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Abstract

Some models for axially moving orthotropic thin plates are investigated analytically

via methods of complex analysis to derive estimates for critical plate velocities. Lin-

earised Kirchhoff plate theory is used, and the energy forms of steady-state models are

considered with homogeneous and inhomogeneous tension profiles in the cross direction

of the plate. With the help of the energy forms, some limits for the divergence velocity

of the plate are found analytically. In numerical examples, the derived lower limits for

the divergence velocity are analysed for plates with small flexural rigidity.

Keywords Axially moving; Stability; Plates; Membranes; Orthotropic

1 Introduction

In industrial processes involving axially moving materials, such as the production of paper,

steel or textiles, high transport speed is desired, but it also may cause loss of stability.

In the modeling of such systems, the dynamic behavior of strings, membranes, beams and

plates has been of general interest taking into account the transverse, Coriolis and centripetal

accelerations of the material motion. The first studies on them include Skutch (1897), Sack

(1954), Archibald and Emslie (1958), Miranker (1960), Swope and Ames (1963) and Mote

(1968, 1972, 1975).

Sack (1954), Archibald and Emslie (1958) and Simpson (1973) studied the effects of axial

motion on the frequency spectrum and eigenfunctions. In their research, it was shown that

the natural frequency of each mode decreases as the transport speed is increased, and that the

traveling string and beam both experience divergence instability at a sufficiently high speed.

Wickert and Mote studied stability of axially moving strings and beams using modal analysis
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and a Green’s function method (Wickert and Mote, 1990). They presented the expressions for

the critical transport velocities analytically. However, recently Wang et al. (2005) showed

analytically that no static instability occurs for the transverse motion of an ideal string

at the critical velocity. For axially moving beams with small flexural stiffness, Kong and

Parker (2004) found closed-form expressions for the approximate frequency spectrum by a

perturbation analysis.

Stability of travelling rectangular membranes and plates was first studied by Ulsoy and

Mote (1982), and Lin and Mote (1995, 1996). Stability of out-of-plane vibrations of axially

moving rectangular membranes was studied by Shin et al. (2005). For the behaviour of the

membrane, it was found that the motion remains stable until a critical speed, at which static

instability occurs. Lin (1997) studied stability of axially moving plates, and numerically

showed that loss of stability of the plate occurs in a static (divergence) form at a sufficiently

high speed. Banichuk et al. (2010) considered stability and studied the critical velocity and

the corresponding critical shapes of an axially moving elastic plate. Later on, Banichuk et al.

(2013b) applied the stability analysis to optimization of the magnitude of applied tension,

taking also fatigue fracture into account.

In the recent studies concerning axially moving plates, material properties such as or-

thotropicity (Banichuk et al., 2011) or viscoelasticity (Marynowski, 2010) have been taken

into consideration, and their effects on the plate behaviour have been investigated. In

Banichuk et al. (2011), divergence instability for travelling orthotropic rectangular plates,

with two opposite edges simply supported and the other two edges free, was studied and

an explicit expression for the limit velocity of stable axial motion was found. Hatami et al.

(2009) studied free vibration of the moving orthotropic rectangular plate in sub- and super-

critical speeds, and flutter and divergence instabilities at supercritical speeds. Their study
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was limited to simply supported boundary conditions at all edges.

Free vibrations of classical rectangular plates, which are not moving axially, have been

discussed in the book by Gorman (1982). The case of orthotropic plates, specifically, has

been studied by Biancolini et al. (2005) including all combinations of simply supported and

clamped boundary conditions on the edges. Xing and Liu (2009) obtained exact solutions

for free vibrations of stationary rectangular orthotropic plates considering three combina-

tions of simply supported (S) and clamped (C) boundary conditions: SSCC, SCCC and

CCCC. Kshirsagar and Bhaskar (2008) studied vibrations and buckling of loaded stationary

orthotropic plates. They found critical loads of buckling for all combinations of boundary

conditions S, C and F.

Tension inhomogeneities and their effects on the divergence instability of moving plates

have been studied in Banichuk et al. (2013a). A linearly inhomogeneous tension profile, with

the axial tension varying across the cross direction, was considered in the case of a moving

isotropic plate. The inhomogeneities in tension were found to have significant effect on the

critical velocity of the plate and to change the buckling shapes dramatically compared to

the case of homogeneous tension.

In this study, we investigate the energy forms corresponding to (the steady state of) a

travelling orthotropic plate under homogeneous or inhomogeneous tension. It is shown that

the critical velocity for an orthotropic plate subjected to any tension field (satisfying certain

conditions) is greater than the critical velocity of an ideal membrane subjected to the same

tension field. The differential equations for a travelling orthotropic plate subjected to an

arbitrary tension field are derived from the corresponding energy form. For a linearly inho-

mogeneous tension profile, the stress field is solved with the help of the (Airy) stress function.

For this type of inhomogeneity, we derive a guaranteed lower limit for the divergence velocity
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of the orthotropic thin plate and present a numerical example.

2 Axially moving orthotropic plates

Consider an axially moving orthotropic rectangular plate in a Cartesian coordinate system,

supported at two edges x = 0 and x = `. The plate is assumed to be subjected to tension T

at the supported edges. The problem setup is shown in Figure 1. The plate width is 2b, its

V0

T x

y

0
T

z

E 1
2
E2b

Figure 1: A travelling orthotropic plate.

thickness is h, and the length of the span is `. Throughout this study, the plate is assumed

to travel axially at a constant velocity V0. We denote the transverse displacement of the

plate by the function w(x, y) and the considered rectangular part of the plate by Ω:

Ω = {(x, y) : 0 < x < ` , −b < y < b} . (1)

The material parameters for the orthotropic plate are denoted by m (the mass per unit

area), ν12 and ν21 (the Poisson ratios in the xy plane), E1 and E2 (the Young’s moduli in the

x and y directions, respectively), and G12 (the shear modulus in the xy plane). We denote

the components of in-plane tension by Txx, Tyy and Txy = Tyx.

First, we introduce bilinear forms (for complex-valued functions) that correspond to the

energy of the described system. Bilinear energy forms, e.g. for stationary isotropic plates,
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have been discussed by Chen et al. (1998).

We consider bilinear forms corresponding to the strain energy due to in-plane tension

Vm, the strain energy due to bending Vb, and the kinetic energy T of the moving plate.

The bilinear form corresponding to the strain energy due to in-plane tension is given by

(Timoshenko and Woinowsky-Krieger, 1959)

Vm(w, v) =

∫
Ω

[
Txx

∂w

∂x

∂v̄

∂x
+ Tyy

∂w

∂y

∂v̄

∂y
+ Txy

(
∂w

∂x

∂v̄

∂y
+
∂w

∂y

∂v̄

∂x

)]
dΩ , (2)

where v̄ denotes the complex conjugate of v.

The complex conjugate is needed, because e.g. in linear stability analysis, in general the

displacement function is allowed to be complex-valued. Using the linearity of the governing

partial differential equation, the solution then splits into two real-valued functions, being the

real and imaginary parts of the complex displacement, respectively.

The bilinear form corresponding to the strain energy of bending is (Timoshenko and

Woinowsky-Krieger, 1959)

Vb(w, v) =

∫
Ω

[
D1

∂2w

∂x2

∂2v̄

∂x2
+ A1

∂2w

∂x2

∂2v̄

∂y2
+ A1

∂2w

∂y2

∂2v̄

∂x2

+D2
∂2w

∂y2

∂2v̄

∂y2
+ 4A2

∂2w

∂x∂y

∂2v̄

∂x∂y

]
dΩ , (3)

where the coefficients Di and Ai for the flexural rigidities are defined as

D1 =
E1h

3

12 (1− ν12ν21)
, D2 =

E2h
3

12 (1− ν12ν21)
, (4)
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and

A1 =
ν12E2h

3

12 (1− ν12ν21)
=

ν21E1h
3

12 (1− ν12ν21)
, A2 =

G12h
3

12
. (5)

We have assumed elastic compatibility, i.e.

E1ν21 = E2ν12 . (6)

The bilinear form corresponding to the kinetic energy is given by

T (w, v; t) =

∫
Ω

m
dw

dt

dv̄

dt
dΩ =

∫
Ω

m

(
∂w

∂t
+ V0

∂w

∂x

)(
∂v̄

∂t
+ V0

dv̄

∂x

)
dΩ , (7)

where

d

dt
=

∂

∂t
+ V0

∂

∂x
(8)

is the operator of the total (or material, or Lagrange) derivative.

In this study, we concentrate on steady-state problems only. Note that when the axially

moving material is viewed in the laboratory frame, the kinetic energy (7) has also a time-

independent component, which is due to a centripetal contribution. For the rest of the

discussion, we will denote by T the time-independent part of the kinetic energy:

T (w, v) =

∫
Ω

mV 2
0

∂w

∂x

∂v̄

∂x
dΩ , (9)

Consider the form

L(w, v) = T (w, v)− Vm(w, v)− Vb(w, v) (10)

corresponding to the total energy of the considered axially moving orthotropic thin plate.
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In the following, we derive the partial differential equation corresponding to L(w, v) = 0

for the energy L defined in (10).

We perform integration by parts for all the energy forms Vm, Vb and T . For Vm in (2),

integration by parts gives

Vm(w, v) = −
∫
Ω

[
Txx

∂2w

∂x2
+ 2Txy

∂2w

∂x∂y
+ Tyy

∂2w

∂y2

+

(
∂Txx
∂x

+
∂Txy
∂y

)
∂w

∂x
+

(
∂Txy
∂x

+
∂Tyy
∂y

)
∂w

∂y

]
v̄ dΩ

+

∫ b

−b

[(
Txx

∂w

∂x
+ Txy

∂w

∂y

)
v̄

]x=`
x=0

dy

+

∫ `

0

[(
Tyy

∂w

∂y
+ Txy

∂w

∂x

)
v̄

]y=b
y=−b

dx . (11)

The in-plane tension components are assumed to satisfy the following equilibria:

∂Txx
∂x

+
∂Txy
∂y

= 0 ,
∂Txy
∂x

+
∂Tyy
∂y

= 0 in Ω , (12)

which describe the in-plane balance of linear momentum in the absence of external body

forces and in-plane accelerations. On the free boundaries, the following free-of-traction

boundary conditions are set:

(Tyy)y=±b = 0 , (Txy)y=±b = 0 , 0 < x < ` . (13)

These boundary conditions require that the normal component of the stress tensor vanishes

on the free boundaries. Boundary conditions for tension components on the supported edges

depend on the case studied, and will be specified further below. Due to linearity, v̄ satisfies

the boundary conditions if and only if v does. We assume that for v, we have v = v̄ = 0 at
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x = 0, `. Thus, we obtain

Vm(w, v) = −
∫
Ω

[
Txx

∂2w

∂x2
+ 2Txy

∂2w

∂x∂y
+ Tyy

∂2w

∂y2

]
v̄ dΩ . (14)

Integration (twice) by parts of Vb in (3) gives

Vb(w, v) =

∫
Ω

[
D1

∂4w

∂x4
+ 2(A1 + 2A2)

∂4w

∂x2∂y2
+D2

∂4w

∂y4

]
v̄ dΩ

+

∫ b

−b

[
D1

(
∂2w

∂x2
+
A1

D1

∂2w

∂y2

)
∂v̄

∂x
+ 4A2

∂2w

∂x∂y

∂v̄

∂y

]x=`
x=0

dy

+

∫ `

0

[
D2

(
∂2w

∂y2
+ β1

∂2w

∂x2

)
∂v̄

∂y

]y=b
y=−b

dx

−
∫ b

−b

[
D1

(
∂3w

∂x3
+
A1

D1

∂3w

∂x∂y2

)
v̄

]x=`
x=0

dy

−
∫ x=`

x=0

[
D2

(
∂3w

∂y3
+ β2

∂3w

∂x2∂y

)
v̄

]y=b
y=−b

dx , (15)

where

β1 =
A1

D2

= ν12 , β2 =
A1 + 4A2

D2

= ν12 +
4G12

E2

(1− ν12ν21) . (16)

For w, we assume the (simply supported and free) boundary conditions

(w)x=0, ` = 0 ,

(
∂2w

∂x2

)
x=0, `

= 0 , −b < y < b , (17)

(
∂2w

∂y2
+ β1

∂2w

∂x2

)
y=±b

= 0 , 0 < x < ` , (18)

(
∂3w

∂y3
+ β2

∂3w

∂x2∂y

)
y=±b

= 0 , 0 < x < ` . (19)

Since w = 0 and v̄ = 0 at x = 0, `, also the derivatives of w and v̄ in the y direction
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vanish at those edges, i.e. ∂2w/∂y2 = 0 and ∂v̄/∂y = 0 at x = 0, `. Thus, all the boundary

terms in (15) zero out and what remains is

Vb(w, v) =

∫
Ω

[
D1

∂4w

∂x4
+ 2(A1 + 2A2)

∂4w

∂x2∂y2
+D2

∂4w

∂y4

]
v̄ dΩ . (20)

Finally, for the energy form T , the integration by parts gives

T (w, v) = −
∫
Ω

mV 2
0

∂2w

∂x2
v̄ dΩ +

∫ b

−b
mV 2

0

[
∂w

∂x
v̄

]x=`
x=0

dy

= −
∫
Ω

mV 2
0

∂2w

∂x2
v̄ dΩ . (21)

Combining the results in (14), (20) and (21), the partial differential equation correspond-

ing to

L(w, v) ≡ T (w, v)− Vm(w, v)− Vb(w, v) = 0 (22)

is

mV 2
0

∂2w

∂x2
− Txx

∂2w

∂x2
− 2Txy

∂2w

∂x∂y
− Tyy

∂2w

∂y2

+D1
∂4w

∂x4
+ 2(A1 + 2A2)

∂4w

∂x2∂y2
+D2

∂4w

∂y4
= 0 , (23)

subject to the boundary conditions (17)–(19) and tension equilibria (12). Equation (23) de-

scribes small transverse displacements of an axially travelling elastic plate when the material

flow occurs in a steady state; the function w describes the displacement as it is appears in

the laboratory coordinate system.
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In-plane tensions and stresses σxx, σxy and σyy are related by

Txx = h σxx , Txy = h σxy , Tyy = h σyy , (24)

where h is the thickness of the plate (assumed constant). Referring to (12), the in-plane

stresses σxx, σxy and σyy satisfy the equilibrium equations

∂σxx
∂x

+
∂σxy
∂y

= 0 ,
∂σxy
∂x

+
∂σyy
∂y

= 0 . (25)

3 Airy stress equilibrium for orthotropic plates

In the following, we will present the Airy stress equilibrium for an orthotropic plate. With

the assumption of small deflections, the strains εxx, εyy and γxy are defined with the help of

the in-plane displacements u and v (in the x and y directions, respectively) as follows:

εxx =
∂u

∂x
, εyy =

∂v

∂y
, γxy =

∂u

∂y
+
∂v

∂x
,

for which the following equation holds

∂2εxx
∂y2

+
∂2εyy
∂x2

− ∂2γxy
∂x∂y

= 0 . (26)

Stresses and strains are related to each other by Hooke’s law (here, inverse relation):

εxx =
1

E1

σxx −
ν21

E2

σyy , εyy =
1

E2

σyy −
ν12

E1

σxx , γxy =
1

G12

σxy . (27)
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We introduce the stress function F :

σxx =
∂2F

∂y2
, σyy =

∂2F

∂x2
, σxy = − ∂2F

∂x∂y
. (28)

The stresses in (28) satisfy automatically (25). Inserting (28) and (27) into (26), we obtain

(with the help of the elastic compatibility relation (6)):

E1
∂4F

∂x4
+

(
E1E2

G12

− 2E1ν21

)
∂4F

∂x2∂y2
+ E2

∂4F

∂y4
= 0 . (29)

This is the Airy stress equilibrium for orthotropic plates, given also e.g. in the book by

Marynowski (2008). For isotropic plates, the equilibrium (29) is the biharmonic equation

for the Airy stress function F . Note that (6) specifies E1ν21 = E2ν12; the coefficient of the

mixed term only depends on quantities that relate symmetrically to both material axes.

The orthotropic model can be reduced to an isotropic model by choosing G12 = GH

(Huber, 1923; Timoshenko and Woinowsky-Krieger, 1959), where

GH =

√
E1E2

2(1 +
√
ν12ν21)

. (30)

In practice, the measured values for the shear modulus G12 may significantly differ from this

ideal value (Seo, 1999; Yokoyama and Nakai, 2007). In such cases, the full orthotropic model

must be used.
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4 Estimates for divergence velocities

Above, we introduced the bilinear forms Vm, Vb, and T corresponding to the strain energy

due to in-plane tension, the strain energy due to bending, and the kinetic energy, respectively.

Now, we derive some estimates based on them, and finally by combining these estimates, we

obtain lower limits for the critical velocities of axially moving orthotropic plates and (ideal)

membranes.

We begin with the bilinear form Vm defined above in (2). Let us assume that the in-plane

tension components Txx, Tyy, and Txy satisfy the following properties:

Txx − κ2Txy ≥ 0 , in Ω , (31)

Tyy −
1

κ2
Txy ≥ 0 , in Ω , (32)

Txy ≥ 0 , in Ω , (33)

where κ2 is a positive constant that can be chosen freely. The reason for the requirements

(31)–(33) will be justified below.

We will denote the norm of a complex-valued function (or scalar) a by ‖a‖. Recall that,
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for complex-valued a, it holds that ‖a‖2 = aā. We have for Vm(w,w)

Vm(w,w) =

∫
Ω

[
Txx

∂w

∂x

∂w̄

∂x
+ Tyy

∂w

∂y

∂w̄

∂y
+ Txy

(
∂w

∂x

∂w̄

∂y
+
∂w

∂y

∂w̄

∂x

)]
dΩ

=

∫
Ω

[(
Txx − κ2Txy

) ∂w
∂x

∂w̄

∂x
+

(
Tyy −

1

κ2
Txy

)
∂w

∂y

∂w̄

∂y

+Txy

(
κ2∂w

∂x

∂w̄

∂x
+
∂w

∂x

∂w̄

∂y
+
∂w

∂y

∂w̄

∂x
+

1

κ2

∂w

∂y

∂w̄

∂y

)]
dΩ

=

∫
Ω

[(
Txx − κ2Txy

) ∥∥∥∥∂w∂x
∥∥∥∥2

+

(
Tyy −

1

κ2
Txy

)∥∥∥∥∂w∂y
∥∥∥∥2

+Txy

∥∥∥∥κ2∂w

∂x
+

1

κ2

∂w

∂y

∥∥∥∥2
]

dΩ . (34)

With the assumptions in (31)–(33), all the quantities on the last row of (34) are non-negative.

Thus, we obtain

Vm(w,w) ≥ 0 . (35)

Similarly, we can estimate Vb(w,w) corresponding to the strain energy due to bending.

We have

Vb(w,w) =

∫
Ω

[
D1

∂2w

∂x2

∂2w̄

∂x2
+ A1

∂2w

∂x2

∂2w̄

∂y2
+ A1

∂2w

∂y2

∂2w̄

∂x2

+D2
∂2w

∂y2

∂2w̄

∂y2
+ 4A2

∂2w

∂x∂y

∂2w̄

∂x∂y

]
dΩ

=

∫
Ω

[
D1

∥∥∥∥∂2w

∂x2
+
A1

D1

∂2w

∂y2

∥∥∥∥2

+

(
D2 −

A2
1

D1

)∥∥∥∥∂2w

∂y2

∥∥∥∥2

+4A2

∥∥∥∥ ∂2w

∂x∂y

∥∥∥∥2
]

dΩ (36)
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The constant D2 − A2
1/D1 ≥ 0, since

D2 −
A2

1

D1

= D2

(
1− A2

1

D1D2

)
= D2(1− ν12ν21) , (37)

and 0 ≤ √ν12ν21 ≤ 1/2 and D2 > 0. Thus, we see that

Vb(w,w) ≥ 0 . (38)

For a non-trivial solution w (real part or imaginary part 6≡ 0) with boundary conditions

(17), it holds that ∫
Ω

∥∥∥∥∂w∂x
∥∥∥∥2

dΩ > 0 . (39)

We may now construct some estimates for the divergence velocities of axially moving

plates and membranes. The divergence velocity V div
0 for an axially moving orthotropic plate

is solved from the equation

L(w,w) ≡ T (w,w)− Vm(w,w)− Vb(w,w) = 0 . (40)

and is expressed as

(V div
0 )2 =

1

m
∫
Ω

∥∥∂w
∂x

∥∥2
dΩ

[Vm(w,w) + Vb(w,w)] (41)

In the case of a constant tension T0 at the supported edges, we have Txx = T0, Tyy = 0,
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and Tyy = 0. The divergence velocity V div
0,Txx=T0

can be expressed in this special case as

(V div
0,Txx=T0

)2 =
1

m
∫
Ω

∥∥∂w
∂x

∥∥2
dΩ

[
T0

∫
Ω

∥∥∥∥∂w∂x
∥∥∥∥2

dΩ + Vb(w,w)

]

=
T0

m
+

1

m
∫
Ω

∥∥∂w
∂x

∥∥2
dΩ
Vb(w,w) (42)

In the case of an ideal membrane, it holds that Vb(w,w) = 0, and the divergence velocity

V div,mem
0 (for a general tension profile) can be expressed as

(V div,mem
0 )2 =

1

m
∫
Ω

∥∥∂w
∂x

∥∥2
dΩ
Vm(w,w) (43)

As a first result for divergence velocities, we see that the divergence velocity of an or-

thotropic plate is always greater than the divergence velocity of an ideal membrane. Since,

by (38), we have Vb(w,w) ≥ 0, from (41) and (43) we get the estimate

(V div
0 )2 ≥ (V div,mem

0 )2 . (44)

Provided that (31)–(33) are satisfied by the in-plane tension components, we have by (35)

and (43) that (V div,mem
0 )2 ≥ 0, and thus also

(V div
0 )2 ≥ (V div,mem

0 )2 ≥ 0 . (45)

Consider now a case in which the tension profile is linear at the supported edges x = 0

and x = `. That is, (Txx)x=0, ` = T0 + αy where T0 and α are positive constants such that

Txx is non-negative along the edge. The parameter α will be called the tension profile skew
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parameter. We introduce boundary conditions for the stresses:

(σxx)x=0, ` =
1

h
(T0 + αy) , (σxy)x=0, ` = 0 , −b < y < b ,

(σyy)y=±b = 0 , (σxy)y=±b = 0 , 0 < x < ` . (46)

With the help of the boundary conditions in (46) and the relations in (28), we find

the boundary conditions for F . Note that above the last two boundary conditions in (46)

guarantee that (13) are satisfied. The solution to the boundary value problem (29) (with

boundary conditions obtained from (46)) is

F (x, y) =
1

h

(
T0
y2

2
+ α

y3

6
+ c1x+ c2y + c0

)
(47)

where c0, c1 and c2 are arbitrary real constants. Now the tensions (inside Ω) are

Txx = h
∂2F

∂y2
= T0 + αy , Tyy = h

∂2F

∂x2
= 0 , Txy = h

∂2F

∂x∂y
= 0 . (48)

Assuming that tension in the x direction is positive in Ω, i.e. assuming that

Txx = T0 + αy ≥ T0 − αb > 0 , (49)

we may derive more interesting estimates for the critical velocities.

Inserting (48) into (34), we obtain

Vm(w,w) =

∫
Ω

(T0 + αy)

∥∥∥∥∂w∂x
∥∥∥∥2

dΩ

≥ (T0 − αb)
∫
Ω

∥∥∥∥∂w∂x
∥∥∥∥2

dΩ , (50)



Estimates for divergence velocities 18

where T0 − αb is a positive constant.

Now, we can estimate the divergence velocity of an axially moving plate under linear

tension by the divergence velocity of an axially moving plate under constant tension. By

(50), (41) and (42), we have (for the absolute values of the compared velocities)

V div
0,Txx=T0+αy ≥ V div

0,Txx=T0−αb ≥ V div, mem
0,Txx=T0−αb =

√
T0 − αb
m

. (51)

The last inequality follows from (45).

In (51), we have two interesting results for the case of a linear tension profile. First,

the critical velocity of an orthotropic plate under a linear tension profile can be estimated

from below by the critical velocity of a plate under constant tension having the value that

is the minimum of the considered linear tension profile. This result is practical, since the

critical velocity of the plate under constant tension can be found analytically (e.g. Banichuk

et al., 2011). Second, the divergence velocity of a plate under a linear tension profile is also

estimated from below by the divergence velocity of an ideal membrane with constant tension

having a simple analytical formula.

In the case of constant tension, we also have for the critical velocity that V div
0 ≥

√
T0/m.

The result for constant tension and the first estimate in (51) in the case of an ideal membrane

were also discussed in Banichuk et al. (2013a), here however in a slightly different manner

using complex analysis.
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5 Static stability analysis for a plate under linear ten-

sion distribution

The partial differential equation for an axially moving orthotropic plate under a linear tension

profile is

mV 2
0

∂2w

∂x2
− (T0 + αy)

∂2w

∂x2
+D1

∂4w

∂x4
+ 2D3

∂4w

∂x2∂y2
+D2

∂4w

∂y4
= 0 , (52)

where

D3 = A1 + 2A2 . (53)

We present the solution of (52) and (17)–(19) in the following form:

w(x, y) = sin
(πx
`

)
f
(y
b

)
, (54)

where f(y/b) is an unknown function. Introducing a new variable η = y/b and inserting (54)

into (52), we obtain

µ4H2
d4f

dη4
− 2µ2H3

d2f

dη2
+ (H1 + α̃η)f = λf , −1 < η < 1 , (55)

where

µ =
`

πb
, α̃ =

b`2

π2D0

α , (56)

the eigenvalue λ is defined as

λ =
`2

π2D0

(
mV 2

0 − T0

)
, (57)
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and the dimensionless bending rigidities are

H1 =
D1

D0

, H2 =
D2

D0

, H3 =
D3

D0

. (58)

In (58), the normalization constant D0 can be chosen freely, e.g., D0 = D1.

The boundary conditions (18)–(19) become

(
µ2 d2f

dη2
− β1f

)
η=±1

= 0 , (59)

(
µ2 d3f

dη3
− β2

df

dη

)
η=±1

= 0 . (60)

The parameters β1 and β2 are given above in equation (16). Note that for an isotropic

material H1 = H2 = H3 = 1 with D0 = D, and β1 = ν and β2 = 2− ν. For comparison, see

Banichuk et al. (2013a).

6 Numerical considerations

The problem (55), (59)–(60) was solved numerically via the finite difference method. The

solution process follows the presentation in Banichuk et al. (2013a).

The strong form (55), (59)–(60) was discretized directly, with classical central differences
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of second-order asymptotic accuracy. Explicitly, the finite difference formulae used were

f ′(ηj) ≈
1

2 ∆η
[fj+1 − fj−1] (61)

f ′′(ηj) ≈
1

(∆η)2
[fj−1 − 2fj + fj+1] (62)

f (3)(ηj) ≈
1

2(∆η)3
[−fj−2 + 2fj−1 − 2fj+1 + fj+2] (63)

f (4)(ηj) ≈
1

(∆η)4
[fj−2 − 4fj−1 + 6fj − 4fj+1 + fj+2] (64)

where ∆η is the grid spacing, f is any sufficiently differentiable function, and the subscripts

denote nodes in a uniformly spaced grid, fj ≡ f(ηj) and ηj = −1 + (j − 1)∆η for j =

1, 2, . . . , N , with the last point placed at ηN = −1 + (N − 1)∆η = 1 (which, given the

number of nodes N , determines the grid spacing ∆η). The relations (62) and (64) were used

to discretize equation (55).

To account for the boundary conditions (59)–(60), the method of virtual points was used.

The virtual points η−1 and η0 were introduced at the left end of the domain, and the virtual

points ηN+1 and ηN+2 at the right end of the domain. Columns were added to the discrete

equation system to account for the corresponding virtual degrees of freedom f−1, f0, fN+1

and fN+2. The boundary conditions (59)–(60) — which hold at the points η1 and ηN — were

discretized using the formulas (61)–(63), allowing the virtual degrees of freedom to appear

in the discretization. The resulting rows, representing the discretized boundary conditions,

were then added to the discrete equation system.

Because the boundary conditions are homogeneous, it was possible to add them to the

discrete system by rewriting the original discrete problem as a generalized linear eigenvalue
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problem

Af = λBf , (65)

where B is an identity matrix with the first two and last two rows zeroed out, A contains

the differential operators (in (55) on the left hand side), f is the discretized form of f . In

(65), the first two and the last two rows of A contain the discretized boundary conditions.

As for the numerical solution of the generalized eigenvalue problem (65), it is important

to consider the symmetry properties of the square matrices A and B. The classical central

finite difference formulae for the even (second and fourth) order derivatives, (62) and (64),

are symmetric. Thus, the submatrix of A without the rows and columns corresponding

to the boundary conditions is symmetric, since on the left hand side of (55), there are

only even order derivatives of f . However, the boundary condition (60) contains odd order

derivatives, for which the central finite difference formulae, (61) and (63), are not symmetric.

Altogether, the matrix A is not symmetric, and in the numerical eigenvalue solver, we apply

the generalized Schur decomposition, also known as the QZ decomposition, applicable for

nonsymmetric matrices.

In the following, we have studied the critical velocity of the axially moving orthotropic

plate and the corresponding critical velocity in the case of thin material having a very small

flexural rigidity. All the material and physical parameters have been chosen such that the

model represents a paper material.

In the computations of the critical velocities (Table 1) and the critical eigenmodes (Fig-

ures 2–3), the geometric parameters for the plate are ` = 0.01 m, 2b = 1 m, h = 10−4 m.

The used material parameters are m = 0.08 kg/m2, E1 = 6.8 GPa, E2 = 3.4 GPa, ν12 = 0.2

(and ν21 = 0.1 from equation (6)) and G12 = 0.7GH, GH, or 1.3GH (where GH ≈ 2.11 GPa is

calculated with the help of other material parameters by equation (30)). The tension profile
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skew parameter is

α = kαmax , (66)

where k = 10−5 unless otherwise indicated, and

αmax = T0/b . (67)

That is, the tension at the egdes y = ±b differs 0.001 % from the average tension T0. (For

homogeneous tension, α = 0.) For the finite difference method, 1000 computation nodes

have been used.

In Table 1, the results for the critical velocities are shown for three different values of the

shear modulus G12. It can be seen that the smaller the value of the shear modulus is, the

lower the critical velocity V cr
0 becomes. This effect was found also in the case of the isotropic

plate (Banichuk et al., 2013a). The critical velocity for an orthotropic plate with G12 = GH

and homogeneous tension (α = 0) is V cr
0 = 83.4461 m/s (by keeping other parameter values

the same). We see that for a large value of the shear modulus (1.3GH), the critical velocity

for a plate with an inhomogeneous tension profile can be larger than that of a plate with

homogeneous tension but with a smaller value of the shear modulus.

Table 1: Critical velocities V cr
0 (m/s) for three different shear moduli G12 and three different

values for the tension profile skew parameter α.

G12 α/αmax

0 (analytical) 10−5 10−3 10−1

0.7GH ≈ 1.47 GPa 83.4455 (83.4456) 83.4453 83.4124 79.7430
GH ≈ 2.11 GPa 83.4461 (83.4461) 83.4459 83.4141 79.7629
1.3GH ≈ 2.74 GPa 83.4463 (83.4463) 83.4461 83.4152 79.7782

In Figure 2, the effect of the shear modulus variation on the buckling mode is visualised
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by presenting the displacement w at x = `/2. As expected, the larger the value of the shear

modulus is, the smaller the change in the buckling mode becomes when compared to the

case with a homogeneous tension profile. In Figure 3, both the effect of the value of the
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Figure 2: Effect of the value of the shear modulus G12 on the buckling mode. Plotted is a slice
of the plate displacement at x = `/2. The plate is subjected to axial tension, which varies
linearly across the cross direction (y). The tension profile skew parameter α = 10−5αmax.

shear modulus G12 and the effect of tension inhomogeneity are illustrated. The changes in

the shapes of the critical eigenmodes correspond to the changes observed for the critical

velocities (Table 1): the more symmetric (with respect to y) the critical eigenmode, the

larger the critical velocity.

We also computed the relative differences (estimation errors) between the velocities com-

pared in (51). We compared the values between the divergence velocities of the plate under

linear tension V div
0,Txx=T0+αy and the plate under constant tension V div

0,Txx=T0−αb. For compari-

son with different estimates for V div
0,Txx=T0+αy, we computed also the difference between it and

V div, mem
0,Txx=T0−αb. The relative differences were computed, i.e. how much (in terms of percentage)

the estimate from below differs from the actual computed velocity.
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Figure 3: Effects of the tension inhomogeneities and the value of the shear modulus on the
buckling mode. The tension profile skew parameter α increases from left to right, and the
shear modulus G12 increases from top to bottom.
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In the computations for the relative differences, we let the values of E1 and E2 vary, since

they are responsible for the magnitude of the flexural rigidity. Their relative magnitudes were

kept the same as above, i.e. E1 = 2E2. The in-plane shear modulus was chosen as G12 = GH.

For the study in which E1 was varied, the relative tension profile skew parameter was kept

constant at α/αmax = 10−5. The relative differences between the divengence velocity and

its estimates from below were also studied with respect to the relative tension profile skew

parameter α/αmax. In these computations, E1 was chosen to be relatively small E1 = 2 GPa

(an thus E2 = 1 GPa).

Figure 4 compares the values of the critical velocity for a plate with linear tension dis-

tribution T0 + αy with the critical velocity for an ideal membrane with constant tension

T0 − αb. Although
√

(T0 − αb)/m gives a guaranteed estimate from below for the critical

velocity V div
0,Txx=T0+αy, we see that it does not provide a good approximation of the actual

critical plate velocity.

In Figure 5, the relative difference in the plate divergence velocity in the cases of linear and

constant tension profiles is shown. From the left hand side figure, we see that even for quite

large values of α/αmax (up to 10 %), the constant tension case gives a good approximation

for the critical velocity of the plate with a linear tension distribution.

7 Conclusion

Models for axially moving orthotropic plates under an inhomogeneous tension profile were

studied. For the critical velocity of a moving orthotropic plate under any tension profile

satisfying certain conditions, it was shown that the critical velocity is higher than that of

an ideal membrane. The case of a plate under an inhomogeneous axial tension profile,
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Figure 4: Relative difference between the critical velocities for a plate with a linear axial
tension profile Txx(y) = T0 + αy and a membrane under constant tension Txx = T0 − αb
applied at the edges x = 0 and x = `. Left: The relative difference with respect to the
value of α/αmax. The values E1 = 2 GPa, E2 = 1 GPa were kept constant. Right: The
relative difference with respect to E1. The tension profile skew parameter was kept constant
at α/αmax = 10−5.

with tension varying linearly in the cross direction, was studied in detail. It was shown

analytically that the values for the divergence velocity of the plate can be estimated from

below by analytically computable limits. A numerical example about the effects of the shear

modulus on the critical velocities and buckling modes was given. It was seen that the greater

the value of the shear modulus, the smaller the change in the buckling mode, when compared

to the case with a homogeneous tension profile. The effect of the shear modulus on the critical

velocity was minor, but for greater values of the shear modulus the plate was found to be

more stable. The stabilizing effect of the shear modulus became more pronounced as the

skew in the linear tension profile was increased.

The analytical results, especially the limits for the critical velocities, can be helpful

for approximating the critical velocities in the cases of more complicated tension fields.

Importantly, the limits for the critical velocities also guarantee that the results given by a
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Figure 5: Relative difference between the critical velocities for plates with a linear axial
tension profile Txx(y) = T0 + αy and a constant tension Txx = T0 − αb applied at the edges
x = 0 and x = `. Left: The relative difference with respect to the value of α/αmax. The
values E1 = 2 GPa, E2 = 1 GPa were kept constant. Right: The relative difference with
respect to E1. The tension profile skew parameter was kept constant at α/αmax = 10−5.

numerical algorithm will be physically meaningful. For engineering applications, analysis for

more general tension fields than those with a linear profile at the supported edges would be

desirable. In those cases, the solution of the tension field itself becomes a more challenging

problem (Gorman and Singhal, 1993). Developing good velocity estimates for more general

cases remains a target for future studies.
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List of Figure Captions

Fig. 1: A travelling orthotropic plate.

Fig. 2: Effect of the value of the shear modulus G12 on the buckling mode. Plotted is a slice

of the plate displacement at x = `/2. The plate is subjected to axial tension, which varies

linearly across the cross direction (y). The tension profile skew parameter α = 10−5αmax.

Fig. 3: Effects of the tension inhomogeneities and the value of the shear modulus on the

buckling mode. The tension profile skew parameter α increases from left to right, and the

shear modulus G12 increases from top to bottom.

Fig. 4: Relative difference between the critical velocities for a plate with a linear axial tension

profile Txx(y) = T0 + αy and a membrane under constant tension Txx = T0 − αb applied at

the edges x = 0 and x = `. Left: The relative difference with respect to the value of α/αmax.

The values E1 = 2 GPa, E2 = 1 GPa were kept constant. Right: The relative difference with

respect to E1. The tension profile skew parameter was kept constant at α/αmax = 10−5.

Fig. 5: Relative difference between the critical velocities for plates with a linear axial tension

profile Txx(y) = T0 + αy and a constant tension Txx = T0 − αb applied at the edges x = 0

and x = `. Left: The relative difference with respect to the value of α/αmax. The values

E1 = 2 GPa, E2 = 1 GPa were kept constant. Right: The relative difference with respect to

E1. The tension profile skew parameter was kept constant at α/αmax = 10−5.


