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Abstract: The aim of this thesis is to study methods that have been created to avoid some of

the problems related to solving multiobjective optimization problems with a large number of

objectives. Multiple methods are presented covering various assumptions on the optimiza-

tion problem, such as linearity or convexity, and the strengths and weaknesses of the methods

are discussed. One of the methods is looked at in a more practical fashion, by presenting a

Python code implementation of the abstract algorithm of the method in question and study-

ing its behavior for some examples. Additionally, some criteria for classifying methods of

objective reduction in multiobjective optimization are defined.
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Suomenkielinen tiivistelmä: Tämän tutkielman tavoitteena on tarkastella menetelmiä, jotka

pyrkivät ratkaisemaan ongelmia, jotka ilmenevät monitavoiteoptimointitehtävissä tavoittei-

den määrän kasvaessa suureksi. Työssä esitellään useita menetelmiä kattaen erilaisia ole-

tuksia optimointitehtävän luonteelta, kuten esimerkiksi lineaaristen tai konveksien tehtävien

tapaukset. Lisäksi kommentoidaan menetelmien vahvuuksia ja heikkouksia. Yksi menetelmistä

otetaan käytännönläheisempään tarkasteluun toteuttamalla siihen liittyvä abstrakti algoritmi

Python-koodina ja tarkastelemalla algoritmin käyttäytymistä esimerkkien avulla. Lisäksi esi-

tetään muutamia tapoja luokitella monitavoiteoptimointitehtävien tavoitteiden vähentämisen
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menetelmiä.

Avainsanat: monitavoiteoptimointi, Pareto-tehokkuus, tavoitteiden vähentäminen
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1 Introduction

Optimization problems occur naturally in many different fields of work, for instance in en-

gineering. In practice, a usual optimization problem will have multiple objectives to be

minimized or maximized, for example cost, durability, reliability, etc. The often conflict-

ing nature of multiple objectives, e.g. not being able to simultaneously minimize cost and

maximize durability, is the reason that a solution to a multiobjective optimization problem is

usually not a single point, but instead consists of a set of points none of which can be chosen

as the best without some additional information (see for example the discussion in Chankong

and Haimes 1983, 1.2.6). As the number of objectives in the problem grows, in general so

does the number of conflicting pairs of objectives. Usually this also means an increase in the

computational complexity in calculating the solution of the optimization problem.

On the practical side of things, it is often computationally infeasible to solve problems with

a very high number of objectives. The most common evolutionary algorithms in particular

are mostly well suited to at most a couple of objectives. Due to this reason a natural question

is if it is possible to solve the optimization problem by either first simplifying the problem

at hand, or by solving another, simpler, related problem, which would also give the solutions

of the original problem.

The most extreme simplification is some form of scalarization, i.e. turning the multiobjective

optimization problem into a single objective problem by some method. For a large number of

objectives such an extreme simplification might however lose so much information that it is

impractical, if not impossible, to deduce the solutions of the original problem. A less extreme

simplification is simply omitting one or more objectives from the problem entirely. Then the

question becomes which objectives should be omitted so as to lose as little information about

the problem as possible. In some cases it is even possible to omit some objectives without

any loss of information. In these cases solving the entire problem is unnecessary as solving

the reduced problem would already give exactly the same solutions.

This problem of objective reduction in multiobjective optimization is the focus of this thesis.

An overview of several different methods for various types of problems found in the liter-
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ature will be presented. In addition, a few simple ways to classify the different methods is

discussed. Finally, a sample algorithm of one of the methods will be presented as a Python

implementation.

The structure of this thesis is as follows: chapter 2 will go through most of the general

terminology and notations, as well as presenting multiple criteria for classifying the methods

presented. Chapter 3 will look at methods for the simplest class of optimization problems:

the linear case. Chapter 4 will present methods for convex problems under various types of

convexity assumptions. Chapter 5 will cover methods under no particular assumptions on the

problem itself. Finally, chapter 6 will present the implementation of an algorithm in chapter

4. The code and a test program for this implementation can be found in appendices A and B.
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2 Overview of approaches and terminology

2.1 The multiobjective optimization problem

The multiobjective optimization problems that will be examined in this thesis will be of the

form

min
x∈S

F(x), (2.1)

where F is a vector valued function

F : S→ Rm, F(x) = ( f1(x), . . . , fm(x))

and the minimization is taken to mean minimization in all objectives simultaneously. Here S

is called the feasible region, x∈ S is called the decision variable and the functions f1, . . . , fm :

S→R are called the objective functions. The vector valued function F is called the objective

vector function. For simplicity, it will be assumed that all the objective functions are to be

minimized, since a maximization problem in some objective can always be changed into a

minimization problem by replacing the objective f j with the objective − f j.

Since, in general, it is not possible to minimize all the functions f1, . . . , fm at once, a solution

to the above problem will consist of a set of Pareto optimal solutions. A Pareto optimal

solution is a point for which no objective function value can be decreased without increasing

some other objective function value. In other words, a point x ∈ S is Pareto optimal, if there

exists no other point y ∈ S for which f j(y) ≤ f j(x) for all indices j and the inequality is

strict for at least one index. The value F(x) corresponding to a Pareto optimal point x will

be called a Pareto optimal value. The set of Pareto optimal points will be denoted by E. The

set of Pareto optimal values is called the Pareto front and will be denoted by F(E).

A related concept is the Pareto dominance relation ≤Par, which is defined by letting x≤Par
y, if f j(x) ≤ f j(y) for all indices j and the inequality is strict for at least one index. Using

this relation we can rephrase the condition of Pareto optimality, by saying that a point x ∈ S

is Pareto optimal, if it is not Pareto dominated by any point y ∈ S, i.e. y ≤Par x is never

satisfied in S.

Some results presented in this thesis will also require some more specific notions of Pareto
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optimality, namely strong Pareto optimality and weak Pareto optimality. A point x in the

feasible set S is strongly Pareto optimal, if there exists no other point y ∈ S, y 6= x, for which

F(y)≤ F(x). A point x ∈ S is weakly Pareto optimal if there exists no point y ∈ S for which

F(y) < F(x). Here the inequality on vectors F(y) ≤ F(x) is understood as the component-

wise inequality f j(y)≤ f j(x) for all j. The inequality F(y)< F(x) has a similar meaning.

Sometimes it can be useful to characterize these notions of Pareto optimality by using level

sets and sublevel sets (see Ehrgott and Nickel 2002). The level set of a function f : S→ R is

defined as

Lc( f ) = f−1({c}) = {x ∈ S : f (x) = c},

the sublevel set as

L−c ( f ) = f−1((−∞,c]) = {x ∈ S : f (x)≤ c}

and the strict sublevel set as

L−c ( f )\Lc( f ) = f−1((−∞,c)) = {x ∈ S : f (x)< c},

where c ∈ R is some constant.

Using these sets, we have the following characterizations: Let x∈ S and denote by z j = f j(x)

the value of the j:th objective at x.

(1) The point x is Pareto optimal if and only if

m⋂
j=1

L−z j
( f j) =

m⋂
j=1

Lz j( f j).

(2) The point x is strongly Pareto optimal if and only if

m⋂
j=1

L−z j
( f j) = {x}.

(3) The point x is weakly Pareto optimal if and only if

m⋂
j=1

L−z j
( f j)\Lz j( f j) = /0.
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2.2 Redundant objectives

Consider the multiobjective optimization problem (2.1) with one added objective fm+1. De-

note the set of Pareto optimal solutions of this extended problem

min
x∈S

( f1(x), . . . , fm+1(x)) (2.2)

by E+.

Even if the objective function fm+1 is different from all the other objectives f1, . . . , fm, it

might not contribute anything to the solutions of the problem. For example, consider the

single objective optimization problem

min
x∈R

x2.

If we add to the objective set {x 7→ x2} another objective x 7→ x2 + 2, then even though the

new objective is different from the first, the solutions of the extended problem are exactly

the same as the solutions of the original problem regardless of the feasible set. An objective

fm+1 that does not change the set of solutions of the problem, i.e. for which E = E+, is

called redundant or nonessential (Gal and Leberling 1977).

2.3 Method classification

2.3.1 Feature selection vs. feature extraction

Trying to simplify a multiobjective optimization problem by removing redundant objectives

is just one way to make multiobjective optimization problems computationally easier to

solve. Another approach to dimensionality reduction is to instead attempt to combine or

modify the objectives in a suitable way to find a new, preferably smaller, set of objectives,

while still not changing the solutions of the problem. Methods of the former type are called

feature selection approaches, while methods of the latter type are called feature extraction

approaches (Brockhoff et al. 2008).

In this thesis, all of the methods presented will be of the feature selection type as these are

much more common. Often they are also simpler to formulate as they are necessary finite

problems in the sense that they are concerned with finding a specific subset of objectives.
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Contrast this to the less limited problem of finding suitable, a priori arbitrary, new objec-

tives. The one method presented in this thesis that could be considered a feature extraction

approach is Deb and Saxena’s principal component analysis based procedure (Deb and Sax-

ena 2005) presented in section 5.2. Even though this procedure uses the feature extraction

method of principal component analysis, its use is limited to deciding which objectives to

choose. Thus even this method can be considered a feature selection method as the end result

gives a subset of the original objectives.

2.3.2 Exact vs. approximate

In addition to the previously mentioned feature selection vs. extraction classification for

methods of objective reduction in multiobjective optimization problems, it is possible to

classify methods based on their consideration of error. In its simplest form, objective reduc-

tion in multiobjective optimization problems is concerned with finding the smallest subset of

the original objectives for which the Pareto front remains the same. However, in some cases

it may be possible to find an even smaller subset of objectives for which the new Pareto front

is a reasonable approximation of the Pareto front of the original problem. Thus it is useful to

classify objective reduction methods based on whether they attempt to exactly determine or

only approximate the Pareto front of the original problem.

The latter approach is particularly common in evolutionary methods, such as the ones that

will be presented in sections 5.1 and 5.2. This is mostly due to the fact that solving a mul-

tiobjective optimization problem with an evolutionary method usually means finding a good

enough approximation of the Pareto front. Thus since the solutions themselves are not guar-

anteed to match the true Pareto front, trying to find an error-free reduction in the objectives

may not even be necessary.

To contrast with this, most of the methods for more specific (or simpler) types of optimization

problems, such as the linear and convex cases discussed in chapters 3 and 4, are looking for

an error-free solution to the problem of objective reduction.
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2.3.3 Problem reducing vs. problem solving

Another way to classify methods is to look at their end goals. From this point of view,

methods can be split into two types. The first are the problem reducing methods. These

methods attempt to take a multiobjective optimization problem and produce another problem

that should be easier to solve. An example of such a method is given by Malinowska’s

algorithm (Malinowska 2006) presented in chapter 3, which determines whether a single

additional objective is redundant.

The second type is made up of the problem solving methods. These methods aim to find the

solutions of the problem, but instead of directly solving the original problem, they solve one

or more reduced problems and combine the results suitably to get the solution to the original

problem. An example of such a method is given by Malivert and Boissard’s study of the

structure of the weak Pareto front (Malivert and Boissard 1994) presented in section 4.1.2.

Both types of methods naturally have their advantages and it is not always clear which type

is more suitable to solve the problem at hand. One advantage (or sometimes disadvantage) of

methods of the first type is that they don’t fix the actual method of solving the optimization

problem itself. They merely modify the problem and leave one to select a suitable optimiza-

tion method for the reduced problem, which may be readily solvable by a wider variety of

methods than the original problem. This decoupling of the method of objective reduction

from the problem solution itself provides a lot of flexibility for the use of these types of

methods.

The main advantage of methods of the second type comes in the potential for efficiency. By

integrating the problem reduction directly into the solution process, the methods gain the

possibility of optimizing away unnecessary work. For instance, when using a method of the

first type combined with another method to actually solve the problem, it is possible that the

reduction method converts the data into a convenient output format for general use, which

then gets reconverted back into its original form by the problem solver. This is completely

unnecessary work from the point of view of the entire solution process, but due to the de-

coupling of the solution from the reduction, this can not be foreseen as it requires knowledge

about the reduction method and solution process.
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2.3.4 Pre-optimization vs. post-optimization reduction

One further point of view to objective reduction in multiobjective optimization is given by

looking at who the method is intended to help. In the previous classifications the focus

has been mainly on how the problem is solved in a way that is computationally efficient.

However, in the study of multiobjective problems, a high number of objectives does not

cause problems merely during the solution process. Indeed, even if the Pareto front were

always easy to solve, as the number of objectives increases, it also becomes increasingly

difficult for a decision maker to choose a preferred solution from all possible Pareto optimal

solutions. This increase in complexity is the reason why it may in certain situations be a

good idea to attempt to reduce the number of objectives even after the optimization process

has been completed.

A series of examples of methods reducing the number of objectives after the Pareto optimal

solutions have been found are given by Brockhoff and Zitzler’s algorithms to solve the MOSS

problem (Brockhoff and Zitzler 2006b) presented in section 5.1. Deb and Saxena’s PCA

based method on the other hand combines both pre- and post-optimization reduction by

iterating the optimization process and the reduction process one after another.
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3 Linear problems

A linear multiobjective optimization problem is a problem of the form (2.1), where all the

objective functions are linear and the feasible region S is a subset of a vector space V that is

determined by some linear functions g1, . . . ,gk : V → R and constants c1, . . . ,ck ∈ R as

S =
k⋂

j=1

{x ∈V : g j(x)≤ c j}.

In this section, the problems will only be considered in the finite dimensional case with

S ⊂ Rn. In this setting, we can formulate the linear multiobjective optimization problem in

matrix notation as

min
Gx≤C

Ax, (3.1)

where

A =
[

f1 f2 . . . fm

]T

is the matrix given by the objective functions,

G =
[
g1 g2 . . . gk

]T

is the matrix given by the constraint functions and C = (c1, . . . ,ck) ∈Rk is a constant vector.

Note that here the linear functions f j : Rn → R and g j : Rn → R are being identified with

vectors in Rn, which makes A a m×n-matrix and G a k×n-matrix.

Gal and Leberling (1977) presented a simple way to determine if an objective function is

redundant based on linear relations between the functions. In the classification criteria of

section 2.3 this method is an exact, feature selection, problem reduction method.

Theorem 3.1. The objective function fm is redundant, if it is a linear combination of the

other objective functions with non-negative coefficients, i.e. if there exist λ1, . . .λm−1 ≥ 0

such that

fm = λ1 f1 + · · ·+λm−1 fm−1.

Proof. See Gal and Leberling (1977, Thm. 2.3).
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This theorem is not in fact restricted to only the case of linear problems, but instead holds

for any optimization problem for which the weight factor method finds all Pareto optimal

solutions, see (Steuer 1986, Ch. 7) for the linear case and (Chankong and Haimes 1983,

4.3.3 and 6.2) for a more general setting. In the case of linear problems though, there is a

straightforward way to verify the condition of the theorem. Using Gaussian elimination on

the matrix A it is possible to find the linear relations within the objective functions. After this,

all that is necessary to verify if the condition holds, is to look at the signs of the coefficients

in the found linear relations.

A somewhat more in-depth result on objective redundancy in linear problems can be found in

an article of Malinowska (2006). In this article, Malinowska presents an algorithm that com-

pletely determines whether an objective function is necessary or not. Although slightly more

intricate, similarly to the previous method, this method is still an exact, feature selection,

problem reduction method.

For the formulation of the method, consider a linear multiobjective optimization problem

(3.1) extended with one added objective fm+1. Denote the extended objective function matrix

by

A+ =
[

f1 f2 . . . fm fm+1

]T

and let E+ be the set of Pareto optimal solutions of this extended problem.

An important part of Malinowska’s algorithm is determining whether the sets

U = {x ∈ Rn : Ax≤Par 0} and

U+ = {x ∈ Rn : A+x≤Par 0}

are empty or not. The algorithm itself boils down to the following theorems:

Theorem 3.2. Let M = argminx∈S fm+1(x) be the set of minimizers for the single objective

fm+1. For the extended multiobjective optimization problem (2.2), E+ ⊂ E if and only if

E ∩M 6= /0 and U+ 6= /0.

Proof. See Malinowska (2002, Theorem 1) and Malinowska (2006, Remark 1).

Theorem 3.3. If U = /0, then E = S. Also, if intS 6= /0 then E = S implies U = /0.
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Proof. Malinowska refers the reader to a book by Galas, Nykowski, and Żółkiewski (1987).

Theorem 3.2 is a slight modification of Theorem 1 in (Malinowska 2006). The statement of

the theorem in Malinowska’s article is concerned with determining a necessary and sufficient

criterion for the added objective fn+1 to be redundant. By definition, the objective fn+1 is

redundant exactly when E = E+, which can be proved by showing the inclusions E ⊂ E+

and E+ ⊂ E. In the theorem of the article the first inclusion E ⊂ E+ is one of the conditions

required for the criterion. By removing this condition, the theorem changes to a necessary

and sufficient condition for the inclusion E+ ⊂ E, which is exactly the statement of Theorem

3.2.

Using these theorems, the algorithm goes as follows:

(1) Check whether U+ = /0. If not, go to (5).

(2) Check whether U = /0. If so, then by Theorem 3.3 E+ = S = E and the objective fm+1

is redundant.

(3) Check whether intS = /0. If so, then by Theorem 3.3 E+ = S 6= E and the objective

fm+1 is not redundant.

(4) Check if E = S. If so, the objective fm+1 is redundant, otherwise it is not.

(5) Determine the solutions M of the single objective problem minx∈S fm+1(x).

(6) Check whether E∩M = /0. If so, then by Theorem 3.2 E+ 6⊂ E and hence the objective

fm+1 is not redundant. Otherwise E+ ⊂ E.

(7) Determine if E ⊂ E+. If so, then E+ = E and the objective fm+1 is redundant. Other-

wise it is not redundant.

As noted in Malinowska’s article, the problematic steps in the above algorithm are (4) and

(7). The other steps only require solving single objective linear optimization problems. For

examples on the use of this algorithm, see Malinowska (2006, Section 5).
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4 Convex problems

A subset S of a vector space is convex if for all x,y ∈ S and λ ∈ [0,1]

λx+(1−λ )y ∈ S.

Let f : S→ R be a function on a convex set S. The function f is

(1) convex, if for all x,y ∈ S and λ ∈ [0,1]

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y),

(2) quasiconvex, if for all x,y ∈ S and λ ∈ [0,1]

f (λx+(1−λ )y)≤max{ f (x), f (y)},

(3) strictly quasiconvex, if for all x,y ∈ S and λ ∈ (0,1)

f (λx+(1−λ )y)< max{ f (x), f (y)} if f (x) 6= f (y) and

f (λx+(1−λ )y)≤ f (x), if f (x) = f (y)

Note that a convex function is always strictly quasiconvex and a strictly quasiconvex func-

tion is always quasiconvex. In this section, it will be assumed that in the multiobjective

optimization problem (2.1), the feasible region S is a closed convex set. If in addition all

the objective functions f j are convex, the problem will be called a convex multiobjective

optimization problem, or in short, a convex problem. Similarly, the problem will be called

(strictly) quasiconvex, if all the objective functions are (strictly) quasiconvex.

4.1 Convex and strictly quasiconvex case

4.1.1 A redundancy criterion

A similar result to that of Theorem 3.2 holds also for certain convex multiobjective opti-

mization problems. As the result is virtually identical, the classification of the problem is

also identical, i.e. the method is an exact, feature selection, problem reduction method. Due
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to the generalization from the linear result to the convex case, a few additional assumptions

about the problem are needed.

Consider the extended multiobjective optimization problem (2.2) and assume that the prob-

lem is convex. Assume in addition, that the feasible region S ⊂ Rn is bounded and that the

objective functions f j are continuous convex functions defined on all of Rn. Let E+
∞ denote

the set of Pareto optimal solutions of the unbounded problem

min
x∈Rn

( f1(x), . . . , fm+1(x)).

Under these assumptions, the following theorem (Malinowska 2002) holds:

Theorem 4.1. Let M = argminx∈S fm+1(x) be the set of minimizers for the single objective

fm+1. Then, E+ ⊂ E if and only if

E ∩M 6= /0 and S\E ⊂ Rn \E+
∞ .

The difference between this theorem and Theorem 3.2 is the use of the condition S \E ⊂

Rn \E+
∞ as opposed to the condition U+ 6= /0 in the linear case. In fact, this theorem is more

general, since the condition S \E ⊂ Rn \E+
∞ implies U+ 6= /0 in the linear case. The latter

condition is however simpler to check, which is why it is preferred in the linear case.

It is worth noting that this last condition S\E ⊂Rn \E+
∞ is why the objective functions were

assumed to be defined on all of Rn even if solutions to the original optimization problem are

only looked for in some subset S ⊂ Rn. This however limits the applications of the above

theorem as not all convex functions can be extended to convex functions in a strictly larger

set. This is the case for example with the convex continuous function

[0,∞)→ R, x 7→ −
√

x

as there exists no convex function f : R→ R, with f (x) =−
√

x when x≥ 0.

4.1.2 Weakly Pareto optimal solutions

In the following, assume that the multiobjective optimization problem (2.1) is a strictly qua-

siconvex problem and that the feasible region is contained in the n-dimensional space Rn.
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Ward (1989) showed that for convex problems, the set of weakly Pareto optimal solutions

can be determined by looking at the sets of Pareto optimal solutions of subproblems with at

most n+1 objectives. Malivert and Boissard (1994) later extended this result to the strictly

quasiconvex case. They also showed that in the case of continuous strictly quasiconvex

objectives, with some further calculations, the weak Pareto solutions can be determined using

the Pareto solutions of subproblems with at most n objectives. Both of the following results

can be classified as exact, feature selection, problem solving methods.

For these results let us fix some more notation. As in (2.1), let the objective functions f j be

indexed by j ∈ {1, . . . ,m}. For any subset of the index set I ⊂ {1, . . . ,m} let E(I) denote the

set of Pareto solutions of the subproblem with the objectives { f j : j ∈ I}. Denote by |I| the

number of elements of I. Under this notation, the first result of Malivert and Boissard (1994)

is as follows:

Theorem 4.2. If all the objective functions f j are upper semicontinuous along line segments,

then the set of weak Pareto solutions of the original problem is given by the union of the sets

of Pareto solutions of all subproblems with at most n+1 objectives. In other words,

EW =
⋃

I⊂{1,...,m}
0<|I|≤n+1

E(I).

With the additional assumption that the objective functions are continuous and that the feasi-

ble region is bounded the evaluation of subproblems of size n+1 can be swapped out for an

alternate condition. Let R be the set of points x ∈ S, for which any half-line emanating from

x meets a Pareto optimal point of some subproblem of at most n problems. Precisely, let

R = {x ∈ S : ∃I ⊂ {1, . . . ,m},0 < #I ≤ n, ∀v 6= 0, ∃t ≥ 0, x+ tv ∈ E(I)}.

Using this set R, Malivert and Boissard showed the following representation for the set of

weak Pareto solutions of the original problem:

Theorem 4.3. If all the objective functions are continuous and the feasible region is bounded,

then

EW = R∪
⋃

I⊂{1,...,m}
0<|I|≤n

E(I).
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4.1.3 Pareto optimal solutions for problems with 2 variables

The previous results are concerned with determining the set of weak Pareto solutions of the

original problem using the Pareto solutions of subproblems with at most n+ 1 or n objec-

tives. Ehrgott and Nickel (2002) considered the related problem of distinguishing weakly

Pareto optimal points from Pareto optimal points, while still holding on to the criteria of

not solving problems with more than n+ 1 objectives. The main result of their article is a

Pareto optimality criterion in the case where the domain of the objectives is 2-dimensional.

Additionally, they also presented an algorithm based on this result for checking whether a

given point is Pareto optimal or not. In the classification of section 2.3, this algorithm is an

exact, feature selection, problem solving method.

The result is formulated as follows (Ehrgott and Nickel 2002, Theorem 4.3):

Theorem 4.4. Let the multiobjective optimization problem (2.1) be a strictly quasiconvex

problem with upper semi-continuous objectives and with S ⊂ R2. Then a point x ∈ S is

Pareto optimal, if either

(1) the point x is strongly Pareto optimal for some subproblem with at most 3 objectives,

or

(2) there exists subsets I1, . . . , Ik ⊂ {1, . . . ,m}, |I j| ≤ 3, such that I1∪·· ·∪ Ik = {1, . . . ,m}

and x ∈ E(I j) for all j ∈ {1, . . . ,k}.

The algorithm based on this theorem uses the characterization of strong Pareto optimality

based on level sets presented at the end of section 2.1, i.e. that a point x ∈ S is strongly

Pareto optimal, if and only if
m⋂

j=1

L−z j
( f j) = {x},

where z j = f j(x).

Assume that the assumptions of Theorem 4.4 are satisfied. Then Ehrgott and Nickel’s algo-

rithm to determine whether a point x ∈ S is Pareto optimal goes as follows:

(1) Set k = 0 and Q= {I ⊂ {1, . . . ,m}, |I| ≤ 3}.

(2) Select an index set I ∈Q. Set Q=Q\{I}.

(3) If
⋂

j∈I L−z j
( f j) = {x}, the point x is strongly Pareto optimal for the subproblem with
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objectives f j, j ∈ I. By Theorem 4.4, the point x is then Pareto optimal for the original

problem.

(4) Check whether x ∈ E(I). If so, set k = k+1 and Ik = I. If now
⋃k

j=1 Ik = {1, . . . ,m},

then by Theorem 4.4 the point x is Pareto optimal also for the original problem.

(5) If Q is nonempty, go to (2). Otherwise the point x is not Pareto optimal.

4.2 Quasiconvex case

Ehrgott and Nickel (2002) showed that the result presented in Theorem 4.2 can not be ex-

tended as is to the case where the objectives are merely quasiconvex, as opposed to strictly

quasiconvex. The counterexample (Ehrgott and Nickel 2002, Example 3.1) consisted of the

three continuous piecewise linear objectives

f1 : R→ R, f1(x) =


4, if x < 0

−1
3x+4, if 0≤ x < 9

2

5
2 , if 9

2 ≤ x

f2 : R→ R, f2(x) =


3
2 , if x < 1

6
5x+ 3

10 , if 1≤ x < 7
2

9
2 , if 9

2 ≤ x

and

f3 : R→ R, f3(x) =


x+ 9

4 , if x < 1
2

11
4 , if 1

2 ≤ x < 9
2

x− 7
4 , if 9

2 ≤ x

The observation made in the article was that for the multiobjective optimization problem

defined by these objective functions,

EW 6⊂
⋃

I⊂{1,...,3}
E(I).

Indeed, any point in R is weakly Pareto optimal for the entire problem, but any point on the

half-open interval [7
2 ,

9
2) is not a Pareto optimal for the problem or any subproblem.
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To fix this issue in the case of merely quasiconvex objectives, the union needs to be taken

over the weak Pareto solutions of all subproblems of limited size. Then the following result

(Ehrgott and Nickel 2002, Corollary 3.1) holds:

Theorem 4.5. Let the multiobjective optimization problem (2.1) be a quasiconvex problem.

Then the set of weak Pareto solutions of the original problem is given by the weak Pareto

solutions of all subproblems with at most n+1 objectives. In other words,

EW =
⋃

I⊂{1,...,m}
0<|I|≤n+1

EW (I).
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5 General problems

5.1 MOSS

The point of this section will be to look at a series of algorithms by Brockhoff and Zitzler.

All of these algorithms revolve around the Minimum Objective Subset problem (MOSS)

presented in (Brockhoff and Zitzler 2006b). The Minimum Objective Subset problem is

the problem of finding the smallest subset of objectives of the multiobjective optimization

problem 2.1, such that the weak Pareto dominance relation is left unchanged on a given set

X ⊂ S, see (Sawaragi, Nakayama, and Tanino 1985, 2.3) for more information on dominance

structures. More precisely, the problem is concerned with finding the smallest possible index

set I ⊂ {1, . . . ,m} such that for any x,y ∈ X , f j(x)≤ f j(y) for all j ∈ {1 . . . ,m} if and only if

f j(x)≤ f j(y) for all j ∈ I.

The usual setting for applications of this problem is when X is an approximation of the set of

Pareto optimal solutions by a finite number of points, possibly obtained by some optimization

process. For this situation, it is possible to determine the solution to the MOSS problem

exactly via computational methods. Note that it is always possible that the only index set

preserving the weak Pareto dominance relation is the whole index set I = {1, . . . ,m}, in

which case no reduction in objectives through the MOSS problem can be found.

5.1.1 MOSS

Brockhoff and Zitzler (2006b) showed that the MOSS problem is NP-hard, which implies

that for a large number of objectives or a large set X , the problem becomes infeasible to solve

perfectly computationally. For this reason Brockhoff and Zitzler presented both an exact

algorithm and a greedy algorithm to solve the problem. In the classification of section 2.3,

the algorithms both fall into the feature selection and problem reducing categories. Naturally,

the exact algorithm is an exact method, whereas the greedy algorithm is an approximate one.

The greedy version of the algorithm is based on two observations about the MOSS problem.
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The first is that the weak Pareto dominance relation ≤W-Par⊂ X2,

x≤W-Par y if and only if F(x)≤ F(y)

is the intersection of the m relations ≤ j⊂ X2 defined by single objectives as

x≤ j y if and only if f j(x)≤ f j(y),

i.e.

≤W-Par=
m⋂

j=1

≤ j .

The second observation is that when considering the complements of these relations, the

intersection in the previous formula becomes a union, i.e.

≤C
W-Par=

m⋃
j=1

≤C
j ,

where ≤C
W-Par is the complement relation

≤C
W-Par= X2\ ≤W-Par

and similarly ≤C
j is the complement relation for ≤ j. Using these observations the greedy

algorithm amounts to selecting indices j ∈ {1, . . . ,m} one after another such that ≤C
j covers

as much as possible of the part of ≤C
W-Par not yet covered.

Precisely, the greedy algorithm for the MOSS problem is as follows:

(1) Set R =≤C
F and I = /0.

(2) If R = /0, the index set I is the solution.

(3) Select an index j ∈ {1, . . . ,m}\ I such that |≤C
j ∩R| is maximal.

(4) Set R = R\ ≤C
j and I = I∪{ j}. Go to step (2).

Brockhoff and Zitzler (2006b, Theorem 4) showed that this algorithm has a runtime of order

O(|X |2m) and an approximation ratio of Θ(log|X |).

For the presentation of the exact algorithm, it is convenient to define some additional no-

tation. The algorithm works using sets of index sets S ⊂ P({1, . . . ,m}), for which 2 types
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of set operations will be needed. The first is the pairwise union on elements, t, defined by

setting

S1tS2 = {I1∪ I2 : I1 ∈ S1, I2 ∈ S2}.

The second operation is the minimal set operation, min, which creates a new set out of those

index sets in S, which do not contain as proper subsets any other index set in S. In other

words,

minS = {I ∈ S : 6 ∃J ∈ S, J ( I}.

In Brockhoff and Zitzler’s article these two operations are combined into the notation t,

so the operation (S1,S2) 7→ S1 t S2 in their article corresponds to the operation (S1,S2) 7→

min(S1tS2) in this thesis.

The exact algorithm for the MOSS problem:

Set S = /0.

for (x,y) ∈ X2 do

Set Sx = {{ j} : f j(x)< f j(y)}.

Set Sy = {{ j} : f j(x)> f j(y)}.

Set Sxy = SxtSy.

if Sxy = /0 then

Set Sxy = {{1}, . . . ,{m}}.

end if

Set S = min(StSxy).

end for

The smallest index set I ∈ S is the solution.

Brockhoff and Zitzler (2006b, Theorem 5) proved that this algorithm indeed gives the exact

solution to the MOSS problem, and also showed that its run time is of order O(|X |2m2m).

The main idea of the algorithm is to find all index sets for which no objective can be removed

without changing the weak Pareto dominance relation on the set X . The smallest such index

set is then the solution of the MOSS problem.

The algorithm works by keeping track of the smallest possible index sets which explain the

weak Pareto dominance relation on the pair of points considered so far. Indeed at every

20



step of the for-loop, the sets Sxy contain as elements the smallest possible index sets, which

explain the relation on the single pair of points (x,y). That is, for any index set I ∈ Sxy,

F(x)≤ F(y) if and only if f j(x)≤ f j(y) for all j ∈ I and F(x)≥ F(y) if and only if f j(x)≥

f j(y) for all j ∈ I.

Notice that if an index set I explains the relation on some pairs of points (x1,y1), . . . ,(xk,yk)

and another index set J explains the relation on another bunch of pairs of points (xk +1,yk +

1), . . . ,(xl,yl), then the union of the index sets I ∪ J explains the relation on all the pairs

(x1,y1), . . . ,(xl,yl). This is why after every step the set S contains the smallest possible

index sets explaining the relation on all pairs so far. Thus, at the end of the algorithm, the

smallest index set in S is the solution to the MOSS problem.

Notice also, that the operation (S1,S2) 7→min(S1tS2) is associative. That is, when chaining

multiple operations, the order does not matter. In fact,

min(S1tmin(S2tS3)) = min(S1tS2tS3) = min(min(S1tS2)tS3).

If the for-loop in the exact algorithm for MOSS is unraveled, the algorithm amounts to

calculating the set

min(. . .(min(minS1tS2)tS3)) · · ·tSl),

where S1, . . . ,Sl are the sets Sxy for all pairs of points x,y ∈ X . By associativity, this oper-

ation does not have to be done sequentially. This means that the algorithm can actually be

parallelized by splitting the sets S1, . . . ,Sl into suitable segments and combining the results

with the same min(· t ·) operation. The main problem limiting the usefulness of this paral-

lelization is that the runtime of the algorithm is exponential with respect to the number of

objectives, whereas it is merely quadratic with respect to the size of the set X , which is where

this parallelization might save time.

5.1.2 δ -MOSS and k-EMOSS

The two variants of the MOSS problem that were studied by Brockhoff and Zitzler are δ -

MOSS and k-EMOSS (Brockhoff and Zitzler 2006a). Both of these modify the MOSS prob-

lem to include a consideration for error, but the problems have different goals. Brockhoff and

Zitzler presented both an exact and an approximate algorithm for both methods. All of the

21



algorithms presented in their article fall into the category of approximate, feature selection,

problem reducing methods.

The consideration for error is handled by replacing the weak Pareto dominance relation with

the relation ≤ε , defined by setting x≤ε y if

f j(x)− ε ≤ f j(y) for all j ∈ {1, . . . ,m},

where ε > 0 is some constant error term.

The δ -MOSS problem is concerned with finding the smallest subset of objectives, such that

the relation ≤δ is left unchanged on a given subset X ⊂ S. The k-EMOSS problem, on the

other hand, is concerned with finding a subset of at most k objectives, such that the relation

≤δ that is left unchanged on a given X ⊂ S has the smallest possible error δ ≥ 0. In other

words, if (I,δ ) is a solution to the k-EMOSS problem, then for the subset of objectives I ⊂

{1, . . . ,m}, |I| ≤ k and the relation≤δ is left unchanged on X . Furthermore, if J⊂{1, . . . ,m}

is a subset of objectives with |J| ≤ k that leaves a relation ≤ε unchanged on X , then ε ≥ δ .

The exact algorithm for the δ -MOSS and k-EMOSS problems works fundamentally in a

similar way to the exact algorithm for the original MOSS problem. That is, by sequentially

considering all pairs of points in X one after another and keeping track of all possible so-

lutions that preserve the ≤δ relation on the pairs of points considered so far. The greedy

versions of the algorithms also work essentially similarly to how the greedy algorithm for

the original MOSS problem worked. However, due to the need to try to either optimize the

error term in k-EMOSS or satisfy the error constraint in δ -MOSS, the selection of the best

index set is slightly more nuanced.

5.2 PCA

5.2.1 PCA-NSGA-II

Deb and Saxena’s PCA-NSGA-II procedure (Deb and Saxena 2005) combines the principal

component analysis (PCA) method with the NSGA-II evolutionary multiobjective optimiza-

tion method presented by Deb, Pratap, Agarwal and Meyarivan in an earlier article (Deb

et al. 2002). The idea is to supplement the shortcomings of the NSGA-II method in prob-
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lems with a large number of objectives by iteratively reducing the number of objectives. The

method can be classified as an approximate, feature selection, problem solving approach.

This method however straddles the line between feature selection and feature extraction, as

the way in which objectives are selected is based on the feature extraction method of PCA.

As usual, the setting is the multiobjective optimization problem (2.1) with m objectives. The

main steps of the PCA-NSGA-II procedure are as follows (Deb and Saxena 2005, 5.3):

(1) Set t = 0 and I0 = {1, . . . ,m}.

(2) Initialize a random population. Let Pt be the population obtained after running the

NSGA-II evolutionary optimization method for the problem with objectives It .

(3) Define a reduced set of objectives It+1 via principal component analysis on the popu-

lation Pt .

(4) If there was no change in objectives, i.e. It+1 = It , end the procedure. The population

Pt gives the approximation of the Pareto front. Otherwise set t = t +1 and go to (2).

From the objective reduction point of view, the interesting step in the above algorithm is step

(3). The main idea here is to determine if and how the objectives are correlated, and to select

the reduced set of objectives based on this knowledge. Thus, instead of working with the

objective vectors F(x) ∈ Rm given by points x in the population Pt , the principal component

analysis will use the vectors of single objective values

X j = { f j(x1), . . . , f j(xk)} ∈ Rk,

where k = |Pt | is the number of points in the population.

First the vectors X j are standardized to have zero means and unit variance. Then the corre-

lations of these standardized vectors are calculated. Next the principal components, i.e. the

eigenvectors of correlation matrix, and the corresponding eigenvalues are calculated.

The principal components are by assumption sorted in order of decreasing magnitude of

the corresponding eigenvalue. This means that the first principal component is the most

significant and explains the largest amount of variance in the data. Let l ∈ N be the smallest

index such that the first l principal components W1, . . . ,Wl explain at least 95% of the variance

in the data. These l principal components are then used to determine which objectives to
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select for the next iteration.

For the first (most significant) principal component W1, select the objectives correspond-

ing to the largest positive and smallest negative element of the vector. The other principal

components determine which objectives to select via the following process:

If all elements of the principal component vector are positive, select the objective corre-

sponding to the largest positive element. If all elements are negative, select all objectives.

Otherwise consider the ratio of the magnitudes of the largest positive element and the small-

est negative element

r =
∣∣∣∣maxi ai

min j a j

∣∣∣∣,
where the principal component in question is the vector (a1, . . . ,am̃) ∈ Rm̃. If the ratio is

too small or large, then the objective corresponding to either the largest positive or smallest

negative element is considered insignificant and only the more significant objective is chosen.

In Deb and Saxena’s implementation an upper bound of 1,25 and a lower bound of 0,9 are

used. Thus, if r > 1,25, select only the objective corresponding to the largest element, if

r < 0,9, select only the one corresponding to the smallest element, and otherwise select the

objectives corresponding to the largest and smallest elements.

The last step in the reduction process is to look at the reduced correlation matrix, that is,

the correlation matrix of only the objectives that were selected in the previous steps. If

there exists a pair of objectives with a positive correlation amongst themselves and identical

correlations with the other objectives, then one objective from the pair is deemed redundant.

When no such pairs exist, the final reduced list of objectives is found.

5.2.2 C-PCA-NSGA-II and MVU-PCA-NSGA-II

In a later article (Saxena and Deb 2007), Deb and Saxena presented two modifications of the

original PCA-NSGA-II procedure, the C-PCA-NSGA-II and MVU-PCA-NSGA-II methods.

Both of the variants follow the same outline as the original PCA-NSGA-II procedure, differ-

ing only in how the reduced set of objectives is determined. As such they still fall into the

classification of approximate, feature selection, problem solving methods.
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Both of the variants were designed to be able to avoid one of the main shortcoming of the

original PCA based method. As PCA looks at the data as a whole and looks for the linear

relations therein, it is not well suited to problems where the data is contained in some nonlin-

ear submanifold. As mentioned in the article of Deb and Saxena, the variants of the original

method are based on the strategy of embedding the data into a feature space where the data

can be more readily analyzed with essentially linear methods such as PCA.

The two variants differ in how they choose to embed the data into a feature space. In the C-

PCA-NSGA-II procedure Deb and Saxena utilize the correntropy PCA technique presented

by Xu et al. (2006). Here correntropy is defined as a generalization of the standard correla-

tion function which is used in standard PCA. Deb and Saxena note however, that using the

correntropy PCA technique with the PCA-NSGA-II procedure is problematic due to the need

to select a suitable kernel function for the embedding into a feature space, which naturally

varies depending on the problem at hand.

The MVU-PCA-NSGA-II procedure is a further refinement to avoid the previously men-

tioned problem of choosing a suitable kernel function. The problem is avoided by essentially

formulating the selection of the kernel as a convex optimization problem. It is based on the

maximum variance unfolding technique presented by Weinberger and Saul (2006). The main

idea is to find a locally distance preserving representation of the data that also maximizes the

sum of pairwise distances between the points. Weinberger and Saul give an intuitive descrip-

tion of this method by describing a beaded necklace that has been coiled up: “By pulling the

necklace taut, the beads are arranged in a line, a nonlinear dimensionality reduction from R3

to R1”.
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6 An implementation of Ehrgott and Nickel’s Pareto

optimality algorithm

6.1 Overview of the implementation

In this chapter, an implementation of a variant of Ehrgott and Nickel’s Pareto optimality

checking algorithm (see section 4.1.3) will be presented. Due to practical matters of the

computations involved, the actual algorithm does not directly reflect the more abstract algo-

rithm presented earlier. Namely step (3), the checking for strong Pareto optimality, has been

completely ignored due to the infeasibility of numerically confirming whether the Pareto

optimality of a point is strong or not.

The main problem here is that even for convex problems, confirming strong Pareto optimality

for a point x in the domain would require checking that a neighborhood of the point contains

no point y which is at least as good as x, i.e. f (y)≤ f (x). If there is a better point, i.e. a point

y for which y ≤Par x, then the numerical solution should arrive at the result that x is in fact

not Pareto optimal. However, in the case that there is a point x 6= y with f (y) = f (x), there is

no guarantee that a numerical optimization will find such a point y when minimizing in the

neighborhood of the point x.

Dropping step (3) causes the algorithm to lose its “if and only if” guarantee, and it will

instead give a sufficient, but not always necessary, criterion for the Pareto optimality of a

given point x. However, since strong Pareto optimality implies Pareto optimality it is possible

to determine the cases where a Pareto optimal point might slip through unconfirmed due to

the omission of step (3). If there are no subproblems, for which the point is Pareto optimal,

then there are also no subproblems for which it is strongly Pareto optimal. In these cases

the implemented algorithm can confirm that the point is in fact not Pareto optimal. Because

of this, the implementation of the algorithm has three possible results for the point: Pareto

optimal, not Pareto optimal, and uncertain about Pareto optimality.

The implementation has been coded in Python 2.7 (Python Software Foundation 2015) uti-

lizing assorted default libraries, and using the SciPy and NumPy libraries (Jones, Oliphant,
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Peterson, et al. 2001–), see also (Oliphant 2007), to handle the optimization of single objec-

tive problems. The NumPy library is used mainly for convenience and integration with the

SciPy optimization framework, which works with NumPy arrays. The SciPy library is used

to provide the downhill simplex algorithm to solve a single objective minimization problem.

Although the implementation has not been created in a directly modular way, it would be

straightforward to swap out this minimizer for some other arbitrary optimizer provided by

another library.

6.2 Details on the functionality

The code for the implementation itself can be found in appendix A and an example of its use

in the case of the problem described in section 6.3.1 can be found in appendix B. The code

has not been tested for any other version of Python other than 2.7 and is thus not guaranteed

to work for any other version.

In the code, the main algorithm is contained in the function isPareto, which takes as ar-

guments a function to calculate objective vector values, the point whose Pareto optimality

is being checked, a parameter for the achievement scalarizing function (see below), and a

boolean value that determines if all subproblems should be checked even if Pareto optimal-

ity has already been confirmed. The return value of the function is 1, 0 or−1, where 1 means

that the point is Pareto optimal,−1 means it is not Pareto optimal, and 0 means it is unknown

whether the point is Pareto optimal or not.

The first step of the algorithm is to generate a list of all index sets which correspond to the

subproblems for which the Pareto optimality of the given point needs to be checked. This is

done by using the powerful Python default library of itertools to generate all subsets of the

entire index set with 1,2 or 3 elements.

After this, the algorithm loops through the index sets one by one checking whether the point

is Pareto optimal for the subproblem where only the objectives in the current index set are

considered. This check itself is done via converting the 1,2 or 3 objective optimization

problem into a single objective problem by considering the minimization of the achievement
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scalarizing function

g : S→ R, g(x) = max
j∈I

( f j(x)− f j(x0))+ρ ∑
j∈I

f j(x),

see (Wierzbicki 1981) and (Miettinen 1999). Here x0 is the point whose Pareto optimality is

being checked, I is the current index set and ρ is a suitable small constant. This constant ρ

is the third parameter of the function isPareto mentioned above. The key point in the way

this method works is that the point x0 is Pareto optimal for the subset of objectives I if and

only if it is the minimizer for the achievement scalarizing function for some small enough

constant ρ .

As mentioned earlier, the optimization of the single objective problem is done by using the

downhill simplex algorithm (see Steuer 1986, 3.4) provided by the SciPy library. This algo-

rithm was selected as a reasonable optimizer for a generic (convex) optimization problem. It

is worth noting that this is an unconstrained optimizer, whereas the optimization problems

being solved may be constrained and it is even possible that the objectives are not defined

outside these constraints. However, due to the assumption of strict quasiconvexity of the

objectives, any globally Pareto optimal point is also locally Pareto optimal, and vice versa.

Therefore even the downhill simplex algorithm works well enough when the point being

tested is not on the boundary of the feasible region.

The COBYLA method provided by the SciPy library was also tried as an alternative opti-

mizer, with the hope of being able to properly handle constraints. The problem with this

approach is however that the linear approximations used in this method are not suitable for

minimizing the achievement scalarizing function. This is due to the presence of the max

operation, which may cause edges to appear on the graph of the function, where the linear

approximations on either side of the edge are wildly different. This type of behaviour can be

seen for example with the function

f : R2→ R, f (x,y) = x+ |y|.

Using the default parameters and an initial guess of the point x0 = (0,0), the COBYLA

implementation of the SciPy library returns the same point (0,0) as the minimizer of the

function f . This is not, however, a minimizer of f , since the value of f can be decreased

simply by decreasing the value of the variable x.
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Finally, due to numerical accuracy issues, an additional tolerance parameter was imple-

mented that determines when the point x0 is considered to be the minimizer of the achieve-

ment scalarizing function. This means that as long as the point xmin given by the optimization

procedure is close to the point x0 in both distance and in value of the function, the point x0 is

assumed to be a minimizer. In other words, if

|xmin− x0|< δ and g(x0)≤ g(xmin)+δ

for the tolerance parameter δ , then x0 is assumed to be a minimizer and thus it is assumed

that x0 is Pareto optimal for the subset of objectives in question.

6.3 Examples

The implemented algorithm was tested on two main problems checking Pareto optimality

for a few different points known to be (or known not to be) Pareto optimal. This section will

present the results from these tests.

6.3.1 A simple linear problem

The first testcase is essentially merely check on the functionality of the algorithm. It involves

4 linear functions chosen in such a way as to make every point a (strongly) Pareto optimal

solution. The objectives were defined as

f1 : R2→ R, f1(x,y) = x,

f2 : R2→ R, f2(x,y) = y,

f3 : R2→ R, f3(x,y) =−2x− y and

f4 : R2→ R, f4(x,y) = x+ y.

As all the objectives are linear, they are immediately continuous and strictly quasiconvex, so

the assumptions of the method are immediately verified. To see that any point is strongly

Pareto optimal, one can use the criterion mentioned in section 2.1, i.e. that a point (x,y) is

strongly Pareto optimal if and only if
m⋂

j=1

L−z j
( f j) = {(x,y)},
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where z j = f j(x) is the value of the j:th objective at (x,y).

Here, the objectives are all linear, so the sublevel sets involved are all closed halfplanes with

a common boundary point at (x,y). It is easily verified that no other point is contained in the

intersection of the halfplanes. For example, at the origin (0,0), there is no point (x,y) other

than (0,0) itself that satisfies

x≤ 0, y≤ 0 and −2x− y≤ 0.

The above equations imply that the origin is a (strongly) Pareto optimal point also for the

subproblem given by the objective subset {1,2,3}. Similarly one can see that it is a (strongly)

Pareto optimal point for the subproblem with objectives {1,3,4}. For any other subproblem

with at most 3 objectives, the origin is not Pareto optimal.

The same is true in general, i.e. any point x is (strongly) Pareto optimal for the subproblems

with objectives {1,2,3} or {1,3,4} and not Pareto optimal for any other subproblem with

at most 3 objectives. This was indeed correctly verified by the algorithm implementation,

i.e. the algorithm gave a positive result for Pareto optimality of an arbitrary point. This was

tested with 100 random points in the square [−10,10]2 ⊂ R2. The implementation of this

example can be found in appendix B.

6.3.2 A more varied problem

The second problem tested has a few more varied types of objectives and, more importantly,

has a nontrivial Pareto front. The objectives for this problem are

f1 : S→ R, f1(x,y) = (x−1)2 +
1
2

y2,

f2 : S→ R, f2(x,y) = 0.15y,

f3 : S→ R, f3(x,y) = 1/(4− x2− y2),

f4 : S→ R, f4(x,y) = max{−x− y,−x} and

f5 : S→ R, f5(x,y) = (x+2)2 +(y+2)2.

where S = B(0,2)⊂ R2. Again, these functions are all continuous and strictly quasiconvex,

so the method works for these objectives. For this problem any point in the set

{(x,y) ∈ S, y≤ 0, x− y≥ 0}
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is a Pareto optimal solution and no other Pareto optimal solutions exist.

The behavior of the objectives can be seen from their level sets. For the first objective, the

level sets are ellipses centered at (1,0). For the second objective, lines in the direction of

the x-axis. For the third, circles centered at the origin. The fourth objective has as its level

sets bent lines made up by two halflines emanating in the directions (0,1) and (1,−1) from

points on the x-axis. For the last objective, the level sets are arcs of circles centered outside

the feasible region S at (−2,−2).

For a representative sample of the behavior of the algorithm, the feasible region S = B(0,2)

was split into parts based on these level sets and a representative point from each part was

selected. The results of the algorithm will be looked at in depth for the following 6 points:

p1 = (−1,1), p2 = (0.5,0.8), p3 = (−1,−0.5),

p4 = (−0.5,−1.5), p5 = (0.3,−1.2) and p6 = (1.1,−1.6).

Of these points, the last three are Pareto optimal solutions, while the first three are not.

This result was correctly confirmed by the algorithm. For this problem, the algorithm even

confirmed that the first three points are indeed not Pareto optimal (as opposed to giving

the result that they are possibly not Pareto optimal). This was possible since in this case

the points were not Pareto optimal for any subproblem, which gives the desired result, as

discussed in the overview of the implementation.

Running the program showed that the latter three points were also not Pareto optimal for

any subproblem with only 1 or 2 objectives. For subproblems with 3 objectives, the results

are tabled below. In the table, the objective sets for which the point was Pareto optimal are

marked with a ×-symbol. Note that the index sets {1,3,4}, {1,3,5}, {1,4,5} and {3,4,5}

are absent from the table, since no point was Pareto optimal for any of these subproblems.

{1,2,3} {1,2,4} {1,2,5} {2,3,4} {2,3,5} {2,4,5}

p4 × × ×

p5 × × × ×

p6 × × ×

Perhaps the most significant observation that is immediately observed from the table is the

31



column of marks for the subproblem with objectives {2,4,5}. The points p4, p5 and p6 are

all Pareto optimal for this subproblem. On the other hand, as previously mentioned, none

of the points p1, p2 or p3 are Pareto optimal for any subproblem, including this one. Thus

the subproblem {2,4,5} correctly classifies the Pareto optimality of all the points p1, . . . , p6

considered. For this problem, this is also true in general. That is, for any point it is sufficient

to solve only the subproblem with objectives {2,4,5} to determine whether or not a point is

Pareto optimal. Therefore, the objectives f1 and f3 are redundant.
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7 Conclusions

The methods presented in this thesis approached the problem of dimension reduction in

multiobjective optimization in a few different ways. Malinowska (2002, 2006) presented a

method for the linear and convex cases to determine whether a single objective is redundant

by studying the sets of Pareto optimal solutions. Malivert and Boissard (1994), and later

Ehrgott and Nickel (2002), presented methods to find the Pareto front by solving only the

Pareto fronts of subproblems with a limited number of objectives. Deb and Saxena (2005),

Saxena and Deb (2007), and Brockhoff and Zitzler (2006b, 2006a), presented methods that

can be used to determine which objectives to choose for further study when the values of the

objectives on a finite set of points are known.

What is mainly lacking, is however the approach, where prior to the optimization process

some objectives are deemed redundant. The only method of this type is found in the linear

case, where Gal and Leberling (1977) presented a criterion based on linear relations within

the objectives. It can of course be argued, that if in the optimization problem there are redun-

dant objectives, then the problem has not been formulated properly. However, in practical

problems, it is probably unreasonable to assume that the model for the problem is always

minimal from the optimization point of view.

This observation naturally leads into the iterative structure of dimension reduction present in

both Brockhoff and Zitzler’s, and Deb and Saxena’s, methods:

(1) Find some finite approximation for the set of Pareto optimal solutions.

(2) Perform some dimension reduction on the data given by the values of the objectives

on this finite set of points to find a reduced set of objectives.

(3) Either repeat from step (1), considering only the new reduced set of objectives, or

present the reduced data as the solution.

There are two main benefits to this type of approach. First, the computationally expensive

optimizations of a high number of objectives need not be performed with the same level

of detail as with a single-optimization approach. Second, since it may be difficult to select

a suitable solution when the number of objectives is large, it is useful to reduce unnec-
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essary complexity in the decision making process even if no further optimizations will be

performed. The main drawback to this type of approach is possibly losing some relevant

data in the reduction process, for example due to the imperfect nature of the approximation

of the set of Pareto optimal solutions.

Even the implementation of Ehrgott and Nickel’s algorithm presented in chapter 6 could be

applied in this way, as seen from the example discussed in 6.3.2. In this example it was

found that the original 5 objectives could be reduced to 3 objectives, which were observed

to correctly determine Pareto optimality for any point. This means that when presenting the

data, the remaining 2 objectives can safely be omitted and if further optimization is necessary,

the calculations would be much simpler.

During the implementation of the aforementioned algorithm, it also became apparent that the

algorithm never gave the result that it is unknown whether or not a point is Pareto optimal.

In fact, the geometry of convex sets on the plane seem to imply that it may in fact not be

possible that, for a (quasi)convex problem, a point is strongly Pareto optimal for a subset

of three objectives, while not being Pareto optimal for any subproblem with a single fixed

objective and two other arbitrary objectives. This is a problem for further research, since if

this were indeed the case, then step (3) in the algorithm of Ehrgott and Nickel (see section

4.1.3) could be omitted without losing any generality. This would avoid the problem in the

algorithm of determining when a Pareto optimal point is strongly Pareto optimal, which is

computationally difficult.
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Appendices

A Python code of the implemented algorithm

from itertools import chain,combinations

from scipy import optimize

import numpy

from math import sqrt

def achscalar(f,x,x_0,rho,debug=False):

"""The achievement scalarizing function evaluated at x for the

vector valued function f, using the basepoint x_0."""

return max(f(x)-f(x_0))+rho*sum(f(x))

def minmaxopt(f, x_0, maxiter, tol, rho):

"""Find argmin_x max_i f_i(x)-f_i(x_0)

for a function f=(f_1,...,f_n)."""

def objf(x):

return achscalar(f,x,x_0,rho)

xmin = optimize.fmin(objf, x_0,

maxfun=maxiter, xtol=tol, ftol=tol, disp=False)

return xmin

def limitedPowerset(items, minsize, maxsize):

"""Returns a list containing all the subsets of the set ’items’

that have between minsize and maxsize elements (inclusive)."""

return list(chain.from_iterable(combinations(items, r)

for r in range(minsize,maxsize+1)))

def isPareto(f,x,rho,checkall=False):

"""An implementation of Ehrgott and Nickel’s algorithm to

check when a point is Pareto optimal from

Matthias Ehrgott and Stefan Nickel. On the number of criteria
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needed to decide pareto optimality. Mathematical Methods of

Operations Research, 55(3):329-345, 2002.

f: The objective vector function of arbitrary dimension

accepting a 2 dimensional variable.

x: The point whose Pareto optimality is being checked.

rho: The parameter used in the achievement scalarizing function

to distinguish Pareto optimal points from weakly Pareto

optimal points.

checkall: If True, will check Pareto optimality for all

subproblems. Otherwise ends as soon as point is known

to be Pareto optimal.

Returns 1, if the point is Pareto optimal for the problem,

0, if it is unknown whether the point is Pareto optimal

-1, if the point is not Pareto optimal.

"""

maxiter = 1000

tol = 10**-6

f0 = f(x)

# Select all the indexsets of objectives for which the Pareto

# optimality of x may need to be checked.

S = set(range(len(f0)))

Q = limitedPowerset(S,1,3)

# Initialize helper variables.

Isets = []

Iunion = set()

paretofound = False

# Loop through the indexsets.

for I in Q:
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# Define a new objective vector function from the reduced

# problem corresponding to the objectives in I.

def fI(y):

fy=f(y)

return numpy.array([fy[j] for j in I])

# Optimize the subproblem.

xmin = minmaxopt(fI, x, maxiter, tol, rho)

paropt = \

achscalar(fI,xmin,x,rho) >= achscalar(fI,x,x,rho) - tol \

and sqrt(sum((xmin - x)**2)) < tol

if paropt:

print "Pareto optimality for subproblem",I,":",paropt

if paropt:

paretofound = True

Isets.append(I)

Iunion = Iunion | set(I)

if (not checkall) and Iunion == S:

# All objectives accounted for.

# x is Pareto optimal for the entire problem.

return 1

if checkall and Iunion == S:

return 1

# Some objectives have not been accounted for.

if paretofound:

# x was Pareto optimal for at least 1 subproblem

# if it was also strongly Pareto optimal, then

# x may not be Pareto optimal for the entire problem.

return 0

# x was not Pareto optimal for any subproblem,
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# thus it is not Pareto optimal for the entire problem.

return -1

B Usage example for the implementation

from datetime import datetime

import numpy

import random

if __name__ == ’__main__’:

# Define the objective vector function.

def testfunc(x):

return numpy.array([x[0],x[1],-2*x[0]-x[1],x[0]+x[1]])

# parameter for the achievement scalarizing function

rho = 10**-6

# The points to be checked.

xlist = [numpy.array([(random.random()-0.5)*20,(random.random()-0.5)*20])

for j in range(100)]

for i,x in enumerate(xlist):

print "\n---\nTest %d: Pareto optimality of %s\n---" % (i,x)

prev = datetime.now()

res = isPareto(testfunc,x,rho)

cur = datetime.now()

print "\nAlgorithm complete in %f seconds."\

%((cur-prev).total_seconds())

print "The point",x,("is" if res == 1 else\

("might not be" if res == 0 else "is not")),\

"Pareto optimal."
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