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Abstract: This thesis examines the optimization of the preprocessing steps of a MEG (mag-

netoencephalography) measurement data preprocessing, analyzing, and vizualizing software

Meggie, mostly by adding batch processing functionality. A comprehensive list of require-

ments helped with the development that covered the practical phase of the thesis. The devel-

opment mostly consisted of refactoring the old code with minor user interface modifications

and few new functionalities. The theoretical phase focuses on the architecture at the current

state of the software, the memory management, and the requirements with some details about

their implementation.

Keywords: batching, Canopy, computational neuroscience, ECG, EEG, EOG, GUI, Max-

Filter, MEG, memory management, MNE-Python, MVC, PyQt4, refactoring, requirements

engineering, software architecture

Suomenkielinen tiivistelmä: Tutkielma optimoi MEG (magnetoenkefalografia) mittausaineis-

ton esikäsittelyyn, analysointiin ja visualisointiin kehitetyn Meggie-käyttöliittymän esikäsit-

telyvaiheita pääasiassa lisäämällä mahdollisuuden rinnakkaislaskentaan. Optimointi toimi

tutkielman käytännön osuutena ja sen tukena oli kattava lista vaatimuksia. Optimoinnissa

suurin osa työstä meni vanhan koodin refaktorointiin, mutta myös käyttöliittymäkomponent-

teihin tuli pieniä muutoksia ja itse ohjelmaan muutama uusi toiminnallisuus. Teoreettisessa
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osuudessa keskitytään Meggien nykyiseen tilaan tutkimalla sen arkkitehtuuria, minkä lisäksi

tarkastellaan kehitysvaiheita vaatimuslistan pohjalta sekä tuodaan esiin muistinhallinnan on-

gelmia rinnakkaislaskennassa.

Avainsanat: Canopy, ECG, EEG, EOG, GUI, laskennallinen neurotiede, MaxFilter, MEG,

MNE-Python, muistinhallinta, MVC, ohjelmistoarkkitehtuuri, PyQt4, refaktorointi, rinnakkaislaskenta,

vaatimusmäärittely

Janne Pesonen
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Glossary

Batch process Process in which multiple files are processed without user in-

tervention.

Computational neuroscience An area of computer science that investigates the information

originating from the human brain.

Cortex The outermost layered structure of neural tissue in brain.

CSV A file format including comma separated values. Widely sup-

ported by scientific applications.

Data averaging The epoched data is averaged to preserve the oscillating el-

ements of the brain while averaging out the irregular back-

ground noise.

Data epoching Cutting time intervals from the measurement data.

ECG Electrocardiogram; the recorded electrical activity of the heart.

EEG Electroencephalography; a noninvasive method for recording

electrical activity along the scalp.

Elekta A global human care company.

Elekta Neuromag A MEG device that measures MEG data from the brain. Basi-

cally a helmet that consists of hundreds of SQUIDs.

EMG Electromyogram; the recorded electrical activity of the mus-

cles.

EOG Electro-oculogram; the recorded signal of the eye movements.

Evoked oscillation Oscillation in the brain caused by a certain type of stimulus.

Phase-locked in the signal as an experimental planning.

fMRI Functional magnetic resonance imaging; investigates the brain

activity by measuring the blood flow in the brain.

Induced oscillation Oscillation in the brain that is not phase-locked in the signal.

MaxFilter Software package that enables the preprocessing of MEG mea-

surement data. Intended to be used with Elekta Neuromag

products.

MEG Magnetoencephalography; a noninvasive method for mapping
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brain activity.

MEG device A helmet that consists of more than 300 SQUID sensors that

are evenly located to cover all the areas of the cortex.

MNE An academic software package for processing MEG and EEG

(electroencephalography) data.

MVC Model-view-controller architectural pattern.

Neuron Processes and transmits electrical impulses to other neurons in

the brain which generates the measurable magnetic field of the

brain.

OS Operating system.

Pass-band A range of frequencies passed by a filter.

PCA Principal component analysis; replaces the original variables

by a smaller number of principal components in order to reduce

the complexity of the data.

Preprocessing Removal of disturbances from the measurement data.

PyQt4 A set of Python bindings for v4 and v5 of the Qt application

framework from Digia.

Qt A set of C++ libraries including platform independent abstrac-

tions for graphical user interfaces, networking, threads, Uni-

code, regular expressions, SQL databases, SVG, OpenGL, XML,

and user and application settings.

Raw A measurement data file in FIF format.

SQUID Superconducting Quantum Interference Device; a sensor that

provides sufficient sensitivity for practical MEG work. The

SQUID measures the cerebral magnetic field that is caused by

brain activity.

SSP Signal-space projection; Estimates an interference subspace

and applies a linear projection operator to the MEG data to

remove the physiological (EOG and ECG) interferences.

SSS Signal-space separation; Removes the external artefacts by cre-

ating separate subspaces for the external and the internal sources
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to the sensor helmet. After the separation the external sources

can be removed.

TFR Time-frequency representation of a signal.

Terminal A command-line interface that provides access to the operat-

ing system in Linux. Comparable to the Command Prompt in

Windows.

UI User interface; enables the user actions of a software.
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1 Introduction

Meggie is a software for preprocessing, analyzing, and vizualizing magnetoencephalogra-

phy (MEG) measurement data. MEG is a method of measuring magnetic fields caused by

electrical activity in the brain. By analyzing the data accumulated by the measurements, the

type and location of the brain activity can be discerned.

Before the practical phase of this thesis, Meggie didn’t include functionality for processing

multiple subjects at the same time. Motivation for the thesis was to include this functionality

to the preprocessing phase of Meggie, since that phase is somewhat mechanical compared

to the later phases of MEG analysis. The problem was to elicit a comprehensive list of

requirements to enable the needed functionalities.

Originally the application didn’t have any kind of architectural design, which probably

caused the biggest challenges to the development phase. It also lead to the theoretical phase

of the thesis to evaluate the architecture of the application.

1.1 Research problem

The research problem leading to this thesis is how to implement the optimization of the

preprocessing steps of MEG measurement data to an existing software application, Meggie,

to speed up the MEG research and make the steps more intuitive. Also, reproducibility of

the MEG research is essential. Like in all respectable software projects, the requirements

elicitation is needed to ensure that the software works as it’s supposed to. The final re-

quirements list will be presented as well as short explanations for their implementation. The

requirements are considered as the research questions to be answered (Hevner and Chatterjee

2010).

The main theoretical aspect focuses on the architecture of the software to possibly reveal

some of the good or bad solutions during the implementation phase. Also, the memory

management needs to be inspected since the files are large enough to exceed high amounts

of memory, especially when batch processing several subjects at once.

1



1.2 Structure of the thesis

The main goal of the thesis is to enable batch processing to the preprocessing phase which

is part of the optimization. For example, the batch processing allows the user to simul-

taneously remove interfering eye blinks from multiple MEG measurement data files with

predefined parameters. The rest of the optimization focuses on making the existing prepro-

cessing steps more intuitive and exact in the sense of producing relevant results. Theoretical

phase of the thesis includes an evaluation of the architecture after the optimization phase,

the memory management, the requirements for the optimization that can be stated as the

research questions (Hevner and Chatterjee 2010), and how the requirements were met.

Chapter 2 gives an overview of Meggie. Chapter 3 goes through the basic functionalities of

the application. Chapter 4 examines the methods Meggie uses to process MEG data, and pro-

vides general knowledge about MEG. Chapter 5 represents methods that were applied to the

practical and theoretical phases. Chapter 6 introduces the architecture with pictures and their

explanations. Chapter 7 focuses on the implementation phase, including the requirements,

and the memory management problem.
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2 Overview

This chapter gives an overview of the scope of Meggie and the reasons behind further devel-

opment.

2.1 Background

Jyväskylä Centre for Interdisciplinary Brain Research was established in 2012 within the

Faculty of Social Sciences. The Centre focuses on the longitudinal study and changes in a

human brain caused by natural events, illnesses and treatments. The Centre holds a mag-

netoencephalography (MEG) device that measures the magnetic fields caused by electrical

activity in brain. With the measurement data, the activities of a human brain can be re-

searched.

At the moment, the researchers in the MEG field utilize a mix of closed and open source soft-

ware, graphical user interfaces and command line scripts. However, their use is not very in-

tuitive and present a steep learning curve for an uninitiated person, such as a student trying to

learn the field. In addition, during the preprocessing and analyzing the researchers/students

have to manually save and load multiple files.

The main goal was, therefore, to develop a graphical user interface prototype Meggie to

integrate the functionality of the open source libraries and scripts. Where applicable, as in the

case of MaxFilter (Elekta Neuromag, Stockholm, Sweden) (see 7.1.2), optional integration

of closed source software was also taken into account. The prototype interface was designed

to guide an inexperienced user, clearly denoting the most common sequences of methods

and paths of analysis. At the same time it was designed to be flexible enough to allow the

experienced user to perform advanced analysis without resorting to manual managing of

parameters and files. (Aliranta and Pesonen 2013)
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2.2 History of Meggie

In january 2013 Hoksotin project group was created during a software project course. It’s a

compulsory course in information technology for software engineering students in the Uni-

versity of Jyväskylä. The project was started off from the need to create an improved way

of preprocessing, analyzing and visualizing magnetoencephalography (MEG) data (Aliranta

and Pesonen 2013).

As it’s expected of a software project, a lot of problems emerged during the project mostly

because of the Hoksotin group members’ lack of expertise in neuroscience and little experi-

ence in the tools used for the development. Therefore, Meggie needed further development

right after the project ended in summer 2013. The further development process included

three members of Hoksotin project group, of which mainly two were seriously involved, and

lasted for three months. This development mostly focused on fixing the errors and adding

some missing functionalities to the existing components. Even after the further development,

a lot of work will be needed in correcting the old and adding the needed functionalities for

researchers to be able to run a complete MEG analysis chain.

Including this thesis, there is also another Master’s thesis involved in the further development

of Meggie. The authors of these two theses were also members of Hoksotin project group

and they applied to the software project course as student participants.

2.3 Overview and purpose of Meggie

Meggie is an application originally designed to aid MEG research at the University of

Jyväskylä. The problem is currently that the research is executed in terminal utilizing sev-

eral applications with manually writing the scripts to execute the needed steps. This makes it

troublesome especially for the students when learning to do the research themselves. Also,

a lot of extra work is required when writing the scripts and parameter values on command

line.

Meggie improves the reproducibility of MEG research, facilitates the research by integrating

the needed processes into one application, gives the user a visual approach to the research
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steps, passes the default parameters to the processes, and reduces the time consumed in the

research.

Typical usage environment is a private computer in a researcher’s office or laboratory. Sup-

posedly, the operating system is Linux. A MEG research usually involves around tens of

subjects which are preferably measured under similar conditions to create the MEG measure-

ment data files to be processed. This ensures that all the measurement files can be processed

using practically the same parameter values. During the analysis process, the user wants to

save statistics, movies and pictures to support his/her research.

There exists several applications for MEG analysis, but some of them are commercial and

offer functionalities that aren’t essential for the research. Meggie is free, simple to use and

designed to have enough options in the future for a comprehensive MEG research.

2.4 Possibilities and Effects

The overall goal of the system is to provide a visual and a simple way of conducting MEG

research even for the amateurs with computer technology.

Meggie will have some general effect in computational neuroscience (Gewaltig and Cannon

2014) by providing means on integrating several important open source libraries and recom-

mending an analysis pipeline for computing MEG measurement data. The development also

adds an effort to testing those libraries and possibly finding weak solutions which gives us

an opportunity to e-mail the developers these problems helping them to further develop their

libraries.

Meggie has already been used in at least one course in the University of Jyväskylä and

occasionally some students have been using it for their projects.
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3 The User Interface of Meggie

The user interface of the application is based on a single persistent ’Meggie’ main window

(fig. 1). Presently, the main window represents the preprocessing and analysis process of

a single measurement file at a time. However, some of the steps are available for several

measurement files at once, if there are two or more subjects in the representation, as shown in

the figure 1. The representation is called an experiment. The various stages of the experiment

are divided into tabs in the user interface. (Aliranta and Pesonen 2013)

Figure 1: A view of the main window after adding subjects to an existing experiment.
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Initially, the main window doesn’t have any active experiment or subjects. The tabs repre-

senting the stages are shown all the time, but the actions are enabled after an experiment is

created and at least one subject is added to it and set as an active subject. The tabs allow

various methods of preprocessing, analysing and visualization. (Aliranta and Pesonen 2013)

On the technical side, the application uses PyQt4 (“PyQt4 Reference Guide” 2014) as the

user interface library, allowing the usage of most Qt widgets. Qt is composed of C++ li-

braries and development tools that provide platform independent abstractions to graphical

user interfaces, regular expressions, networking etc. This in turn allows the application to

integrate with the (Qt) theme of the desktop environment in use. (Aliranta and Pesonen 2013)

This chapter doesn’t include the introduction of the source analysis tabs, because their func-

tionalities were still under development when writing this thesis.

3.1 Creating an Experiment and Adding Subjects

Originally, when the application was launched, the user was presented with an empty window

with toolbar commands allowing the creation of a new experiment or loading a pre-existing

one. Current view of Meggie after launching the application is shown in the figure 1, but

without the subjects and subject info. Also, a single dialog handled the experiment creation

and adding the measurement file to it. To enable multiple subjects, the dialog was then di-

vided into two separate dialogs, the ’Create new experiment’ dialog (fig. 2a) and the ’Add

subject’ dialog (fig. 2b), where it is possible to add subjects to the recently created experi-

ment.

3.2 Preprocessing Tab

The ’Preprocessing’ tab (fig. 3) includes options to apply MaxFilter (see 7.1.2) methods

(see 4.3.1) to the measurement file to reduce external disturbances. The tab also holds MNE

(see 7.1.1) methods to calculate SSP/PCA projections (see 4.3.2, 4.3.3) for artefacts caused

by cardiac activity (ECG, electrocardiogram) and eye blinks (EOG, electro-oculogram), and

view power spectral density (see (Gramfort et al. 2014) for ECG, EOG and power spectrum).
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(a) Create new experiment dialog. (b) Add subject dialog.

Figure 2: Creating an experiment and adding subject/subjects.

The methods already completed are indicated by the checkboxes in the area ’Preprocessing

steps completed’.

3.2.1 ECG/EOG Dialog

ECG and EOG projections are calculated using almost all the same parameters. Therefore,

only ’Compute ECG projections’ dialog (fig. 4) is presented here.

’Compute ECG projections’ dialog collects the user defined parameters to calculate the pro-

jection files that are applied to the measurement file to reduce the disturbances from the

subject’s cardiac activity, or eye blinks with the ’Compute EOG projections’ dialog. Orig-

inally, the parameters setting and the computation was possible for a single measurement

file only, but there was added a ’Batch processing’ area for several subjects as seen in the

figure 4. ’Apply’ button applies the user defined parameters to the selected subject file on

the list shown on the bottom left corner of the dialog. ’Apply to all’ button applies the pa-

rameters to all of the subject files on the list. After the ’Compute’ button is pressed and the

’Batch processing’ area is enabled the projections are calculated to all of the subject files on

the list with the applied parameters. If the area is disabled, the computation is done for the

currently active subject of the experiment.
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3.3 Epoching Tab

’Epoching’ tab (fig. 5) has options for epoch creation, deletion, modification, exporting,

importing and visualization. Currently, there are two epoch collections shown in the picture

and the parameters of the selected Epochs2 collection are shown on the right side of the tab.

For more information about epoching see 4.4.

3.3.1 Epoch Creation Dialog

’Epoch creation’ dialog (fig. 6) includes selections for the epoch collection name, length of

the epochs with the start/end time selection, event IDs, event name and rejection parameters.

Events added to the list can be saved into a file with Excel supported file format .csv.

After ’Create epochs’ is clicked, the epoch collection is created for the chosen events with

their lengths, rejections and chosen event IDs. The resulting epoch collection is added to the

’Epoch collections’ list on the ’Epoching’ tab in figure 5.

3.4 Averaging Tab

’Averaging’ tab (fig. 7) holds functionality for the methods used to average the created epoch

collections on ’Epoching’ tab and to visualize the averaged epoch collection datasets. For

more information about averaging see 4.4.

Pressing the ’Create evoked dataset’ button creates an averaged epoch collection file, later

referred as evoked dataset/file in this thesis, for the selected epoch collection on the upper

list on the left side of the tab. The averaging is done for all the events in the collection unless

the user wants to average only specific events in it by making a selection on the list below

the epoch collections list.

There can be multiple evoked datasets on the ’Evoked datasets’ list and the selected one can

be visualized with the ’Visualize selected dataset’ button.
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Figure 3: Preprocessing tab of the main window displaying the completed preprocessing

steps.
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Figure 4: Compute ECG projections dialog.
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Figure 5: Epoching tab of the main window.
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Figure 6: Epoch creation dialog.

Figure 7: Averaging tab of the main window.
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4 Magnetoencephalography

Magnetoencephalography (MEG) is used for mapping brain activity by recording magnetic

fields produced by neuronal currents. This chapter shortly introduces theory behind MEG

technique, including instrumentation, data acquisition, data preprocessing, data epoching

and averaging, and spectral analysis; and its applicability in mapping brain activity com-

pared to other popular techniques. The steps follow the guidelines provided by (Gross et al.

2013), which are applicable for basic research, and there are no recommendations related

to hardware, software, data handling, participant questionnaires, or consent forms. There

won’t be comprehensive introduction to the methods since the scope of this thesis is in the

development of Meggie.

4.1 MEG in Brief

MEG has a millisecond time resolution (Hari, Parkkonen, and Nangini 2010) which is suit-

able for tracking accurate neuronal timing during human perceptions, cognitive processes,

motor activity and social interaction. The activities are caused by neuronal currents in brain.

Neuron, a nerve cell, is specialized in transmitting these neuronal currents. It consists of the

cell body (the soma), the dendrites (threadlike extensions) and the axon (a single long fiber)

(Hämäläinen et al. 1993). Basically, the dendrites receive neuronal currents and carry them

to the soma, and the axon sends the currents to other nerve cells, near or distant. Neuronal

currents are electrical and, concidering electromagnetism, produce weak magnetic fields that

are detectable outside the head (Hari, Parkkonen, and Nangini 2010).

These weak cerebral magnetic fields, about one billionth of the magnitude of the Earth’s,

can be detected by superconducting quantum interference device (SQUID) sensors (Hari,

Parkkonen, and Nangini 2010; Hansen, Kringelbach, and Salmelin 2010). The SQUIDs con-

vert magnetic flux into a recordable electric voltage (Hari, Parkkonen, and Nangini 2010).

With their sensitivities to source localizations, the SQUIDs have enough sensitivity for prac-

tical MEG work (Hansen, Kringelbach, and Salmelin 2010). Another device with enough

sensitivity, similar to SQUIDs, is an atomic magnetometer (Xia et al. 2006).
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Elekta (headquarters in Stockholm, Sweden) MEG device, a helmet, consists of more than

300 SQUID sensors that are evenly located to cover all the areas of the cortex, the outermost

layered structure of neural tissue in brain. Superconductivity is guaranteed with liquid he-

lium in a container that is inside the device and above the sensor array. The distance from the

head surface to the sensor coils should be minimized for optimal results, 2–3 cm in this case.

A special container called Dewar is required to maintain about 300 Celsius difference across

this relatively small distance. The device is placed into a magnetically shielded room to

reduce disturbances caused by external sources. (Hansen, Kringelbach, and Salmelin 2010)

4.2 Data Acquisition

In MEG study, data acquisition must be carefully arranged to ensure optimal data quality.

(Gross et al. 2013) suggests that the following elements are taken into account :

• System setup. Includes settings for sensors, helium level, interference suppression

system, and ambient magnetic interference level.

• Subject preparation. Give basic instructions about the tasks, suggest to avoid eye

movements/blinks, and remove magnetic materials.

• Experimental design. Single long trial or multiple trials. Event-related studies, time-

frequency (TFR) studies.

• General acquisition setup. High sampling rate (3-4 times higher than the highest

frequency of interest) and filter pass-band, recording electro-oculogram (EOG), elec-

trocardiogram (ECG), electromyogram (EMG), eyetracking, digitized head shape.

Typically, two different type of oscillatory activity of the cortex are investigated from the

acquired data (David, Kilner, and Friston 2006):

1. Evoked oscillations (event-related potentials/fields). During the measurement, the

subject is given short stimuli, e.g. shown pictures, that are phase-locked to the signal.

Averaging these phase-locked events ensures that the background noise gets averaged

out while the interesting signal from the cortical responses is preserved. To be able to

estimate evoked power, the time-frequency power of the averaged events needs to be

calculated.
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2. Induced oscillations (single long trial). This is the oscillatory activity of the neurons

that is not phase-locked to the stimulus. A time-frequency power is calculated for the

oscillating elements of the signal. The time-frequency power is then averaged to be

able to estimate the induced oscillations. During the measurement the subject might

have been reading a book or listening to music.

4.3 Data Preprocessing

MEG data preprocessing aims to remove data components unrelated to brain activity. Gross

et al. classify interfering artefacts into three categories (Gross et al. 2013):

1. System-related artefacts. Caused by the helmet, for example noisy or broken sensors.

2. External artefacts. External magnetic fields arise disturbances. These magnetic fields

are generated by power lines, traffic, elevators, etc.

3. Physiological artefacts. Caused by eye movements, eye blinks, cardiac and muscular

activity, and head movements. The movement of magnetic objects or particles attached

or implanted to the body may give rise to artefacts (e.g. eye make-up, hair spray,

magnetized dental fillings).

Gross et al. also present two generally accepted strategies to deal with artefacts (Gross et

al. 2013). First, identifying artefacts through visual inspection with or without automatic

detection procedure, or using a combination of the both. The data segments contaminated by

these artefacts are not included in further analysis. The second strategy reduces artefacts that

are not caused by brain activity by means of several signal-processing techniques. These

techniques preserve signals that originate from the brain and are mostly based on linear

transformations (Gross and Ioannides 1999) or regression techniques applied to the sensor

data (Ille, Berg, and Scherg 2002; Parra et al. 2005; Schlögl et al. 2007; Wallstrom et al.

2004). The linear transformations are calculated with several techniques explained later in

this chapter.

In Meggie, signal-processing strategy is applied to removal of external (SSS method 4.3.1)

and physiological (SSP method 4.3.2) artefacts, the visual inspection of contaminated data

segments is applied to removal of system-related artefacts with a possibility to use automatic
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detection, and there are general line noise filtering methods, including band-pass, low-pass

and high-pass filtering.

The order of the previously mentioned three artefact categories is also the advisable order of

removal (Gross et al. 2013). The line noise filtering method can be applied any time when

processing the data, but preferably between the first and second categories. Meggie supports

this by visually sorting the components to the suggested order and disabling/enabling certain

steps when necessary.

Preprocessing of evoked and induced type of data don’t differ significantly. These two cases

will be examined more closely in further analysis steps when splitting the data into epochs,

averaging, and applying source space analysis. However, there is no need for close examina-

tion of the further analysis steps in this thesis since the focus is on preprocessing, but a brief

introduction to them is given in the next two sections.

4.3.1 Signal-space Separation

Signal space separation (SSS) (Samu Taulu, Matti Kajola, and Juha Simola 2004) is the un-

derlying method for removal of the external artefacts and it’s provided by MaxFilter. The

method is based on creating a subspace for the signals external to the sensor helmet and an-

other subspace for the signals whose sources are inside the sensor helmet. The creation of

the subspaces is possible using the known physical properties of magnetic fields. These sub-

spaces are linearly independent which enables separating the measured data to contributions

from outside and inside of the sensor helmet. After the separation the outside contribution

can be removed (Hansen, Kringelbach, and Salmelin 2010). The effect of the method can be

seen in figure 8.

The linearly independent subspaces can be found using an equation

V (r) =
∞

∑
l=0

l

∑
m=−l

αlm
Ylm(θ ,ϕ)

rl+1 +
∞

∑
l=0

l

∑
m=−l

βlmrlYlm(θ ,ϕ),

where V is a harmonic scalar potential, αlm and βlm are scalars and and r = ‖r‖ (S. Taulu,

M. Kajola, and J. Simola 2003). The first part of the equation consists of the sources inside

the helmet and the second part consists of the sources outside the helmet.
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(a) SSS not applied.

(b) SSS applied.

Figure 8: RawFIFF.plot() function of MNE software package used on a measurement

data before and after SSS calculation provided by MaxFilter.
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4.3.2 Signal-space Projection

Signal-space projection (SSP) method estimates an interference subspace and applies a linear

projection operator to the MEG data to remove the physiological (EOG and ECG) interfer-

ences (Gramfort et al. 2014). The method is provided by MNE.

In SSP method we first select k component vectors to form the matrix K = (s1,s2, ...,sk),

where 1≤ k < M and M is the number of component vectors that form the measured signal

vector m(t). The measured signals

m(t) =
M

∑
i=1

ai(t)si +n(t) = Sa(t)+n(t),

where ai(t)si is a component vector and n(t) is noise, are then divided into two parts using

formulas s‖=P‖m and s⊥=P⊥m, where P‖ and P⊥ are the projection operators, which are the

actual tools for carrying out the SSP. The singular decomposition of the matrix K =U
∧

V>

is used to construct the operators. An orthonormal basis for the column space of K is spanned

by the first k columns of U , therefore

P‖ =Uk(Uk)
>,P⊥ = I−P‖.

s‖ belongs to the subspace spanned by the component vectors in matrix K and it is an esti-

mate of the signals produced by the known sources, and s⊥ includes the rest of the measured

signals m(t) which cannot be spanned by K. The matrix K must be formed from charac-

terised artefacts, e.g. EOG and ECG, to be able to study the artefact free s⊥. (Uusitalo and

Ilmoniemi 1997)

4.3.3 Principal Component Analysis

SSP method is often determined by principal component analysis (PCA) that constructs the

projection operator (Gramfort et al. 2014). Often when large multivariate datasets are ana-

lyzed, such as MEG measurement data, it is desirable to reduce their dimensionality. The

PCA does this by replacing the original variables by a smaller number of principal compo-

nents, which are linear combinations of the original variables and present their variations

(Jolliffe 2005).
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Principal components are obtained using a basis transformation (Schölkopf, Smola, and

Müller 1997). The idea is to diagonalize an estimation of the covariance matrix of the origi-

nal data xk, k = 1, ..., l, xk ∈ RN , ∑
l
k=1 xk = 0, defined as

C =
1
l

l

∑
j=1

x jx j
>.

The principal components are the new coordinates in the Eigenvector basis (Schölkopf,

Smola, and Müller 1997). Simply put, the principal components are the new coordinate

axes, where the origin is in the center of the data points and they are angled in a way that

there is maximum variation among the points. The ’eigvector2’ in figure 9 is a principal

component. Because there is more variation among the data points in the ’eigvector2’ angle

than in the ’eigvector1’ angle, the dimensionality reduction is done by projecting the data

points onto the ’eigvector2’.

Figure 9: Normalized data with the eigenvectors.
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4.4 Data Epoching and Averaging

In traditional MEG analysis the focus is on brain activity caused by short stimuli and averag-

ing the data about these events (trial averaging), or epochs as defined earlier. It is desirable

that the dataset has consistent brain responses to a certain type of stimulus to create an epoch

collection. Averaging this epoch collection across trials increases the signal-to-noise ratio of

the interesting brain responses, because we can assume that the rest of the data is uncorre-

lated noise, thus being timely inconsistent with the brain responses and will be averaged out.

(Gross et al. 2013)

Gross et al. point out that the traditional trial averaging is no longer tenable in the light of

recent research, since there have been studies (Laskaris, Fotopoulos, and Ioannides 2004;

Mathewson et al. 2009; Ploner et al. 2006; Romei, Gross, and Thut 2012; Dijk et al. 2008)

demonstrating that ongoing brain activity at the time of stimulus representation significantly

affects behavior. Trial averaging removes all of this behavioral aspect from the analysis.

However, it’s still more common than single-trial analysis, which analyses the impact of

sensory input with the dynamically changing state of the brain, but Gross et al. expect to see

stronger focus on single-trial analysis in future publications. Even so, trial averaging has a

proven clinical utility. (Gross et al. 2013)

There is a possibility for both trial averaging and single-trial analysis in Meggie.

4.5 Spectral Analysis

Spectral analysis transforms signals into the (time-)frequency domain where (transient) os-

cillatory signal components are more readily observable. Also, the oscillatory signal com-

ponents have a more compact representation which is a key motivator to this analysis step.

(Gross et al. 2013)

In spectral analysis, the estimation is done either by using parametric or non-parametric

methods (Gross et al. 2013). Meggie uses a non-parametric time frequency analysis.
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4.6 MEG in Comparison to EEG and fMRI

In addition to MEG, there exists several other noninvasive techniques for mapping brain

activity. Two of the most popular ones, EEG and fMRI, are compared to MEG in this section.

MEG has both excellent time resolution and decent spatial resolution. Spatial resolution

of MEG is sub-centimeter under favourable conditions (Hämäläinen et al. 1993). Although,

(Hari, Parkkonen, and Nangini 2010) state that "At present, no single noninvasive brain imag-

ing method is accurate both in time and space.". EEG has excellent time resolution but poor

spatial resolution and fMRI has poor time resolution but excellent spatial resolution. MEG

specializes capturing activation in fissural cortex where currents produce stronger magnetic

fields because of their tangential movement to skull (Hari, Parkkonen, and Nangini 2010).

These areas can’t be reached as easily with other electrophysiological means, not even with

intracranial recordings (Hari, Parkkonen, and Nangini 2010).

MEG monitors cortical activation sequences with less interference from the skull and brain

tissues than EEG. However, there is a good synergy between MEG and EEG because of

their unique sensitivities to sources. MEG focuses on tangential currents and EEG reflects

currents of all orientations. (Hari, Parkkonen, and Nangini 2010)

fMRI views neuronal phenomena indirectly by tracking the oxygenation of blood flowing

near active neurons (Hari, Parkkonen, and Nangini 2010). On the other hand, MEG and

EEG signals are captured directly from neuronal electrical activity. This means that fMRI

signals show relative neuronal activity whereas MEG and EEG signals show absolute neu-

ronal activity.

(Hari, Parkkonen, and Nangini 2010) give more detailed information about MEG versus

EEG and fMRI, and (Hämäläinen et al. 1993) compare differences more closely between

MEG and EEG.

In the end, the best possible method for a problem at hand is ambiguous and a combination

of the three presented methods might generate better results than any of the methods indi-

vidually. fMRI provides spatial resolution, and MEG and EEG provide temporal resolution

to the problem.

22



5 Methodology

The main theoretical phase of the thesis focuses on the evaluation of the architecture of

Meggie, although the practical work was aimed at the development. The reason for this is

that there was no theoretical approach, as in clear guidelines, to guide the solutions made

during the development phase. This lead to unclear documentation and reasoning about the

practices and solutions, which indeed would have been educational for the reader. However,

the development phase had the most beneficial role of this thesis, and the requirements of

that phase will be listed and given an explanation for their implementation in chapter 7.

This chapter presents the methods used to evaluate the architecture of Meggie and how the

development phase was carried through. Memory management is also included, because it’s

part of the architectural design of Meggie and further displays the interaction between the

model classes. It also greatly impacted on the design decisions during the development.

5.1 Theoretical Phase

The overall architecture of Meggie will be viewed with the 4+1 view model designed by

Philippe Kruchten (Kruchten 1995). The selected diagrams will be a process diagram and

sequence diagram representing the logical view, an activity diagram representing the process

view, a component diagram representing the development view, a deployment diagram rep-

resenting the physical view, and the description of the architecture will be illustrated with

a small set of use cases and/or scenarios. In addition, there are several quality attributes,

chosen from the Kruchten’s article, that will be examined under the chapter 6.

5.2 Practical Phase

As mentioned several times earlier, the practical phase of this thesis is based on the further

development of Meggie. The Implementation chapter 7 includes the requirements that were

implemented during the development, and every requirement is given a short explanation for

their implementation. The requirements are elicited and divided according to the scenarios
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given by the customer before the practical phase began. The scenarios were ’Enable batch

processing for the removal of EOG/ECG artefacts’, ’Correct the preprocessing functionality’

and ’Correct the epoching and averaging functionality’. Also, a section for nonfunctional re-

quirements is added to cover the issues with the memory management. The scenario-based

approach was applied to reduce complexity in this interdisciplinary development (Weiden-

haupt et al. 1998). Scenarios may represent various stakeholder roles in a system (Kazman

et al. 1996). Clearly the three scenarios above were aimed for the developers of Meggie, and

mainly for the author of this thesis.

Since the memory management had an important role in the architectural design, it will have

its own section under the chapter 7. The memory management focuses on those function-

alities of Meggie that require reading the measurement data files or releasing memory from

the files occupying the memory. The functionalities include creating an experiment, adding

a subject, activating a subject, etc., and all those cases will be inspected separately.
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6 Architecture

This chapter represents a 4+1 architectural view model of Meggie after the completion of the

development phase of this thesis. This allows the developers to understand the architecture

of the application which hasn’t been viewed before this thesis. Also, there are observations

on weak architectural designs of which some are corrected and explained in the last section

of this chapter.

Some of the quality attributes from the Kruchten’s article are included, given a simple rea-

soning over them without going into details or formulas. The inspected quality attributes

are availability, performance, reliability, modifiability and scalability. Their definitions can

be found in the book (Wieger 2013). Although the effect of the memory management falls

under the quality attribute efficiency, it is inspected under the performance.

6.1 Logical View

Logical view displays the functionalities that are provided to the end users of an application

(Kruchten 1995). Process diagram and several sequence diagrams were chosen to represent

the logical view of Meggie. Several use case scenarios are selected for the sequence dia-

grams to cover the key elements of the software. The selected scenarios are ’Create a new

experiment’, ’Add a subject’ and ’EOG batch process’.

In figure 10 and 11 the ’ACTIONS’ area of the blocks display the provided actions/functionalities

of Meggie. The blocks that have a darker background colour are used for visualizing pur-

poses and have no effect on the data flow. Each block except the visualizing blocks have

’INPUT’ and ’OUTPUT’ areas to display the input file needed for the actions and the output

file produced by the actions. The order of the actions in the process diagram follows the

steps given in section 4.3 and the functionalities of Meggie are placed in this order to help

the user understand the process flow.

Figure 10 represents the preprocessing steps available for reducing the disturbances of the

MEG measurement data. After the preprocessing steps are completed, the output is a fully
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preprocessed MEG file, and the user continues to the functionalities provided by the epoching

and averaging steps in figure 11.

Figure 10: Process diagram displaying the preprocessing steps.

Since the process diagram mostly includes the MEG analysis data flow, the experiment and

subject creation functionalities are displayed with the help of the sequence diagrams in fig-

ures 12 and 13. These sequence diagrams also display the overall architecture of how the

data is stored into the system running Meggie and being available for the ongoing processing

steps.

The user creates an experiment folder with the steps seen in the sequence diagram in fig-

ure 12. After the creation, the user wants to add a subject to the existing experiment using

the steps provided by the diagram in figure 13. The subject that is added last is then ac-
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tivated, which puts Meggie into a state where the user can access most of the processing

steps, such as epoch creation and EOG batch processing (fig. 14). Although, it’s not wise

to create epochs before the preprocessing is done, so it’s advisable to follow the processing

sequence presented in chapter 4. The ’EOG batch process’ scenario was chosen to represent

the architectural design solutions made during the development phase of this thesis. It is also

identical to the scenario ’ECG batch process’ and, after all, these two scenarios were the

main reason for the topic of this thesis.

The sequence diagrams show generally logical order of operations between the classes. Al-

though, minor illogical call tracks can be seen, e.g. in ’ Add a subject’ scenario where the

measurement file is opened calling MNE via FileManager class, but it is saved via Subject

class. As seen in the sequence diagrams, FileManager, Experiment and Subject classes han-

dle the most of the things happening in the model, such as reading files from the disk, saving

files to the disk, and transferring objects and attributes to other model or view classes when

needed. Here the words model and view derive from the model-view-controller (MVC) ar-

chitectural pattern. The user’s actions on the dialogs and main window have either straight

call to MNE methods or they go via Caller or FileManager class. This is one of the non-

standard design solutions that creates confusion, and the developer must decide whether it’s

important to transfer a specific call via the mentioned classes.
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Figure 11: Process diagram displaying the epoching and averaging steps.
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Figure 12: Sequence diagram of the use case ’Create a new experiment’.
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Figure 13: Sequence diagram of the use case ’Add a subject’.
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Figure 14: Sequence diagram of the use case ’EOG batch process’.
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6.2 Process View

Process view addresses system performance and availability (Kruchten 1995). Things that

need to take into account include concurrency, distribution, system integrity and fault-tolerance.

The process view in this section represents the actions that are available for the user at certain

phases of MEG analysis (fig. 15). The performance issues are inspected in section 6.4.

Meggie is packaged with the source code files including the code_meggie and ui pack-

ages (fig. 16), and the external libraries MNE and PyQt4. The remaining external software

FreeSurfer (Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, North

America) and Canopy (Enthought, Austin, Texas, North America) are freeware and must be

manually installed to the system intended to run Meggie. The users are notified of the cor-

rect versions of the packages and they shouldn’t downgrade or upgrade the versions, unless

Meggie is further developed. Meggie is tested and should be run on Linux-based operating

system Fedora or Ubuntu. If the user belongs to the target group, he/she probably has most

of the needed packages and knows how to install the rest. After the installation is done, the

user starts the application by running the run.py file in the Meggie root directory. Meggie

holds a preferences dialog where the user can set the correct locations for the external tools.

Meggie is an offline, single desktop application, so it is always runnable after the installation.

The actions of Meggie are limited while executing long-lasting calculations, which forces the

user to wait for them to finish. Allowing the execution of two or more simultaneous actions

might result in incorrect calculations, especially when modifying the same file.

Most of the actions of Meggie are available right after a subject is added to the experiment

for the first time, as displayed in the activity diagram in figure 15. The reason for this is

that there is no simple way to check the measurement file whether some actions are already

completed. A filename check works as long as the actions are made within Meggie and if the

user doesn’t rename the file afterwards. Anyhow, the user might need to add a subject file

where the origin and the completed actions are unknown to him. Therefore, the solution was

to let the user decide whether a file needs a certain action by viewing the raw channel data

which is always enabled when a subject is activated. A completion of several actions requires

a file generated from the measurement file that is then further processed or visualized with
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those follow-up actions, thus aren’t available at any time, e.g. ’Visualize averaged dataset’

action in figure 15.

Enabling the actions at any time during the analysis, the researcher is able to execute unique

research purposes. This is why we didn’t want Meggie to limit the user’s actions, but keep

in mind that the user is also experienced in neuroscience and won’t execute dull analysis

chains. Although, since students are one of the target groups of the application, it would

be advicable to give the user an additional information about correct action sequences in

Meggie which should be concidered in the further development.

Meggie doesn’t crash during erroneous calculation, but attempts to prevent any modifications

to the files and resets the state as it was before the action. The user is notified of an error with

a messagebox including an explanation of the user’s action that caused the error, a suggestion

to fix the error and a traceback to its origin. All in all the recovery process is short in Meggie.
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Figure 15: Activity diagram of Meggie.
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6.3 Development View

Development view shows the application modules and their organization in the software-

development environment, as seen by the developers. The issues that need to be addressed

are the internal requirements of the application, such as ease of development, software man-

agement, reuse and constraints of the toolset used. (Kruchten 1995)

All the class files of Meggie are divided into several small packages which are then divided

into two large packages, as seen in figure 16. The other large package, code_meggie, is

composed of source code classes that create the model of Meggie, and the other, ui pack-

age, includes all the UI source code classes and their main methods that create the view of

Meggie. The words model and view derive from the MVC architectural pattern. The ex-

ternal software package mostly provides methods from MNE-Python package, but Meggie

uses several methods from MNE-C, FreeSurfer and matplotlib. The dependency arrows in

the diagram are drawn with different colours to simplify the figure: blue for the model, red

for the view and green for the external packages.

From the beginning of the development, the goal has been to separate the codes of the view

and the model, which has been covered with a requirement. As previously mentioned, the

classes of Meggie are divided into packages code_meggie and ui according to the goal.

This makes the modifications of the UI more simple, such as rearranging existing dialogs

or adding new components to the dialogs or main window. The model classes only provide

the needed information to the view and the view only displays what is provided. However,

Meggie still has a few lines of code in the view classes that shouldn’t belong in them, i.e.

epoch creation code in the MainWindow class.

Since MNE is an external package and currently under development, there are modifications

in the functionalities it provides. The developers of Meggie must keep that in mind when

updating to the newest versions and should run basic tests to the modified functionalities.

Anyhow, most of the updated functionalities run with a better performance or are easier to

implement in Meggie.
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Figure 16: Package diagram of Meggie.
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6.4 Physical View

The physical view is used for displaying the non-functional requirements of a software

(Kruchten 1995). It addresses system availability, reliability, performance and scalability

(Kruchten 1995). Since the availability issues were covered in section 6.2, the reliability and

performance are going to be inspected here. The view that provides sufficient information is

a deployment diagram.

The reliability of Meggie is not guaranteed to all of the processing steps, which is mainly af-

fected by two factors. The first is the nonexisting testing phase and small number of test data

files, and the second is the constantly changing external package MNE. Many new errors

occurred after the newest version 0.8.6 was put to use, which was after the practical phase

of this thesis, and Meggie couldn’t recover from some of them without a restart. Ignoring

the unexpected errors, Meggie should be able to run through a full analysis chain to a mea-

surement file without crashing, even if errors occur during the runtime. Meggie recovers fast

from the errors and is again available for further actions.

The performance of Meggie centers to the memory management and the used external li-

braries. The external libraries provide all the long lasting computations that modify the

measurement files in Meggie, which leaves the developers unable to have control over them.

Also, during those computations all the actions of Meggie are disabled. Fixing this issue

with threading is considered to the further development of the application.

As mentioned in the earlier sections, the measurement files must be preloaded into the system

memory to allow faster data manipulations. This requirement was set by the MNE software

that we, developers, have decided to implement. Furthermore, allowing multiple subjects

in one experiment created a problem of having multiple measurement files at once in the

memory. This lead to the need for the memory management and decision of having only

one measurement file at once in the memory. Altogether, this slows the subject activation

sequence by forcing to release the memory from the previously active subject before another

subject is activated and its measurement file is read into the memory. A similar problem

occurs when trying to remove the EOG or ECG artefacts from multiple subjects during one

batch process. The projection operators must be calculated for one measurement file at a
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time that is first read into the memory and then released before the calculation for another

one. This allows to run Meggie in a system with a rather low memory (3 GB was enough

in the system used for the batch processing development and testing phase with files less

than 500 MB) and processing capabilities (AMD Athlon(tm) 64 X2 Dual Core Processor

5600+), but still the computations should be faster with a higher system memory (8 GB is

recommended). Also, the OS will have a lot more free memory for its use, so the user is able

to complete other tasks meanwhile. Without taking care of this problem, the 3 GB memory

in the testing system created a lot of problems with an experiment that had only two subjects

in it, making the OS unresponsive at times.

Scalability issue centers on the capability of Meggie to accommodate more measurement

files in an experiment and different sizes of the files. Since the memory management makes

sure there is only one measurement file in the system memory, the user can add as many

subjects to an experiment as there is available disk space where the working directory is set.

Although, the size of the measurement file may vary depending on the length of the mea-

surement and may exceed the amount of memory in the system running Meggie. Preloading

the file limits the size of the measurement file in that case. Setting preload as false would

prevent this problem in case of too big files, but according to the customer representative,

the lengths of the measurements are short enough to support preloading.
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Figure 17: Deployment diagram of Meggie.
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6.5 Scenarios

Scenarios are used to show the association between the elements in the four different views,

and they are considered as the abstractions of the most important requirements (Kruchten

1995). Sufficient information from the scenarios can be captured with interaction diagrams

(Booch 2006). They are quite similar to the sequence diagrams in section 6.1, but provide

more detail about how the classes interact with each other. Anyway, there will be no UML

diagrams for the scenarios, because the only processing unit is Meggie with its components,

which would result in interaction diagrams rather similar to the sequence diagrams.

Only the major events and interactions should be captured at the scenario level of analysis

(Booch 2006). Therefore, the aim of this section is to bring up the most critical components

of the scenarios on a development level perspective. The main scenario for the develop-

ment was ’Enable batch processing for the removal of EOG/ECG artefacts’ which was then

divided into several subscenarios that were easier to elicit into requirements. The selected

important subscenarios that will be presented here are ’Add a subject’, ’Remove a subject’,

’Activate a subject’ and ’Calculate ECG/EOG projections for multiple subjects in one batch

process’. The two other scenarios mentioned earlier in chapter 5 were left out of this section,

because they had no impact on the architecture.

The ’Add a subject’ scenario suggests that there should be a simple class, Experiment, that is

able to store multiple instances of a Subject class in it. This lead to the creation of the Subject

class as seen in the sequence diagram in figure 2b. Now, if the user adds several subjects into

an existing experiment, an instance of the Subject class is created for each subject and those

instances are stored into an instance of the Experiment class. This makes it simple to call

them for further uses, including the working_file attribute within the Subject class that stores

the raw.fif measurement file. All in all, this enables easier implementation for the rest of

the scenarios that were implemented. The creation of the Subject class also resulted in the

creation of Epoch and Evoked classes for easier tracking of the epoch collection and evoked

data files of particular subjects.

Adding a subject creates a folder that stores the subject data under the currently open ex-

periment folder. This enables easier controllability of a single subject data. The scenario
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’Remove a subject’ benefits from this by making it simple to remove the subject folder and

its contents under the experiment tree. The removal of the attributes and instances consider-

ing that subject must be handled in the code level too. The instance that was created for the

added subject is also deleted from the list of subjects in the runtime instance of the experi-

ment. After the removal, the experiment instance is then serialized in order to match with its

current state.

The decision was to have only one subject viewable on the main window at a time. Therefore,

there was a need to somehow separate the view between the different subjects, which lead to

the scenario ’Activate a subject’. This implies that the user should be able to choose a subject

from the list of added subjects in Meggie and then activate it to be able to complete actions

for it. It is possible to keep on track with the activate subject by using the .pro settings file that

is created by serializing the runtime instance of the experiment that also stores the currently

active subject name. The .pro file is saved under the experiment folder. The file is unpickled

every time the experiment is loaded and an experiment instance is created to correspond

with the received attributes, including the active subject name. The main window is then

initialized to represent the state of the previously active subject.

The existence of the Subject instances supports the ’Enable batch processing for the removal

of EOG/ECG artefacts’ scenario, because the Subject class holds dictionaries for the ECG

and EOG calculation parameters. When completing the batch process, the parameters can

be called from the Subject instances as seen in the sequence diagram in figure 14. The im-

plementation for the batch process was simply chosen to be sequential instead of parallel.

A parallel calculation of several preloaded measurement files would easily consume all the

memory of the system running Meggie. The implementation of the sequential calculation

wasn’t too complicated after the subject activation functionality was completed. The ba-

sic idea is that Meggie activates one subject at a time of the subjects that are added to the

calculation and completes the calculation for that subject before continuing to the next one.

All the scenarios needed a UI level implementations to allow the user to complete the needed

actions. The activity diagram of Meggie in figure 15 includes an area ’Experiment handling’

that shows all the actions the user is able to complete considering the scenarios.
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6.6 Architectural Changes

During the architecture evaluation, some of the weakest design solutions were reimple-

mented. The biggest change to the architecture will be inspected in this section.

The subject creation and activation sequence was, perhaps, the weakest design solution that

occurred during the evaluation. Since there was a lot of code in the UI classes to handle

the creation and activation, the whole sequence was confusing enough to take it under the

development again, without ignoring the fact that the solution was far from a model-view-

controller (MVC) architecture.

There were several similarly named methods in the Experiment class that had shuffled pur-

poses. Also, some of the attributes in the class were only used in confusing ways and they

had to be set in a strict order to make them work correctly. Direct calls from the subject

creation dialog and subject activation button of the main window to the Experiment class,

without transferring the calls through the MainWindowMain class, got rid of the mentioned

problems and allowed the removal of unnecessary code from the UI classes.
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7 Implementation

This chapter covers the implementation of the optimization of the preprocessing steps in

Meggie which is the main goal of this thesis. There is a view to the current state of the

application and information about the utilized tools and test data. Also, the requirements

that supported the development are covered here.

7.1 Tools

This section presents the tools used for the development phase. The utilized external software

were MNE-Python and MaxFilter. Although MaxFilter hasn’t been available for testing, it

will be shortly introduced here in order to provide an understanding of the functionalities

that Meggie should cover in its final state.

7.1.1 MNE

MNE is an academic software package for processing MEG and EEG (electroencephalog-

raphy) data. The package includes tools for all phases of MEG and EEG data processing.

These tools are provided as MNE-C (compiled C code), MNE-Matlab and MNE-Python.

The Matlab toolbox facilitates access to the FIF (functional image file) format data files em-

ployed in Meggie and enables development of custom analysis tools based on the intermedi-

ate results computed with the MNE tools. The FIF format can store any type of information

in a single file. (Gramfort et al. 2014)

7.1.2 MaxFilter

The other applied software package MaxFilter has been implemented in Meggie, but due to

its closed source state there has been no testing possibility. It’s intended to be used with

Elekta Neuromag MEG products in suppressing magnetic interferences coming from inside

and outside of the sensor array, in reducing measurement artefacts, in transforming data

between different head positions, and in compensating disturbances due to head movements
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(Elekta 2006). From the MaxFilter methods, Meggie should utilize expansion origin setting,

expansion order setting, bad channels exclusion, data skipping, SSS/tSSS filtering, motion

compensation and head position calculation.

7.2 Test Data

The MNE software is accompanied by a sample dataset (sample_audvis_raw.fif) which is

recorded from one subject with combined M/EEG conducted at the Martinos Center of Mas-

sachusetts General Hospital. The data was recorded with a Neuromag VectorView system

(Elekta Oy, Helsinki, Finland), see section 4.1 for more detail. The subject was shown

auditory and visual stimuli in a random sequence with an added smiley face to which the

subject reacted with a button press. The dataset can be used as a standard validation dataset

for M/EEG methods, which also favors reproducibility of results. The dataset includes re-

sponses to left-ear auditory stimulus, right-ear auditory stimulus, left visual field stimulus,

right visual field stimulus, the smiley face and the button press. (Gramfort et al. 2014)

7.3 Requirements

Realization of the requirements is based on the scenarios set by the customer representative

of Meggie, original requirements specification of Hoksotin project and collected TODO-list

from the further development process.

7.3.1 Batching

Requirements to enable the batch processing:

1. The user must be able to add subjects to an active experiment. Experiment class

handled a single subject data before the development phase. To enable multiple sub-

jects, a new class called Subject was created to handle the subject data. A list was

added to the Experiment class to store multiple Subject instances in it. A new subject

dialog was also created for the user to be able to add subjects to an active experiment

and a button for opening the dialog. The experiment creation dialog now includes all
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but the subject measurement file browser from the old dialog. The experiment needs

to be created before the subjects can be added.

2. The user must be able to choose multiple subjects at once to be added to an active

experiment in one batch process. A file browser for multiple selection was added on

the newest subject dialog. If there are multiple files chosen by the user, Meggie reads

them one at a time and saves them into the active experiment folder. The last one saved

will also be set as the active subject.

3. The user must be able to view added subjects of an active experiment. A separate

list was added to the mainwindow to display the added subjects of an active experi-

ment.

4. The user must be able to remove subjects from an active experiment. The user

can select a subject from the list of subjects and remove the selected subject with a

new ’Remove subject/subjects’-button. The main window is initialized to clear all the

fields corresponding to the removed subject and the folder that stored the subject files

is also removed under the experiment hierarchy. The instance of the Subject class that

stored information of the removed subject is also removed from the subject list in the

currently active Experiment instance.

5. A subject must be set as an active subject when it’s added to an active experiment.

The reason for this requirement is that when adding a new subject, the measurement

file of the subject must be read and added into the system memory to save it under the

currently active experiment’s directory. This leads to a huge memory consumption,

if there already is a measurement file of an active subject in the memory. Therefore,

adding a new subject triggers the subject activation sequence that initializes the main

window with the newly activated subject info and removes the previous subject file

from the system memory. More information about the memory management can be

seen in section 7.4.

6. The user must be able to activate any subject of an active experiment. The user can

activate a subject from the list of subjects with a new ’Activate subject/su-

bjects’-button.

7. There must be only one active subject at a time. Again, the reason for this require-

ment is the memory management problem, which was explained in the requirement
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no. 5. Also, the mainwindow is made to display info for one subject only. Activating

a subject triggers the activation sequence that was also explained in requirement no. 5.

8. Activating a subject must display its state as it was previously left when process-

ing the subject. This is a default save/load feature and it’s done automatically ac-

cording to the user’s actions. The pickle module is used for serializing the Experiment

class. Pickling is done every time when the files are saved under the active experiment

directory. This enables loading the subjects with the most recently processed files.

9. The user must be able to view metadata of an activated subject. There are fields

on the mainwindow which display the metadata of an active subject. They are updated

every time a subject is activated.

10. The user must be prevented to open the measurement data processing tabs unless

there is an activated subject. The reason for this is to guide the user to prevent

dull actions. The processing tabs are disabled as long as a subject is activated. The

functionalities and UI of Meggie changed and in the newest version the requirement is

not implemented.

11. The user must be able to perform computation for preprocessing steps (EOG/ECG)

for multiple measurement files at once. Initially, the batch processing functionality

for the practical work of the thesis was aimed at the removal of EOG artefacts. How-

ever, after it was clear that the removal of ECG artefacts shouldn’t require a lot of

extra work, it was decided to take it under the development too. An area for batch

processing was added to both EOG and ECG dialog. A radiobutton was also added to

both dialogs to enable/disable the batch process area. The area includes a list of the

subjects that are currently in the active experiment. After selecting a subject on the

list, the user can then modify its parameters on the EOG/ECG dialog. The ’Apply’-

and ’Apply to all’-button save the parameters to the selected subject or to all of the

subjects on the list. The computation is then executed for all the subjects that the user

wants to include. The user can remove subjects from the list to exclude them from the

computation.

12. The user must be able to view metadata of all the subject files that he/she browsed

with the file browser in the subject dialog. The ’Add subject’ dialog includes a list

of the browsed files which can be selected one at a time to enable the ’Show file info’
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button.

13. Opening an existing experiment must activate the subject that was active last time

when the experiment was closed. The active_subject attribute of an active experiment

is saved into the settings file (.pro) by serializing the operational Experiment instance

every time a subject is activated. This allows Meggie to load the settings file, including

the active_subject attribute, from the root folder of the experiment that is opened.

7.3.2 Preprocessing

Requirements listed to improve and correct the funtionality of the preprocessing steps:

1. The user must be able to distinguish imported epochs files from the epochs cre-

ated from the currently active subject. It’s important to see whether the epochs are

created from the current working file or from any other file. The functionality is a bit

twisted, because the epochs that don’t have parameter files under the epochs directory

can be seen written with red colour on the epochs list on the main window. This is

because the epochs file doesn’t have info of the source file it was created from, but a

short description in case the author of the measurement had written it there.

2. The user must be able to see where an imported epochs file is from, e.g. meta-

data. There is a field for the description of the subject written by the author of the

measurement. This seemed to be the only way to gain some information from the

source file.

3. mne_browse_raw must be replaced with the MNE raw.plot function. Not im-

plemented. The external library MNE is constantly under development and the new

features are deployed which lead to this requirement. This required only a single line

of code. Anyhow, after implementing this functionality the customer representative

wanted to change back to the mne_browse_raw function.

4. Magnitude spectrum must be replaced with the MNE raw.plot_psds -function.

Not implemented. Delayed until further development.

5. The user must be able to easily realize in which order to fill the fields on epochs

creation dialog. The fields in epoching dialog were reorganized for a more intuitive

usability.
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6. The user must be able to see which parameters were used in different phases of

preprocessing. The parameters for calculating EOG and ECG projections are saved

under the subject folder and the user can view them by opening the EOG or ECG

dialog and selecting a subject on the batch list. The epoch collection parameters are

shown on the epoching tab after selecting a collection on the epoch collections list.

7.3.3 Epoching and Averaging

Requirements listed to improve and correct the funtionality of the epoching and averaging

steps:

1. The user must be able to understand in which order to complete the operations

on averaging tab. Not implemented. Simply forgotten and the customer didn’t give

clear guidance to this requirement.

2. The user must be able to calculate statistics of evoked responses. Not implemented.

Delayed until further development.

3. The user must be able to save the statistics of evoked responses in csv-format. Not

implemented. Delayed until further development.

4. The evoked responses must be saved automatically when created. The button that

creates evoked responses also saves them under the subject folder, so the user is not

responsible for that.

7.3.4 Nonfunctional Requirements

These requirements are mostly listed to cover issues with the memory management.

1. The code that generates the UI must be separated from the code that forms the

model. This was followed all the way through the development phase and most of the

old code that didn’t belong to the UI classes was moved to the model classes.

2. Measurement data files must be preloaded into the system memory before the cal-

culations. Usually programs that process large files read the data into memory stream

to prevent huge memory requirements. Although, in Meggie we chose to preload the

data into memory for faster data manipulation with the functionalities provided by
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MNE. See the Memory management section 7.4 for details.

3. There must be only one measurement file in the system memory at once. Imple-

mented. See the Memory management section 7.4 for details.

7.4 Memory Management

Memory management of Meggie utilizes the mechanisms of the Python garbage collector

(gc) module. All the larger files, such as source, epoch collection and evoked files, require

management. Subject, Epoch and Evoked classes are used to store references to those files.

The references are simply set to None when the memory the large files consume needs to

be released again. The garbage collector triggers when there are no references to an object,

thus releasing the memory allocated to the object. The memory usage in the testing system

was checked using command ’free’ in Terminal and occasionally the number of references

to objects was tracked with the functionalities of the gc module. There was only one case

in which the garbage collector didn’t automatically release the memory and the gc.collect()

function had to be called manually.

7.4.1 Main Cases

The main decision considering memory management was to read all the files of a single sub-

ject at once into the system memory. Those files include the current working file of an active

subject, epoch collection files created from the active subject and evoked datasets averaged

from the epoch collection files. This lead to several cases that needed more attention: activat-

ing a subject, removing an active subject, removing a non-active subject, opening an existing

experiment and creating a new experiment. Also, there was a need for batch processing func-

tionality which lead to two unique cases: adding several subjects into an experiment at once

and removing EOG/ECG artefacts from multiple subjects in one batch process.

Activating a subject checks if there already is an active subject with its measurement files in

the memory. If so, the files of the active subject must be released from the memory before

the other subject is activated. This is the subject deactivation sequence, which applies the

release_memory() function in the Experiment class, which only sets the references to the

49



measurement files as None, but leaves the objects alive.

Removing an active subject destroys the Subject instance which results in removing the

epoch collection and evoked files as well, because the Subject class stores Epoch and Evoked

instances in it. Removing a non-active subject applies the same idea, but differs in that the

measurement file references are already set to None and their memory release is handled

beforehand. The objects are destroyed in the same way as in the removal of an active subject.

Opening an existing experiment and creating a new experiment are handled simply by setting

the Experiment instance reference in the MainWindow class to the newly created or opened

Experiment instance. This leads to having no references to the previously handled Experi-

ment instance, if there was one, in the same session. Since the Experiment class stores the

Subject instances, they are also removed in the process and no further actions are needed to

release their memory usage.

When several subjects are added into an experiment at once they must be read into the system

memory to get vital data for further processing steps (e.g. channel list). Therefore, it’s not

possible to copy the measurement file into the folder without reading the file, although it

would save some time.

To remove EOG/ECG artefacts from multible subjects in one batch process, the only possible

way seemed to be by calculating one subject at a time, since several measurement files may

consume all the memory of the system. After the calculation is finished for one subject, the

memory consumed by the subject is released before continuing to the next one. When the

last subject is calculated, it is set as the active subject, since its measurement file is already

in the memory. This avoids excessive reading of another subject file and shortens the wait

time for the user.

7.4.2 Problems in Memory Management

There were many problematic cases during the memory management, but the three cases

here are good examples of what it was all about. The last case was quite illogical and the

solution was created by randomly testing different ways to implement it.
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An instance of an EpochParameterDialog was created by adding a reference to an active sub-

ject measurement file to its attributes. A reference to this instance was then set in the Main-

Window class attribute self.epochParameterDialog, which, after deleting the active subject,

remained in the MainWindow. This prevented Python garbage collection to collect also the

measurement file from memory when deactivating the subject. This was fixed by not setting

the measurement file reference to the EpochParameterDialog instance, but instead getting

the measurement file from the active subject in the EpochParameterDialog code.

Earlier, the Experiment class set Experiment instance to Caller class to help with setting

attributes to the Experiment. This resulted in having the previously open experiment and

it’s active subject, including the measurement files, in the system memory after opening or

creating a new experiment. By removing the setting of the Experiment attribute to Caller

class, we can just set the current Experiment as None and call the Python garbage collector

to release the memory to the OS. For unknown reason, in this case the garbage collector

didn’t automatically release memory and had to be called manually.

Completing measurement file calculations inside a for loop seemed not to release the memory

to the OS from the previously handled file, even if the references were removed from the file

and the garbage collector was called manually. This lead to the creation of a separate method

that handles the calculation for one subject only and this method is called inside a for loop

from another method. Every time the calculation method finishes, the garbage collector

releases the memory to the OS from the previously handled file.
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8 Conclusions

Meggie is a MEG measurement data preprocessing, visualizing and analyzing application,

and currently (spring 2015) it’s close to the beta phase. The development started from scratch

in the beginning of 2013 and is still ongoing. The application includes the most of the impor-

tant features, but insufficient testing doesn’t guarantee their correctness. Although, several

important functionalities are missing. Meggie should be soon available for testing in the

MEG laboratory located in the University of Jyväskylä. The overall goal of the application

is to simplify the steps needed to complete unique MEG data processing pipelines. The

graphical user interface should allow even uninitiated users to be able to understand the re-

quired steps.

The functionalities center on the external package MNE that provides extensive set of meth-

ods to process MEG data. The methods implemented in Meggie include physiological arte-

fact rejection, filtering, epoching, data averaging and source analysis. The other important

package MaxFilter, which would be used in the preprocessing phase, is not included due to

its closed source state. Therefore, the data analyzed with Meggie has to be preprocessed in

advance.

Further development should be focused on adding the missing features, testing the existing

ones and fixing the errors. The major missing or incomplete features are the MaxFilter

component, evoked stats calculation dialog and several source space analysis methods. The

shortcomings in the architecture evaluation chapter should be taken into consideration, too.

The development tools and external packages must be up-to-date, since their development is

ongoing and the updated functionalities make the application run with a better performance.

Also, there were no usability tests to verify if the steps are intuitive for the user, which should

add a reasonable amount of work to that area. However, since several important features are

missing, it’s advisable to work on the usability after the features are implemented.

This thesis presented the application at its current state in the spring 2015, after the comple-

tion of the practical phase. The phase included the development of several important features

and a glimpse to that phase is provided in the form of the implemented requirements with
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their short explanations. The theoretical phase went through the architecture of the applica-

tion with diagrams to create an extensive view and explain the chosen quality attributes.

The contributional aspect of this thesis is mostly for the developers, who are willing to fur-

ther develop the application in order to optimize the analysis steps of MEG measurement

data in the MEG laboratory in Jyväskylä. By going through the MEG and user interface

presentation chapters, even uninitiated persons might be able to execute a simple analysis

pipeline. Therefore, the thesis may be used as a replacement for manual. In addition, general

pipelines are provided to the analysis of MEG data, which might interest the developers in

the field of computational neuroscience. The field that is rapidly growing and new scientific

software is constantly needed, as well as documentations like this.
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