tools and how to classify them?

 RQ5: How to engineer situational evaluation methods for DSM tools?

 13

The main objective of the study is to conceptually and empirically investigate the
engineering and enactment of situational evaluation methods for DSM tools, and based
on the findings, present a design theory or a Meta-Method that addresses such phenom-
ena. In order to develop Meta-Method, two artifacts are designed and evaluated:
Artifact I and Artifact II. Artifact I is an evaluation criteria checklist for DSM
tools. Artifact II is a baseline method for the engineering of situational evalua-
tion methods for DSM tools, including a method base, situational factors, and
construction guidelines.

The design goal of Artifact I is to construct a checklist that provides practi-
cal guidance for the formulation of the situational evaluation criteria for DSM
tools. The main design goal of Artifact II is to provide a conceptual method base
for the evaluation of DSM tools in a situational context. The functional goal of
Artifact I is to provide guidance for the activity of evaluation framework devel-
opment in the instantiations of Artifact II. The functional goal of Artifact II is to
provide method support for the engineering of situational evaluation methods
for DSM tools. The goal for the discussion of the situational factors is to present
the dimensions of IS and ISD tool evaluations, and to align them with the corre-
sponding knowledge in SME. The goal for the discussion of the construction
guidelines is to present the available approaches on a general level. The ulti-
mate goal is to combine and present the designed artifacts as Meta-Method and
provide evidence for methodical progress in comparison to the ISO 14102
standard. The method support provided by ISO 14102 for the evaluation of
DSM tools in a situational context, or the lack thereof, was the initial indication
of the need for this study.

1.3 Research Methodology

The research methodology consists of an adapted research framework and pro-
cess, according to Design Science Research. Furthermore, the applied research
methods are discussed.

1.3.1 Research Framework

The traditional behavioral research paradigm, i.e. developing and verifying
theories that explain or predict the behavior of humans or organizations, has to
a large extent characterized the previous research conducted in the field of In-
formation Systems (IS) (Hevner, March, Park & Ram, 2004). Research methods
such as survey (Kitchenman & Pfleeger, 2002a, 2002b, 2003; Pfleeger & Kitchen-
ham, 2001) and case study (Robson, 2002; Yin 2003; Benbasat et al., 1987) are
commonly known examples of the behavioral paradigm. However, the behav-
ioral approaches are not optimal for the development of new and innovative
artifacts that seek to extend the boundaries of the capabilities of humans and
organizations (Hevner et al., 2004).

 14

The Design Science Research (DSR) approach is a relatively recent special-
ization of the scientific method in the field of IS, in which the design and appli-
cation of the artifacts in a practical context propagate knowledge and under-
standing of the problem domain and its solution (Hevner et al., 2004). Since the
DSR paradigm addresses the design, application, evaluation, and theorizing of
such artifacts, i.e. constructs, models, methods, and instantiations, it is selected
as the high-level research framework for this study. Case study is however uti-
lized in the empirical evaluation of the created artifacts, as it provides estab-
lished means to evaluate the utility of the artifacts in a practical context.

Wieringa (2014) suggests that the practical context has elements such as
people, values, desires, fears, goals, norms, and budgets, which must be inves-
tigated to fully understand the context. Furthermore, he states that the artifact
itself does not solve any problem. Rather, it is the interaction between the arti-
fact and the context that contributes to the solving of the problem (Wieringa,
2014). DSR incorporates a rigorous process for the design of the artifacts to
solve relevant organizational problems, to evaluate the designs, and to com-
municate the results for appropriate audiences (Peffers, Tuunanen, Rothen-
berger & Chatterjee, 2007). The empirical and conceptual evaluation of the arti-
facts is emphasized in this thesis. Furthermore, a novel design theory (Gregor &
Jones, 2007; Walls et al., 2004) is derived from the combination of the artifacts.

 The widely accepted general guidelines for DSR by Hevner et al. (2004)
are presented in TABLE 1.

TABLE 1 Design Science Research Guidelines (Hevner at al., 2004, p. 83)

Guideline Description

Design as an
Artifact

DSR must produce a viable artifact in the form of a construct, a model, a
method, or an instantiation.

Problem Rele-
vance

The objective of DSR is to develop technology-based solutions to im-
portant and relevant business problems.

Design Evalua-
tion

The utility, quality, and efficacy of a design artifact must be rigorously
demonstrated via well-executed evaluation methods.

Research Con-
tributions

Effective DSR must provide clear and verifiable contributions in the
areas of the design artifact, design foundations, and/or design methods.

Research Rigor DSR relies upon the application of rigorous methods in both the con-
struction and evaluation of the design artifact.

Design as a
Search Process

The search for an effective artifact requires utilizing available means to
reach desired ends while satisfying laws in the problem environment.

Communication
of Research

DSR must be presented effectively both to technology-oriented as well
as management-oriented audiences.

The DSR framework by Hevner et al. (2004) is presented in FIGURE 1. DSR re-
quires relevance from the application environment of the artifacts, i.e. the arti-
facts must address real business needs that originate from the interactions of
people, organizations and technology. On the other hand, DSR requires rigor
for the artifacts from the scientific knowledge base, i.e. the artifacts must have
solid theoretical foundations and they must be designed using scientific meth-
ods. Moreover, the utility of the artifacts must be evaluated by studying their

 15

usage in the application environment with proven methods. The iterative DSR
process should produce artifacts that provide potential solutions to real-world
problems in the application domain as well as scientific contributions to the
knowledge base. (Hevner et al., 2004.)

FIGURE 1 Design Science Research Framework (Hevner et al., 2004, p. 80)

The instantiation of the DSR framework in our study is described as follows. In
Environment, People comprise roles such as researcher, method engineer, evalu-
ator, project leader, and chief engineer. Organizations include a research lab
located in University of Jyväskylä as well as a case study company that operates
in the industry of professional mobile radio (PMR) networks and devices. The
case study company provides the concrete business need for the evaluation of
the state-of-the-art of DSM tools. The evaluation is required for the purpose of
selecting the optimal tooling for the re-engineering effort of a software product
line for PMR devices. University of Jyväskylä provides the research resources to
conduct the evaluation. We are the researcher, who iteratively designs and
evaluates the artifacts as well as derives the design theory presented in this the-
sis. Technologies such as ISD, DSM and CAME tools as well as communication
and project management tools are utilized. In IS Research, artifacts such as Arti-
fact I and Artifact II are designed, which are finally combined as Meta-Method.
Meta-Method is empirically evaluated in the case study as well as conceptually
evaluated by design theory componentization and the criteria of progress for IS
design theories. In Knowledge Base, Foundations such as DSM, evaluation meth-
ods for ISD tools, and SME are utilized in the design of the artifacts. Also,
Methodologies such as literature review, semantic analysis, and conceptual

 16

modeling are applied in the design process. The contributions of the study are
finally added to Knowledge Base as publications, such as this thesis.

1.3.2 Research Process

The DSR process (Peffers et al., 2007) has six activities: problem identification
and motivation, define objectives of a solution, design and development,
demonstration, evaluation, and communication. Problem identification and moti-
vation includes the definition of the research problem and justification of the
value of the solution. Define objectives of a solution refers to the inference of the
objectives of the solution using the problem definition and the knowledge of
what is possible and feasible. Design and development represents the creation of
the artifact. Demonstration refers to the use of the artifact to solve one or more
instances of the problem. Evaluation includes the observation and measurement
of how well the artifact supports a solution to the problem. Communication re-
fers to the communication of the problem and its importance as well as to the
artifact and its utility and novelty, the rigor of its design, and its effectiveness to
the relevant audiences, such as the researchers and practitioners of the field.
The DSR process doesn’t impose a specific order for the activities, thus the pro-
cess can be initiated from any of the following activities: problem identification
and motivation, define objectives of a solution, design and development, and
demonstration, and iterated over to address the issues related to the other activ-
ities. (Peffers et al., 2007.)

The DSR process adapted to this study is motivated by the case study com-
pany’s business need for an evaluation of the state-of-the-art of DSM tools from
the perspective of their specific business unit. The implemented DSR process is
illustrated in FIGURE 2, in which the process and its relation to the research
framework are presented. We stipulate the aforementioned business need in the
terms of the DSR process as: the need for the demonstration of Meta-Method.
From this delineation we derive the research problem presented in Section 1.2,
in which we also define the objectives for the research. Thus, the design and devel-
opment activities focus on the iterative design of the Artifact I and artifact II,
from which Meta-Method is derived, considered from both conceptual and em-
pirical points of view. In the demonstration activities, Meta-Method is instantiat-
ed by SME practices, producing situational methods that are enacted as the iter-
ations of the evaluation effort for DSM tools in the context of the case company.
Ultimately, the enacted evaluation methods produce reports for the decision-
making of the case company. In the evaluation, the instantiations of Meta-
Method are empirically evaluated in the case study. Furthermore, Meta-Method
is conceptually evaluated through the comparison against ISO 14102, using the
criteria of progress for IS design theories. Finally, the study is communicated via
forums such as this thesis.

 17

FIGURE 2 Research Process

Further discussions of the evaluation methodology, the case study, and the de-
sign theory development as well as the empirical and conceptual evaluation are
presented in Chapter 6.

1.4 Structure of the Thesis

The thesis is organized into seven chapters. In Chapter 2, DSM is introduced
and motivated as well as DSML development, model transformation, and DSM
tools discussed. Chapter 3 discusses the evaluation and requirements of DSM
tools, existing evaluation criteria, classification and analysis of the criteria as
well as presents the design of Artifact I. Chapter 4 discusses the socio-technical
dimensions of situational evaluation as well as the existing evaluation methods
and their classification in the Activity dimension. Chapter 5 discusses the de-
sign of Artifact II, introducing the SME foundation as well as the core elements
of Artifact II: a method base, situational factors, and construction guidelines.
Chapter 6 discusses the evaluation methodology for Meta-Method as well as its
application in the conceptual and empirical evaluation of Meta-Method. Finally,
in Chapter 7 a summary, a conclusion, and limitations of the study are present-
ed as well as future research is outlined.

 18

2 DOMAIN-SPECIFIC MODELING

This chapter defines the basic concepts of domain-specific modeling (DSM),
motivates the DSM approach, and discusses DSM languages, model transfor-
mation, the development of DSM languages, as well as DSM tools. Finally, a
summary of the chapter is presented.

2.1 Basic Concepts

A domain-specific language (DSL) is “a programming language or an executable
specification language that offers, through appropriate notations and abstrac-
tions, expressive power focused on, and usually restricted to, a particular prob-
lem domain” (van Deursen et al., 2000). Sánches-Ruiz et al. (2006) define do-
main-specific modeling (DSM) as the process of building a model for a specific
domain with a graphical DSL, which in this thesis, is called a domain-specific
modeling language (DSML). A DSML is defined within a metamodel, which is a
model of the DSML (Favre, 2005). A metamodel is “a model of the conceptual
foundation of a language, consisting of a set of basic concepts, and a set of rules
determining the set of possible models denotable in that language” (Falkenberg
et al., 1996, p. 58). A metamodel is an output artifact of a process of metamodel-
ing, often considered synonymous with building a DSML (Atkinson & Kühne,
2003). A meta-metamodel is the metamodel of a metamodel, i.e. it describes the
concepts that are available for metamodeling (Stahl & Völter, 2006, p. 57). A
domain is “an area of knowledge or activity characterized by a set of concepts
and terminology understood by practitioners in that area” (Booch et al., 1998).
A model is “a simplified, stylized representation of system, abstracting the es-
sence of the system's problem studied” (Wijers, 1991, p. 6). A model also helps
or enables understanding, communication, analysis, design and/or implemen-
tation of something to which the model refers to (Leppänen, 2005, p. 57). Do-
main modeling is the process of identifying, documenting, and specifying the
objects and their relationships that are relevant in the context of a given prob-

 19

lem (Sánchez-Ruíz et al., 2006). DSM conforms to model-driven development
(MDD) paradigm. MDD focuses on models in software development, rather
than computer programs (Kent, 2002; Selic, 2003). MDD is also referred to as
Model-Driven Engineering (MDE) (Schmidt, 2006).

2.2 Motivation for DSM Approach

Ever since the introduction of computers into society, scientists and practition-
ers have been constantly seeking ways to improve productivity of software en-
gineering by reducing complexity and increasing abstraction (Saraiva & da Sil-
va, 2008). A major leap was the transition to third generation languages (3GL),
like C or Java, from Assembler, which resulted in drastic, even 450 % productiv-
ity gains (Jones, 2006).

DSM aims to provide similar benefits: “DSM raises the level of abstraction
beyond current programming languages by specifying the solution directly us-
ing problem domain concepts” (Kelly & Tolvanen, 2008, p. 3). Application of
DSMLs in software development eliminates the need for mapping the problem
domain concepts to solution domain concepts. Industrial experiences consist-
ently report DSM providing 5 to 10 times higher productivity rates than other
current development approaches (Kärnä et al., 2009; Kelly, 2007). FIGURE 3 il-
lustrates the approaches on how the abstraction gap between an idea in domain
terms and its implementation has been bridged in software engineering (Kelly
& Tolvanen, 2008, p. 16).

FIGURE 3 Bridging the Abstraction Gap (Kelly & Tolvanen, 2008, p. 16)

Models are utilized e.g. in designing systems, understanding them better, speci-
fying required functionalities, creating documentation, and as universal teach-
ing and learning tools (Ludewig, 2003). Commonly in software engineering the
specification models that form the base of application code end up obsolete as

 20

customer requirements change and evolve. This is simply due to the fact that
the cost of maintaining the same up-to-date information manually in two places
is too high. In DSM this changes entirely since the models are the primary de-
velopment artifacts. Executable code can be generated from the models. DSMLs
utilize concepts and rules from the problem domain, as opposed to general
modeling languages, such as Unified Modeling Language (UML), which was
designed for describing object-oriented (OO) software constructs in the solution
domain (Booch et al., 1998, p. 20). In FIGURE 4 different approaches to software
development and their code-model alignment are presented. (Kelly & Tolvanen,
2008, p. 16)

FIGURE 4 Aligning Code and Models (Kelly & Tolvanen, 2008, p. 5)

The code only approach represents programming without design specifications,
which works well on small scale development tasks. The second approach is
currently the most utilized, in which the software systems are designed sepa-
rately from the code with general-purpose modeling languages, such as UML,
and in the programming phase the mappings of model concepts to coding con-
cepts are made manually by developers. The code visualization approach im-
plements reverse engineering to derive model concepts from the finished code,
e.g. for documentation generation purposes. Reverse engineering is the process
of comprehending software and producing a model of it at a high abstraction
level, suitable for documentation, maintenance, or re-engineering (Rugaber &
Stirewalt, 2004). Round-trip approach utilizes engineering and reverse engi-
neering to keep convergent information up-to-date both in models and code. In
theory the development can then be executed in either media, but in practice
their limitations in expressivity for the generation of either one restricts the
functionality to class skeleton generation (Antkiewicz, 2006). (Kelly & Tolvanen,
2008, p. 5)

The goal of DSM is that application code is entirely generated from mod-
els constructed with customized DSMLs, employing the concepts and rules of a

 21

specific domain. This enables raise of abstraction and hides unnecessary com-
plexity. Model-to-code transformations are automated via customized code
generators, analogous to compilers translating code e.g. from C++ to Assembler.
Generated code is complete and executable within a domain framework of a
given application environment. A domain framework consists of everything be-
low the code generator: hardware, operating system, programming languages
and software tools, libraries and additional components or code on top of these,
split into domain-specific and platform parts. Thus, a domain framework pro-
vides an interface between the generated code and the underlying target envi-
ronment (Kelly & Tolvanen, 2008, p. 86). (Kelly & Tolvanen, 2008, p. 15)

Domain-specific languages and tools developed for a particular task will
always perform better than general-purpose ones. Therefore DSM should be
considered whenever applicable. DSM is suited where the domain and applica-
tion are well known, thus it is not ideal for unique projects. DSM is optimal for
software product families having development tasks of repeatable nature and
an established solution history. As in code-driven development, reuse of librar-
ies, components and services increases productivity, the application of DSM
requires similar principles, as it offers a way to find a balance between writing
code manually and generating it. (Kelly & Tolvanen, 2008, p. 18.)

2.3 Domain-Specific Modeling Languages

The focus of a DSML needs to be in a narrow area in order to enable transfor-
mations that produce executable artifacts, requiring minimal to no manual
patching. The components of a DSML are Concrete Syntax, Abstract Syntax,
and Semantics. Concrete Syntax is mapped to Abstract Syntax, and Abstract
Syntax is mapped to Semantics. The structure enables well-formed models to be
created. The components and their relationships are illustrated in FIGURE 5.
(Cho, 2013, p. 23.)

FIGURE 5 DSML Components and their Relationships (Cho & Gray, 2011, p. 2)

 22

Abstract Syntax is the description of the concepts of a DSML, the structural rela-
tionships between the concepts, and the constraints that define how the lan-
guage elements can be combined to describe specific domains. Abstract Syntax
is the metamodel of a DSML. Concrete Syntax defines the visual notation of a
DSML, utilized in DSML application. Concrete Syntax can be e.g. textual,
graphical, mixed or matrix representation. Concrete Syntax elements must be
mapped via rules to Abstract Syntax elements. Typically, Abstract Syntax ele-
ments can be mapped to one or more Concrete Syntaxes, for different usage
purposes, e.g. graphical model notation for human use and XMI specification
for model exchange between tools. Semantics are typically utilized in the specifi-
cation of structural and behavioral properties of Abstract Syntax elements, and
in the governance of the syntax and semantics of Concrete Syntax and the val-
ues of properties. (Cho et al., 2012; Cho, 2013, p. 23)

FIGURE 6 demonstrates the Abstract Syntax (metamodel) for a simple Fi-
nite State Machine (FSM) DSML, applicable to modeling the states of a system
and the transitions between the states. FSM DSML includes two elements, State
and Transition, which are connected by Incoming and Outgoing relationships.
The State and Transition elements are mapped to respective Concrete Syntax
elements, demonstrated in FIGURE 7. (Cho, 2013, p. 24)

FIGURE 6 Abstract Syntax of a Finite State Machine DSML (Cho, 2013, p. 24)

FIGURE 7 Concrete Syntax of a Finite State Machine DSML (Cho, 2013, p. 24)

 23

After the mappings are specified, semantics can be utilized in fine tuning e.g.
the behavior of the elements and the values the element properties can have.
Then, a modeling tool providing the FSM DSML can be generated and applied
in the modeling of FSMs.

2.4 Model Transformation

There are two common types of model transformation: Model-to-Model (M2M),
and Model-to-Text (M2T) (Czarnecki & Helsen, 2003). M2M transforms models
into other types of models and M2T transforms models into textual artifacts,
such as application code. FIGURE 8 illustrates the basic concepts of model
transformation in terms of M2M. The source models, conformant to the source
metamodel are transformed into target models, conformant to the target meta-
model, utilizing transformation definitions, executed on a transformation en-
gine. In the case of M2T, which is the primary type of transformation discussed
in this thesis, the target is a textual representation of the source model. (Czar-
necki & Helsen, 2006)

FIGURE 8 Concepts of Model Transformation (Czarnecki & Helsen, 2006, p. 3)

In DSML application e.g. novice developers or non-technical personnel can uti-
lize the DSML to produce models, transform them to code, and execute the code
as is, or within a domain framework. For example, an FSM model created using
the DSML described in the previous section, can be transformed into FSM code
for a given system, using M2T. The quality of the generated artifacts is con-
sistent and corresponds to the capabilities of the developers that defined the
transformation. Template-based transformations are widely used in M2T
(Czarnecki & Helsen, 2006).

Typically, M2T templates consist of two types of code. There is code for
accessing and selecting model data by traversing the model structure specified
in the metamodel. There is also code for expanding and wrapping the selected
model data into chunks of strings, ultimately forming the structure of the appli-
cation code generated. There are multiple ways of implementing the templates,

 24

such as tree-based intermediate representation and DSLs for M2T. (Hoisl et al.,
2013)

Hoisl et al. (2013) propose that the templates are first-class modeling ele-
ments and suggest an abstraction model from the implementation details. They
consider the templates as instances of a conceptual M2T template metamodel,
defined in the MOFM2T specification (OMG, 2008a). This promotes the porta-
bility of the template approach to the modern M2T languages, such as Eclipse
Xpand, JET, and Acceleo. FIGURE 9 illustrates the approach by utilizing the
MOF four-layer architecture, discussed in detail in Chapter 2.6. (Hoisl et al.,
2013)

FIGURE 9 Model-to-Text Template Model Transformation (Czarnecki & Helsen, 2006, p. 3)

A DSML engineer defines a domain-specific template in level M1, using con-
cepts and rules defined in level M2 metamodel, which in turn is defined in level
M3, the MOFM2T specification. Then, a domain modeler utilizes a DSML to
generate models in level M1 and applies the M1 template to generate artifacts of
level M0, such as application code. (Hoisl et al., 2013)

2.5 Domain-Specific Modeling Language Development Process

The development of a DSML can be carried out by utilizing any of the available
software development methods, like the waterfall model or agile methods. The
DSML development is distinct in that it has the three interrelated components
of Concrete Syntax, Abstract Syntax, and Semantics. The development of the
components has to be considered independently as well as the mapping of
them together in a unified way. (Cho, 2013, p. 28.)

Typically, the development requires the collaboration of two types of ex-
perts: domain experts and DSML engineers. A domain expert has profound
knowledge and expertise within a given domain, and has the capability to de-
scribe the DSML requirements as well as validate the DSML for a release. A
DSML engineer builds the language by analyzing the requirements, developing

 25

the components, mapping them together, and performing tests. The metamod-
eling language, mapping mechanisms, and DSML editor generation facilities
provided by a DSM tool are utilized in the development process. (Cho, 2013, p.
30)

A demonstration-based DSML development process is illustrated in FIG-
URE 10. The process starts with the capturing of the requirements. The goals of
the requirements engineering are to identify stakeholders of the domain, define
the domain scope, and to identify the notation typical to the domain. The con-
crete syntax is often specified next, as it promotes communication between the
stakeholders via use of symbols and concepts of the domain, thus helping to
explore the specific problem domain. As the concepts and rules of the domain
unfold, the logic of a DSML is captured into the abstract syntax design, and
mapped to the concrete syntax. After the syntax is designed, semantics should
be specified and associated to the abstract syntax. In the specification of the se-
mantics, three activities are involved: understanding of the designed syntax of
the DSML, choosing a semantic domain, which is the formalism used to define
the DSML, and mapping from the syntax to semantic domain. Finally, the lan-
guage is verified by testing, validated by the domain expert, and released. On a
side note, the demonstration-based approach promotes the definition of the
concrete syntax before the abstract syntax, which is contrary to the traditional
model. (Cho, 2013.)

FIGURE 10 Demonstration-Based DSML Development Process (Cho et al., 2012, p. 1)

In order to utilize the DSML in the generation of artifacts such as application
code, executable within a domain framework, a model transformation defini-
tion is specified. The DSML engineer defines the transformation using a lan-
guage supported by a transformation engine, provided by a DSM tool. Models
defined by domain modelers (the DSML users) are transformed into code utiliz-
ing M2T transformation artifacts called code generators. The code generator is
specified by the DSML engineer by analyzing the domain requirements and
existing codebase from the problem domain. The roles of the DSML engineer
and the domain modeler are illustrated in FIGURE 9 in template-based trans-

 26

formation. DSM tools may provide a fixed mechanism for transformations or
the functionality can be added as a module or plugin. (Hoisl et al., 2013)

2.6 Domain-Specific Modeling Tools

In model-driven development the importance of modeling tools is emphasized
since the models are the main development artifacts, not just throwaway
sketches of systems (Favre, 2004; Seidewitz, 2003). Modeling tools allow e.g.
creating, checking, verifying, reusing, integrating and sharing of design specifi-
cations. In traditional Computer-Aided Software Engineering (CASE) tools the
modeling languages are hard-coded into the tools as fixed metamodels and de-
velopers are restricted to using them (Kelly & Tolvanen, 2008, p. 59). A CASE
tool is a software development tool that aids in software engineering activities,
including, but not limited to, requirements analysis and tracing, software de-
sign, code production, testing, document generation, quality assurance, config-
uration management, and project management (IEEE, 1995). In the context of
this thesis, CASE tools are referred to as ISD tools, denoting a general-purpose
tool that supports ISD activities. DSM tools can be considered as a specific type
of ISD tools, also called meta-CASE tools, which enable the design and genera-
tion of customized ISD tools, i.e. modeling tools that implement DSMLs.

A DSM tool provides facilities for DSML specification and application as
well as model transformation (Kirchner and Jung, 2007). A DSML specification
facility provides tool support for the specification of the components of a DSML.
The specification of a DSML metamodel is governed by the meta-metamodel
provided by the DSM tool (Stah & Völter, 2006, p. 57). There is a number of
DSM tool-specific meta-metamodels available that provide divergent meta-
modeling concepts, such as OMG’s Meta Object Facility (MOF) (OMG, 2006),
Ecore, the implementation of essential subset of MOF, EMOF in Eclipse Model-
ing Tools (Steinberg et al., 2009), and Graph-Object-Property-Port-Role-
Relationship (GOPPRR) in MetaEdit+ (Kelly et al., 2013; Tolvanen et al., 2007).
The heterogeneity of the meta-metamodels leads to issues such as the selection
of a meta-metamodel and interoperability between DSM tools (Kern et al., 2011).
A DSML application facility refers to an ISD tool that is generated by a DSM tool,
implementing the DSML specification. A model transformation facility provides
the means to transform the models specified in the generated ISD tools to other
artifacts, such as program code. (Kirchner and Jung, 2007)

Atkinson and Kühne (2005) propose three main architectures for modeling
tools: four-layer architecture, two-level cascading architecture, and orthogonal
classification architecture. In practice, the four-layer architecture is extensively
used e.g. in Eclipse Modeling Tools, and considered a prominent architecture
for DSM tool design (Atkinson & Kühne, 2005; Karagiannis & Kühn, 2002). The
two-level cascading architecture is employed by the commonly used DSM tools
such as MetaEdit+ and by the Software Factories approach. The orthogonal

 27

classification architecture is based on level compaction and uses the library
metaphor, e.g. in ConceptBase. (Atkinson & Kühne, 2005)

A typical example of the four-layer architecture is MOF, which is present-
ed in FIGURE 11, along with its alignment with DSM tools and ISD tools. MOF
is a language adapted to the domain of OO approach to modeling (Atkinson &
Kühne, 2005), while UML is a language adapted to the domain of OO pro-
gramming languages (Saraiva & da Silva, 2008). The four-layer architecture
employs four distinct logical modeling layers M3, M2, M1, and M0. M3 is the
MOF meta-metamodel layer, which defines UML metamodel in M2, which de-
fines models in M1 that define the application instances of those models in M0.
A meta-metamodel is written in a meta-metamodeling language, a metamodel
is written in a metamodeling language, and a model is written in a modeling
language. A DSM tool has a fixed meta-metamodel, which defines a metamod-
eling language used in the development of a DSML. Thus, a metamodeling lan-
guage is used in the construction of a metamodel of a DSML. In a traditional
ISD tool the metamodel is fixed, so only the modeling language, such as UML,
defined by the metamodel, is provided.

FIGURE 11 Four-Layer Architecture in DSM Tools

Essentially, DSM tools need to have the facilities to construct modeling lan-
guages and transformations to enable increased automation. They also need to
be able to provide adequate tool support, usability, and reliability for an entire
DSM solution life-cycle. A DSM solution is a production application utilized in
a domain framework, generated from a model, created with a DSML. It is im-

 28

portant that a DSML can be quickly developed and easily maintained, since the
rationale for using this approach is the productivity increase via automation. If
the cost of a DSM solution is greater than the cost of a manually programmed
solution, there’s no point in using DSM. The value of having automation in use
as early as possible is salient. Optimally the development of a DSM solution
would only require the construction of a DSML and a transformation, along
with a domain framework to support the generated code, and the tool should
provide the rest. During the evolution of a DSM solution the safety of tool cus-
tomization becomes crucial. All modifications to the language should propagate
to all specifications without deleting or corrupting them. Integration with com-
pilers, debuggers and testing tools is also needed. In summation, DSM tools
should guide and support developers during the construction and maintenance
of DSM solutions. (Kelly & Tolvanen, 2008, p. 61)

2.7 Summary

This chapter defined the basic concepts of domain-specific modeling (DSM),
motivated the DSM approach, and discussed DSM languages, model transfor-
mation, the development of DSM languages, as well as DSM tools.

Domain-Specific Modeling was delineated as an approach to software en-
gineering in which models are the primary development artifacts, typically ap-
plied in narrow and well-established domains, for the purpose of increasing
productivity by automation. DSM raises the level of abstraction beyond current
programming languages by specifying the solution directly using problem do-
main concepts. In the DSML development process, the concepts, rules, and se-
mantics of application domains are captured in the specifications of DSMLs that
are utilized in the production of models, from which software and other arti-
facts are generated via model transformations.

DSM tools were defined as tools which, in addition to the functionality of
conventional ISD tools, provide facilities for DSML specification and applica-
tion as well as model transformation. In addition, a robust architecture, ade-
quate user support, usability, reliability, and development life-cycle support are
essential characteristics. DSM tools provide dynamic metamodels for modeling
tool specification, as opposed to ISD tools, which provide fixed metamodels for
modeling languages such as UML. In summary, DSM tools should guide and
support developers in the construction and maintenance of DSM solutions.

 29

3 EVALUATION CRITERIA FOR DSM TOOLS

The topic of this chapter is the evaluation of DSM tools. It is considered from
four perspectives. First, the evaluation of DSM tools is discussed on a general
level. Second, four sets of requirements for DSM tools are presented based on
four previous studies. Third, evaluation criteria for DSM tools, presented in
eight previous studies, are outlined. Fourth, a comprehensive classification of
evaluation criteria for DSM tools, derived from existing criteria, is introduced.
The classified evaluation criteria are adapted into a checklist with unified data
types, ranges, and examples of criteria values, effectively forming Artifact I.

3.1 Evaluation of DSM Tools

Evaluation is the process of determining the merit, worth, or significance of
things (Scriven, 2003). Evaluation is practiced when quality, value, and/or im-
portance of things are assessed (Scriven, 2001). Evaluations are conducted by
evaluators using evaluation criteria against a set of standards. Evaluator is the
practitioner of an evaluative study. Evaluation criteria are a selected subset of
properties of things, governed by stakeholder values. A criterion may consist of
one or more metrics that define the value of the criterion. The criteria may be
weighted and/or prioritized, as well as the standards set, according to the re-
quirements in question. Evaluation can be employed by internal and/or exter-
nal evaluators before, during, and/or after the lifecycle of a thing, in generic or
context-specific settings, in novel or supplemental capacity. (Scriven, 2003.)

Evaluations of software tools are typically conducted for the justification
of acquisition or for research purposes (Lundell & Lings, 2004b). DSM tools are
often evaluated by the industry for the purpose of investigating the opportuni-
ties to implement DSM in software production, or to upgrade the current DSM
tools in use. DSM tools are also studied by researchers with the aim of produc-
ing objective knowledge by e.g. comparing the tool features and capabilities in a

 30

case study or lab setting. Furthermore, Kelly (2013, p. 1) identifies the following
types of approaches for the evaluation of DSM tools:

 comparing DSM tools as different ways of producing an ISD tool for
the same DSML

 comparing the effort to update the resulting ISD tool when the DSM
tool, problem or solution domain evolves

 comparing the productivity of the resulting ISD tool and transfor-
mation against hand-writing the same code

 comparing the productivity of different DSMLs made for the same
domain with different DSM tools

 comparing the performance of the resulting ISD tool: how long the us-
er has to wait for the tool to open a model, generate code, show model
changes etc.

This chapter discusses the evaluation criteria utilized in scientific comparative
studies. The compiled criteria findings may be utilized as a guideline in the cri-
teria formulation of future studies and also as a reference for industrial evalua-
tions.

3.2 Requirements for DSM Tools

In this section a set of definitive features and requirements for DSM tools by
Lukman and Mernik (2008), Achilleos et al. (2007), Nytun et al. (2006), and Kelly
and Tolvanen (2008) are presented. The features and requirements applying to
DSM tools are collected and unified to eliminate repetition. The basic features of
DSM tools are the facilities for the specification and application of DSMLs as
well as the model transformation (Kirchner & Jung, 2007). The requirements
presented in the following provide aspects of the facilities in more detailed
manner, building the foundation for the analysis of Artifac I.

Lukman and Mernik (2008) propose a set of minimal features for MDE
tools: Modeling Environment and Artifacts Generator. Additionally, they sug-
gest additional useful features, which could increase developer adaptation of
MDE. The features are presented in TABLE 2.

 31

TABLE 2 Features of MDD Tools (Lukman & Mernik, 2008)

Feature Description

Modeling Envi-
ronment

Enables the creation and editing of visual models. This environment
must also include a way of defining and enforcing constraints on the
build models.

Artifacts Genera-
tor

A model-to-code transformation engine, which enables the generation
of source code, documentation and other development artifacts based
on the given models.

Model Debugger The development of today’s complex and extensive software is hardly
imaginable without debugging capabilities. Debugging capabilities
should also be available on the modeling level.

Model Valida-
tion

Models are validated with the constraints that are present in the do-
main they belong to.

Model-to-Model
Transformation
Engines

To enable advanced development tasks on the available models a
mode-to-model transformation engine is needed. Such tasks are e.g.
model refactoring and exploration of design alternatives.

Test Suite Enables testing on the modeling level.
Model Analysis
Tools

Enable analysis of the constructed models in various ways e.g. as-
sessing the quality of models (via model metrics).

Model Simula-
tors

In some domains, e.g. embedded software, code execution on the actu-
al platform is not rational or possible. Therefore simulation capabilities
on the modeling level are much desired.

Achilleos et al. (2007) propose additional requirements for MDD tools, present-
ed in TABLE 3.

TABLE 3 Requirements for MDD Tools (Achilleos et al., 2007)

Requirement Description

Abstract Syntax Any DSML shall be specified as a M2 meta-model using a semantic
meta-metamodeling language, such as MOF. An effective DSM tool
must ensure completeness of the new modeling language through its
meta-metamodeling language.

Concrete Syntax A DSML shall additionally specify a graphical notation, to allow the
concrete representation of its abstract concepts. This will enable better
understanding of the language and will make its use easier in develop-
ing models.

Metamodel con-
straints

Precision in the DSML semantics shall be provided by the specification
of constraints onto the M2 metamodel (abstract syntax) to ensure cor-
rectness of the language.

Modeling tools
generation

One to one mapping must be enabled between the DSML abstract con-
cepts and their corresponding concrete representation, which shall
lead to the generation of a modeling tool. The tool will be used for the
specification and management of M1 models.

Text-based gen-
eration

A DSM tool shall generate text-based output from M1 models. This
can lead to code generation in a programming language, such as Java,
or a markup language, such as XML.

Accelerated
adoption

Generated tools should be easy to use for the modelers.

 32

Nytun et al. (2006) suggest high-level requirements for metamodeling tools,
presented in TABLE 4.

TABLE 4 Requirements for Metamodeling Tools (Nytun et al., 2006)

Requirement Description

Generativeness When discussing tools that produce modeling tools, the most important
requirement is that they are able to automatically produce the tool. This
refers to the mapping from the metamodel to the tool code.

High-Level
Description

The descriptions are more easily handled when they are given in a high-
level notation. This means that a tool should provide high-level notations
for the different modeling language aspects.

Completeness The coverage of aspects related to metamodel structure, constraints, rep-
resentation and behavior. A good metatool will allow the expression of
all important aspects of a modeling language.

Conformance
to Standards

The tools are produced automatically from the corresponding standards
documents. For this to be possible the standards documents have to be
given in a formal way.

Kelly and Tolvanen (2008) propose requirements for DSM tools, addressing
more specific, functional aspects of metamodeling and modeling (Kelly & Tol-
vanen, 2008, p. 365). The requirements are presented in TABLE 5.

TABLE 5 Requirements for DSM Tools (Kelly & Tolvanen, 2008, p. 365)

Metamodeling Requirements

Specify the object and relationship types declaratively
Specify declaratively a list of properties for each object or relationship type, with support
for at least string and Boolean property data types
Specify basic rules for how objects can be connected by relationships
Specify symbols for types, whether graphically, declaratively or in code
Ability for a generator to access the models
From specifications defined by metamodeler, create a modeling tool

Modeling Requirements

Store and retrieve a model from disk
Create new instances in models by choosing a type and filling in properties
Link objects via relationships
Lay out the objects and relationships, either by dragging or automatic layout
Edit properties of existing object relationships
Delete objects and relationships

The definitive features and requirements for DSM tools presented in this section
may be used as a reference in requirements engineering of real-world DSM tool
evaluations. The requirements should be mapped to the corresponding evalua-
tion criteria, some of which are reviewed in the next section.

 33

3.3 Evaluation Criteria for DSM Tools in Previous Studies

There are some studies that report on evaluations of DSM tools against defined
evaluation criteria. Saraiva and da Silva (2008) evaluated a set of DSM tools
specifically from the metamodeling perspective, focusing on architectural and
practical aspects. They included both theoretical and practical evaluation crite-
ria. Nevertheless, they pointed out that the criteria were subjective and to estab-
lish a higher degree of consensus on the criteria, more work was required in the
future. The tools evaluated were Enterprise Architect, MetaSketch, MetaEdit+,
and Microsoft DSL Tools.

Vasiljević et al. (2013) evaluated five DSM tools by analyzing their ad-
vantages and disadvantages from the viewpoint of the user and the applicabil-
ity to both academic and industrial contexts. They didn’t discuss the back-
ground of the criteria formulation or analyze the criteria application, but on the
general note they kept the criteria relative simple and didn’t go into fine grain
details of DSM tools. The evaluated tools were Visual Studio DSL Tools, Posei-
don for DSL, Spray, Magic Draw Standard, and AToM3. (Vasiljević et al., 2013)

The evaluation criteria utilized by Saraiva and da Silva (2008) and Va-
siljević et al. (2013) are presented in the TABLE 6.

TABLE 6 Criteria by Saraiva & da Silva (2008) and Vasiljević et al. (2013)

Saraiva & da Silva (2008) Vasiljević et al. (2013)

Supported Standard Exchange Formats Documentation

 Metamodels Storage format

 Models Operating System

Model Transformation Framework License

Usage of the Level Compaction Technique Price
Usage of the Language Metaphor Version
Usage of the Library Metaphor Deployment Model
Number of Levels the User Can Manipulate Meta-metamodel
Support for Specifying Metamodel Syntax Concrete Syntax Representation

 Supports Specification Abstract to Concrete Syntax Mapping

 Languages Used Multiple Concrete Syntax

Support for Specifying Metamodel Semantics Constraint Language

 Supports Specification Model to Model

 Languages Used Model to Text

The Size of The Hard-Coded Meta-metamodel Extensibility
 Stability

Pelechano et al. (2006) compared Eclipse Modeling Plugins and Microsoft DSL
Tools in a controlled experiment in which 48 undergraduate computer science
students, divided into two groups, developed a demonstrative DSML using the
tools. Afterwards the test subjects answered a survey with multiple questions
about the task. The survey feedback data was utilized in the statistical compari-
son of the tools. The survey questions were abstracted as evaluation criteria.

 34

Langlois et al. (2007) proposed a feature model for DSL tools, including
both textual and graphical tools, and conducted a DSM tool evaluation between
three tools. The feature model was constructed for the purpose of formalizing
DSL and DSL tool variants, and the evaluation criteria were derived from the
model. The tools evaluated were Eclipse GMF, Microsoft DSL Tools, and Xacti-
um XMF-Mosaic.

The evaluation criteria by Pelechano et al. (2006) and Langlois et al. (2007)
are presented in TABLE 7.

TABLE 7 Criteria by Pelechano et al. (2006) and Langlois et al. (2007)

Pelechano et al. (2006) Langlois et al. (2007)

Documentation Availability DSL Metamodel
Metamodeling Language Understandability Abstract/Concrete Syntax Representation
Metamodeling Language Expressivity Concrete Syntax Style
Language (Metamodel) Designer Usability Abstract to Concrete Syntax Mapping

Graphical Designer Usability Problem to Solution Mapping Expression
Quality of the Resulting Graphical Modeler Existence of Viewpoints
Graphical Designer Completeness Destructive/Incremental Asset Update
Extensibility of the Graphical Designer Asset Integration Support
Comparing Generated Editors Model/Text Techniques
Maturity and Robustness Internal/External Execution Environment
Complexity in Defining the Code Generator Abstraction: Intrusive/Seamless
Implementing the Code Generator Providing Adaptive Tool Assistance
Utility of the Employed Tools Providing Step/Workflow Process Guid-

ance
Industrial Application DSL Checking
Fidelity to the Tool Usability
 Portability
 Interoperability (Part of Functionality)
 Maintainability

Amyot et al. (2006) evaluated a set of DSM tools by performing a DSML devel-
opment task, with the criteria derived from the practical point of view. In the
evaluation a particular emphasis was put on the generation of graphical editors,
which was reflected on the criteria formulation. The DSM tools evaluated were
Generic Modeling Environment (GME), Xactium XMF-Mosaic, and Eclipse EMF
with GEF. Also the evaluation of the UML profiling capabilities of Telelogic Tau
G2 and of Rational Software Architect (RSA) were included.

Sivonen (2008) evaluated DSM tools for the purpose of selecting a tool for
a DSML development study. The task had the objective of developing a DSML
for creating repository-based Eclipse plugins, although tools from other ven-
dors were evaluated as well. One could argue the nature of the task might have
biased the criteria formulation towards Eclipse. The tools evaluated were Mi-
crosoft DSL Tools, GME, Eclipse GEMS, and MetaEdit+.

The evaluation criteria utilized by Amyot et al. (2006) and Sivonen (2008)
are presented in TABLE 8.

 35

TABLE 8 Criteria by Amyot et al. (2006) and Sivonen (2008)

Amyot et al. (2006) Sivonen (2008)

Graphical Completeness Tool Provider
Editor Usability Supported Platforms
Effort License

Language Evolution Documentation and Support
Integration with Other Languages  User's Guide for the Tool
Analysis Capabilities  Tutorials
  Instructions for the Code Genera-

tor Definition
  E-Mail Support
 Metamodeling Language
 Constraint Definition Possibilities
 Code Generation Possibilities
  Generator Definition Language
  Generator Output Language

De Smedt (2011) compared three DSM tools in a case study, which included a
DSML development task. The study comprises of a practical comparison and a
technical comparison, in which the undertaking of the task was evaluated. The
tools evaluated in the study were AToM3, MetaEdit+, and Poseidon for DSL.

El Kouhen et al. (2012) propose criteria for the evaluation of the adaptabil-
ity of a DSM tool by observing how well they can be used to customize graph-
ical editors for a sample DSML in a case study. The evaluation criteria are speci-
fied in detail, including various quantitative metrics that comprise the singular
criteria. The tools evaluated in the study were IBM Rational Software Architect
(RSA), GME, MetaEdit+, Obeo Designer, and Eclipse GMF.

The evaluation criteria by De Smedt (2011) and El Kouhen et al. (2012) are
presented in TABLE 9.

TABLE 9 Criteria by de Smedt (2011) and El Kouhen et al. (2012)

De Smedt (2011) El Kouhen et al. (2012)

Speed of Development Customization Level
Documentation Graphical Expressiveness

Repository Graphical Completeness
Platform Tool Openness

Price  Tool Building Approaches
Integration  Extensibility
Transformation Tool  Reusability
API  Maintainability
Abstract Syntax Tool Usability
Concrete Syntax  Efficiency
Abstract to Concrete Syntax Mapping  Task Visibility
Relationships  Visual Coherence
Constraints Required Resource (Man-Day)
 License Nature

 Artefact Quality Level
 Artefact Format

 36

The eight studies outlined above found over a hundred single criteria for DSM
tool evaluations. In the following, the discussed criteria are analyzed, classified,
unified, and adapted to establish a coherent checklist to be used as a guideline
for future criteria formulations of DSM tool evaluations.

3.4 A Classification of Evaluation Criteria

Kirchner and Jung (2007) propose an evaluation framework for metamodeling
tools, in which they divide the evaluation criteria into two main categories and
the latter one further into three subcategories:

 General Evaluation Criteria for Software Tools

 Evaluation Criteria for Metamodeling Tools

 Tool Architecture

 Modeling Language Specification

 Modeling Language Application.

The general evaluation criteria includes the criteria of interest to almost any
projected acquisition of a software tool, such as initial and operational costs,
software ergonomics and documentation, along with the installation and re-
moval of the tool (Kirchner & Jung, 2007). These types of general criteria are
described at length by e.g. Rivas et al. (2010) and the ISO 14102 standard docu-
ment (ISO, 2008, 15). They are not in the core area of this thesis.

The evaluation criteria for metamodeling tools contains the criteria of particu-
lar interest to aspects dealing with the evaluation of DSM tools. The tool architec-
ture subcategory comprises of criteria related to the overall tool architecture,
such as modularity, model management, extensibility, and integration. The ar-
chitecture determines the performance and flexibility of the tool. The modeling
language specification subcategory deals with the criteria related to DSML speci-
fication tasks, such as the general approach to metamodeling and the definition
of the language concepts. The modeling language application subcategory includes
criteria dealing with the aspects of the application of DSMLs, such as the gener-
ation of modeling tools, model transformation, simulation, metrics and model
documentation. (Kirchner & Jung, 2007.)

The categories are utilized in the classification of the criteria into a unified
checklist, presented in the next section.

3.5 Artifact I - Evaluation Criteria Checklist for DSM Tools

The evaluation criteria found in the literature review in Section 3.3 are here
classified, unified, and given data types, ranges, and example values for better

 37

representation of their semantics. Forty-five representative criteria were
adapted to the checklist (see APPENDIX 1). In the adaptation, coverage, com-
pactness, and practicality of the criteria were the key principles, which resulted
in the abstraction of some of the criteria into a more general form, the semantic
normalization of the criteria in terms of eliminating repetition, and the elimina-
tion of some of the more rare criteria (see APPENDIX 2). The data types, ranges,
and examples are adapted from the literature and unified to form a coherent
representation. In the following, the criteria included in the checklist are de-
scribed according to the classification presented in Section 3.4.

3.5.1 General Evaluation Criteria for Software Tools

The General Evaluation Criteria category includes the following criteria: Docu-
mentation, Customer Support, Licensing Model, Price, Vendor, Version, Stabil-
ity, Usability, Utility, and Effort. The criteria are presented as a part of the
checklist in TABLE 10.

TABLE 10 General Evaluation Criteria for Software Tools

General Type Range (or none) Example

Documentation String Set of Documentation Types Tutorials
Customer Support String Set of Support Mechanisms E-Mail

Licensing Model String Set of Licensing Models Open Source
Price (in Currency X) Int Natural Numbers 1000

Provider String Set of Provider Names Microsoft
Version String Set of Version Identifications Beta 1.2
Stability Enum Low, Medium, Good Low
Usability Enum Low, Medium, Good Medium
Utility Enum Low, Medium, Good Good
Effort (e.g. in Man Days) Int Natural Numbers 2

Documentation includes all the types of literature, examples, and learning aids
provided with the tool. Automatic generation of the documentation of a DSML
model should also be available. Customer Support includes the support mecha-
nisms provided by the tool vendor. Licensing Model includes the terms by which
the tool is provided to the customer. Price includes the acquisition and opera-
tional costs of the tool. Provider is the company or community who is providing
the tool. Version is the identification of a software revision released as the tool.
Stability is the assessment of the functional reliability of the tool, based on the
experiences during the evaluation period. Usability applies to all tool compo-
nents with user interfaces and determines the ease of use and learnability of the
tool. Utility is the assessment of the practicality and usefulness of the tool. Effort
is the time and resources required to learn and use the tool to undertake a spe-
cific task. (Amyot et al., 2006; De Smedt, 2011; El Kouhen et al., 2012; Pelechano
et al., 2006; Sivonen, 2008; Vasiljević et al., 2013)

 38

3.5.2 Evaluation Criteria for Tool Architecture

The Tool Architecture category includes the following criteria: Storage Mecha-
nism, Platform Support, Deployment Model, Extensibility, Integration, Maturi-
ty, Meta-metamodel Architecture, Language Validation, Interoperability, Main-
tainability, Language Evolution, Customizability, and Reusability. The criteria
are presented as a part of the checklist in TABLE 11.

TABLE 11 Evaluation Criteria for Tool Architecture

Tool Architecture Type Range (or none) Example

Storage Mechanism String Set of Storage Mechanisms Repository
Platform Support String Set of Platform Names Linux
Deployment Model Enum Embedded, Standalone Standalone
Extensibility Enum Low, Medium, Good Low
Integration String Set of Integration Mech. API
Maturity Enum Low, Medium, Good Low
Meta-Metamodel Architecture String Set of Tool Architectures Four-layer
Language Validation Bool Yes, No Yes
Interoperability String Set of Standards XMI
Maintainability Enum Low, Medium, Good Low
Language Evolution Enum Low, Medium, Good Low
Customizability Enum Low, Medium, Good Low
Reusability Enum Low, Medium, Good Low

Storage Mechanism includes the ways the tool handles the storage of models and
other artifacts. Platform Support includes the operating systems that the tool can
be run on. Deployment Model includes the ways in which the tool is available, e.g.
as a plugin or a standalone package. Extensibility includes the assessment of the
extent to which the tool functionality can be augmented by a developer, via e.g.
modular architecture design. Integration includes the mechanisms by which the
tool can be integrated to the development environment. Maturity includes the
assessment of how evolved and established the tool is in terms of user adaption
and functionality. Meta-Metamodel Architecture is the type of the architecture of
the meta-metamodel fixed in the tool. Language Validation is the indication of
whether or not the tool has a mechanism for checking the validity of artefacts.
Interoperability includes the standards adopted in the serialization of language
descriptions, defining probability of using the artifacts in another context. Main-
tainability includes the assessment of the level the tool architecture supports
maintenance updates and fixes while providing consistent processing of lan-
guage artifacts. Language Evolution includes the assessment of how well the tool
handles language artefacts as they are updated. Customizability is the assess-
ment of how well the tool architecture supports customization. Reusability is the
assessment of how well the tool architecture supports reusable artifacts. (Amyot
et al., 2006; De Smedt, 2011; El Kouhen et al., 2012; Langlois et al., 2007; Pe-
lechano et al., 2006; Saraiva & da Silva, 2008; Sivonen, 2008; Vasiljević et al.,
2013)

 39

3.5.3 Evaluation Criteria for Modeling Language Specification

The Modeling Language Specification category includes the following criteria:
Metamodeling Language, Mutable Logical Levels, Metamodel Syntax Specifica-
tion, Abstract Syntax (AS) Representation, Concrete Syntax (CS) Representation,
Concrete Syntax Style, AS to CS Mapping, Semantics Specification, Constraint
Language, Graphical Completeness, Context Adaptive Assistance, Workflow
Guidance, and Relationships. The criteria are presented as a part of the checklist
in TABLE 12.

TABLE 12 Evaluation Criteria for Modeling Language Specification

Language Specification Type Range (or none) Example

Metamodeling Language String Set of Languages Ecore
Mutable Logical Levels Int Natural Numbers 2
Metamodel Syntax Specification Bool Yes, No Yes
Abstract Syntax Representation Enum Tree, Graph Tree
Concrete Syntax Representation Enum Text, Graphic, Matrix Graphic
Concrete Syntax Style Enum Declarative, Imperative Declarative
AS to CS Mapping String Set of Mapping Approaches Model-Based
Semantics Specification Bool Yes, No Yes
Constraint Language String Set of Constraint Languages OCL
Graphical Completeness Enum Low, Medium, Good Low
Context Adaptive Assistance String Set of Assistance Techniques Tooltips
Workflow Guidance String Set of Guidance Techniques Wizard
Relationships Enum Binary, N-Ary Binary

Metamodeling Language is the metamodeling language fixed in the tool. Mutable
Logical Levels is the number of the logical levels of the meta-metamodel architec-
ture the tool exposes for user manipulation. Metamodel Syntax Specification is the
indication whether or not the tool allows to specify DSML abstract and concrete
syntaxes. Abstract Syntax Representation includes the ways the abstract syntax is
represented in the tool. Concrete Syntax Representation includes the ways the
concrete syntax is represented in the tool. Concrete Syntax Style is the paradigm
the tool utilizes in the definition of CS. AS to CS Mapping includes the ap-
proaches by which the correspondence between the elements of AS and CS is
defined in the tool. Semantics Specification is the indication whether or not the
tool allows the definition of language semantics. Constraint Definition includes
the mechanisms for the definition of model constraints the tool supports. Graph-
ical Completeness is the assessment of the capability of the tool to represent all
desired visual elements of a concrete syntax. Context Adaptive Assistance in-
cludes the techniques the tool provides to help the user by adapting the form
and content of the assistance to the given task at hand. Workflow Guidance in-
cludes the set of techniques the tool provides to help the user through the steps
of the specification process. Relationships is the indication whether the meta-
modeling language support binary or n-ary relationships between objects in
metamodels. (Amyot et al., 2006; De Smedt, 2011; El Kouhen et al., 2012; Lang-

 40

lois et al., 2007; Pelechano et al., 2006; Saraiva & da Silva, 2008; Sivonen, 2008;
Vasiljević et al., 2013)

3.5.4 Evaluation Criteria for Modeling Language Application

The Modeling Language Application category includes the following criteria:
Model Transformation Capability, Problem to Solution Mapping, Transfor-
mation Definition Language, Transformation Output Language, Generated Edi-
tor Quality, Artefact Quality, Output Update Mechanism, Viewpoints, and
Analysis Capabilities. The criteria are presented as a part of the checklist in TA-
BLE 13.

TABLE 13 Evaluation Criteria for Modeling Language Application

Language Application Type Range (or none) Example

Model Transformation Capability Bool Yes, No Yes
Problem to Solution Mapping String Set of Mapping Techniques Template

Transformation Def. Language String Set of Languages MERL

Transformation Output Language String Set of Languages Java
Generated Editor Quality Enum Low, Medium, Good Low
Artefact Quality Enum Low, Medium, Good Low
Output Update Mechanism Enum Destructive, Incremental Destructive
Viewpoints String Set of Viewpoints DSL Explorer
Analysis Capabilities Enum Low, Medium, Good Low

Model Transformation Capability is the indication of whether or not the tool sup-
ports model transformations. Problem to Solution Mapping includes the tech-
niques the tool provides on how transformations are specified. Transformation
Definition Language includes the languages supported by the tool in transfor-
mation specification. Transformation Output Language includes the languages (or
any) that can be generated with transformation facility of the tool. Generated
Editor Quality is the assessment of the quality of the modeling editor generated
by the tool from the DSML specifications. Artefact Quality is the assessment of
the quality of the artefacts produced by the generated editor. Output Update
Mechanism is the indication whether consecutive transformations of the same
models reflect on the output destructively or incrementally. Viewpoints includes
the set of viewpoints the tool provides to the transformation design. Analysis
Capabilities is the assessment of the capability of the tool to provide analytics of
the models described with the generated editor. (Amyot et al., 2006; El Kouhen
et al., 2012; Langlois et al., 2007; Pelechano et al., 2006; Saraiva & da Silva, 2008;
Vasiljević et al., 2013)

 41

3.6 Summary

This chapter discussed the evaluation of DSM tools. First, the evaluation of
DSM tools was considered on a general level. Second, four sets of requirements
for DSM tools were presented based on four previous studies. Third, evaluation
criteria for DSM tools, presented in eight previous studies, were outlined.
Fourth, a comprehensive classification of evaluation criteria for DSM tools, de-
rived from existing criteria, was introduced. Finally, the classified evaluation
criteria were adapted into a checklist with unified data types, ranges, and ex-
amples of criteria values, effectively forming Artifact I.

After all the existing evaluation criteria were combined into Artifact I, it
can be concluded that the various characteristics of DSM tools were covered
quite adequately in the previous studies as a whole. No single study was com-
prehensive in terms of evaluation criteria. Nevertheless, during the analysis it
was remarked that some relevant DSM tool characteristics that were indicated
as requirements for DSM tools, were not covered in previous studies as evalua-
tion criteria. Such characteristics are tool support for testing and debugging of
DSML artifacts as well as mapping mechanisms for abstract syntax to semantics.
These characteristics have not been considered as evaluation criteria, although
they came up in the literature. Criteria mapped to those requirements may be
considered as potential additions to the checklist.

 42

4 SOCIO-TECHNICAL DIMENSIONS AND METH-
ODS OF EVALUATION

This chapter discusses the socio-technical dimensions of IS and ISD tool evalua-
tions as well as the existing methods for the evaluation of ISD tools. As DSM
tools are utilized by human beings in a situational context, the socio-technical
dimensions of evaluation should be considered. Furthermore, in Section 2.6 it
was outlined that DSM tools are a specific type of ISD tools that enable the de-
sign and generation of customized ISD tools. As the literature provides very
limited methodical support for the evaluation of DSM tools, existing evaluation
methods for ISD tools are discussed in this chapter for the purpose of investi-
gating the baseline concepts for the method elements of situational evaluation
methods for DSM tools discussed in Section 5.2.

First, the socio-technical dimensions of ISD tool evaluations are discussed.
The dimensions are aligned with the situational factors of SME in Section 5.3.
Second, existing evaluation methods and a classification of their activity ele-
ments are outlined. The classification is utilized in the synthesis of the method
elements of Artifact II in Section 5.2. Finally, a summary of the chapter is pre-
sented.

4.1 Socio-Technical Dimensions of Evaluation

Evaluation of IS artifacts has been extensively studied during the last three dec-
ades (Song & Letch, 2012). (Paul, 2007, p. 194) defines the information system
(IS) as “… what emerges from the usage that is made of the IT delivery system
by the users (whose strengths are that they are human beings not machines)“. IS
evaluation is a social endeavor, which provides versatile feedback to managers
and assists with organizational learning processes (Irani & Love, 2002). Land
(2001) argues that IS evaluation is difficult and that decision-makers consider IS
evaluation problematic, because the prediction of costs, benefits, risks, impact,
and lifetime of IS is challenging. Jones (2008) contrasts between mechanistic and

 43

interpretive IS evaluation. Mechanistic IS evaluation refers to formal, mainly
economic evaluation of IS, primarily concerned with costs and benefits of IS.
Interpretive IS evaluation is regarded as a socially embedded process, which
appreciates the value of the views and opinions of the organizational IS users
for IS evaluation purposes (Jones, 2008).

It can be argued that the application of the interpretive approach, at least
in a complementary capacity to the mechanistic evaluation, could potentially be
beneficial to the evaluation of DSM tools in a situational context, as the in-
volvement and the views and opinions of the stakeholders would provide in-
formed data for decision-makers, to be considered as a valuable part of the
evaluation. The significant human component, embedded in the concept of IS,
underpinning the appropriate and successful use of IS, should be a notable fac-
tor in assessing the potential benefits, costs and risks of the situational context
(Irani & Love, 2008). Thus, the three key components, also pivotal in business
case building (see APPENDIX 3), benefits, costs, and risks, form the corner-
stones of an evaluation process (Irani & Love, 2008). Song and Letch (2012) de-
scribe IS evaluation as:

“…a multifaceted and complicated phenomenon which can be examined from mul-
tiple perspectives. As a domain of study it can be considered to be an interactive so-
cial system that is interwoven with different stakeholders, various resources and
multiple decision-making processes”.

The widely accepted classification of dimensions of IS evaluation is described
by the Content, Context, and Process (CCP) framework by Stockdale, Standing,
Love and Irani (2008), illustrated in FIGURE 12. The Content dimension ad-
dresses what is evaluated, i.e. the object of evaluation, the evaluation criteria,
and changes caused by IS. The Context dimension captures why the evaluation
is conducted as well as who is involved in it. Context addresses both the inter-
nal and external context of an organization. In the internal context, aspects such
as organizational structure and culture, business strategies, management pro-
cedures, and social influences are addressed. The external context addresses
factors such as technologies, market structures, economic situation, and gov-
ernment policies. As the underlying motivations of the stakeholders for the
conduct of evaluations are assessed, the internal and external contexts are effec-
tively captured. The Process dimension focuses on when the evaluation is car-
ried out, and how it is conducted. In the Process dimension, evaluation method,
i.e. the actions, reactions, and interactions of stakeholders involved in an evalu-
ation are addressed as well as the timeframe of evaluation, i.e. before, during,
or after the implementation of IS. (Song & Letch, 2012; Stockdale et al., 2008)

 44

FIGURE 12 Content Context Process (CCP) Framework (Stockdale et al., 2008, p. 43)

Lundell and Lings (2004b) propose facets similar to CPP as the core elements of
IS Development (ISD) tool evaluation, further stressing the dimensions of
Stakeholders, Context, and Activity, as illustrated in FIGURE 13. They again
emphasize that the evaluation of ISD tools, such as DSM tools, is a complex so-
cial process, strongly influenced by the motivations and goals of the stakehold-
ers. There is a dynamic between an evaluation activity and the context in which
it is taking place, yielding outcomes to the stakeholders and the context. Anoth-
er central concept is the evaluation framework, which includes the require-
ments and the criteria for the evaluation process (Lundell & Lings, 2004b). Con-
ceptually, Stakeholders and Context reside in the Context of CPP, and Activity
is a container for Content and Process of CPP.

FIGURE 13 Elements of ISD Tool Evaluation (Lundell & Lings, 2004b, p. 40)

 45

The Stakeholders dimension addresses the selection of stakeholders for evalua-
tion as well as the social issues related to them. Evaluation is a political activity,
with potentially strong impact on the stakeholders, which is why the selection
of the stakeholders and the evaluator is a critical issue. The stakeholders must
feel able to actively participate and their beliefs and assumptions must be con-
sidered, in order to produce valid and acceptable findings. When selecting
stakeholders, it is important to have a clear strategy e.g. to cover all the roles
related to a process life-cycle within a context. Validity of findings is supported
by the representativeness of the stakeholders as well as the multiple perspec-
tives they offer. An ongoing feedback is essential for retaining a sense of pro-
cess ownership for the stakeholders. Nevertheless, it is important to
acknowledge that each stakeholder has its personal motivations and goals,
which should be taken into account e.g. in the overall goal setting of evaluations.
Evaluator is a special role, which can be assigned to an internal stakeholder or
an external agency, depending on the case. The selections of the stakeholders to
be included in the evaluation are political decisions that should ideally be re-
solved transparently, and to the satisfaction of all the stakeholders, before any
commenced evaluation activity. Failure to consider the Stakeholder dimension
can potentially result in a feeling of lack of process ownership by the stakehold-
ers, leading to poor evaluation results, economic consequences, and political
fallout. (Lundell & Lings, 2004b.)

The Context dimension is divided into internal and external context, both
including a history facet, representing the continuous change of the contexts.
The internal context is further divided into usage and organizational context.
The direct user of a tool resides in the usage context, whereas the manager of
the user that facilitates evaluations resides in the organizational context. Typi-
cally, stakeholders of the usage context perceive the impact of the outcomes of
an evaluation as strong for them, which affects their motivations and goals.
Stakeholders of the organizational context have higher-level goals, which effec-
tively function as the constraints of the evaluation activities. The external con-
text is typically beyond the control of the organization in which the evaluation
is conducted, including factors such as national and local government policy,
markets and market demands, supplier availability and expertise, and other
environmental pressures. Failure to consider the Context dimension may result
in poor relevance of the outcomes to the organization, and in the extreme the
evaluation might turn into a context-free comparison of tool features. (Lundell
& Lings, 2004b.)

The Activity dimension addresses the approach and the associated set of
activities, i.e. the evaluation method. The suitability of a given method is de-
pendent on the underlying assumptions of the context of the activities and the
stakeholders involved in the activities. There is a number of different evaluation
methods proposed in the literature, such as the ISO 14102 standard (ISO, 2008).
Failure to consider the Activity dimension can result in poorly conducted eval-
uations with unreliable outcomes, which leads to a lack of stakeholder confi-
dence in the evaluation activities. (Lundell & Lings, 2004b.)

 46

Kitchenham (1996) suggests that the following human factors affect the
evaluation efforts of ISD tools: novelty effects and expectation effects. The novel-
ty effects arise from the stakeholders’ altered behavior, propagating from the
unfamiliarity of the usage situation, such as the learning curve effect and the
Hawthorne effect. The learning curve effect refers to the observation that people’s
skills and ultimately expertise are developed only as they gain familiarity with
the application of the tools, which tends to counteract the perceived positive
effects inherent in the new tools evaluated. The Hawthorne effect refers to the
observation that the stakeholders that are under evaluation, tend to work more
conscientiously, because they feel they are under more management scrutiny,
which may exaggerate the positive effects inherent in a new tool evaluated. The
expectation effects refer to the bias resulting from the stakeholders’ preconceived
expectations about the evaluated tools, such as the placebo effect and doctor
effect. The definition of the placebo effect suggests that the beliefs of an individu-
al stakeholder may incidentally have a positive effect on some characteristic
under evaluation, but such beliefs are not generalizable. The doctor effect refers
to phenomena such as the unbalanced target effect and intervention effects. The
unbalanced target effect refers to the scenario in which the stakeholders of the
evaluation concentrate their efforts towards the explicit goals of the evaluation,
trading-off against the implicit goals, such as documentation quality, which
results in unrealistic evaluations. The intervention effect refers to the scenario in
which the evaluators compromise the normal behavior of the evaluated subjects
by encouraging them to modify their behavior or by conveying the initial ex-
pectations of the outcomes of the evaluation effort to the subjects. (Kitchenham,
1996)

The following sections emphasize the Activity dimension, along which the
evaluation methods are usually structured and disseminated. The other dimen-
sions are highly situational, thus they are meaningful in the context in which
the method is utilized. These situational factors are discussed in Section 5.3
from the perspective of SME.

4.2 Existing Evaluation Methods

This section presents seven evaluation methods for ISD tools: ISO (2008), Lun-
dell & Lings (2003), Kitchenham (1996), Kruchten (2004), Lukman & Mernik
(2008), Wheeler (2011), and Morera (2002). This set includes all the recent evalu-
ation methods for ISD tools that were found in the literature review. Further-
more, Kitchenham (1996) was included, as it is widely adopted and provides a
unique method for the selection of an evaluation approach. The existing evalua-
tion methods address mainly the Activity dimension, leaving the other dimen-
sions largely undiscussed. The Stakeholder and Context dimensions are highly
situational, which has likely steered the emphasis on the general evaluation
methods towards the Activity dimension, which can be structured and dissem-
inated as process models. The ISO 14102 standard provides the most compre-

 47

hensive guidance available, describing the reference evaluation activities in de-
tail. The 2G method by Lundell and Lings (2003) is the only method which spe-
cifically addresses the Stakeholder and Context dimensions, including exhaus-
tive interviews with the stakeholders and analysis of organizational data. The
DESMET method by Kitchenham (1996) is an evaluation method which can be
utilized for the selection of the approach for an evaluation method. The rest of
the methods are general evaluation methods for ISD tools, except for Lukman
and Mernik (2008), which briefly describes an evaluation method for MDE tools.

4.2.1 ISO 14102 Standard

ISO 14102 (ISO, 2008) is an international standard for the evaluation and selec-
tion of ISD tools, following the software product evaluation model of ISO
14598-5 (ISO, 1998), and adopting the general model of software quality charac-
teristics defined in ISO 9126-1 (ISO, 2001). Supplemental technical report TR
14471 provides further guidance on the adoption of a selected ISD tool. ISO
14102 stresses objectivity, repeatability, and impartiality as well as careful con-
sideration of both the technical and management requirements in the evalua-
tion activities. The standard is intended as a normative reference from which
evaluation methods are to be tailored, according to the organizational needs.
The standard evaluation process is divided into four phases: Preparation, Struc-
turing, Evaluation, and Selection, as illustrated in FIGURE 14. The standard also
includes an extensive list of predefined ISD tool characteristics, which can be
utilized as a reference for situational evaluation framework formulation. (ISO,
2008)

FIGURE 14 Overview of ISO 14102 (ISO, 2008, p. 4)

 48

The Preparation phase addresses the organizational needs for an evaluation pro-
ject, including the following main activities: goal setting, establishing selection
criteria, and project planning and control. The goal setting activity produces
content such as the high-level goals and also addresses the development of the
rationale and general policy for tool acquisition. The establishing selection crite-
ria activity produces content such as tentative selection criteria by the analysis
of the high-level goals and addresses issues such as the relative importance of
the criteria, data collection methods, and scope of the evaluation. The selection
criteria are the high-level criteria utilized finally in the selection phase, which
are not to be mixed with the evaluation criteria of the evaluation framework.
The project planning and control activity produces content such as a project
plan and addresses issues such as the project team setting, structuring of the
high-level goals and the selection criteria, scheduling of activities and tasks
with resource requirements and cost estimates as well as the means for monitor-
ing and controlling the execution of the plan. The project plan is the primary
content produced in the phase, after which the process enters the structuring
phase. (ISO, 2008.)

The Structuring phase addresses the evaluation framework and includes
the following main activities: requirements definition, tool information gather-
ing, and identifying the final candidate tools. The requirements definition activ-
ity produces the structured requirements by organizational information gather-
ing, requirements identification, and requirements structuring. The evaluation
framework is constructed as a result of mapping the structured requirements to
evaluation criteria. Tool information gathering activity is a general search for
tool candidates and their characteristics, utilized to quickly identify and exclude
candidates for evaluation. Identifying final candidate tools activity produces a
list of the final candidates, which is constructed by comparing critical require-
ments against tool characteristics. In the end of the phase, an evaluation frame-
work, structured requirements and the final list of tool candidates are complet-
ed. Next, the evaluation phase is initiated. (ISO, 2008.)

The main activities of the Evaluation phase are: preparing for evaluation,
evaluating the tools, and evaluation reporting. The preparing for evaluation
activity produces content such as an evaluation plan, which includes the met-
rics, rating levels, and standards for the evaluation criteria as well as the setting
and scheduling of all the activities of the phase. The evaluating the tools activity
is a process of measurement, rating, and assessment, in which the tools are
evaluated against the evaluation criteria. Tasks such as examining the tool doc-
umentation, interviewing the stakeholders, and applying the tool to test projects
are conducted. The evaluation reporting activity produces the evaluation report,
documenting the data collected during the evaluation in detail. The phase ends
as the evaluation report is finished, allowing the selection phase to begin. (ISO,
2008.)

The main activities of the Selection phase are the following: preparing for
selection, applying the selection algorithm, recommending a selection decision,
and validating the selection decision. The preparing for selection activity takes

 49

the previously structured high-level goals and selection criteria as inputs and
addresses issues such as how the generated evaluation data is combined and
compared to produce ratings for the tool candidates, setting of the final selec-
tion criteria, and the definition of the selection algorithm. The applying the se-
lection algorithm activity takes the evaluation data as input and produces ag-
gregated comparison data about the tools. The recommending a selection deci-
sion activity produces the tool selection recommendation as a result of the deci-
sion-making of the management, grounded on the comparison data. The rec-
ommendation indicates the most appropriate tool for acquisition. Alternatively,
the results may indicate needs for additional information, which could impli-
cate a need for another iteration of the previous activities. In the validating the
selection decision activity the original goals, selection guidelines and other re-
lated data should be reviewed and compared against the recommended selec-
tion in order to validate that the high-level goals are met by the selected tool. If
no adequate tool exists, a decision between custom tool development, modifica-
tion of an existing tool, or abandonment of the entire undertaking should be
made. Finally, a selection report is produced. (ISO, 2008.)

4.2.2 2G Method

Lundell and Lings (2003) propose the 2G method for the support of the con-
struction of situational evaluation frameworks for ISD tool evaluations. 2G is
strongly influenced by Grounded Theory (GT), a qualitative research method-
ology emphasizing the generation of theory from data in the process of con-
ducting research (Urquhart et al., 2010). 2G provides a systematic method for
the construction of situational evaluation frameworks. 2G was developed
through field studies in small software development companies, refined in aca-
demic environment, and finally validated in a large scale industrial setting. 2G
specifically addresses the integration of the “softer” social and organizational
requirements addressing the Stakeholder and Context dimensions, with the
more detailed technical aspects of technology. Since 2G utilizes GT, the defini-
tions of evaluation concepts evolve, and the structure for interrelating these
concepts emerges during analysis, thus enabling context-specificity. In compar-
ison to other methods, 2G can be characterized as data-driven, whereas e.g. ISO
14102 could be classified as concept-driven, having predefined evaluation con-
cepts, such as tool characteristics, organized into hierarchical structures. 2G is
presented in FIGURE 15. (Lundell & Lings, 2003.)

 50

FIGURE 15 2G Method for ISD Tool Evaluation (Lings & Lundell, 2005, p. 200)

In the organizational phase of the 2G method, an organizational evaluation
framework, grounded in context data, is developed. The data is processed into
evaluation concepts by analyzing the data for supporting indicators. Derived
concepts are then interrelated by e.g. GT categorization (Lings & Lundell, 2005).
In the technological phase, a technological evaluation framework is constructed,
which is grounded in the current state-of-the-art technology data. Thus, 2G
provides double grounding of evaluation concepts. 2G utilizes various data
sources as the basis for analysis. At the initiation of 2G, a relevant set of data
sources is selected. Some of these will exist, such as organizational manuals,
policy documents, and standards. Others will be generated, such as the tran-
scripts of stakeholder interviews. The data sources are analyzed with the goal of
developing a set of interrelated concepts with agreed interpretation. (Lundell &
Lings, 2003.)

FIGURE 16 represents an example of the two evaluation frameworks and
their concept interrelations. As the data is analyzed in the organizational phase,
the emerged tool requirements are structured as the organizational framework
concepts. In the technological phase the concepts are linked to concrete tool
concepts in the technological framework. The links are also assigned prioritiza-
tions, which indicate the relevance of the concepts to the context. Thus, the
evaluation criteria are derived from the technological framework, on the basis
of the prioritizations. (Lings & Lundell, 2005.)

 51

FIGURE 16 Concept Linking between Evaluation Frameworks (Lings & Lundell, 2005, p.
205)

4.2.3 DESMET Method

The DESMET method (Kitchenham, 1996) has been widely adopted and studied
in academic and industrial settings since its inception in the mid-nineties.
DESMET is an evaluation method for both ISD tools and methods. It provides
extensive guidance on various facets of ISD tool evaluation such as the selection
of the evaluation approach, human factors affecting evaluations, and activities
of evaluation approaches. In the context of our work the selection of the evalua-
tion approach is highly relevant. DESMET is applied by Morera (2002), which is
discussed in the next section.

Kitchenham (1996) proposes the following approaches to evaluation:
quantitative experiment, quantitative case study, quantitative survey, qualita-
tive screening, qualitative experiment, qualitative case study, qualitative survey,
qualitative effects analysis, and benchmarking. Quantitative experiment is an in-
vestigation of the quantitative impact of the tools organized as a formal experi-
ment. Quantitative case study is an investigation of the quantitative impact of the
tools organized as a case study. Quantitative survey is an investigation of the
quantitative impact of the tools organized as a survey. Qualitative screening is a
feature-based evaluation done by a single individual who not only determines
the features to be assessed and their rating scale but also does the assessment.
For initial screening, the evaluations are usually based on literature describing
the software tools rather than actual use of tools. Qualitative experiment is a fea-
ture-based evaluation done by a group of potential users who are expected to
try out the tools on typical tasks before making their evaluations. Qualitative
case study is a feature-based evaluation performed by someone who has used
the tool on a real project. Qualitative survey is a feature-based evaluation done
by people who have had experience of using the tool, or have studied the tool.

 52

The difference between a survey and an experiment is that participation in a
survey is at the discretion of the subject. Qualitative effects analysis is a subjective
assessment of the quantitative effect of the tools, based on expert opinion. Final-
ly, Benchmarking is a process of running a number standard tests using alterna-
tive tools and assessing the relative performance of the tools against those tests.
(Kitchenham, 1996.)

Kitchenham (1996) provides technical criteria regarding the selection of
the evaluation approach. The systematic assessment of the technical criteria
provides indications of which evaluation approach is the optimal choice for a
given situation. The technical criteria are: the evaluation context, the nature of
the expected impact of using the tool, the nature of the tool to be evaluated, the
scope of impact of the tool, the maturity of the tool, the learning curve associat-
ed with the tool, and the evaluation maturity of the organization undertaking
the evaluation. The evaluation context addresses four scenarios of industrial
evaluation of ISD tools: selection of tools for an individual project, initial screen-
ing of tool candidates followed by a detailed evaluation, change monitoring as a
part of a process improvement program, and evaluation of tools for re-sale as
part of a larger product or a product line. The nature of impact identifies two ma-
jor categories of impact: quantitative and qualitative. The quantitative category
includes numerically measurable impacts such as improved productivity, better
maintainability, and better quality. The qualitative category includes e.g. better
visibility of progress, better usability of support tools, improved interoperabil-
ity of tools, and commonality of tool interfaces. The nature of the tool category
divides the evaluation of several tool candidates into two categories: tools
which support the same basic ISD method, and tools that support quite differ-
ent ISD methods. The scope of the impact addresses two dimensions: product
granularity and extent of impact. The product granularity identifies whether
the tool applies to the development of a product as a whole or individual parts
of the product such as modules. The extent of impact identifies how the effect of
the tool is likely to be felt over the product/project life-cycle. The maturity of the
tool indicates the extent of how likely there is information available about the
tool. The concept can assessed in terms of following categories: not used in
commercial projects, used in a few state-of-the-art projects in home organiza-
tion, and in widespread use in the home organization. The learning curve indi-
cates the time it would take an individual to become familiar enough with the
tool to access its capabilities or to use it effectively in the evaluation. The evalua-
tion maturity of the organization determines the type of evaluation an organiza-
tion is able to take. The level of adaptation, adherence and monitoring of well-
defined ISD standards, are regarded as the key metrics in assessing the criterion.
(Kitchenham, 1996.)

The results of the technical criteria assessment are further analyzed by
matching them to the favoring conditions presented in TABLE 14. The outcome
is the recommendation of an evaluation approach or a combination of the ap-
proaches. (Kitchenham, 1996.)

 53

TABLE 14 Selection of Evaluation Approach (Kitchenham, 1996, p. 11)

Evaluation Approach Conditions Favoring the Approach

Quantitative experiment Benefits clearly quantifiable.
Staff available for taking part in experiment.
Tool related to a single task/activity.
Benefits directly measurable from task output.
Relative small learning time.
Desire to make context independent tool assessments.

Quantitative case study Benefits quantifiable on a single project.
Benefits quantifiable prior to product retirement.
Stable development procedures.
Staff with measurement experience.
Timescales for evaluation commensurate with the elapsed time
of your normal size projects.

Quantitative survey Benefits not quantifiable on a single project.
Existing database of project achievements including productivi-
ty, quality, tool data.
Projects with experience of using the tool.

Qualitative screening Large number of tools to assess.
Short timescales for evaluation exercise.

Qualitative experiment Benefits difficult to quantify.
Benefits directly observable from task output.
Relatively small learning time.
Tool user population very varied.

Qualitative case study Benefits difficult to quantify.
Benefits observable on a single project.
Stable development procedures.
Tool user population limited.
Timescales for evaluation commensurate with the elapsed time
of your normal size projects.

Qualitative survey Benefits difficult to quantify.
Tool user population very varied.
Benefits not observable on a single project.
Projects with experience of using the tool, or projects prepared
to learn about the tool.

Qualitative effects anal-
ysis

Availability of expert opinion assessments of tools.
Lack of stable development procedures.
Requirement to mix and match methods/tool.
Interest in evaluation of generic tools.

Benchmarking Tool not human-intensive.
Outputs of tool able to be ranked in terms of some "goodness"
criteria.

4.2.4 More Evaluation Methods

Rational Unified Process (RUP) is a popular ISD method originally developed
by Rational Software (Kruchten, 2004). RUP provides extensive guidance for
activities of ISD life-cycle processes, one of which is the Select and Acquire Tools
method, which is outlined here. The method is divided into five main activities,

 54

which are presented in TABLE 15. The method provides guidance on tasks,
evaluation criteria, and rating mechanisms for the activities.

Lukman and Mernik (2008) present a method for the procurement of met-
amodeling tools they utilized in a research project. As the initiation of the
method, they suggest the decision of the stakeholders to introduce MDE into
their organization. It also identifies the analysis of the target DSML as a key in-
put for the process. This study briefly describes the only evaluation method for
model-driven ISD tools that we were able to locate in the existing literature. The
method is divided into four main activities, presented in TABLE 15.

TABLE 15 Activities of Kruchten (2004) and Lukman and Mernik (2008)

Kruchten (2004) Lukman and Mernik (2008)

Identify Needs and Constraints Requirements Specification
Collect Information about Tools Market Analysis
Compare Tools Tool Evaluation

Select Tools Tool Selection
Acquire Tools

Wheeler (2011) describes a general method for evaluating software applications,
providing specific guidance on how to evaluate free and open source software
(FOSS). The method focuses primarily on context-free comparisons of applica-
tion characteristics, mainly for the purpose of evaluating potential FOSS candi-
dates against commercial products. The method is divided into four main activ-
ities, presented in TABLE 16.

Morera (2002) presents an evaluation method for Commercial-of-the-Shelf
(COTS) products, which applies the feature analysis method of DESMET for the
evaluation and Analytic Hierarchy Process (AHP) for the selection. Commercial
DSM tools can be considered as COTS products. Morera (2002) suggests that the
method makes COTS selection less human-dependable and more straightfor-
ward by providing strictly quantitative means for decision-making. The method
is divided into nine main activities, presented in TABLE 16.

TABLE 16 Activities of Wheeler (2011) and Morera (2002)

Wheeler (2011) Morera (2002)

Identify Candidates Set Roles and Responsibilities
Read Existing Reviews Set Time Scale and Effort

Briefly Compare the Leading Programs’ At-
tributes to your Needs

Specify Assumptions and Constraints

Perform an In-Depth Analysis of the Top Can-
didates

Define Scope and Candidates

 Select an Evaluation Method

 Evaluate and Present Results
 Identify Selection Criteria
 Evaluate Final Candidates
 Agree on Final Decision

 55

4.3 Classification of Activities of Existing Evaluation Methods

The phases of the ISO 14102 standard are utilized as categories for the classifica-
tion of the main evaluation activities of the previously discussed methods.
Some of the activities are originally described at convergent granularity levels,
which is taken into account during the analysis. Thus, the categories are Prepa-
ration, Structuring, Evaluation, and Selection. The classification is presented in
TABLE 17. The Preparation category includes activities related to the organiza-
tional needs, project management and evaluation approach selection. The Struc-
turing category includes activities related to the setting of the evaluation
framework by requirements engineering and selection of the tool candidates for
evaluation. The Evaluation category includes activities related to the evaluation
data collection, which is carried out by utilizing the evaluation framework. The
Selection category includes activities related to the evaluation data analysis and
making a recommendation for a tool.

The ISO 14102 standard provides the most comprehensive guidance for an
evaluation effort of ISD tools. Kruchten (2004) presents a straightforward ap-
proach to the evaluation of ISD tools, providing guidance from Preparation to
Selection, closely integrated to the RUP ISD method. Lukman and Mernik (2008)
propose a high-level evaluation method for MDE tools, providing activities for
Structuring, Evaluation and Selection. Wheeler (2011) suggests an evaluation
method specialized for OSS ISD tools, providing activities for Structuring and
Evaluation. Morera (2002) incorporates DESMET feature analysis and AHP se-
lection procedure for the evaluation of COTS products, providing activities for
all the categories. The 2G method provides guidance for the formulation of the
evaluation framework as activities of Structuring. The classification provides a
baseline for the structuring of the method elements in Section 5.2.

56

TABLE 17 Classification of Activities of Existing Tool Evaluation Methods

Classifica-
tion

ISO (2008) Kruchten (2004) Lukman and
Mernik (2008)

Wheeler (2011) Morera (2002) Lundell and Lings
(2003)

Preparation Goal Setting, Estab-
lishing Selection cri-
teria, Project Plan-
ning and Control

Identify Needs
and constraints

 Set Roles and Respon-
sibilities, Set Time
Scale and Effort, Spec-
ify Assumptions and
Constraints, Select an
Evaluation Method

Structuring Requirements Defini-
tion, Tool Infor-
mation Gathering,
Identifying Final
Candidate Tools

Collect Infor-
mation about
Tools

Requirements
Specification,
Market Analysis

Identify Candi-
dates, Read Exist-
ing Reviews,
Briefly Compare
the Leading Pro-
grams’ Attributes
to your Needs

Define Scope and
Candidates

Develop Strategic
Evaluation Frame-
work, Develop
Pragmatic Evalua-
tion Framework

Evaluation Preparing for Evalua-
tion, Evaluating the
Tools, Evaluation
Reporting

Compare Tools Tool Evaluation Perform an In-
Depth Analysis
of the Top Can-
didates

Evaluate and Present
Results

Evaluation

Selection Preparing for Selec-
tion, Applying the
Selection Algorithm,
Recommending a
Selection Decision,
Validating the Selec-
tion Decision

Select Tools,
Acquire Tools

Tool Selection Identify Selection Cri-
teria, Evaluate Final
Candidates, Agree on
Final Decision

57

4.4 Summary

This chapter discussed the socio-technical dimensions of IS and ISD tool evalua-
tions as well as the existing methods for the evaluation of ISD tools. The socio-
technical dimensions should be considered, as DSM tools are utilized by human
beings in a situational context. It was outlined in Section 2.6 that DSM tools are
a specific type of ISD tools that enable the design and generation of customized
ISD tools. As the literature provides very limited methodical support for the
evaluation of DSM tools, existing evaluation methods for ISD tools were dis-
cussed in this chapter, for the purpose of investigating the baseline concepts for
the method elements of situational evaluation methods for DSM tools.

 The socio-technical dimensions of ISD tool evaluations were discussed
first by introducing the related discourse in the field, then by presenting the
CPP framework of IS evaluation, and finally by aligning the dimensions of CPP
to the elements of ISD tool evaluations. The elements, Stakeholders, Context,
and Activity are employed as the structural dimensions of the evaluation efforts,
upon which evaluation method concepts are reflected in the following sections.
Furthermore, the human factors affecting evaluation efforts, such as the novelty
effects and the expectation effects were discussed. Next, a set of existing evalua-
tion methods and a classification of their activity elements were outlined. The
ISO 14102 standard was introduced as the most comprehensive approach to an
evaluation effort, including the phases of Preparation, Structuring, Evaluation,
and Selection. Then, the 2G method was discussed as a means to appropriately
address the dimensions of evaluation in the formulation of the evaluation crite-
ria. The DESMET method was presented as a method for the selection of the
overall approach of the evaluation, such as case study or experiment. Further-
more, four other evaluation methods were discussed, and finally, their activities
were classified according to the phases of ISO 14102. The classification is uti-
lized in the next Chapter, in the effort to produce a synthesized method base for
Artifact II.

 58

5 ARTIFACT II – A BASELINE METHOD FOR THE
ENGINEERING OF SITUATIONAL EVALUATION
METHODS FOR DSM TOOLS

This chapter discusses the components of Artifact II, based on the principles of
Situational Method Engineering (SME). First, the SME foundation is presented.
Second, a conceptual method base and its three types of method elements:
WorkUnit, WorkProduct, and Producer are defined. Third, situational factors
are discussed on a general level, and aligned with the previously discussed so-
cio-technical dimensions of the evaluation. Fourth, various approaches to
method construction and tailoring, i.e. the construction guidelines are presented.
Fifth, the resulting high-level architecture of Artifact II is presented, based on
the previous sections. Sixth, Artifact II is conceptually instantiated in an agile
usage situation. Finally, a summary of the chapter is presented.

5.1 Situational Method Engineering Foundation

Situational Method Engineering (SME) is a process of constructing or modify-
ing a method for a particular situation, as opposed to adapting a method “as is”
by following a specific method guideline “by the book” (Henderson-Sellers et
al., 2014, p. 3). The main constructs of SME are illustrated in FIGURE 17. Meth-
od engineer is the central role of SME, being responsible for constructing
and/or tailoring situational methods according to situational factors and con-
struction guidelines. Instances of situational methods are then enacted by pro-
ject managers in their respective situational contexts. The series of practical ac-
tivities taken in the real world, due to the enactment of the situational method,
are called as the method in action (Lundell & Lings, 2004a; Ågerfalk & Fitzger-
ald, 2005). The method base is the construct which contains individual method
elements. The method elements are instances of classes in process engineering
metamodels, i.e. they conform to specific meta-constructs that govern their
structure, relationships, and cardinalities. (Henderson-Sellers et al., 2014, p. 4.)

 59

FIGURE 17 Situational Method Engineering Framework, Adapted from Henderson-Sellers
et al. (2014, p. 4)

There are various process engineering metamodels available, emphasizing dif-
ferent viewpoints to methods, such as activity, product, decision, context, and
strategy viewpoints (Hug, 2009). Artifact II is activity-oriented, as the method
elements are derived from activity-oriented evaluation methods. Activity-
oriented process engineering metamodels enable the building of models that
concentrate on the activities performed in the construction of products, along
with their ordering (Hug, 2009). There are a number of activity-oriented process
engineering metamodels for ISD, such as SPEM (OMG, 2008b), OPEN Process
Framework (OPF) (Firesmith & Henderson-Sellers, 2002), ISO 24744 (ISO, 2007),
and Essence (OMG, 2014). In order to be of practical use in a real-world usage
situation, SME requires extensive ISD tool support. Such tools can be instantiat-
ed by Computer Aided Method Engineering (CAME) tools (Niknafs & Ramsin,
2008). There are also a few production-ready ISD tools available for process en-
gineering in ISD, such as Eclipse Process Framework Composer (Haumer, 2007)
and Rational Method Composer (Haumer, 2005) that employ the SPEM meta-
model, as well as EssWork Practice Workshop (Jacobson, 2007) that uses the
Essence metamodel. To our knowledge, production-ready tool support for the
other metamodels is scarce.

Some DSM tools can also be considered as CAME tools, such as MetaEdit+
(Kelly et al., 2013). FIGURE 18 illustrates the relationships between CAME tools
and ISD tools that implement process engineering metamodels. The illustration
adopts the MOF-driven four-layer architecture of SPEM, analogous to the UML
architecture discussed in the context of DSM tools in Section 2.6. In fact, SPEM
also provides a UML profile for the specification of the situational methods. In
the process engineering context, MOF similarly resides in the layer M3, ena-
bling the construction of process engineering metamodels, such as SPEM in the
layer M2. SPEM concepts are then available for the engineering of situational
method specifications in the layer M1. The situational method specifications are

 60

constructed by instantiating SPEM-compliant method elements from the meth-
od base and arranging the elements into a workflow that conforms to the char-
acteristics of the usage situation. Furthermore, the enactment of the situational
method specification, i.e. the method in action, resides in the layer M0. M1 spec-
ifications can also be transformed into other artifacts, such as executable scripts
for business process workflow engines (Cervera et al., 2012; Mallouli & Assar,
2013).

FIGURE 18 Four-Layer Architecture in CAME Tools

Our work adapts the SME practices from the ISD domain into the domain of
DSM tool evaluation. A somewhat similar approach has been previously pro-
posed by Kornyshova, Deneckère and Rolland (2011) by introducing the con-
cept of method families in the domain of decision-making methods. Further-
more, Buchner et al. (2008) suggest that the principles, concepts, and techniques
of SME are potentially useful also for domains other than ISD, such as IT and
business process engineering, organizational change engineering, and enter-
prise modeling. The process engineering metamodels define various kinds of
method elements, often called fragments, chunks, or process components,
which differ in granularity. Metamodels also govern the interrelations of the
elements (Henderson-Sellers et al., 2014, p. 28). The most common method ele-
ments in the current process engineering metamodels are Producer, WorkUnit,
and WorkProduct, as illustrated in FIGURE 19. Producer represents a role or a
stakeholder who performs the WorkUnit, i.e. an activity or a task to produce a
WorkProduct, i.e. the outcome of a process (Henderson-Sellers et al., 2014, p. 28).

 61

In the evaluation domain, the Producers are evaluators and other stakeholders,
the WorkUnits are evaluation activities and tasks, and WorkProducts are e
evaluation plans, reports, and pieces of software.

FIGURE 19 Common Method Elements and their Interrelations (Henderson-Sellers & Gon-
zales-Peres, 2010, p. 224)

The body of method elements structured in the following section is considered
as a method base for situational evaluation methods for DSM tools. The method
elements are available for instantiation in CAME tools with compatible meta-
metamodels, such as MOF, and in ISD tools with compatible metamodels, such
as OPF, SPEM and Essence (Elvesæter et al., 2013).

5.2 Method Base

In the following the method elements for the method base of Artifact II are con-
structed. WorkUnits, WorkProducts, and Producers are structured in UML.

5.2.1 WorkUnit Elements

The classification presented in section 4.3 is here utilized in the synthesis of the
activities of the existing evaluation methods. FIGURE 20 represents the main
activities of the method base of Artifact II as subconcepts of WorkUnit. Alt-
hough Activity dimension is the central point of attention, Stakeholder and
Context dimensions are to be taken into extensive consideration in the instantia-
tion of the following activities.

FIGURE 20 Main WorkUnits

 62

The main Preparation WorkUnits, presented in FIGURE 21, are business case
building (see Appendix 3), goal & policy setting, selection criteria planning, and
evaluation approach selection. Business case building seeks justification to the
initial investment of conducting a situational evaluation project as well as the
acquisition and use of a DSM tool (Maes et al., 2014). The business benefits,
risks, and costs are initially based on estimations made collaboratively by the
management and expert stakeholders. Managerial and technical issues such as
the introduction or upgrade of the DSM tools in the organization and the specif-
ics of the target DSML(s) should be considered (Lukman & Mernik, 2008). Dur-
ing the conduct of an evaluation project, more concrete data is accumulated and
the business case is updated accordingly. Goal & policy setting produces high-
level goals for the evaluation project as well as a policy for the acquisition of the
tools, addressing constraints such as budget, schedule and procedure for the
implementation (ISO, 2008; Kruchten, 2004; Morera, 2002). Project planning and
control addresses generic project management issues typical to all projects such
as scoping, staffing, scheduling, and effort estimation, ultimately producing a
project plan containing all the content produced by the Preparation activities
(ISO, 2008; Morera, 2002). Selection criteria planning addresses the tentative selec-
tion criteria by which “go/no go” decisions can be justified in the Selection
WorkUnits (ISO, 2008). Evaluation approach selection addresses the analysis of the
Context variables according to the DESMET method (Kitchenham, 1996; Morera,
2002), producing the decision on a procedure and extent of the evaluation data
collection to be conducted.

FIGURE 21 Main Preparation WorkUnits

The main Structuring WorkUnits, presented in FIGURE 22, are requirements
engineering, tool information gathering, evaluation framework development,
and final candidate tools identification. The specific content of the activities is
dependent on the evaluation approach selected. Requirements engineering ad-
dresses the gathering of information from the context and stakeholders (ISO,
2008; Lukman & Mernik, 2008; Lundell & Lings, 2004b). Interviews and meet-

 63

ings with the stakeholders are included as well as analyses of e.g. organization-
al documents, existing DSMLs and target codebase (Hoisl et al., 2013; Lundell &
Lings, 2003). Tool information gathering addresses the search of information re-
garding the identification of DSM tools and their characteristics from various
sources, e.g. by conducting market analysis and by investigating existing re-
views and available tool documentation (ISO, 2008; Kruchten, 2004; Lukman &
Mernik, 2008; Wheeler, 2011; Morera, 2002). Evaluation framework development
includes the construction of the organizational and technical evaluation frame-
works along the guidelines of the 2G method (Lundell & Lings, 2003; Lings &
Lundell, 2005). Full GT application can also be replaced by a more lightweight
conceptual mapping. The previously identified requirements are prioritized
and structured into the organizational framework and then linked to respective
tool criteria of the technical framework. The criteria are then decomposed into
metrics, representing each atomic tool sub-characteristic of interest. Artifact I,
presented in Chapter 3, can be utilized as a reference for the technical frame-
work during the mapping process. Final candidate tools identification addresses
the exclusion and inclusion of the tool candidates to be evaluated, based on the
information gathered (ISO, 2008; Wheeler, 2011; Morera, 2002).

FIGURE 22 Main Structuring WorkUnits with Artifact I as a Guideline

The main WorkUnits of Evaluation are tool evaluation and reporting of evalua-
tion data, presented in FIGURE 23. The tool evaluation addresses the conduct of
an evaluation according to the selected evaluation approach, which steers the
managerial and evaluation procedures (ISO, 2008; Kruchten, 2004; Lukman &
Mernik, 2008; Wheeler, 2011; Morera, 2002; Lundell & Lings, 2003). The evalua-
tion is conducted by following the guidelines of the selected evaluation ap-
proach, such as benchmarking in which the relative performance of the final
candidate tools is measured by using the evaluation criteria defined in the eval-
uation framework, which is constantly updated during the project as new re-
quirements are accumulated. Reporting of the evaluation data includes the docu-
mentation of the data collected, in the detail agreed upon in the project plan

 64

(ISO, 2008; Morera, 2002). The evaluation data should also be made available in
a computer-readable format for the selection algorithm.

FIGURE 23 Main Evaluation WorkUnits

The main WorkUnits of Selection, illustrated in FIGURE 24, are selection criteria
and algorithm setting, evaluation data analysis, tool selection, validation, and
acquisition. Selection criteria and algorithm setting addresses issues such as refin-
ing the selection criteria based on the knowledge accumulated and selecting a
decision-making algorithm (ISO, 2008; Morera, 2002). Such algorithms are pro-
vided by e.g. outranking methods, AHP, multi-attribute utility theory,
weighting methods, fuzzy methods, and decision tree analysis (Kornyshova,
2011, p. 135; Morera, 2002). Evaluation data analysis includes the application of
the selection algorithm to produce aggregated evaluation data about the tools
(ISO, 2008; Morera, 2002). Tool selection addresses the making of the recommen-
dation for the optimal tool, based on the results of the evaluation data analysis
(ISO, 2008; Kruchten, 2004; Lukman & Mernik (2008); Morera, 2002). Validation
is an effort to assure the validity of tool recommendations, carried out by
matching the evaluation goals to the recommendation as part of a meeting in
which the matter is discussed and analyzed by stakeholders, in effort to elimi-
nate potential subjectivity of the decision-making and to collectively agree upon
the selection (ISO, 2008; Lundell & Lings, 2004b; Morera, 2002). Acquisition in-
cludes the application of the acquisition policy, which in case of commercial
software includes the negotiations of terms of tool licensing and exchange of
money, and in case of OSS the potential negotiations of commercial support
terms (Kruchten, 2004; Wheeler, 2014). All of the Selection WorkProducts are
documented in a selection report.

FIGURE 24 Main Selection WorkProducts

 65

5.2.2 WorkProduct Elements

The main content produced by the WorkUnits is presented as subconcepts of
WorkProduct in FIGURE 25. The main content produced by Preparation is the
project plan, which contains the business case, evaluation goals and policies, ge-
neric project plan content, selection criteria, and the selected evaluation ap-
proach (Maes et al., 2014; ISO, 2008; Morera, 2002; Kitchenham, 1996). The main
content produced by Structuring is the evaluation framework, which contains the
organizational requirements and the technical evaluation criteria. (ISO, 2008;
Lundell & Lings, 2003). The main content produced by Evaluation is the evalua-
tion report, which includes the description of the conducted evaluation and the
atomic evaluation data collected (ISO, 2008, Morera, 2002). The main content
produced by Selection is the selection report, containing the description of the
selection procedure, the aggregated evaluation data, the tool recommendation,
and the minutes of the validation session.

FIGURE 25 Main WorkProducts

5.2.3 Producer Elements

The stakeholders producing the content in the activities are presented as sub-
concepts of Producer in FIGURE 26. Evaluator is the main role responsible for
the conduct of evaluation (ISO, 2008). Evaluator can be an employee of the con-
text organization or a consultant from another company (Lundell & Lings,
2004b). Manager is responsible for project management and communication be-
tween the stakeholders (ISO, 2008). Technical personnel, such as DSML engineer,

 66

modeler, and developer are the stakeholders who are consulted on technical
matters of the context (Cho, 2013, p. 30). Domain expert is consulted in the mat-
ters of the application context (Hoisl et al., 2013).

FIGURE 26 Main Producers

5.3 Situational Factors

SME for the evaluation of DSM tools is affected by various situational factors of
the context, residing in the Stakeholders and Context dimensions discussed in
Section 4.1. Hoppenbrouwers et al. (2011) suggest that the situational factors
affect the context on the levels of an organization, a process, and an individual
project. Bekkers et al. (2008) identified 27 situational factors in the SME for
Software Product Management, and divided them into five categories: Business
Units, Customers, Markets, Products and Stakeholders (TABLE 18).

TABLE 18 Situational Factors in Software Product Management (Bekkers et al., 2008)

Category Situational Factors

Business
Units

Development Philosophy, Size of Business Unit Team, Size of Development
Team

Customers Customer Loyalty, Customer Satisfaction, Customer Variability, Number of
Customers, Number of End-Users, Type of Customers

Markets Hosting Demands, Localization Demand, Market Growth, Market Size, Re-
lease Frequency, Sector, Standard Dominance, Variability of Feature Re-
quests

Products Application Age, Defects Per Year: Total, Defects Per Year: Serious, Devel-
opment Platform Maturity, New Requirements Rate, Number of Products,
Product Lifetime, Product Size, Product Tolerance, Software Platform

Stakeholders Company Policy, Customer Involvement, Legislation, Partner Involvement

The high-level conceptual alignment of the situational factors (Bekkers et al.,
2008), in respect to the dimensions of evaluation, discussed in Section 4.1 is out-
lined as follows: Stakeholders dimension contains Stakeholders and Customers,
Internal Context contains Business units and Products, whereas External Con-
text contains Markets. Thus, we argue that the dimensions affecting the evalua-
tion activities also affect the SME of evaluation methods. Situational factors

 67

should always be considered in the selection of the method elements for a situa-
tional method. The method elements should also be attached with information
that describes the situation in which they are useful.

Ågerfalk and Fitzgerald (2005) propose a concept of method rationale,
which concerns the reasons, opinions, and arguments behind the engineering
and adaptation of situational methods. SME is, to a large extent, a social con-
duct, thus it should consider the values, beliefs and understanding of the stake-
holders, for it to be successful. Thus the rationality of the different aspects of a
situational method should be regularly evaluated as a collective process, allow-
ing the method to evolve and improve in regards to changing contextual re-
quirements and stakeholder interaction. (Henderson-Sellers et al., 2014, p. 8.)

5.4 Construction Guidelines

The selection of a construction/tailoring approach for an evaluation method
depends on the requirements and capabilities of an organization as well as situ-
ational factors in the Context and Stakeholders dimensions. Method construc-
tion can be conducted in a top-down or bottom-up fashion. In the top-down ap-
proach the top-level architecture of a method is modeled and refined down-
wards in effort to identify the required method elements. In the bottom-up ap-
proach the method elements are first identified and then composed upwards as
a unified method architecture. According to Henderson-Sellers et al. (2014), the
technical approaches to the construction of situational methods are:

 Assembly-Based

 Paradigm-Based

 Deontic Matrix

 Activity Diagrams

 Configuration-Based

 Extension-Based

 Ad-Hoc.

The Assembly-Based approach promotes the reuse of existing method elements
stored in a repository (Ralyté & Rolland, 2001). The Paradigm-based approach uti-
lizes the instantiation, abstraction or adaption of existing metamodels as the
baseline method (Gupta & Prakash, 2001; Ralyte et al., 2003; Tolvanen, 1998).
The Deontic Matrix approach uses collaboratively formed deontic matrices in
method construction (Graham et al., 1997). The Activity Diagrams approach utiliz-
es UML-style activity diagrams in method construction (Seidita et al. 2007). The
Configuration-Based approach promotes the use of configuration templates and
packages to adapt existing methods into a situation (Karlsson & Ågerfalk,
2009a). The Extension-Based approach uses patterns to enhance or reduce existing
methods (Deneckére, 2001). Finally, the Ad-Hoc approach represents the construc-

 68

tion of a method from scratch, e.g. for a new domain which is not yet supported
by a specific method (Ralyté et al., 2004).

5.5 Artifact II Decomposition

Artifact II is composed of the method base, situational factors, and construction
guidelines, as illustrated in FIGURE 27. Artifact II aims to give guidance to the
construction and tailoring of situational evaluation methods for DSM tools. The
main contribution of Artifact II is the method base for the domain of DSM tool
evaluation, which is described in Section 5.2. The method base includes the fol-
lowing method elements: WorkUnits, WorkProducts, and Producers. The
WorkUnits are divided into the high-level concepts of Preparation, Structuring,
Evaluation, and Selection, representing the activities conducted in an evaluation
effort. The WorkProducts represent the content produced in the WorkUnits,
whereas the Producers represent the stakeholders that are involved with an
evaluation effort. The method elements are based on the synthesis of the exist-
ing evaluation methods for ISD tools and DSM literature.

The situational factors are provided on a general level and aligned with
the socio-technical dimensions of evaluation presented in Section 4.1. Stake-
holders, Internal Context, and External Context are considered as the high-level
concepts of situational factors. Stakeholders represents concepts such as Pro-
ducers, Customers, and Partners, thus covering both internal and external
Stakeholders. Internal Context is divided into Usage and Organization. Usage
represents the context in which the direct users of the DSM tools reside. Organ-
ization represents the context in which the managers operate. External Context
represents the factors that are usually beyond the control of the organization in
which the evaluation is conducted, such as government policy and legislation,
markets and competition, technological advancements, and other environmen-
tal pressures. In the terms of the situational factors identified by Bekkers et al.
(2008), we outline that the evaluation efforts as well as the method construction
and tailoring activities are probably affected by the situational factors that
propagate from the interactions of the following technical, social, and economic
phenomena: Products are produced in Business Units as a result of the intertwined
efforts by Stakeholders such as Producers and Partners, for the purpose of competitively
supplying the demand that is created by the potential Customers in the Markets that are
strategically selected by Stakeholders such as Managers, Directors, and Shareholders.

 Construction guidelines are discussed on a general level, introducing var-
ious approaches to the technical construction and tailoring of evaluation meth-
ods: Assembly-Based, Paradigm-Based, Deontic Matrix, Activity Diagrams,
Configuration-Based, Extension-Based, and Ad-Hoc.

 69

FIGURE 27 Decomposition of Artifact II

In the following section Artifact II is conceptually instantiated in an agile usage
situation, based on Scrum method. The instantiation further demonstrates the
domain shift from ISD to evaluation of DSM tools.

5.6 Conceptual Instantiation of Artifact II into an Agile
Usage Situation

Situational Method Engineering (SME) in agile contexts have been reported by
Karlsson (2013) and Karlsson and Ågerfalk (2009b). Agile ISD methods promote
stakeholder communication and collaboration by fostering practices that rely

 70

heavily on socialization to access and share tacit knowledge within a project
organization (Chau, Maurer & Melnik, 2003). Iterative activities and continuous
integration of WorkProducts, coupled with a strong sense of collective owner-
ship have a positive effect on stakeholder satisfaction and project success (Fer-
reira & Cohen, 2008). Such principles quite aptly address the important Stake-
holder and Context dimensions of evaluation, promoting the consideration of
the situational factors that are essential in the SME activities. Building on the
widely adapted agile ISD method Scrum (Schwaber & Sutherland, 2014), pre-
sented in the following, the agile principles are applied in a conceptual instanti-
ation of Artifact II into an agile usage situation. The high-level conceptualiza-
tion is illustrated in FIGURE 28. It represents the dynamic part of Artifact II,
whereas the method elements form the static part.

The situational evaluation effort is divided into three logical phases: pre-
evaluation, evaluation, and post-evaluation. The evaluation effort is run in iter-
ations called sprints, each including the selected method elements of the meth-
od base of Artifact II. Each sprint is initiated with a meeting in which all the
stakeholders should be present. The length of the sprint can be any amount of
days that is agreed upon, within the limit of a few weeks. Daily meetings
should also be implemented among the core stakeholders to address the con-
crete issues faced in the everyday operations. Depending on whether the evalu-
ation effort is distributed or not, an online tool and/or a physical board for pro-
ject management should be utilized to monitor the progress and to promote
process transparency and ownership as well as communication.

 In the pre-evaluation phase an evaluation framework is iteratively devel-
oped by structuring and prioritizing requirements into the organizational
framework. In the case of DSM tool requirements, they are linked into technical
framework as criteria, using the Artifact I presented in Chapter 3 as guidance.
The technical framework also includes the metrics, scales, standards, and meas-
urement techniques for the criteria.

In the evaluation phase a set of requirements, in the order of the set priori-
ties, are taken under consideration and goals are derived for the evaluation
sprint. The goals are then transformed into concrete tasks to be taken and add-
ed into the sprint backlog list, steering the activities taken in the evaluation
sprint. The evaluation phase can include any of the method elements of Artifact
II. In the case of Evaluation WorkUnits, the tool candidates are measured by the
criteria and guidance provided by the technical framework. As the outcome of
the evaluation phase, a data increment is produced. In the case of Evaluation
WorkUnits, the increment should always provide a complete piece of evalua-
tion data of the tool candidates, in regards to the sprint goals.

In the post-evaluation phase, the data increments produced in the sprints are
integrated into corresponding WorkProducts, e.g. an evaluation report or an
update to the evaluation framework. As the outcome of the final sprint, tool
selection activities produce a recommendation for a tool. At the end of the eval-
uation effort, a selection workshop is organized, in which the recommendation
is validated, and the experiences from the effort are analyzed and documented.

 71

The evaluation framework refined during the evaluation effort will be an asset
in future evaluations.

FIGURE 28 Conceptual Instantiation of Artifact II into an Agile Usage Situation, Adapted
from Abrahamsson et al (2002, p. 28)

5.7 Summary

The chapter discussed the components of the baseline method for the engineer-
ing of situational evaluation methods for DSM tools, called Artifact II. First, the
SME foundation, along with the related process engineering metamodels and
CAME tools, were discussed. Second, a conceptual method base and its three
types of method elements, WorkUnit, WorkProduct, and Producer, were dis-
cussed. The WorkUnits were derived from the synthesis of the activities of the
existing evaluation methods. The WorkUnits were further divided into the
high-level concepts of Preparation, Structuring, Evaluation, and Selection. Fur-
thermore, the WorkProduct and Producer elements were constructed and pre-
sented. Third, situational factors were discussed on a general level, and aligned
with the previously discussed socio-technical dimensions of evaluation. Fourth,
the various approaches to method construction and tailoring, i.e. the construc-
tion guidelines, were presented. Fifth, the resulting high-level architecture of
Artifact II was presented, based on the previous sections. Finally, Artifact II was
conceptually instantiated in an agile usage situation.

 72

6 EVALUATION OF META-METHOD

This chapter presents the empirical and conceptual evaluation of Artifacts I and
II, discussed in the previous sections. The main objective is to seek validation
for the artifacts by structuring them into a single design theory called Meta-
Method and by comparing it against the similarly structured design theory of
ISO 14102. In this evaluation process we use the evaluation criteria of progress
for IS design theories.

First, the evaluation methodology is presented. The methodology is divid-
ed into four sections: Grounding Approach, Empirical Approach, Conceptual
Approach, and Evaluation Criteria. Here, the current state of the discourse on
the evaluation of DSR artifacts as well as the rationale behind the evaluation
approaches chosen are first discussed. Then, the internal, external, and empiri-
cal grounding of the artifacts are delineated. Next, the empirical approach to
evaluation, i.e. case study, is discussed, followed by the presentation of the con-
ceptual approach, in which the relationships between design theories, instantia-
tions, and humans are discussed and reflected to the phenomena of the case
study. Additionally, design theory componentization and the evaluation criteria
of progress for IS design theories: utility, internal consistency, external con-
sistency, broad purpose and scope, simplicity, and fruitfulness of new research,
are introduced.

Second, the design theories of Meta-Method and ISO 14102 are structured
as design theory components, which is conducted to prepare them for the com-
parative evaluation with the criteria of progress.

Third, a case study in which Meta-Method was initially designed and em-
pirically evaluated is discussed. The empirical evaluation is based on the analy-
sis of the data collected during the case study, which included a company oper-
ating in the industry of professional mobile radio networks and devices. The
empirical evaluation addresses the utility criterion.

Fourth, the conceptual evaluation is provided on the basis of the other cri-
teria of progress. Finally, a summary of the chapter is presented.

 73

6.1 Evaluation Methodology

Design Science Research (DSR) is still an emerging paradigm, as there is a con-
sensus only on the broadest delineation: “DSR involves, in some way, learning
through the act of building” (Kuechler & Vaishnavi, 2008). There are two major
design views in DSR, a pragmatic technical artifact orientation and a theory-
grounded user and meta-artifact focus (Miah et al., 2012). Nevertheless, both of
them emphasize the importance of the evaluation of the artifacts. Furthermore,
Iivari (2007) and Hevner (2007) suggest that the mark of a “good” DSR study
lies in the rigorous evaluation of the artifacts propagated from the mixture of
theoretical grounding and relevant engineering practice. While the debate con-
tinues in the DSR community, the artifacts discussed in this study are designed
and evaluated according to the most adapted principles of DSR (Hevner et al.,
2004; Peffers et al., 2007). The design perspective of the study is based on the
rigorous theoretical body of previous work, from which the artifacts are derived
from, as well as the practical adaptation of the artifacts, i.e. instantiating them in
a context. The design objective is to solve a relevant real-world business prob-
lem faced in a company operating in the industry of professional mobile radio
networks and devices. The first evaluation objective of the study is to empirical-
ly evaluate the utility of the instantiated artifacts in the case study context. Fur-
thermore, a conceptual evaluation of the artifact constructs is conducted, in ef-
fort to evaluate the progress made during the study.

The initial design and empirical evaluation of the artifacts were conducted
as an iterative case study, similarly to the cyclic approach introduced by An-
dersson and Runeson (2007). As design is an inherently iterative and incremen-
tal activity, the evaluation is considered an essential source of feedback for the
design process (Hevner et al., 2004). One could argue that the approach taken
was conformant to action research (Robson, 2002: Tolvanen, 1998) or action de-
sign research (Sein et al., 2011), as they are closely related (Runeson et al., 2012,
p. 13; Iivari & Venable, 2009). In a broader sense, case study and action research
are in many ways interrelated and share similarities with various aspects of
DSR (Iivari, 2014). Nevertheless, the empirical evaluation of the artifacts is con-
ducted on their instantiations, described in Section 6.3, by following the gener-
ally agreed principles of case study, which are also compatible with several
other research approaches, such as action research (Runeson et al., 2012, 13).
Artifacts are also conceptually evaluated as a single design theory. The objec-
tive of the conceptual evaluation is to derive a design theory by structuring the
artifacts according to the design theory components (Gregor & Jones, 2007), and
evaluate them in terms of criteria of progress for IS design theories (Aier &
Fischer, 2011), by effectively comparing the artifacts against ISO 14102 (ISO,
2008). The conceptual evaluation is based on descriptive evaluation, i.e. in-
formed argumentation, which is the “use [of] information from the knowledge
base (e.g., relevant research) to build a convincing argument for the artifact’s
utility” (Hevner et al., 2004, p. 86). Furthermore, the artifacts are grounded from

 74

three sources of knowledge (Goldkuhl, 1999). The design theory, derived from
the intertwined combination of Artifact I and II, called A Meta-Method for the
Engineering of Situational Evaluation Methods for Domain-Specific Modeling
Tools, is hereinafter referred to as Meta-Method.

6.1.1 Grounding Approach

Goldkuhl (1999) proposes three classes for the grounding of action knowledge:
internal, external, and empirical grounding (FIGURE 29). Action knowledge re-
fers to the theories, strategies, and methods governing people’s actions in social
practices, such as evaluation efforts. The grounding of action knowledge means
presenting arguments for the justification of such knowledge. Internal grounding
means the grounding of the action knowledge in its own background
knowledge. Internal grounding is often implicit and/or conceptual grounding,
potentially consisting of the evaluation of knowledge cohesion, i.e. how the
knowledge parts relate to each other and that there is a meaningful and logical
consistency. External grounding refers to dealing with external warrants for the
action knowledge, i.e. the established theories related to the action knowledge,
such as ISO 14102 (ISO, 2008) and SME (Henderson-Sellers et al., 2014). Empiri-
cal grounding means observing and evaluating the application of the action
knowledge, i.e. determining whether or not the action knowledge is successful
in practice. In our work, the case study is considered as the empirical ground-
ing of Meta-Method, whereas the theories from which Meta-Method is derived
are considered as the external grounding. The conceptual evaluation carried out
in Section 6.3 provides evidence for the internal grounding for Meta-Method.
(Goldkuhl, 1999)

FIGURE 29 Three Classes of Grounding Action Knowledge (Goldkuhl, 1999, p. 8)

 75

6.1.2 Empirical Approach

Case study is an established research approach for which distinct contributions
are made by Robson (2002), Yin (2003), and Benbasat et al. (1987). All three
agree on that case study is an empirical research approach, aimed at investigat-
ing contemporary phenomena in their context. Based on their definitions, Rune-
son et al. (2012, p. 12) derive the following definition for case study, aimed spe-
cifically for the field of software engineering:

“… an empirical enquiry that draws on multiple sources of evidence to investigate
one instance (or a small number of instances) of a contemporary software engineer-
ing phenomenon within its real-life context, especially when the boundary between
phenomenon and context cannot be clearly specified”.

There are also several other relevant research approaches, which would have
been useful as alternative approaches in the effort of evaluating the artifacts
empirically, such as survey, experiment, ethnographic study, longitudinal
study, project monitoring, assertion, and field study (Runeson et al., 2012, p. 13).
Furthermore, according to some researchers, action research would be the pre-
ferred approach in studies in which the researcher is involved with the change
process under study, whereas case study would be purely observational (Rune-
son et al., 2012, p. 13). In this sense, our approach could be classified as action
research, since the artifacts under study are instantiated, analyzed, and modi-
fied iteratively by us, both in and out of the context of the case study, strongly
affecting the phenomenon studied. In addition, project monitoring shares simi-
larities to our approach, as we collect and store operational data that accumu-
lates during the application (Zelkowitz, 1997). The boundary between the types
of research approaches is not, however, always clear, as Robson (2002, p. 185)
denotes: “Many flexible design studies, although not explicitly labeled as such,
can be usefully viewed as case studies”.

The data collection in our case study was primarily conducted through
documenting feedback sessions at the end of research iterations. During each
iteration the artifacts were incrementally designed and then instantiated in the
case study context. Artifact I was utilized as a guideline in the formulation of
the technical evaluation framework for DSM tools. Artifact II was designed as
the baseline method for the engineering of situational evaluation methods for
DSM tools. The situational methods were enacted in the evaluation of DSM
tools. Thus, there were three logical levels of activity in effect during the case
study, namely research, method engineering, and evaluation, presented in TA-
BLE 19. In the context of this thesis, the primary level of interest is research.
TABLE 19 also presents the following high-level classifications: the domains in
which the activities were conducted, the producers which conducted the activi-
ties, the methods that were utilized in the conduct of the activities, the Work-
Products that were produced in the activities as well as the types of phenomena
that were addressed in the activities.

 76

TABLE 19 Levels of Activities

Level Domain Producer Method WorkProduct Phenomenon

Research SME Researcher DSR Meta-Method Theory
Method
Engineering

Evaluation
Method

Method
Engineer

SME Situational
Method

Theory /
Instantiation

Evaluation DSM Tools Evaluator Evaluation
Method

Reports Instantiation

The utility of the iterative instantiations of Meta-Method was evaluated in the
feedback sessions by stakeholders, primarily in terms of the WorkProducts that
were produced as the outcomes of the enacted situational methods. The partici-
pants of the feedback sessions were typically the researcher (we), project leader,
chief engineer, developers, and modelers, i.e. the primary stakeholders of the
evaluation effort. We composed and shared an agenda for the feedback sessions
in advance to guide the discussion, and also to let the participants prepare for
the sessions in advance. Furthermore, the feedback was captured in detailed
meeting minutes, devised by the researcher and shared afterwards to the partic-
ipants for further commenting. The data collection approach is similar to the
unstructured interview technique. The feedback data is considered as the first
degree research data, as it was inquired directly from the participants, and it
steered the research activities of the iterations (Runeson et al., 2012, p. 48). The
feedback data is analyzed as part of the case study description in Section 6.3.

6.1.3 Conceptual Approach

There is an active school of thought promoting that DSR should produce design
theories by combining proven theories with goals of actors in a business context
(Venable, 2006; Gregor & Jones, 2007; Walls et al., 2004). Gregor and Jones (2007)
propose that design theories can have as a primary design goal either a method
or a product. A design theory can also be instantiated, resulting in some form of
physical existence in the real world. FIGURE 30 illustrates the three phenomena
of interest in DSR, as proposed by Gregor and Jones (2007): instantiations, theo-
ries, and human subjective understanding of artifacts. Instantiations are artifacts
that have physical existence in the real world, such as hardware and software,
or the series of physical actions taken that lead to the existence of them, i.e.
method in action (Lundell & Lings, 2004a). Theories are artifacts that do not have
a physical existence, except in the sense that they are communicated in words,
images, diagrams or some other means of representation. These types of arti-
facts are e.g. constructs, models, and methods, such as the artifacts presented in
this thesis. Human subjective understanding of artifacts represents the human
component in relation to instantiations and theories. Humans conceptualize
and describe artifacts in abstract terms as theories as well as use the theories as
guidance to build the instantiations. Theories are also used to understand the
material artifacts utilized in the real world. On the other hand, theories can be
extracted by the means of observing and analyzing the instantiated artifacts.
(Gregor & Jones, 2007.)

 77

FIGURE 30 Relationships Among IS/IT Artifacts (Gregor & Jones, 2007, p. 321)

In the terms of the levels of activities performed in our work, we deal with phe-
nomena that are classified as theories or instantiations (TABLE 19). In addition,
our subjective understanding of the phenomena affects the instantiations of the
theories as well as the theorizing of the observed instantiations. The conceptual
evaluation focuses mainly on the abstract artifacts whereas the empirical evalu-
ation concentrates solely on the material artifacts. The research activities pro-
duce Meta-Method, which is abstract. The method engineering activities instan-
tiate Meta-Method into the case study context, producing situational method
specifications, which in itself are classified as abstract artifacts, whereas the
method engineering in action that leads to the situational method specifications
is the instantiation of Meta-Method and the theories utilized in its conception.
The evaluation activities are instantiations of the situational method, resulting
in as the evaluation method in action. Furthermore, it can be argued that the
reports that are produced by the evaluation activities are abstract artifacts that
guide the further instantiations of further activities in action, such as the acqui-
sition and implementation of a selected DSM tool.

For the purpose of preparing the artifacts for the evaluation of progress,
Meta-Method is structured as a composition of design theory components
(Gregor & Jones, 2007). A design theory is composed of eight components: pur-
pose and scope, constructs, principle of form and function, artifact mutability,
testable propositions, justificatory knowledge, principles of implementation,
and expository instantiation. The components are defined in TABLE 20. The
componentization of the design theories enables the categorization, comparison,
and extension of the design theories in respect to other design theories (Gregor
& Jones, 2007). In the evaluation, the design theory components of Meta-
Method are compared to those of ISO 14102 (ISO, 2008), in the effort of deter-
mining the potential progress achieved.

 78

TABLE 20 Design Theory Components (Gregor & Jones, 2007, p. 322)

Component Description

Purpose and
Scope

“What the system is for,” the set of meta-requirements or goals that
specifies the type of artifact to which the theory applies and in conjunc-
tion also defines the scope, or boundaries, of the theory.

Constructs Representations of the entities of interest in the theory.
Principle of
Form and Func-
tion

The abstract “blueprint” or architecture that describes an IS artifact, ei-
ther product or method/intervention.

Artifact Muta-
bility

The changes in state of the artifact anticipated in the theory, that is, what
degree of artifact change is encompassed by the theory.

Testable Propo-
sitions

Truth statements about the design theory.

Justificatory
Knowledge

The underlying knowledge or theory from the natural or social or design
sciences that gives a basis and explanation for the design (kernel theo-
ries).

Principles of
Implementation

A description of processes for implementing the theory (either product
or method) in specific contexts.

Expository In-
stantiation

A physical implementation of the artifact that can assist in representing
the theory both as an expository device and for purposes of testing.

6.1.4 Evaluation Criteria

Aier and Fischer (2011) adapt the five high-level criteria for scientific progress
by Kuhn (1977) into the domain of IS design theories. Ultimately, they propose
six evaluation criteria for IS design theories, by which the progress of one theo-
ry in comparison to another can be defined. The evaluation criteria are: utility,
internal consistency, external consistency, broad purpose and scope, simplicity,
and fruitfulness of new research. The criteria are defined in TABLE 21. They
base the criteria on the “ceteris paribus clause”, i.e. “a design theory A can only
be called “better” than a design theory B if A fulfils at least one criterion better
than B, whereby the fulfillment of all other criteria remains equal” (Aier &
Fischer, 2011, p. 170). By employing the criteria of progress we evaluate Meta-
Method in comparison to ISO 14102, which also was the initial baseline method
upon which Meta-Method was designed. Ultimately, we aim to determine the
degree of progress achieved by our work, especially in the area of providing
method support for the engineering of situational evaluation methods for DSM
tools, by contrasting it to ISO 14102, which is a general guideline for the evalua-
tion of ISD tools, intended to be tailored according to organizational needs. In
the empirical evaluation we determine the degree of progress by the criterion of
utility whereas the other criteria are determined in the conceptual evaluation.

 79

TABLE 21 Scientific Progress Criteria for Design Theories (Aier & Fischer, 2011, p. 158)

Criterion Description

Utility • The utility of a design theory is the artifact’s ability to fulfill its purpose
if the purpose itself is useful. The purpose of an artifact is only useful if it
is relevant for business
• The purpose of an artifact is concretized by testable propositions. They
help to prove that the artifact fulfills its purpose
• Three forms of utility can be differentiated: gross utility (absolute out-
put), net utility (difference between output and input), and efficiency
(output divided by input)

Internal
Consistency

• Each element of a design theory should be consistent with itself
• A consistent system of constructs is the common basis for all design
theory elements. All constructs unstructured should be defined concisely.
In the interests of consistent terminology, it is important that homonyms,
including subtle homonyms, and synonyms are avoided
• Form and function of the artifact, artifact mutability, principles of arti-
fact implementation, and testable propositions directly depend on scope
and purpose
• Testable propositions refer to form and function of the artifact, artifact
mutability, and its principles of implementation
• Justificatory knowledge should justify form and function of the artifact,
artifact mutability, and its principles of implementation

External
Consistency

• Justificatory knowledge should be consistent with the knowledge base.
• Consistency with a selected part of the knowledge base, i.e. with justifi-
catory knowledge (or with kernel theories), is covered by internal con-
sistency. In addition, external consistency refers to a sound justification of
the choice of justificatory knowledge (or of kernel theories); moreover,
the relationship to parts of the knowledge base that
contradict design decisions should be explicated
• Constructs should be consistent with constructs commonly used
• Sometimes, design theories are innovative simply because they contra-
dict commonly accepted assumptions

Broad Pur-
pose and
Scope

• Scope and purpose of an artifact should be broad
• If one design theory A covers a purpose and scope that has previously
been covered by more than one design theory B1,…,Bn, ≥ n 2, A is ceteris
paribus progressive in comparison to B1,…,Bn

Simplicity • Design theories should be simple in order to be easily understandable
and manageable
• Simple artifacts will often cost less when used. This aspect is already
covered by two notions of utility: net utility and efficiency

Fruitfulness
of New Re-
search

• Design theories should disclose new phenomena or previously unnoted
relationships among already known phenomena
• They should initiate/stimulate further research activities

 80

6.2 Design Theorization

In order to evaluate the progress made in our work in the domain of providing
method support for the engineering of situational evaluation methods for DSM
tools, commensurate design theories are required (Gregor and Jones, 2007).
Thus, ISO 14102 is componentized as a design theory in TABLE 22 and Meta-
Method is similarly structured in TABLE 23. As there is no methodical support
available for the componentization process, the structuring of the components
are primarily based on the subjective interpretation of the standard document
by ISO (2008) as well as the analysis and combination of Artifacts I and II. Alt-
hough we are experienced in the analysis, instantiation and tailoring of ISO
14102 in a practical setting, we don’t claim to possess exhaustive knowledge of
all the aspects of the method, which is reflected in the componentization.

TABLE 22 The Design Theory Components of ISO 14102

Component Description

Purpose and
Scope

The international standard gives guidelines for the evaluation and selec-
tion of ISD tools, covering a partial or full portion of the software engi-
neering life cycle. It establishes processes and activities to be applied for
the evaluation of ISD tools and selecting the most appropriate ISD tools
from several candidates. These processes are generic, and organizations
must tailor them to meet organizational needs. The ISD tool evaluation
and selection processes should be viewed in the larger context of the
organization’s technology adoption process.

Constructs Phases: preparation, structuring, evaluation, selection. ISD tool charac-
teristics: categories, atomic sub-characteristics, description.

Principle of
Form and Func-
tion

An abstract evaluation method is provided that consists of four phases
along with related tasks and expected outcomes. In addition, a list of
generic ISD tool characteristics is provided. There’s no method support
for the instantiation of the method in a situational context, nor for the
formulation of the evaluation criteria for a specific type of a tool (Lun-
dell & Lings, 2002). Additional guidance for ISD tool adoption processes,
following the tool selection, is provided in ISO TR 471:2007.

Artifact Muta-
bility

The method is generic and intended to be tailored to the context. The
static generic method doesn’t provide method support for the tailoring.

Testable Propo-
sitions

The method can be adapted to various situational contexts in which ISD
tools are evaluated by ad-hoc instantiation practices.

Justificatory
Knowledge

The method is a result of decades of standardization work and is the
current standard for ISD tool evaluation, synthesizing and building on
the previous standard IEEE 1209:1992. Various reports of application
have been reported on real evaluation cases.

Principles of
Implementation

The implementation of the method requires a facilitator that is experi-
enced in ISD tool evaluation.

Expository In-
stantiation

Instantiation have been reported by Hilera and Martinez (1999) as well
as Lundell and Lings (2002).

 81

TABLE 23 The Design Theory Components of Meta-Method

Component Description

Purpose and
Scope

Method support is required for the engineering of situational evaluation
methods for DSM tools, as the previous evaluation methods are generic
and/or limited in various ways, e.g. they are designed for generic ISD
tools, lack the guidance of how to adapt the methods in a situational
context, and/or don’t provide the guidance on which evaluation criteria
should be used for DSM tools in the situational methods.

Constructs Meta-Method: method base, situational factors, constructional guide-
lines. Method base: WorkUnits, WorkProducts, Producers. Situational
factors: stakeholders, internal context, external context. Constructional
guidelines: assembly-based, paradigm-based, deontic matrix, activity
diagrams, configuration-based, extension-based, ad-hoc Evaluation cri-
teria checklist: category, criterion, type, range, example.

Principle of
Form and Func-
tion

A conceptual baseline method is provided, to be instantiated in SME that
specifies situational evaluation methods, which are instantiated in the
evaluation efforts, producing reports for decision-making. The evalua-
tion criteria checklist is used as guidance in the situational methods for
the formulation of the technical evaluation frameworks for DSM tools.

Artifact Muta-
bility

Meta-Method is created on the basis of SME, which promotes the devel-
opment and evolution of the constructs and adaptability to the situa-
tional context. The constructs are mainly generic, which promotes the
extension and specialization of them according to characteristics of the
situational context.

Testable Propo-
sitions

(1) Meta-Method can successfully support the engineering of situational
evaluation methods for DSM tools in various contexts in which DSM
tools are evaluated, due to the use of SME principles. (2) The application
of the evaluation criteria checklist can produce meaningful evaluation
results that should be commensurate between different evaluation effort
instances. (3) The application of the situational evaluation methods en-
gineered with Meta-Method can produce successful DSM tool recom-
mendations, at least when measured in gross utility

Justificatory
Knowledge

Meta-Method is derived from various previous evaluation methods as a
synthesis and specialized as a baseline method for the engineering of
situational evaluation methods for DSM tools, utilizing proven SME
principles. The evaluation criteria checklist is derived from eight previ-
ous studies that discussed the evaluation of DSM tools. Furthermore, an
extensive literature review and practical experiences in DSM guided the
design of Meta-Method.

Principles of
Implementation

The implementation of Meta-Method requires a facilitator that is experi-
enced in DSM, DSM tools, evaluation methods, and SME practices. The
evaluation criteria checklist provides guidance on which criteria to eval-
uate in the situational evaluation methods.

Expository In-
stantiation

Description of the instantiation of Meta-Method in a case study is pro-
vided in Section 6.3.

ISO 14102 is a highly generalized method, addressing the evaluation of all types
of ISD tools, intended to be tailored according to organizational needs. The
main constructs of ISO 14102 are the phases, tasks and outcomes of the generic
evaluation process, in addition to the list of ISD tool characteristics, which con-

 82

sists of the categories, sub-characteristics, and descriptions of the characteristics.
The constructs are intended to be adapted to the organizational needs, but no
method support for the adaptation is provided. As is typical for established in-
ternational standards, they are developed over a long period of time and have
been instantiated numerous times.

Meta-Method is a specialized method, focusing on the engineering of situ-
ational evaluation methods for DSM tools. It was developed for this specific
need and instantiated in the case study context described in the Section 6.3. The
main constructs of the method are the method base, situational factors, and
constructional guidelines. Whereas the constructional guidelines are mainly
generic SME theories, the method base includes method elements for the evalu-
ation of DSM tools. Furthermore, the situational factors of SME are aligned with
the multi-disciplinary dimensions of evaluation. Additionally, the evaluation
criteria checklist for DSM tools is provided, to be used as a guideline in the sit-
uational methods. Meta-Method is intended to be instantiated in the engineer-
ing of situational evaluation methods for DSM tools, using SME practices. The
adoption of the proven SME principles enables the construction and tailoring of
the situational evaluation methods.

In the following sections the delineated design theories are evaluated from
the perspective of potential progress achieved in the efforts of developing the
generic method support provided by ISO 14102 towards the specialized method
support that is provided by Meta-Method. The premise of comparing a generic
method against a specialized method is not optimal, but the lack of existing
counterparts of Meta-Method dictate the compromise. Furthermore, ISO 14102
was utilized as a baseline method for the construction of Meta-Method, which
promotes the commensurability of the theories as well as provides a meaningful
perspective to the evaluation of progress. The evaluation of progress is con-
ducted in the domain of providing method support for the engineering of situa-
tional evaluation methods for DSM tools. Thus, the assumptions are not gener-
alizable for other domains.

6.3 Empirical Evaluation

In this section the empirical evaluation of Meta-Method is presented. Meta-
Method combines Artifacts I and II. Meta-Method was constructed in an indus-
trial case study, in which the empirical evaluation of its utility was also con-
ducted. The iterative evaluation approach presented in Section 5.6 was applied
in the evaluation component of the case study. First, the context of the case
study is described. Second, the iterations carried out during the case study are
discussed, especially from the viewpoint of the evolution of Meta-Method.
Third, the outcomes of the case study are analyzed. Finally, the utility of Meta-
Method is evaluated on the basis of the data collected.

 83

6.3.1 Context

The case study was initiated in the summer of 2010, as we were hired to con-
duct an evaluation of DSM tools for a multinational technology company, oper-
ating in the industry of professional mobile radio networks and devices. Our
role was to act as an external researcher to the company. The evaluation was
conducted in Jyväskylä, Finland. The main business need of the company was
to evaluate the state-of-the-art of DSM tools in order to select the optimal tool-
ing for their major re-engineering effort of a software product line for profes-
sional mobile radio devices. The devices are conformant to ETSI TETRA stand-
ard, intended for the use of public authorities such as the police and the fire and
rescue departments. The re-engineering effort was related to the upgrade of the
software platform for which the professional applications were developed us-
ing DSM. As the re-engineering effort would be a significant and time consum-
ing investment, the most suitable DSM tool for the effort had to be resolved, in
order to reduce the risk of failure and to improve the quality and productivity
of ISD processes in the long run.

From the perspective of the DSR process, the primary interest of the com-
pany was the demonstration of Meta-Method, i.e. the evaluation of DSM tools
in the situational context, leading to the production of reports to support the
decision-making in the company. A secondary objective was to update the
stakeholders’ knowledge on the current trends and practices related to DSM
tools. The following academic stakeholders were involved in the evaluation ef-
fort: project leader and researcher (we). The internal stakeholders of the compa-
ny were chief engineer, DSML engineer, developer, and modeler. Initially, the
chief engineer had built a business case for the re-engineering effort, eliciting
the justification for the investment. Going forward with the optimal tooling was
critical for the re-engineering effort, but there was no internal resources availa-
ble at the time for conducting a systematic evaluation of DSM tools. Thus, such
an evaluation was initiated in collaboration with the local university. Most of
the stakeholders were working part time in the effort. Common project man-
agement practices and tools, such as regular feedback meetings and communi-
cation and knowledge sharing platforms were employed.

FIGURE 31 illustrates the operational framework for the case study. The
three levels of activities (cf. TABLE 19), namely research, method engineering,
and evaluation were intertwined during the iterative research effort. The re-
spective roles conducting the activities, namely researcher, method engineer,
and evaluator, were mostly assumed by us as a single physical person. First,
during a typical iteration, the research level analyzed the feedback received
from the previous iteration and then produced the next increment of Meta-
Method, based on the feedback data. Next, Meta-Method was instantiated in
the method engineering level, which produced a situational method for the it-
eration. Then, the situational method was enacted in the evaluation level, pro-
ducing an increment of the reports related to the evaluation efforts. Finally, the
activities commenced during the iteration were reported and evaluated in the

 84

feedback sessions, in which the feedback data was collected and analyzed for
the planning of the next iteration of activities.

FIGURE 31 Operational Framework of the Case Study

The primary unit of analysis in the case study is Meta-Method and more specif-
ically its evolution throughout the evaluation effort, which is analyzed in the
qualitative analysis of the feedback data. This is relevant for research as it pro-
vides case-specific evidence from the business perspective as to which method
elements are useful at specific points in time of an evaluation effort and which
situational factors affect them. The main objective of the case study is to vali-
date Meta-Method in terms of utility, as described in Section 6.1.4. As the initial
baseline method for the evaluation effort, ISO 14102 was utilized. The highly
generic nature of ISO 14102 quickly evoked us to seek alternative measures in
the effort of better conducting an evaluation of DSM tools in the situational con-
text. Thus, the construction of Meta-Method was required.

 85

6.3.2 Iterations

The preparation of the evaluation effort was initiated in collaboration between
the chief engineer and the project leader, focusing primarily on the generic pro-
ject management issues and high-level goal setting. As we were included in the
project team, the preparation activities continued by a kick-off meeting in May
25th 2010, in which all available stakeholders were present. An iterative method
was decided to be implemented in the effort. The iterations, the respective key
objectives and the resulting key activities conducted, along with the dates for
the feedback sessions are presented in TABLE 24. In the following, the iterations
conducted in the evaluation effort are described in addition to the retrospective
analysis of the respective feedback data, in the effort of delineating the utility of
Meta-Method.

TABLE 24 Iterations in the Case Study

Objectives for
Iteration

Research Method
Engineering

Evaluation Feedback
Session

 Primary Goal Key Activity Key Activity Key Activity Date

1 Project Initia-
tion

Initial
Sketching of
Meta-Method

Adaptation of ISO
14102 as the Initial
Method

Preparation 09.06.2010

2 Requirements
Engineering

Design of
Meta-Method

Construction of the
Evaluation Frame-
work

Structuring 18.06. &
23.06.

3 Meta-Method
Construction

Design of
Meta-Method

Construction of the
Situational Method

Structuring 11.08.

4 Tool
Familiarization

Design of
Meta-Method

Tailoring of the
Situational Method

Structuring 25.08.

5 Tool Evalua-
tion, 1st Set

Design of
Meta-Method

Tailoring of the
Situational Method

Evaluation 09.09.

6 Tool Evalua-
tion, 2nd Set

Design of
Meta-Method

Tailoring of the
Situational Method

Evaluation 11.11.

7 Tool Selection Design of
Meta-Method

Tailoring of the
Situational Method

Selection 18.11

In the first iteration of the evaluation effort we focused primarily on knowledge
search and familiarization of the problem domain issues, such as DSM, DSM
tools, and evaluation methods. Also, research methods and reporting standards
were studied. Furthermore, existing literature on the evaluation of DSM tools
were reviewed. ISO 14102 was adapted as the initial baseline method, as it was
assumed that it provides the method support required. High-level goals were
discussed in more specific terms. For example, it was established that DSM
tools licensed as open source were the ideal candidates, albeit the commercial
rivals were to be evaluated in equal terms. The main WorkProduct of the itera-
tion was a refined version of the project plan. The feedback data is distinctly
showing that it was the early days of the evaluation effort as the practices were
still unestablished and they were being addressed in a more specific manner.

 86

Literature findings were discussed and reflected to the practical experiences
and situational factors of the client. The activities were mainly related to the
preparation WorkUnits of Meta-Method. Situational factors such as Business
Units and Customers were primarily analyzed.

In the second iteration, the activities were more focused on the concrete
structuring of the conduct of the evaluation effort. More specific goals were de-
termined, such as the desired structure for the evaluation report and the client’s
long-term objectives of improving productivity and quality of the ISD processes
by optimal DSM tool selection. The most significant activities were related to
the evaluation framework development, as the first structured set of evaluation
criteria, provided mainly by ISO 14102, were discussed. It was established that
the general evaluation criteria for ISD tools were not sufficient for the evalua-
tion of DSM tools. To address the issue, the client’s requirements specific to
DSM tool architecture, DSML specification, and DSML application were elicited.
After another literature review, effectively forming the base for Artifact I, the
requirements were mapped to the evaluation criteria for DSM tools, which was
the inception of the evaluation framework. A subset of the evaluation frame-
work is presented in TABLE 25, in which the Priority and Requirement columns
represent the organizational framework, whereas the concept linking to the
technical framework is represented by the Criterion column.

TABLE 25 A Subset of the Evaluation Framework

Priority Requirement Criterion

1st The tool must have multi-platform support, or at least Win-
dows and Linux support.

Platform Support

1st The tool must have the capability of generating any pro-
gramming language.

Transformation
Output Language

1st The tool must provide facilities for modeling language spec-
ification, thus UML based MDA tools are not sufficient.

Metamodel Syn-
tax Specification

2nd The tool licensing model is preferably open source, but it is
not mandatory.

Licensing Model

2nd The tool must provide versatile integration mechanisms to
the development environment.

Integration

2nd The tool must provide a good user experience. Usability

2G method was found helpful in the development of the evaluation framework.
During the second iteration, also an initial set of tool candidates were selected
for evaluation, as a result of market analysis and literature review. Furthermore,
a demonstrative DSM solution that was to be utilized in the comparison of the
tools in the practical evaluation was specified. The target code to be generated
was a mobile Java application, compliant with the upcoming target platform. In
the analysis of the feedback data, it is evident that ISO 14102 didn’t provide the
required method support for the specific tasks in the case in question, and it
was required to look for guidance beyond the standard. The WorkUnits con-
ducted were mainly related to structuring. The main WorkProducts of the itera-

 87

tion were an evaluation framework and a list of candidate tools. Situational fac-
tors of Business Units, Markets and Products were extensively investigated.

During the third iteration the construction of Meta-Method was effectively
started. Literature was extensively reviewed and method elements identified in
the effort to find the proper method support for the required tasks at hand. ISO
14102 was assumed as the baseline method upon which additional and more
specified method elements were added, in the efforts to optimally conduct the
evaluation of DSM tools in the situational context. As the conceptual method
base was starting to take its form, SME practices were conducted to instantiate
the method elements to the situational context. The DESMET method (Kitchen-
ham, 1996) was utilized to select qualitative case study as the evaluation ap-
proach. The evaluation also included characteristics of qualitative screening and
benchmarking. The feedback data analysis indicates that the iteration was pri-
marily devoted to the study of evaluation methods, which was crucial for the
continuation of the efforts, as the stakeholders were not experienced in formal
evaluation methods. The activities of the situational method were related to the
structuring and evaluation WorkUnits. Situational factors of Business Units,
Products, and Stakeholders were considered.

The fourth iteration was devoted to the pragmatic familiarization of the
characteristics of the selected tools. The first objective was to learn the basic us-
age of the tools in order to conduct practical DSM processes in the divergent
modeling environments. The second objective was to learn tool-specific ap-
proaches to model transformation. The selected DSM tools in question were
MetaEdit+, Eclipse Modeling Tools, Borland Together, TOPCASED, and Ra-
tional Software Architect. The majority of the tools are based on the Eclipse
platform, which made the familiarization quicker, as the basic functionalities
were shared. In the feedback data it was denoted that the commercial tools pro-
vide better DSM process support, maturity, and usability as well as streamlined
integration to their respective platforms, which are desirable characteristics in
the production context, and should thus be emphasized in the evaluation. The
method in action constituted primarily the evaluation WorkUnits. Situational
factors of Business Units and Products were investigated.

During the fifth and sixth iterations, the actual evaluation of the DSM tools
was conducted. Meta-Method had taken its basic form in terms of providing
method support for the engineering of situational evaluation methods for DSM
tools. The first subset of the DSM tools were evaluated according to the situa-
tional method. The benefits and risks related to the selection between open
source and commercial DSM tools were further studied. The benefits of open
source DSM tools were determined as better interoperability via open file for-
mats and source code, rapid development of new technologies by the open
source community, and proven industrial applications. The risks of open source
tools were delineated to be unpredictability, availability of customer support,
learning curve, and complexity of the DSM process. The commercial DSM tools
primarily address the risks of the open source DSM tools, whereas they intro-
duce the risks of vendor lock-in and limited customization as well as restricted

 88

interoperability. The demonstrative DSM solution was developed according to
the specification, and the characteristics of the specification process were evalu-
ated between the candidates. The tools introduce divergent metamodeling con-
cepts according to the varying meta-metamodels, which were analyzed for the
best fit for the company’s approach. The feedback data indicated that although
the open source DSM tools show a great promise, the risks may be too critical
for the business. The method support was adequate, although fine adjustments
were made to Meta-Method, rendering the evaluation WorkUnits generic in the
sense that they are mainly dependent on the evaluation approach selected. Sit-
uational factors considered were Products, Business Units, and Stakeholders.
As the main WorkProduct, an evaluation report was produced.

The selection activities were initiated in the seventh iteration by evaluation
data analysis, which was conducted by both quantitative and qualitative
measures. Weighted averaging was utilized to derive aggregated criteria values
from the quantitative metrics. As all the criteria were not quantified, a qualita-
tive analysis was also conducted to support the formation of the recommenda-
tion for the tool selection. The candidates were argued for and against from var-
ious perspectives in the selection report. Nevertheless, a tool recommendation
was made as a pair of conditional suggestions. It was concluded that if the em-
phasis of the selection was on the overall maturity, DSM process support, user
experience, and customer support, the recommendation would be a commercial
DSM tool. Alternatively, if the emphasis was on interoperability, compliance to
standards, and unlimited customizability, the choice would be an open source
DSM tool. As a personal recommendation we suggested a commercial DSM tool,
as it provides the most stable product and streamlined DSM process support as
well as a lean learning curve for the stakeholders. At the end of the iteration, the
initial version of the selection report was delivered to the client for a final deci-
sion. As the conclusion of the evaluation activities, the selection of the tool was
validated in a workshop in 21st Jan 2011, in which the reasoning of the selection
was discussed, practical demonstrations with the selected tool were conducted,
and the overall experience was analyzed. Finally, the evaluation effort ended
and the client proceeded with the implementation of the selected tool. The out-
comes of the validation workshop were updated in the selection report. Meta-
Method provided the required method elements for the selection of the DSM
tool, albeit its terminology was further unified. Situational factors of Stakehold-
ers, Products, and Business Units were considered.

6.3.3 Remarks

The actual evaluation data collected for the selection of DSM tools during the
evaluation effort was produced under a non-disclosure agreement (NDA). Thus,
it is not available for discussion in this context. However, the methodical arti-
facts designed in the previous chapters of the thesis are considered as empiri-
cally grounded in the case study. The utility of Meta-Method is considered ade-
quate, as it includes all the method elements and guidelines that were required

 89

in this specific evaluation effort and it successfully produced a recommendation
for a DSM tool selection, which was validated by the case company. The prima-
ry constructional guideline employed in the SME activities was assembly-based.
Furthermore, the data collection was stopped at the point when client decided
to implement the selected tool, as the evaluation effort was concluded. Thus, no
further data is available. An inquiry of the success of the implementation and
long-term experiences from the usage of the selected tool is part of the future
research. In conclusion, Meta-Method was found useful in the case study and
no further method elements were required. An evaluation of the utility of Meta-
Method as progress against ISO 14102 is presented in the next section.

6.3.4 Utility

The primary evaluation criterion for DSR artifacts is utility, which represents
the measure to which the artifact produces its desired effect, i.e. achieves its
goal in the application context (Hevner et al., 2004; Venable et al., 2012). Aier
and Fischer (2011) suggest that there are three types of utility: gross utility, net
utility, and efficiency, which are defined in TABLE 21. Gross utility refers to the
absolute utility of the design theory, i.e. the success of the application of the in-
stantiation of the theory without the consideration of the costs of design and
implementation. Gross utility is evaluated in this analysis, since the financial
data required to evaluate the net utility and efficiency are not available to us.

Meta-Method was developed for a real-word business need to evaluate
the state-of-the-art of DSM tools in a situational context and ultimately to select
the optimal DSM tool for implementation. The design of the method was based
on a case study, in which it was constructed, instantiated, tailored, enacted, and
evaluated in an iterative design process, as presented in the previous sections.
Meta-Method is a generalized baseline method for the engineering of situation-
al evaluation methods for DSM tools. During the case study it was concluded
that ISO 14102 is not sufficient for the evaluation of DSM tools in that specific
situational context, which is primarily due to the broad scope and purpose of
ISO 14102: to provide a generic method for the evaluation of all types of ISD
tools. As the standard document (ISO, 2008) states, ISO 14102 is meant to be
tailored according to organizational needs. Meta-Method can also be considered
as a specific type of tailoring of ISO 14102, as it includes the majority of the
method elements provided by ISO 14102. However, the method elements pro-
vided by Meta-Method are based on the synthesis of several previous evalua-
tion methods, as presented in Chapter 5. In addition to the proposal of the
method elements, SME is suggested as the approach for the construction and
tailoring of evaluation methods for DSM tools, according to the situational fac-
tors and construction guidelines, whereas the tailoring of ISO 14102 lacks meth-
od support altogether. Furthermore, ISO 14102 provides a list of generic tool
characteristics for the evaluation of ISD tools, which was found insufficient for
the evaluation of DSM tools. Artifact I addresses this deficiency by providing a

 90

specialized checklist for the formulation of the evaluation criteria for DSM tools,
along with examples, values, ranges and data types.

The utility of ISO 14102 has been demonstrated by Hilera and Martinez
(1999) as well as Lundell and Lings (2002). The utility of Meta-Method is dis-
cussed in the previous section. As an established international standard, ISO
14102 is useful as a general guideline in the evaluation of ISD tools. Meta-
Method is derived from a rigorous body of work, and its instantiations are
found useful in the case study. Naturally, a single case study is not sufficient to
demonstrate general utility for Meta-Method, which is why future research is
required to validate Meta-Method and its usefulness in the engineering of situa-
tional evaluation methods for DSM tools in other contexts. Furthermore, a fol-
low-up inquiry on the success of the implementation and the contingent longi-
tudinal use of the selected tool in the case study context would provide more
evidence on the gross utility, net utility, and efficiency of Meta-Method. For the
future research, three testable propositions are delineated: (1) Meta-Method can
successfully support the engineering of situational evaluation methods for DSM
tools in various contexts in which DSM tools are evaluated, due to the use of
SME principles. (2) The application of the evaluation criteria checklist can pro-
duce meaningful evaluation results that should be commensurate between dif-
ferent evaluation effort instances. (3) The application of the situational evalua-
tion methods engineered with Meta-Method can produce successful DSM tool
recommendations, at least when measured in gross utility.

6.4 Conceptual Evaluation

In this section the conceptual evaluation of Meta-Method is presented. The po-
tential progress achieved in the design theory development of Meta-Method, in
comparison to ISO 14102, is evaluated against the evaluation criteria of progress
for IS design theories (Aier & Fischer, 2011). There is no methodical support
available for the definition of the precise measures for each criterion. Hence, an
example application of the criteria to Codd’s model for relational databases as
progress beyond pre-relational tree-structured files and network models of data
(Aier & Fischer, 2011, p. 165) is utilized as a guideline for the evaluation. The
subjective nature and the qualitative approach of the evaluation is in any case
reflected in the precision of the measures. Therefore, they should be considered
respectively.

6.4.1 Internal Consistency

Internal consistency refers to the principle that design theory elements should be
based on a coherent system of constructs (Aier & Fischer, 2011). Internal con-
sistency is also emphasized by Hevner et al. (2004) and Prat et al. (2014). The
ISO 14102 document has been refined in numerous iterations of meetings, bal-

 91

lots, and other activities of standardization over the years. Thus, its internal
consistency is up to par. There seems to be no notable inconsistencies in the
terminology, figures, or overall presentation of the constructs. In comparison,
Meta-Method is a novel design theory, designed by a single author, synthesized
from various independent sources of respective sets of terminology, style, and
representation. Thus, it most likely contains more inconsistencies than ISO
14102. Furthermore, ISO 14102 is designed for a broader purpose and scope
than Meta-Method, which is reflected in the design theorization.

The internal consistency of Meta-Method can be evaluated from various
aspects, such as the coherence and granularity of the method elements, and
their consistency to the underpinning metamodels of origin. As Meta-Method is
synthesized from various different sources, in which divergent or implicit met-
amodels are originally used, inconsistency issues may emerge from specific
combinations during the instantiation of the constructs. The divergent meta-
models present varying concepts at different levels of granularity, which has
been a concern during the construction of Meta-Method. For example, method
elements of varying granularity have been proposed in the literature, such as
method parts, components, chunks, and fragments. Partly due to this problem,
no specific metamodel is imposed on Meta-Method. Its generic nature allows
the conceptual method elements to be instantiated in various types of SME pro-
cesses and CAME tools. The minimum requirement is that the process engineer-
ing metamodel supports the basic method elements of WorkUnit, WorkProduct,
and Producer.

Furthermore, the consistency of the terminology, figures, and overall
presentation of Meta-Method constructs provided in this thesis can be evaluat-
ed. The unification of the terminology is a major issue in this domain, since the
research in the many areas of interest, such as DSM and SME, is not very estab-
lished. Similar problems are reported in evaluation practices (Arviansyah, 2013).
The equivocality issues result in a plethora of different terms that refer to the
equivalent or similar phenomena. The objective was to select the most utilized
terms for Meta-Method. For the figures of the metamodels of the method ele-
ments, widely adopted UML diagrams were used. In overall, the presentation
should conform to the required form and structure of the reporting standard in
use, adapted from the conventions imposed by the Finnish language to those of
American English. The presented constructs should also be coherent in relation
to each other.

Similarly, the construction of Artifact I faced the problem of equivocality,
which was addressed in the semantic unification of the criteria (see APPENDIX
2). Furthermore, one of the main goals of providing a unified checklist for the
evaluation of DSM tools is the commensuration of evaluation results, which
addresses the same type of problematic. Finally, the potential wider adoption of
Meta-Method as a whole promotes a similar objective.

 92

6.4.2 External Consistency

External consistency refers to the principle that a design theory should be based
on justificatory knowledge that is consistent with the existing knowledge base
(Aier & Fischer, 2011). The external consistency of ISO 14102 is not fully availa-
ble for investigation, as the standard document does not provide references to
the scientific corpus. The nature of the publication of the international stand-
ards is different from the conventions of scientific publication, as the efforts of
individuals or organizations that contribute to the standardization process are
not credited in the final documents. In this respect, including ISO 14102 as the
other “design theory” in this comparison, can be considered as not optimal. In
order to properly investigate the external consistency of a standard, one should
analyze the archived documents of the standardization process, in which the
intermediary stages of preparation are documented. This is out of the scope of
this work. However, the previous standards on which the standard is built up-
on are documented. The earlier standardization work of IEEE 1209:1992 was
continued in ISO 14102, which currently builds on various standards, such as
ISO 9126, ISO 14598, and ISO 25051.

The method elements of Meta-Method are based on the synthesis of vari-
ous previous evaluation methods (ISO, 2008; Kruchten, 2004; Lukman & Mernik,
2008; Wheeler, 2011; Morera, 2002; Lundell & Lings, 2003; Kitchenham, 1996).
Proposed construction guidelines are based on essential SME literature (Ralyté
& Rolland, 2001; Gupta & Prakash, 2001; Ralyte et al., 2003; Tolvanen, 1998;
Graham et al., 1997; Seidita et al. 2007; Karlsson & Ågerfalk, 2009a; Deneckére,
2001; Ralyté et al., 2004). The situational factors are based on SME and evalua-
tion literature (Bekkers et al., 2008; Song & Letch, 2012; Stockdale et al., 2008;
Lundell & Lings, 2004b; Kitchenham, 1996). Artifact I is based on previous stud-
ies on the evaluation of DSM tools (Amyot et al., 2006; De Smedt, 2011; El Kou-
hen et al., 2012; Langlois et al., 2007; Pelechano et al., 2006; Saraiva & da Silva,
2008; Sivonen, 2008; Vasiljević et al., 2013). The structure and form of Artifact I
should conform to the conventional format of technical checklists. The external
consistency of Meta-Method was considered throughout its iterative design
process as Meta-Method was entirely derived from the literature. The motiva-
tion for the selection of ISO 14102 as the initial baseline method was the availa-
bility of the standard and lack of more comprehensive methods. The tailoring of
ISO 14102 was based on a practical business need, which was then reflected in
the literature review that propagated the synthesis of the literature findings,
eventually forming Meta-Method. In the pragmatic SME practices, the external
consistency of situational methods is probably less emphasized, whereas the
ad-hoc construction and tailoring of situational methods is more common for
productivity reasons.

 93

6.4.3 Broad Purpose and Scope

The purpose and scope of a design theory should be broad (Aier & Fischer, 2011).
ISO 14102 has a very broad purpose and scope as it is intended to provide
guidance for the evaluation of all types of ISD tools. This can be seen as an ad-
vantage or a deficiency. From the scientific point of view, generic artifacts are
often considered “better”, as for the practitioner, specialized artifacts can be
more useful. ISO 14102 is intended to be tailored according to organizational
needs, albeit it provides no method support for the tailoring. Meta-Method is
intended for the engineering of situational evaluation methods for DSM tools in
a context, proposing SME as the means of constructing and tailoring situational
evaluation methods. Thereby, ISO 14102 has broader purpose and scope,
whereas Meta-Method is a specialized method. As Meta-Method includes the
main method elements of ISO 14102, effectively implementing the essential
parts of ISO 14102, in addition to providing method support for the construc-
tion and tailoring of situational evaluation methods, it can be argued that Meta-
Method would be useful also in the evaluations with broader purpose and
scope, i.e. in the domain of ISD tools. To confirm this, further research is re-
quired.

6.4.4 Simplicity

Design theories should be simple, as simplicity promotes communicability, un-
derstandability and manageability as well as the cost effectiveness of their in-
stantiations (Aier & Fischer, 2011). ISO 14102 and Meta-Method are both rather
complex artifacts, as they provide means and measures for conducting an entire
evaluation effort. The evaluation of their simplicity can be conducted in various
ways, such as comparing the characteristics of their constructs or the simplicity
of their instantiation, i.e. the characteristics of internal and external consistency
as well as utility. The overall internal consistency of ISO 14102 is probably
higher than of Meta-Method, as it is much more mature, which may be inter-
preted as higher simplicity. The number of constructs provided by ISO 14102 is
lower than what is provided by Meta-Method, which may also be considered as
a measure of simplicity. Due to the nature of the publication conventions of in-
ternational standards, the overall external consistency of ISO 14102 in compari-
son to Meta-Method as well as its implications to simplicity, are challenging to
evaluate. At least it can be stipulated that both provide some references to the
source materials, thus enabling the retrieval of further guidance and original
sources. As Meta-Method provides comprehensive referencing, it may be sim-
pler to adapt, as the citations to further knowledge are available. The overall
guidance provided by Meta-Method is more detailed than in ISO 14102, at least
for the evaluation of DSM tools in a situational context. This could imply sim-
pler instantiation, as the ad-hoc approach of ISO 14102 could create unneces-
sary complexity, at least with novice evaluators. On the other hand, the instan-
tiation of Meta-Method requires skills and knowledge in areas such as SME and

 94

DSM. In the beginning of the case study, the instantiation of ISO 14102 was per-
ceived as challenging to a novice evaluator, as the guidance is very abstract in
nature. This is naturally a subjective view. The study of the perceived simplicity
of the instantiation of Meta-Method is part of the further work. In conclusion,
the background knowledge of the evaluator is probably the most significant
factor in the perceived simplicity of the instantiation of either of the methods.

6.4.5 Fruitfulness of New Research Findings

Fruitfulness of new research findings means that design theories should disclose
new phenomena or previously undisclosed relationships between known phe-
nomena as well as stimulate new research (Aier & Fischer, 2011). Meta-Method
provides a novel method for the engineering of situational evaluation methods
for DSM tools. This is achieved by denoting new relationships between previ-
ously known artifacts, motivated by a real-world business need. SME, conven-
tionally utilized in the construction and tailoring of ISD methods, is in this work
considered as the overarching mechanism for instantiating Meta-Method into
situational evaluation methods by applying case-specific constructional guide-
lines and situational factors. ISO 14102 and several other previous evaluation
methods are decomposed into conceptual method elements and synthesized
into a unified method base of Meta-Method. Furthermore, a synthesis of several
previous evaluation criteria for DSM tools are decomposed and synthesized as
an evaluation criteria checklist for DSM tools. As a whole, Meta-Method intro-
duces a novel synthesis of the known theories, and specializes in the engineer-
ing of situational evaluation methods for DSM tools. The novel intersections of
the theories should be further studied and validated by conceptual research.
Meta-Method and its instantiations should be further refined from the practical
point of view as well as evaluated for utility in other situational contexts. Fur-
thermore, the applicability of the method elements in different types of SME
activities and CAME tools based on various divergent metamodels should be
studied. Additionally, experiences from the application of the constructional
guidelines and elicitation of relevant situational factors would be of interest in
the further inquiries. Finally, the evaluation criteria checklist for DSM tools
should be further refined and validated for utility.

6.5 Summary

This chapter presented the empirical and conceptual evaluation of the novel
design theory, Meta-Method, derived from Artifacts I and II discussed in the
previous sections. The main objective was to seek validation for the artifacts by
adapting them into a single design theory called Meta-Method, and by compar-
ing the outcome against the similarly derived design theory of ISO 14102, with
the evaluation criteria of progress for IS design theories. First, the evaluation

 95

methodology was described. Second, the design theorization in which the ISO
14102 and Meta-Method were structured as design theory components, was
presented. Third, the empirical and conceptual evaluations of Meta-Method
were presented. The empirical evaluation was based on the analysis of the data
collected during the case study in a company operating in the industry of pro-
fessional mobile radio networks and devices. The conceptual evaluation was
based on the comparative analysis of the presented design theories. The evalua-
tions were provided on the basis of the six evaluation criteria of progress for IS
design theories: utility, internal consistency, external consistency, broad pur-
pose and scope, simplicity, and fruitfulness of new research. Utility was evalu-
ated in the empirical evaluation, whereas the other criteria were addressed in
the conceptual evaluation.

The utility was evaluated in terms of gross-utility, due to the unavailability
of financial data. In comparison to ISO 14102, Meta-Method was found to be
more useful for the evaluation of DSM tools in the case study context. The inter-
nal consistency of ISO 14102 was considered to be most likely “better” than Me-
ta-Method’s, due to the maturity of the international standard. The external con-
sistency of ISO 14102 is challenging to evaluate, due to the publication policy of
standard documents. It was concluded that while both design theories provide
consistency with external knowledge, in the light of the data that is available to
us, more evidence of Meta-Method’s consistency with external knowledge is
found. Broad purpose and scope is inherently “better” in ISO 14102, as it is a high-
ly generalized method for the evaluation of ISD tools, whereas Meta-Method is
a specialized method for the engineering of situational evaluation methods for
DSM tools. It was argued that Meta-Method implements the main method ele-
ments of ISO 14102. Thus, it could probably be utilized with a broader scope as
well, which is to be confirmed in future research. Simplicity was considered
from several perspectives, establishing that both of the design theories are ra-
ther complex. ISO 14102 includes fewer constructs, whereas Meta-Method pro-
vides more detailed guidance, either of which could be a measure of simplicity.
Meta-Method’s fruitfulness of new research was analyzed in terms of identifying
its potential areas that require or would benefit from future research, such as
the conceptual investigation of the novel intersections of the integrated theories
as well as the empirical studies that instantiate Meta-Method in novel situation-
al contexts.

 96

7 SUMMARY AND CONCLUSION

This chapter discusses the summary and conclusion of the study. First, the
summary of the thesis is presented. Second, the conclusion of the research is
discussed. Third, the limitations of the study are discussed. Finally, the direc-
tions for future research are outlined.

7.1 Summary

The evaluation of DSM tools in a situational context requires method support.
Typically, DSM tools are evaluated in the industry for the purposes of investi-
gating the opportunities to implement DSM in software production, or to justify
the upgrade of the current DSM tools in use. DSM tools are also evaluated for
research purposes. A method is intrinsic to any evaluation effort, dictating how
the evaluation is conducted. There is no single evaluation method that is suita-
ble for every usage situation. Thus, an evaluation method should be construct-
ed/tailored according to the characteristics of the situational context. The cur-
rent literature provides very limited support for the engineering of situational
evaluation methods for DSM tools.

The research gap was identified in Chapter 1 and further stipulated in the
form of a research problem: How to methodically support the engineering of
situational evaluation methods for DSM tools? In the process of investigating
the problem domain, Situational Method Engineering (SME) was identified as a
useful approach for the engineering of situational ISD methods. In the literature,
SME has also been considered for the engineering of situational methods for
other organizational processes. This led us to our premise that SME would
probably provide a useful foundation for the engineering of situational evalua-
tion methods for DSM tools, too. In order to address the research problem, we
have designed two artifacts, Artifact I and Artifact II. Artifact I is an evaluation
criteria checklist for DSM tools, providing practical guidance for the formula-
tion of evaluation criteria for DSM tools. Artifact II is a conceptual baseline

 97

method for the engineering of situational evaluation methods for DSM tools.
Thus, Artifact I is utilized in the enactment of situational evaluation methods
for DSM tools, which are engineered by instantiating Artifact II in a situational
context. In the artifact design we have utilized the Design Science Research
(DSR) research framework and its research process, which were discussed in
Chapter 1.

The research problem was decomposed into five research questions: (1)
What are Domain-Specific Modeling and DSM tools? (2) Which evaluation cri-
teria are proposed in the literature for DSM tools and how to classify them? (3)
What are the situational factors affecting the engineering and enactment of the
evaluation methods for DSM tools? (4) Which method elements are proposed in
the literature for the evaluation of ISD tools and how to classify them? (5) How
to engineer situational evaluation methods for DSM tools? The design of the
artifacts was achieved by addressing these research questions.

The first research question was discussed in Chapter 2, by providing an
overview of the DSM approach and DSM tools, and by defining the basic DSM
concepts utilized throughout the study. The second research question was dis-
cussed in Chapter 3, by providing the design of Artifact I, in which the evalua-
tion criteria used in previous evaluations of DSM tools were classified, and
adapted into a unified checklist of the evaluation criteria for DSM tools, with
data types, ranges, and examples of the criteria values. The third research ques-
tion was discussed in Sections 4.1, 5.3, and 5.5, by presenting the socio-technical
dimensions of evaluation and by aligning them in respect to the situational fac-
tors in the context of SME. The fourth research question was first discussed in Sec-
tions 4.2 and 4.3, by structuring the activities of existing evaluation methods for
ISD tools and by classifying them according to the phases of ISO 14102. Then, in
Section 5.3 the method elements were extracted from the synthesis of the exist-
ing method elements and DSM literature, and presented as the method base of
Artifact II. The fifth research question was addressed in Chapter 5, by providing
the design of Artifact II, in which the basic components of SME are utilized: a
method base, situational factors, and construction guidelines. Thus, the research
questions three and four provide the method base as well as the situational fac-
tors of Artifact II, whereas the construction guidelines were presented on a gen-
eral level. Finally, the artifact designs are evaluated in Chapter 6, by analyzing
them in terms of empirical and conceptual criteria.

The evaluation of the artifacts was emphasized in this study. The business
need of the case study company provided the required relevance for the study,
whereas the theoretical grounding and evaluation of the artifacts provided the
necessary rigor. In Chapter 6, the evaluation methodology, as well as the empir-
ical and conceptual evaluation were presented. The artifacts were combined as
a single design theory, Meta-Method, and evaluated against the similarly de-
rived design theory of ISO 14102. In the empirical evaluation, case study was
utilized. In the conceptual evaluation a theoretical analysis of the design theo-
ries were conducted. In the evaluation, the criteria of progress for IS design the-

 98

ories were utilized: utility, internal consistency, external consistency, broad
purpose and scope, simplicity, and fruitfulness of new research.

The empirical evaluation discussed the case study, in which Artifacts I and
II were iteratively designed and instantiated in the engineering of the situation-
al evaluation methods for DSM tools, in addition to the enactment and evalua-
tion of the instantiations. The case study employed an incremental artifact de-
sign method that was organized in seven iterations. Furthermore, a kick-off
meeting and a final workshop were arranged. The evaluation data was collect-
ed in feedback meetings that were organized at the end of the iterations. The
collected data was stored as shared meeting minutes. As the initial baseline
method for the case study effort, ISO 14102 was selected. However, ISO 14102
was deemed to be too generic for the tasks at hand, providing very limited sup-
port for the evaluation of DSM tools on a practical level. This is naturally a sub-
jective view. This however was the initial motivation for this study. Artifacts I
and II were then designed, applied, evaluated, and found useful in the case
study. The versions of the artifacts created in the case study were very similar
to the artifacts presented in this thesis. The artifacts were added additional rigor
after the case study by further grounding them externally, without changing the
essential characteristics of the artifacts. Due to this initial setting, in the evalua-
tion, the artifacts were compared against ISO 14102 for progress as a combined
design theory Meta-Method. The empirical evaluation provided evidence for
the utility criterion of Meta-Method.

In the conceptual evaluation, the other criteria of progress for IS design
theories were utilized in the theoretical analysis of the design theories. There is
no method support for the evaluation of the criteria, which exposes the analysis
to subjective bias. Furthermore, the criteria are qualitative and general in nature,
due to which the evaluated aspects of the criteria, although remaining within
the boundaries of the broad spectrum of the semantics of the criteria, were se-
lected subjectively. In future research, it would be beneficial to design sub-
criteria, preferably quantitative in nature, to support the arguments made in the
evaluation of the criteria of progress for IS design theories. This would also
promote the adoption and commensuration of the criteria.

The utility criterion was evaluated in terms of gross-utility. In comparison
to ISO 14102, Meta-Method was found to be more useful for the evaluation of
DSM tools in the case study context. The internal consistency of ISO 14102 was
evaluated to be most likely “better” than that of Meta-Method, due to the ma-
turity of the international standard. The external consistency of ISO 14102 is chal-
lenging to evaluate, due to the publication policy of the standard documents. It
was concluded that while both design theories provide consistency with exter-
nal knowledge, in the light of the data available to us, more evidence on the
consistency of Meta-Method with external knowledge is found. Broad purpose
and scope is inherently “better” in ISO 14102, as it is a highly generalized meth-
od for the evaluation of ISD tools, whereas Meta-Method is a specialized meth-
od for the engineering of situational evaluation methods for DSM tools. How-
ever, Meta-Method should be useful in other instances of evaluations of DSM

 99

tools, beyond the context of the presented case study. Moreover, it was argued
that Meta-Method implements the main method elements of ISO 14102. Thus, it
could probably be utilized within a broader scope as well, which should be con-
firmed in future research. Simplicity was considered from several perspectives,
establishing that both of the design theories are rather complex. ISO 14102 in-
cludes fewer constructs, whereas Meta-Method provides more detailed guid-
ance, either of which could be a measure of simplicity. Meta-Method’s fruitful-
ness of new research was analyzed in terms of identifying its potential areas that
require or would benefit from future research, such as the conceptual investiga-
tion of the novel intersections of the integrated theories as well as the empirical
studies that instantiate Meta-Method in novel situational contexts.

7.2 Conclusion

In conclusion, based on the application of the “ceteris paribus clause” on the
evaluated criteria, no explicit statement can be made about which of the two
derived design theories is “better”. The scope and spectrum of the design theo-
ries are inherently different, which makes the comparison challenging. Never-
theless, we argue that Meta-Method would probably be more useful in the
evaluation of DSM tools in a situational context, at least when conducted by an
informed evaluator with SME skills. The main contribution of this study is Me-
ta-Method, which is of interest both for researchers and practitioners. On the
theoretical level, Meta-Method outlines the application of the SME principles in
the evaluation of DSM tools and presents a conceptual evaluation of the struc-
tured design theory. On the practical level, Meta-Method provides method
support for the engineering of situational evaluation methods for DSM tools as
well as promotes the commensuration of the evaluation results. An empirical
evaluation was conducted to provide evidence for the utility of Meta-Method.
Further validation and verification is required in the future research in order to
derive more generalized assumptions of Meta-Method.

7.3 Limitations

The main limitation of the research was the scarcity of time, due to which the
accomplishment of the study was dispersed across multiple periods of “micro
studies”, varying in length, location, and resources available. This may impli-
cate incoherence in the various dimensions of the study. It is also evident that
an exhaustive exploration of the demarcated subject area requires a number of
future studies. Furthermore, the rather unestablished nature of the research in
the key areas of interest, such as DSM and SME, could compromise the integrity
of the theoretical grounding of the study. In addition, the design of the artifacts
combines theories from multiple self-contained areas, which may implicate

 100

conceptual and empirical incompatibility issues that remain unexplored within
the boundaries of this study. As for the empirical evaluation, the main limita-
tion is the lack of triangulation of data sources, which is recommended by the
established practices of case study. Furthermore, the validity and reliability of
the collected data in the case study can be compromised, as the empirical en-
deavor taken was not originally designed as a formal case study. Additionally,
the lack of method support and the qualitative nature of the conceptual evalua-
tion exposes the evaluation to subjective bias. Furthermore, the derived design
theory will need further validation and verification in the conceptual as well as
empirical dimensions. Finally, as a technical limitation, the length of the thesis
is a factor that delimits the level of detail in which the subject area can be dis-
cussed.

7.4 Future Research

This thesis introduced numerous novel intersections of self-contained theories
that should be further studied and validated by conceptual research. The testa-
ble propositions outlined for Meta-Method should be tested in the future re-
search. Meta-Method and its instantiations should be further refined from the
practical point of view as well as evaluated for utility in other situational con-
texts. The future case studies should also address the triangulation of data
sources by establishing rigorous research methods in the collection of diverse
qualitative and quantitative data. A controlled experiment in a lab setting could
also provide valuable insight into the various dimensions of Meta-Method, such
as usability. Furthermore, the applicability of the elicited method elements in
different types of SME activities and CAME tools based on various divergent
metamodels should be studied. The investigations of the applicability of SME
beyond the domain of ISD should also be continued and expanded. Moreover,
as one of the key barriers of SME adoption seems to be the scarcity of produc-
tion-ready tool support, a practical ISD tool for process engineering with Meta-
Method should be developed. This could be accomplished by utilizing a CAME
tool or building a standalone tool. Additionally, experiences from the applica-
tion of the constructional guidelines and elicitation of relevant situational fac-
tors would be of interest in the further inquiries. Multi-disciplinary research
could benefit the elicitation and validation of the socio-technical factors affect-
ing the SME processes. Moreover, the evaluation criteria checklist for DSM tools
should be further refined and validated for utility. In the long run, the potential
effect of the adoption of the checklist on the commensuration of the evaluations
of DSM tools should be investigated. Finally, proper method support for the
construction and evaluation of IS design theories should be constructed to pro-
mote the DSR research in general as well as the validation and verification of IS
design theories.

 101

BIBLIOGRAPHY

Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. (2002). Agile software
development methods - Review and analysis (VTT Publications 478). Espoo,
Finland: VTT.

Achilleos, A., Georgalas, N. & Yang, K. (2007). An Open Source Domain-
Specific Tools Framework to Support Model Driven Development of OSS.
In D. Akehurst, R. Vogel & R. Paige (Eds.), Model Driven Architecture -
Foundations and Applications, LNCS 4530 (pp. 1-16). Berlin, Germany:
Springer-Verlag.

Ågerfalk, P. J. & Fitzgerald, B. (2005). Methods as Action Knowledge: Exploring
the Concept of Method Rationale in Method Construction, Tailoring and
Use. In T. Halpin, K. Siau & J. Krogstie (Eds.), Proceedings of the 10th
International Workshop on Exploring Modeling Methods for Systems Analysis
and Design (EMMSAD'05) held in conjunction with the 17th Conference on
Advanced Information Systems (CAiSE'05) (pp. 27-40). Porto, Portugal: 13-14
June, 2005.

Aier, S. & Fischer, C. (2011). Criteria of progress for information systems design
theories. Information Systems and E-Business Management, 9(1), 133-172.

Amyot, D., Farah, H. & Roy, J. (2006). Evaluation of Development Tools for
Domain-Specific Modeling Languages. In R. Gotzhein & R. Reed (Eds.),
System Analysis and Modeling: Language Profiles, Germany, LNCS 4320 (pp.
183-197). Berlin, Germany: Springer-Verlag.

Andersson, C. & Runeson, P. (2007). A spiral process model for case studies on
software quality monitoring - method and metrics. Software Process:
Improvement and Practice, 12(2), 125-140.

Antkiewicz, M. (2006). Round-Trip Engineering of Framework-Based Software
using Framework-Specific Modeling Languages. In O. Nierstrasz, J.
Whittle, D. Harel & G. Reggio (Eds.), Model Driven Engineering Languages
and Systems, LNCS 4199 (pp. 692-706). Berlin, Germany: Springer-Verlag.

Arviansyah, A., Spil, T. A. M. & Hillegersberg, J. v. (2013). Evaluating IS/IT
Projects: Revealing the Causes of Equivocality. In Proceedings of Pacific Asia
Conference on Information Systems (PACIS) 2013, [CDROM], Jeju Island,
South Korea, June 18-22, 2013.

Atkinson, C. & Kühne, T. (2003). Model-Driven Development: A Metamodeling
Foundation. IEEE Software, 20(5), 36-41.

Atkinson, C. & Kühne, T. (2005). Concepts for Comparing Modeling Tool
Architectures. In L. C. Briand & C. Williams (Eds.), Model Driven
Engineering Languages and Systems, LNCS 3713 (pp. 398-413). Berlin,
Germany: Springer-Verlag.

Bekkers, W., van de Weerd, I., Brinkkemper, S. & Mahieu, A. (2008). The
Influence of Situational Factors in Software Product Management: An
Empirical Study. In C. Ebert, S. Brinkkemper, S. Jansen & G. Heller (Eds.),

 102

In Proceedings of the Second International Workshop on Software Product
Management (IWSPM’08) (pp. 41-48). Los Alamitos, CA: IEEE Computer
Society.

Benbasat, I., Goldstein, D. K. & Mead, M. (1987). The case research strategy in
studies of information systems. MIS Quarterly, 11(3), 369-386.

Booch, G., Rumbaugh, J. & Jacobson, I. (1998). The Unified Modeling Language
User Guide. Reading, MA: Addison-Wesley Professional.

Bucher, T., Bajec, M., Furlan, Š, Kornyshova, E., Saidani, O., Vavpoti, D. &
Žvanut, B. (2008). On the Application of the ISD Method Engineering
Approach in Non-ISD Domains. St. Gallen: Working Paper, Institute of
Information Management, University of St. Gallen, Switzerland.

Cervera, M. & Manoli, A., Torres, V. & Pelechano, V. (2012). The MOSKitt4ME
Approach: Providing Process Support in a Method Engineering Context.
In P. Atzeni, D. Cheung & S. Ram (Eds.), Conceptual Modeling, LNCS 7532
(pp. 228-241). Berlin, Germany: Springer Berlin Heidelber.

Chau, T., Maurer, F. & Melnik, G. (2003). Knowledge Sharing: Agile Methods vs.
Tayloristic Methods. In Proceedings of the 12 IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE
2003) (pp. 302-307). Piscataway, NJ: IEEE.

Cho, H. (2013). A demonstration-based approach for domain-specific modeling
language creation. Doctoral Dissertation. University of Alabama.

Cho, H., Gray, J. & Syriani, E. (2012). Creating visual Domain-Specific Modeling
Languages from end-user demonstration. In Proceedings of the 4th
International Workshop on Modeling in Software Engineering (MISE) (pp. 22-
28). Piscataway, NJ: IEEE.

Cho, H. & Gray, J. (2011). Design Patterns for Metamodels. In Proceedings of the
Compilation of the Co-located Workshops on DSM'11, TMC'11, AGERE!'11,
AOOPES'11, NEAT'11, & VMIL'11 (pp. 25-32). New York, NY: ACM.

Czarnecki, K. & Helsen, S. (2006). Feature-based Survey of Model
Transformation Approaches. IBM Systems Journal, 45(3), 621-645.

Czarnecki, K. & Helsen, S. (2003). Classification of Model Transformation
Approaches. In Proceedings of the OOPSLA’03 Workshop on Generative
Techniques in the Context of MDA, [CDROM], Anaheim, CA, October 27,
2003.

De Smedt, P. (2011). Comparing three graphical DSL editors: AToM3,
MetaEdit+ and Poseidon for DSLs. Preprint, Submitted to Elsevier,
University of Antwerp.

Deneckère, R. (2001). Approche d'extension de méthodes fondée sur l'utilisation de
composants génériques. Doctoral Dissertation. University of Paris I
Panthéon-Sorbonne.

El Kouhen, A., Dumoulin, C., Gerard, S. & Boulet, P. (2012). Evaluation of
Modeling Tools Adaptation (00706701v2). Lyon, France: HAL.

Falkenberg, E. D., Hesse, W., Lindgreen, P., Nilsson, B. E., Oei, J. L. H., Rolland,
C., Stamper, R. K., Assche, F. J. M. V., Verrijn-Stuart, A. A. & Voss, K.
(1996). FRISCO: A Framework of Information System Concepts, The FRISCO
Report (Web Edition), IFIP.

 103

Elvesæter, B., Benguria, G. & Ilieva, S. (2013). A Comparison of the Essence 1.0
and SPEM 2.0 Specifications for Software Engineering Methods. In
Proceedings of the 3rd Workshop on Process-Based Approaches for Model-Driven
Engineering (PMDE '13), [CDROM], Montpellier, France, July 2, 2013.

Favre, J. M. (2004). Towards a Basic Theory to Model Model Driven Engineering.
In Proceedings of the 3rd Workshop in Software Model Engineering (WiSME’04),
[CDROM], Portugal, Lisbon, October 10-15, 2004.

Favre, J. M. (2005). Foundations of Meta-Pyramids: Languages vs. Metamodels -
- Episode II: Story of Thotus the Baboon. In J. Bézivin & R. Heckel (Eds.),
Proceedings of the Dagstuhl Seminar on Language Engineering for Model-Driven
Software Development. Wadern: Schloss Dagstuhl - Leibniz Center for
Informatics.

Ferreira, C. & Cohen, J. (2008). Agile Systems Development and Stakeholder
Satisfaction: A South African Empirical Study. In R. Botha & C. Cilliers
(Eds.), Proceedings of the 2008 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists on IT Research in
Developing Countries: Riding the Wave of Technology (SAICSIT '08). New
York, NY: ACM.

Firesmith, D. & Henderson-Sellers, B. (2002). The OPEN Process Framework - An
Introduction. Harlow: Addison-Wesley.

Goldkuhl, G. (1999). The grounding of usable knowledge: An inquiry in the
epistemology of action knowledge (CMTO Research Papers 1999:03).
Linköping, Sweden: Linköping University.

Graham, I., Henderson-Sellers, B. & Younessi, H. (1997). The OPEN process
specification. London: Addison-Wesley.

Gregor, S. & Jones, D. (2007). The anatomy of a design theory. Journal of the
Association for Information Systems, 8(5), 312-335.

Gronback, R. C. (2009). Eclipse modeling project: a domain-specific language toolkit.
Boston, MA: Addison-Wesley.

Gupta, D. & Prakash, N. (2001). Engineering Methods from Method
Requirements Specifications. Requirements Engineering Journal, 6(3), 135-
160.

Haumer, P. (2005). IBM Rational Method Composer: Part 1: Key concepts.
Rational Edge, December 2005.

Haumer, P. (2006). Increasing Development Knowledge with Eclipse Process
Framework Composer. Eclipse Review, BZ Media, Spring Issue, June 2006.
26-33.

Henderson-Sellers, B., Ralyté, J., Ågerfalk, P. J. & Rossi, M. (2014). Situational
Method Engineering. Berlin Heidelberg: Springer.

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian
journal of information systems, 19(2), 87-92.

Hilera, J. R. & Martínez, J. J. (1999). Evaluation and selection of CASE tools: A
real case. In Proceedings of the 7th International Symposium on the Foundations
of Software Engineering, [CDROM], Toulouse, France, September 6-10, 1999.

 104

Hitt, L. M., Wu, D. & Zhou, X. (2002). Investment in enterprise resource
planning: Business impact and productivity measures. Journal of
Management Information Systems, 19(1), 71-98.

Hoisl, B., Sobernig, S. & Strembeck, M. (2013). Higher-order Rewriting of
Model-to-Text Templates for Integrating Domain-specific Modeling
Languages. In S. Hammoudi, L. F. Pires, J. Filipe & R. C. D. Neves (Eds.),
Proceedings of the 1st International Conference on Model-Driven Engineering
and Software Development (MODELSWARD’13) (pp. 49-61). Lisbon,
Portugal: SCITEPRESS.

Hoppenbrouwers, S., Zoet, M., Versendaal, J. & van de Weerd, I. (2011). Agile
Service Development: A Rule-Based Method Engineering Approach. In J.
Ralyté, I. Mirbel & R. Deneckère (Eds.), Engineering Methods in the Service-
Oriented Context, IFIP Advances in Information and Communication
Technology (pp. 184-189). Berlin, Germany: Springer Berlin Heidelberg.

Hug, C., Front, A., Rieu, D. & Henderson-Sellers, B. (2009). A method to build
information systems engineering process metamodels. Journal of Systems
and Software, 82(10), 1730-1742.

IEEE (1995). IEEE Recommended Practice for the Adoption of Computer-Aided
Software Engineering (CASE) Tools (IEEE Std 1348-1995). Los Alamitos, CA:
IEEE Computer Society.

Iivari, J. (2007). A paradigmatic analysis of information systems as a design
science. Scandinavian Journal of Information Systems, 19(2), 39-64.

Iivari, J. (2014). Distinguishing and contrasting two strategies for design science
research. European Journal of Information Systems, 24(1), 107-115.

Iivari, J. & Venable, J. R. (2009). Action research and design science research -
Seemingly similar but decisively dissimilar. In S. Newell, E. A. Whitley, N.
Pouloudi, J. Wareham & L. Mathiassen (Eds.), Proceedings of the 17th
European Conference on Information Systems (ECIS’09) (pp. 1642-1653),
Verona, Italy: University of Verona.

Irani, Z. & Love, P. E. D. (2002). Developing a frame of reference for ex-ante
IT/IS investment evaluation. European Journal of Information Systems, 11(1),
74-82.

Irani, Z. & Love, P. E. D. (2008). Evaluating Information Systems: Public and
Private Sector. Hungary: Butterworth-Heinemann.

ISO (1998). Information Technology – Software Product Evaluation - Part 5: Process
for Evaluators (ISO/IEC 14598-5:1998). Geneva, Switzerland: International
Organization for Standardization.

ISO (2001). Software Engineering - Product Quality - Part 1: Quality Model
(ISO/IEC 9126-1:2001). Geneva, Switzerland: International Organization
for Standardization.

ISO (2007). Software Engineering - Metamodel for Development Methodologies
(ISO/IEC 24744:2007). Geneva, Switzerland: International Organization
for Standardization.

ISO (2008). Information Technology - Guideline for the evaluation and selection of
CASE tools (ISO/IEC 14102:2008). Geneva, Switzerland: International
Organization for Standardization.

 105

Jacobson, I., Ng, P. W. & Spence, I. (2007). Enough of Processes - Lets do
Practices. Journal of Object Technology, 6(6), 41-66.

Jones, C. (2009, 17th March). Programming Languages Table [PLT2006b].
Retrieved 2013-10-06 from http://www.spr.com

Jones, S. (2008). Social dimension of IT/IS evaluation: Views from the public
sector. In Z. Irani & P. E. D. Love (Eds.), Evaluating Information Systems:
Public and Private Sector (pp. 236-256). Hungary: Butterworth-Heinemann.

Karagiannis, D. & Kühn, H. (2002). Metamodelling platforms. In K. Bauknecht,
A. Tjoa Min & G. Quirchmayr (Eds.), E-Commerce and Web Technologies,
LNCS 2455 (pp. 182). Berlin, Germany: Springer-Verlag.

Karlsson, F. (2013). Longitudinal use of method rationale in method
configuration. European Journal of Information Systems, 22(6), 690-710.

Karlsson, F. & Ågerfalk, P. J. (2009a). Towards structured flexibility in
information systems development: devising a method for method
configuration. Journal of Database Management, 20(3), 51-75.

Karlsson, F. & Ågerfalk, P. J. (2009b). Exploring agile values in method
configuration. European Journal of Information Systems, 18(4), 300-316.

Kärnä, J., Kelly, S. & Tolvanen, J.-P. (2009). Evaluating the use of domain-
specific modeling in practice. In M. Rossi, J. Sprinkle, J. Gray & J.-P.
Tolvanen (Eds.), Proceedings of the The 9th OOPSLA Workshop on Domain-
Specific Modeling (pp. 14-20). Helsinki: HSE Print.

Kelly, S. (2007, 1st December). Domain-Specific Modeling Languages: Moving
from Writing Code to Generating It. Retrieved 2014-06-08 from
http://msdn.microsoft.com/en-us/library/cc168592.aspx

Kelly, S. (2013). Empirical Comparison of Language Workbenches. In J. Gray, S.
Kelly & J. Sprinkle (Eds.), Proceedings of the 2013 ACM Workshop on Domain-
specific Modeling (pp. 33-38). New York, NY: ACM.

Kelly, S., Lyytinen, K. & Rossi, M. (2013). MetaEdit+ A fully configurable multi-
user and multi-tool CASE and CAME environment. In J. Bubenko, J.
Krogstie, O. Pastor, B. Pernici, C. Rolland & A. Sølvberg (Eds.), Seminal
Contributions to Information Systems Engineering (pp. 109-129). Berlin,
Germany: Springer-Verlag.

Kelly, S. & Tolvanen, J.-P. (2008). Domain-Specific Modeling: Enabling Full Code
Generation. Hoboken, NJ: John Wiley & Sons.

Kent, S. (2002). Model Driven Engineering. In M. Butler, L. Petre & K. Sere
(Eds.), Integrated Formal Methods, LNCS 2335 (pp. 286-298). London, UK:
Springer-Verlag.

Kern, H., Hummel, A. & Kühne, S. (2011). Towards a Comparative Analysis of
Meta-Metamodels. In Proceedings of the Compilation of the Co-located
Workshops on DSM'11, TMC'11, AGERE!'11, AOOPES'11, NEAT'11, &
VMIL'11 (pp. 7-12). New York, NY: ACM.

Kirchner, L. & Jung, J. (2007). A Framework for the Evaluation of Meta-
Modelling Tools. Electronic Journal of Information Systems Evaluation, 10(1),
65-72.

 106

Kitchenham, B. (1996). DESMET: A Method for Evaluating Software Engineering
Methods and Tools (Technical Report TR96-09). Keele, UK: University of
Keele.

Kitchenham, B. A. & Pfleeger, S. L. (2002a). Principles of Survey Research Part 2:
Designing a Survey. SIGSOFT Software Engineering Notes, 27(1), 18-20.

Kitchenham, B. & Pfleeger, S. L. (2002b). Principles of Survey Research Part 4:
Questionnaire Evaluation. SIGSOFT Software Engineering Notes, 27(3), 20-
23.

Kitchenham, B. & Pfleeger, S. L. (2003). Principles of Survey Research Part 6:
Data Analysis. SIGSOFT Software Engineering Notes, 28(2), 24-27.

Kornyshova, E. (2011). MADISE: Method Engineering-based Approach for
Enhancing Decision-Making in Information Systems Engineering. Doctoral
Dissertation. University of Paris I Panthéon-Sorbonne.

Kornyshova, E., Deneckére, R. & Rolland, C. (2011). Method families concept:
application to decision-making methods. In T. Halpin, S. Nurcan, J.
Krogstie, P. Soffer, E. Proper, R. Schmidt & I. Bider (Eds.), Enterprise,
Business-Process and Information Systems Modeling, Lecture Notes in Business
Information Processing (pp. 413-427). Berlin, Germany: Springer-Verlag
Heidelberg.

Kruchten, P. (2004). The rational unified process: an introduction. Boston, MA:
Addison-Wesley Professional.

Kuechler, B. & Vaishnavi, V. (2008). On theory development in design science
research: anatomy of a research project. European Journal of Information
Systems, 17(5), 489-504.

Kuhn, T. S. (1977). The essential tension: Selected studies in scientific tradition and
change. Chicago, IL: University of Chicago Press.

Land, F. (2001). IS Evaluation: Recent Trends, Keynote Speech. In Proceedings of
NUKAIS Information Systems Evaluation Seminar, [CDROM], Priestley Hall,
Leeds Metropolitan University, UK, February 27, 2001.

Langlois, B., Jitia, C. & Jouenne, E. (2007). DSL Classification. In Proceedings of
the 7th OOPSLA Workshop on Domain-Specific Modeling (DSM’07),
[CDROM], Montreal, Canada, October 21-22, 2007.

Leppänen, M. (2005). An ontological framework and a methodical skeleton for method
engineering : a contextual approach. Doctoral Dissertation. University of
Jyväskylä.

Lings, B. & Lundell, B. (2005). On the adaptation of Grounded Theory
procedures: insights from the evolution of the 2G. IT & People, 18(3), 196-
211.

Ludewig, J. (2003). Models in software engineering - an introduction. Software
and Systems Modeling, 2(1), 5-14.

Lukman, T. & Mernik, M. (2008). Model-Driven Engineering and its
introduction with metamodeling tools. In 9th International PhD Workshop
on Systems and Control: Young Generation Viewpoint, [CDROM], Izola,
Slovenia, October 1-3, 2008.

Lundell, B. & Lings, B. (2002). Comments on ISO 14102: the standard for CASE-
tool evaluation. Computer Standards & Interfaces, 24(5), 381-388.

 107

Lundell, B. & Lings, B. (2003). The 2G method for doubly grounding evaluation
frameworks. Information Systems Journal, 13(4), 375-398.

Lundell, B. & Lings, B. (2004a). Method in action and method in tool: a
stakeholder perspective. Journal of Information Technology, 19(3), 215-223.

Lundell, B. & Lings, B. (2004b). On Understanding Evaluation of Tool Support
for IS Development. Australasian Journal of Information Systems, 12(1), 39-53.

Maes, K., Van Grembergen, W. & De Haes, S. (2014). Identifying Multiple
Dimensions of a Business Case: A Systematic Literature Review. Electronic
Journal of Information Systems Evaluation, 17(1), 47-59.

Mallouli, S. D., & Assar, S. (2013). Enacting a Requirement Engineering Process
with Meta-Tools: an Exploratory Project. In Proceedings of the Eighth
International Multi-Conference on Computing in the Global Information
Technology (ICCGI '13), [CDROM], Nice, France, July 21-26, 2013.

Miah, S. J., Gammack, J. G. & Kerr, D. V. (2012). A Socio-technical Approach to
Designing and Evaluating Industry Oriented Applications. Electronic
Journal of Information Systems Evaluation, 15(2), 163-175.

Mohagheghi, P. & Haugen, Ø (2010). Evaluating Domain-Specific Modelling
Solutions. In J. Trujillo, G. Dobbie, H. Kangassalo, S. Hartmann, M.
Kirchberg, M. Rossi, I. Reinhartz-Berger, E. Zimányi & F. Frasincar (Eds.),
Advances in Conceptual Modeling – Applications and Challenges, LNCS 6413
(pp. 212-221). Berlin, Germany: Springer Berlin Heidelberg.

Morera, D. (2002). COTS Evaluation Using Desmet Methodology & Analytic
Hierarchy Process (AHP). In M. Oivo & S. Komi-Sirviö (Eds.), Product
Focused Software Process Improvement, LNCS 2559 (pp. 485-493). Berlin,
Germany: Springer Berlin Heidelberg.

Niknafs, A. & Ramsin, R. (2008). Computer-Aided Method Engineering: An
Analysis of Existing Environments. In Z. Bellahsène & M. Léonard (Eds.),
Advanced Information Systems Engineering, LNCS 5074 (pp. 525-540). Berlin,
Germany: Springer Berlin Heidelberg.

Nytun, J., Prinz, A. & Tveit, M. (2006). Automatic Generation of Modelling
Tools. In A. Rensink & J. Warmer (Eds.), Model Driven Architecture –
Foundations and Applications, LNCS 4066 (pp. 268-283). Berlin, Germany:
Springer Berlin Heidelberg.

Obeo (2014, 13th April). Obeo Designer: Domain-Specific Modeling for
Software Architects. Retrieved 2014-05-10 from
http://www.obeodesigner.com/

OMG (2006). Meta Object Facility Core Specification (MOF 2.0). Needham, MA:
Object Management Group.

OMG (2008a). MOF Model To Text Transformation Language (MOFM2T 1.0).
Needham, MA: Object Management Group.

OMG (2008b). Software & Systems Process Engineering MetaModel Specification
(SPEM 2.0). Needham, MA: Object Management Group.

OMG (2014). Essence - Kernel and Language for Software Engineering Methods
(Essence 1.0 - Beta 2). Needham, MA: Object Management Group.

Paul, R. J. (2007). Challenges to information systems: time to change. European
Journal of Information Systems, 16(3), 193-195.

 108

Peffers, K., Tuunanen, T., Rothenberger, M. & Chatterjee, S. (2007). A Design
Science Research Methodology for Information Systems Research. Journal
of Management Information Systems, 24(3), 45-77.

Pelechano, V., Albert, M., Muñoz, J. & Cetina, C. (2006). Building Tools for
Model Driven Development. Comparing Microsoft DSL Tools and Eclipse
Modeling Plug-ins. In Proceedings of 11th Conference on Software Engineering
and Databases (JISBD'06), [CDROM], Barcelona, Spain, October 3-6, 2006.

Pfleeger, S. L. & Kitchenham, B. A. (2001). Principles of Survey Research: Part 1:
Turning Lemons into Lemonade. SIGSOFT Software Engineering Notes,
26(6), 16-18.

Prat, N., Comyn-Wattiau, I. & Akoka, J. (2014). Artifact Evaluation in
Information Systems Design-Science Research - A Holistic View. In
Proceedings of Pacific Asia Conference on Information Systems (PACIS) 2014,
[CDROM], Chengdu, China, June 24-28, 2014.

Ralyté, J., Deneckére, R. & Rolland, C. (2003). Towards a Generic Model for
Situational Method Engineering. In J. Eder & M. Missikoff (Eds.), Advanced
Information Systems Engineering, LNCS 2681 (pp. 95-110). Berlin, Germany:
Springer Berlin Heidelberg.

Ralyté, J. & Rolland, C. (2001). An Approach for Method Reengineering. In H.
S.Kunii, S. Jajodia & A. Sølvberg (Eds.), Proceedings of the 20th International
Conference on Conceptual Modeling (ER2001), LNCS 2224 (pp. 471-484).
Yokohama, Japan: Springer Berlin Heidelberg.

Ralyté, J., Rolland, C. & Deneckère, R. (2004). Towards a Meta-tool for Change-
Centric Method Engineering: A Typology of Generic Operators. In A.
Persson & J. Stirna (Eds.), Advanced Information Systems Engineering, LNCS
3084 (pp. 202-218). Berlin, Germany: Springer Berlin Heidelberg.

Rivas, L., Perez, M., Mendoza, L. E. & Griman, A. (2010). Tools Selection
Criteria in Software-Developing Small and Medium Sized Companies.
Journal of Computer Science & Technology, 10(1), 24-30.

Robson, C. (2002). Real world research, 2nd edition. Oxford, United Kingdom:
Blackwell Publishing.

Rugaber, S. & Stirewalt, K. (2004). Model-driven reverse engineering. Software,
IEEE, 21(4), 45-53.

Runeson, P. & Höst, M. (2009). Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2), 131-164.

Runeson, P., Höst, M., Rainer, A. & Regnell, B. (2012). Case Study Research in
Software Engineering: Guidelines and Examples (1st Edition). Hoboken, New
Jersey: John Wiley & Sons.

Sánchez-Ruíz, A. J., Saeki, M., Langlois, B. & Paiano, R. (2006). Domain-Specific
Software Development Terminology: Do We All Speak the Same
Language? In Proceedings of the 7th OOPSLA Workshop on Domain-Specific
Modeling (DSM’07), [CDROM], Montreal, Canada, October 21-22, 2007.

Saraiva, J. d. S. & da Silva, A. R. (2008). Evaluation of MDE Tools from a
Metamodeling Perspective. Journal of Database Management, 19(4), 21-46.

 109

Schmidt, D. C. (2006). Guest Editor's Introduction: Model-Driven Engineering.
Computer, 39(2), 25-31.

Schwaber K. & Sutherland K. (2014, 25th November). The Scrum Guide. Retrieved
2015-02-20 from http://www.scrumguides.org/scrum-guide.html.

Scriven, M. (2003). Evaluation Theory and Metatheory. In T. Kellaghan & D. L.
Stufflebeam (Eds.), International Handbook of Educational Evaluation, Kluwer
International Handbooks of Education 9 (pp. 15-30). Houten, Netherlands:
Springer Netherlands.

Scriven, M. (2001). An overview of evaluation theories. Evaluation Journal of
Australasia, 1(2), 27-29.

Seidewitz, E. (2003). What models mean. Software, IEEE, 20(5), 26-32.
Seidita, V., Ralyté, J., Henderson-Sellers, B., Cossentino, M. & Arni-Bloch, N.

(2007). A comparison of deontic matrices, maps and activity diagrams for
the construction of situational methods. In J. Eder, S. L. Tomassen, A.
Opdahl & G. Sindre (Eds.), Proceedings of the CAiSE'07 Forum at the 19th
International Conference on Advanced Information Systems Engineering (pp.
85-88). Trondheim, Norway: Sun SITE Central Europe, RWTH Aachen
University.

Sein, M., Henfridsson, O., Purao, S., Rossi, M. & Lindgren, R. (2011). Action
Design Research. MIS Quarterly, 35(1), 37-56.

Selic, B. (2003). The pragmatics of model-driven development. IEEE Software,
20(5), 19-25.

Sivonen, S. (2008). Domain-Specific Modelling Language and Code Generator for
Developing Repository-Based Eclipse Plug-ins. (VTT Publications 680). Espoo,
Finland: VTT.

Song, X. & Letch, N. (2012). Research on IT/IS Evaluation: A 25 Year Review.
The Electronic Journal Information Systems Evaluation (EJISE), 15(3), 276-287.

Stahl, T. & Völter, M. (2006). Model-Driven Software Development: Technology,
Engineering, Management. Chichester, UK: John Wiley & Sons Ltd.

Steinberg, D., Budinsky, F., Paternostro, M. & Merks, E. (2009). EMF: Eclipse
Modeling Framework (2nd Edition). Amsterdam, Netherlands: Addison-
Wesley Longman, Amsterdam.

Stockdale, R., Standing, C., Love, P. E. D. & Irani, Z. (2008). Revisiting the
content, context and process of IS evaluation. In Z. Irani & P. E. D. Love
(Eds.), Evaluating Information Systems: Public and Private Sector (pp. 35-48).
Hungary: Butterworth-Heinemann.

Tolvanen, J.-P. (1998). Incremental Method Engineering with Modeling Tools:
Theoretical Principles and Empirical Evidence. Doctoral Dissertation.
University of Jyväskylä.

Tolvanen, J.-P., Pohjonen, R. & Kelly, S. (2007). Advanced Tooling for Domain-
Specific Modeling: MetaEdit+. In Proceedings of the 7th OOPSLA Workshop
on Domain-Specific Modeling (DSM’07), [CDROM], Montreal, Canada,
October 21-22, 2007.

 110

Urquhart, C., Lehmann, H. & Myers, M. D. (2010). Putting the 'theory' back into
grounded theory: guidelines for grounded theory studies in information
systems. Information Systems Journal, 20(4), 357-381.

van Deursen, A., Klint, P. & Visser, J. (2000). Domain-specific languages: an
annotated bibliography. ACM SIGPLAN Notices, 35(6), 26-36.

Vasiljević, I., Milosavljević, G., Dejanović, I. & Filipović, M. (2013). Comparison
of Graphical DSL Editors. In Proceedings of the 6th PSU-UNS International
Conference on Engineering and Technology (ICET-2013), [CDROM], Novi Sad,
Serbia, May 15-17, 2013.

Venable, J. (2006). The role of theory and theorising in design science research.
In S. Chatterjee & A. Hevner (Eds.), Proceedings of the 1st International
Conference on Design Science in Information Systems and Technology
(DESRIST 2006) (pp. 1-18). Claremont, CA: Claremont Graduate
University.

Venable, J., Pries-Heje, J. & Baskerville, R. (2012). A Comprehensive Framework
for Evaluation in Design Science Research. In K. Peffers, M. Rothenberger
& B. Kuechler (Eds.), Design Science Research in Information Systems.
Advances in Theory and Practice, LNCS 7286 (pp. 423-438). Berlin, Germany:
Springer Berlin Heidelberg.

Walls, J. G., Widermeyer, G. R. & El Sawy, O. A. (2004). Assessing information
system design theory in perspective: how useful was our 1992 initial
rendition? Journal of Information Technology Theory and Application (JITTA),
6(2), 43-58.

Ward, J., Daniel, E. & Peppard, J. (2008). Building better business cases for IT
investments. MIS Quarterly Executive, 7(1), 1-15.

Wheeler, D. A. (2011, 5th August). How to evaluate open source software/free
software (OSS/FS) programs. Retrieved 2014-07-23 from
http://www.dwheeler.com/oss_fs_eval.html

Wieringa, R. J. (2014). What Is Design Science? In Design Science Methodology for
Information Systems and Software Engineering (pp. 3-11). London, UK:
Springer Berlin Heidelberg.

Wijers, G. (1991). Modelling support in information systems development. Doctoral
Dissertation. Delft University of Technology.

Yin, R. K. (2003). Case study research: Design and methods. Thousand Oaks, CA:
Sage Publications.

Zelkowitz, M. V. & Wallace, D. R. (1998). Experimental models for validating
technology. Computer, 31(5), 23-31.

 111

APPENDIX 1 EVALUATION CRITERIA CHECKLIST

TABLE 1.1 DSM Tool Evaluation Criteria Checklist
General Type Range (or none) Example
Documentation String Set of Documentation Types Tutorials
Customer Support String Set of Support Mechanisms E-Mail
Licensing Model String Set of Licensing Models Open Source
Price (in Currency X) Int Natural Numbers 1000
Provider String Set of Provider Names Microsoft
Version String Set of Version Identifications Beta 1.2
Stability Enum Low, Medium, Good Low
Usability Enum Low, Medium, Good Medium
Utility Enum Low, Medium, Good Good
Effort (e.g. in Man Days) Int Natural Numbers 2
Tool Architecture Type Range (or none) Example
Storage Mechanism String Set of Storage Mechanisms Repository
Platform Support String Set of Platform Names Linux
Deployment Model Enum Embedded, Standalone Standalone
Extensibility Enum Low, Medium, Good Low
Integration String Set of Integration Mech. API
Maturity Enum Low, Medium, Good Low
Meta-Metamodel Architecture String Set of Tool Architectures Four-layer
Language Validation Bool Yes, No Yes
Interoperability String Set of Standards XMI
Maintainability Enum Low, Medium, Good Low
Language Evolution Enum Low, Medium, Good Low
Customizability Enum Low, Medium, Good Low
Reusability Enum Low, Medium, Good Low
Language Specification Type Range (or none) Example
Metamodeling Language String Set of Languages Ecore
Mutable Logical Levels Int Natural Numbers 2
Metamodel Syntax Specification Bool Yes, No Yes
Abstract Syntax Representation Enum Tree, Graph Tree
Concrete Syntax Representation Enum Text, Graphic, Matrix Graphic
Concrete Syntax Style Enum Declarative, Imperative Declarative
AS to CS Mapping String Set of Mapping Approaches Model-Based
Semantics Specification Bool Yes, No Yes
Constraint Language String Set of Constraint Languages OCL
Graphical Completeness Enum Low, Medium, Good Low
Context Adaptive Assistance String Set of Assistance Techniques Tooltips
Workflow Guidance String Set of Guidance Techniques Wizard
Relationships Enum Binary, N-Ary Binary
Language Application Type Range (or none) Example
Model Transformation Capability Bool Yes, No Yes
Problem to Solution Mapping String Set of Mapping Techniques Template
Transformation Def. Language String Set of Languages MERL
Transformation Output Language String Set of Languages Java
Generated Editor Quality Enum Low, Medium, Good Low
Artefact Quality Enum Low, Medium, Good Low
Output Update Mechanism Enum Destructive, Incremental Destructive
Viewpoints String Set of Viewpoints DSL Explorer
Analysis Capabilities Enum Low, Medium, Good Low

 112

APPENDIX 2 CHECKLIST CRITERIA DECOMPOSI-
TION

In this appendix, the abstractions conducted in the construction of the evalua-
tion criteria checklist for DSM tools are presented as a list of criteria decomposi-
tions. Every existing criterion is assigned a node of a specific color and a short
form citation, corresponding to the piece of literature in which it was discussed.
The nodes are connected to the abstracted criteria, representing the decomposi-
tion of the criteria included in the checklist. FIGURE 2.1 represents the denota-
tion of the criteria decomposition with the assigned color mappings and short
form citations. The list of criteria decompositions is presented as a multi-page
illustration in FIGURE 2.2. The list was constructed by structuring the checklist
concepts and relationships into a JSON document and applying the D3 JavaS-
cript library to generate the visualization. Photocopy safe colors were utilized.

FIGURE 2.1 Denotation of Evaluation Criteria Decomposition

 113

 114

FIGURE 2.2 Evaluation Criteria Decomposition

 115

APPENDIX 3 BUILDING A BUSINESS CASE

A business case is perceived as a valuable instrument in many organizations for
justification and evaluation of IS investments (Maes, Van Grembergen & De
Haes, 2014).

“A business case is a formal investment document with a structured overview of rel-
evant information that provides a rationale and justification of an investment with
the intent to enable well-founded investment decision-making” (Maes et al., 2014).

In the case of evaluating DSM tools for a situational context, building a tentative
business case by the management could be the first step towards initiating an
evaluation project. The business case may make or break the project. A business
case is applicable to the evaluation of investment before, during, and after the
implementation (Hitt, Wu & Zhou, 2002). Artifact II, presented in the following
sections targets the evaluation of the investment in DSM tools before the im-
plementation. A Business case is a valuable tool for evaluations also beyond the
implementation, as an acquisition of DSM tools may turn out unsuccessful dur-
ing or after the implementation, which requires management intervention.

Ward et al. (2007) propose a process for the development of a business
case, consisting of the six following steps:

1. Define Business Drivers and Investment Objectives
2. Identify Benefits, Measures, and Owners
3. Structure the Benefits
4. Identify Organizational Changes enabling Benefits
5. Determine the Explicit Value of each Benefit
6. Identify Costs and Risks

In the first step, business drivers, i.e. the issues and challenges of the organiza-
tion are identified in its internal context (e.g. a resource, process, or a condition,
and) in the external context (e.g. economic conditions or trade relations). Addi-
tionally, business objectives are defined, which aim to tackle one or more of the
business drivers via an investment. In FIGURE 3.1, the complete structure for a
business case is presented. The outcomes of the first step are illustrated in FIG-
URE 3.1 as elements 1 and 2. In the second step, benefits corresponding to the
business objectives are identified, with explicitly defined measures and owners,
who are responsible for providing appropriate business value for each benefit,
and to ensure the planning and realization of the benefits. The benefits are real-
ized by doing new things, doing things better or stopping doing things, as pre-
sented as the element 3 in FIGURE 3.1. In the third step, a framework is devel-
oped, in which business changes that give rise to the benefits will be catego-
rized and mapped to each other. In the fourth step, the business changes ena-
bling the anticipated benefits will be identified and added to the framework.

 116

Additionally, owners are assigned to the business changes to ensure commit-
ment for benefit implementation. In the fifth step, each benefit is determined an
explicit value, based on valid evidence. In the final step, all costs related to the
investment as well as the risks the investment is subject to are identified, as pre-
sented by the elements 4 and 5 in FIGURE 3.1 (Ward, 2007)

FIGURE 3.1 A Complete Business Case (Ward, 2007, p. 13)

