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A New Augmented Lagrangian Approach for L1-mean Curvature Image
Denoising∗

M. Myllykoski†, R. Glowinski‡, T. Kärkkäinen†, and T. Rossi†

Abstract. Variational methods are commonly used to solve noise removal problems. In this paper, we present
an augmented Lagrangian-based approach that uses a discrete form of the L1-norm of the mean
curvature of the graph of the image as a regularizer, discretization being achieved via a finite element
method. When a particular alternating direction method of multipliers is applied to the solution
of the resulting saddle-point problem, this solution reduces to an iterative sequential solution of
four subproblems. These subproblems are solved using Newton’s method, the conjugate gradient
method, and a partial solution variant of the cyclic reduction method. The approach considered here
differs from existing augmented Lagrangian approaches for the solution of the same problem; indeed,
the augmented Lagrangian functional we use here contains three Lagrange multipliers “only,” and
the associated augmentation terms are all quadratic. In addition to the description of the solution
algorithm, this paper contains the results of numerical experiments demonstrating the performance
of the novel method discussed here.

Key words. alternating direction methods of multipliers, augmented Lagrangian method, image denoising,
image processing, mean curvature, variational model

AMS subject classifications. 68U10, 94A08, 53A05, 35A15

DOI. 10.1137/140962164

1. Introduction. Let Ω be a bounded domain of R2 (a rectangle in practice). In the sim-
plest form, denoising is a process in which a given noisy image f : Ω → R is separated into
the actual image u : Ω → R and the remaining noise g : Ω → R, that is, f = u + g. Vari-
ational methods, e.g., partial differential equation (PDE)–based (Euler–Lagrange equation)
and nonlinear and nonsmooth optimization–based (corresponding energy functional), intro-
duce a special family of techniques for image restoration and denoising in the general field of
image processing and computer vision [14, 49]. A landmark in such techniques is the work by
Perona and Malik related to anisotropic diffusion [41, 42]. Since then, many formulations and
corresponding algorithms have been proposed, analyzed, realized, and utilized to improve the
quality or understandability of digital images.

Let V be the space of restored functions, and let us consider the following minimization
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problem: {
u ∈ V,

J (u) ≤ J (v) ∀v ∈ V.
(1.1)

Typically

J (v) = Jf (v) + εJr(v);(1.2)

i.e., J consists of two terms, namely, (i) Jf (v), whose role is to fit (in a suitable norm) the
denoised function to the noisy data f (the fidelity term), and (ii) the regularizing term εJr(v),
where ε (> 0) is the regularization coefficient; examples of functionals Jr will be given below.
The value of ε can be determined from the noise variance [10] if this information is known, or
using some suitable heuristics [34].

Well-known variational approaches for image denoising relying on (1.2) include (but are
not restricted to) the following:

BV (or TV) regularization: To be able to restore and denoise images with discontinuous
intensity, a regularization using a norm that is not embedded in C(Ω̄) is needed. During
the last two decades, the image denoising scene has been dominated by a method using
such a regularization. The Rudin–Osher–Fatemi (ROF) method [44] relies on a discrete
variant (obtained by finite difference discretization) of the minimization problem (1.1)
with J defined by

J (v) = ε

∫
Ω
|∇v| dx+

1

2

∫
Ω
|f − v|2dx.(1.3)

A natural candidate for the function space V is the space BV (Ω) of the functions with
bounded variation over Ω. Problem (1.1) with J defined by (1.3) and close variants of
it have motivated a large literature where their denoising properties, approximation,
and iterative solution have been extensively discussed. We refer the reader to, e.g.,
[33, 34, 35, 45] and references therein for further information.

Euler’s elastica: Euler’s elastica as a prior curve model for image restoration was introduced
in [39]. The work was continued, in connection with image inpainting, in [13]. In
particular, Ambrosio and Masnou [1, 2] advocated using as regularizer the level set of
v via the functional

Jr(v) =

∫
Ω

[
a+ b

(
∇· ∇v

|∇v|

)2
]
|∇v|dx.(1.4)

Let us return for a moment to the ROF model. Although the functional in (1.3) is convex,
the nonreflexivity of the space BV (Ω) makes its analysis nontrivial, particularly the behavior
of its solution when ε → 0. This issue and many others, such as the derivation of dual
formulations to (1.1) with J defined by (1.3), its discretization, the implementation, and the
convergence of iterative solution methods (of the splitting type), are thoroughly discussed in
[31].
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Actually, as pointed out by [38] (see also [3], [12], and [51]), the ROF model has some
significant drawbacks, such as the loss of image contrast, the smearing of corners, and the
staircase effect. To remedy these unfavorable properties, several cures have been proposed
(see [51] for a list of related references), among them the one introduced in [51], namely,
instead of (1.1) with J defined by (1.3) use the following model:

u = arg minv∈V ε

∫
Ω

∣∣∣∣∣∇· ∇v√
1 + |∇v|2

∣∣∣∣∣ dx+
1

s

∫
Ω
|f − v|s dx,(1.5)

commonly known these days as the L1-mean curvature denoising model; s ≥ 1, s = 2 being
the most common choice. The fidelity term in (1.5) is of the simplest form compared to
the proposed formulations. In particular, as depicted in [40], one can, via adding two linear
transformations to this model, address other important image processing tasks related to
deconvolution, inpainting, and superresolution. The rationale for (1.5) is discussed in much
detail in [51]. However, to the best of our knowledge, the variational problem (1.5) is not yet
fully understood mathematically due to the nonconvexity and nonsmoothness of the functional
in (1.5) and to the fact that a natural choice for V is not clear. Concerning this last issue,
taking V = BV (Ω) is suggested in [51]. We have, however, a problem with such a choice since
we think that the definition of V has to include conditions on the second derivatives. We can
only hope that a variant of [31] dedicated to problem (1.5) will appear in the near future.

Considering the above situation, our goals in this paper are more modest and purely finite
dimensional algorithmic. They can be summarized as follows:

1. Taking advantage of the relative simplicity of the formalism of the continuous prob-
lem, we derive in section 2 a (necessarily formal) augmented Lagrangian algorithm.
Our algorithm is a simplified variant of the one considered in [52] since we use a
projection on a nonconvex set to treat a nonlinear constraint instead of treating it
by penalty-duality, which would imply one extra augmentation functional and the re-
lated Lagrange multiplier. Thus, our algorithms involve three augmentation terms
instead of four and three Lagrange multipliers instead of four. Indeed, when several
Lagrange multipliers are used, one of the main issues is their adjustment to optimize
convergence. We will return to the details of this reduction in section 2.

2. Taking advantage of the augmented Lagrangian algorithm described in section 2, we
define in section 3 a discrete version of this algorithm to be applied to a (kind of)
mixed finite element approximation of problem (1.5). We choose finite element meth-
ods for approximating the problem instead of finite differences since, when applied
on uniform triangulations (like the one in Figure 1), in particular, these finite ele-
ment methods automatically generate finite difference approximations with, among
other attributes, good accuracy, stability, and monotonicity properties. Moreover, the
variational derivation of Galerkin/finite element approximations (like the one we use
here) makes them the perfect match for the solution of problems from Calculus of
Variations, such as (1.1) with J defined by (1.3) and (1.5) (see [24] for other exam-
ples). Another advantage of finite element approximations is their ability to handle
nonuniform meshes, adaptively or not, which may be of interest for some applications.
More precisely, the minimization of the discrete counterpart of the functional in (1.5)

D
ow

nl
oa

de
d 

01
/1

6/
15

 to
 1

30
.2

34
.1

61
.6

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

98 M. MYLLYKOSKI, R. GLOWINSKI, T. KÄRKKÄINEN, AND T. ROSSI

is transformed into the iterative sequential solution of four subproblems: one being
smooth but nonlinear in R

2, one purely explicit vertexwise, and two linear with pos-
itive definite and symmetric coefficient matrices of a scalar- (assuming s = 2) and
vector-valued type.

3. In section 5 we apply the algorithms defined in section 4 to the solution of a variety of
test problems of variable complexity in order to evaluate the capability of the method-
ology discussed in this paper. The actual solution process is somewhat simplified by
assuming that s = 2 (which was also recommended by Zhu and Chan [51]).

2. Augmented Lagrangian formulation and basic solution algorithm.

2.1. Some preliminary observations. Despite the fact that problem (1.5) is not fully
understood mathematically, we are going to take advantage of the simplicity of its formalism
to derive a formal solution algorithm of the augmented Lagrangian type. This algorithm will
be useful since in section 3 we will take it as a model to define a finite dimensional analogue
dedicated to the solution of a finite element approximation of problem (1.5).

Actually, augmented Lagrangian techniques have a well-established role in analyzing con-
strained optimization problems as well as in deriving general solution algorithms for such
problems [5, 10, 22, 25, 29, 32]. With BV-regularization a reformulation with an augmented
Lagrangian method can introduce one or two new variables to deal with ∇u in the nonsmooth
regularization term (e.g., [15, 48, 40] and the references provided in the reviews therein) or
additionally to represent u in the fidelity term [11, 50]. In the latter case, three subproblems
(alternating directions) typically appear and are then solved using linear solvers, explicit for-
mulae (projection or shrinking), and nonlinear optimization methods (for nonsmooth fidelity).
Moreover, when more than one additional variable is introduced, one typically applies varying
regularization parameters for the penalized constraint (e.g., [11, 50]). More examples where
many variational formulations (including Euler’s elastica) for image processing have been effi-
ciently treated using augmented Lagrangian approaches can be found in, e.g., [20, 30, 46, 50].

As already mentioned in section 1, an augmented Lagrangian algorithm was used in [52]
for the solution of (1.5). The augmented Lagrangian approach we apply in this paper is of the
ALG-2 type [22, 29] (better known as ADMM for alternating direction methods of multipliers).
The basic idea of ADMM and the convergence proof in a convex situation were presented in the
1970s by Glowinski and Marrocco [27] and Gabay and Mercier [23]. Augmented Lagrangian
methods, with partly similar ingredients for the solution of other challenging problems, are
described, e.g., in [8, 16, 17, 19, 18, 21, 28]; most of these problems are nonconvex, as is the
one discussed here.

The solution method in [52] is also of the ALG-2 (or ADMM) type, but it uses a different
(and, we think, more complicated) augmented Lagrangian functional as the functional involves
four augmentation functionals and four Lagrange multipliers. What made us uncomfortable
was the Lagrange multiplier treatment of the nonlinear nonsmooth condition |q̂1|− q̂1 · q̂2 = 0,
where q̂1 and q̂2 belong (formally) to (L2(Ω))3. The related condition in our approach is

q2 =
q1√

1 + |q1|2
,(2.1)

where q1 and q2 belong (formally) to (L2(Ω))2. The discrete analogue of the aforementioned
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equality will be treated by projection, avoiding those two terms associated with it in the
augmented Lagrangian and reducing to three the number of Lagrange multipliers. This is a
notable simplification considering that the adjustment of these parameters is one of the main
issues associated with ADMM-type methods (it is discussed in [19] in a particular case). Also,
in our approach, all the constraints treated by penalty-duality are linear, which is not the case
in [52] (one of the constraints there is not only nonlinear but also nonsmooth).

Remark 1. At present, there is no available theory (as far as we know) for the convergence
of ADMM methods for nonconvex problems, even in a finite dimension. Currently, the most
popular publication concerning augmented Lagrangian and ADMM algorithms is certainly [7],
a large review article (>100 pages) uniquely concerned with finite dimensional problems. The
part of the article dedicated to nonconvex problems covers four (inconclusive) pages, suggest-
ing that convergence proofs are difficult to obtain in most nonconvex cases. However, various
investigations concerning nonconvex problems and comparisons with known solutions have
shown the capability of augmented Lagrangian methods at solving nonconvex problems (as
shown, for example, in [18] and [29]). This certainly encouraged us to apply this methodology
to the solution of problem (1.5).

2.2. An augmented Lagrangian formulation. Assuming that a minimizer exists, the
minimization problem (1.5) is clearly equivalent to{

(u,p1,p2,p3, ψ) ∈ E,

j(u,p1,p2,p3, ψ) ≤ j(v,q1,q2,q3, ϕ) ∀ (v,q1,q2,q3, ϕ) ∈ E,
(2.2)

where

j(v,q1,q2,q3, ϕ) = ε

∫
Ω
|ϕ| dx+

1

s

∫
Ω
|f − v|s dx.(2.3)

Above,

E =

{
(v,q1,q2,q3, ϕ) : v ∈ V, (q1,q2) ∈ (L2(Ω))2×2,q3 ∈ H(Ω; div),

ϕ ∈ L2(Ω), q1 = ∇v, q2 =
q1√

1 + |q1|2
, q3 = q2, ϕ = ∇·q3

}
,

(2.4)

where

H(Ω; div) =
{
q ∈ (L2(Ω))2 : ∇·q ∈ L2(Ω)

}
.(2.5)

Remark 2. In section 1, we mentioned that the choice of V in the denoising model (1.5)
is a critical issue. Actually, a reasonable candidate is (for its simplicity) the Sobolev space
W 2,1(Ω) since the two terms defining the cost functional in (1.5) make sense in that space (we
recall that from the Rellich–Kondrachov compact imbedding theorem the injection ofW 2,1(Ω)
in Lq(Ω) is compact ∀q ∈ [1,+∞)). From a practical (but formal) point of view, there is an
advantage to taking V = H2(Ω)(=W 2,2(Ω)) for the following reasons: (i) H2(Ω) is a Hilbert
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space; (ii) H2(Ω) being dense in W 2,1(Ω), one obtains the same infimium when one minimizes
the cost functional in (1.5) over these two spaces; and (iii) the above two spaces lead to the
same discrete minimization problem.

Let us define

Υ = [V ×E12 ×H(Ω; div)× L2(Ω)]× [(L2(Ω))2 × (L2(Ω))2 × L2(Ω)],(2.6)

with

E12 =

{
(q1,q2) ∈

(
L2(Ω)

)2×2
: q2 =

q1√
1 + |q1|2

}
.(2.7)

With problem (2.2) we associate the following augmented Lagrangian functional Lr : Υ → R

(with r = (r1, r2, r3), ri > 0 ∀i = 1, 2, 3):

Lr(v,q1,q2,q3, ϕ;μ1,μ2, μ3) = ε

∫
Ω
|ϕ|dx+

1

s

∫
Ω
|f − v|sdx

+
r1
2

∫
Ω
|∇v − q1|2dx+

∫
Ω
μ1 · (∇v − q1)dx

+
r2
2

∫
Ω
|q2 − q3|2dx+

∫
Ω
μ2 · (q2 − q3)dx

+
r3
2

∫
Ω
|∇·q3 − ϕ|2dx+

∫
Ω
μ3(∇·q3 − ϕ)dx,

(2.8)

where (q1,q2) ∈ E12.

Now, suppose that the augmented Lagrangian Lr has a saddle-point

ω = (u,p1,p2,p3, ψ;λ1,λ2, λ3) ∈ Υ,(2.9)

that is

Lr(u,p1,p2,p3, ψ;μ1,μ2, μ3) ≤ Lr(u,p1,p2,p3, ψ;λ1,λ2, λ3)

≤ Lr(v,q1,q2,q3, ϕ;λ1,λ2, λ3),
(2.10)

for all (v,q1,q2,q3, ϕ;μ1,μ2, μ3) ∈ Υ.

It can be easily shown that if ω is a saddle-point of Lr over Υ, then u is a solution of the
minimization problem (1.5) and

p1 = ∇u, p2 =
p1√

1 + |p1|2
, p3 = p2, and ψ = ∇·p3.(2.11)

2.3. The basic algorithm. A natural candidate for the solution of the saddle-point prob-
lem (2.9)–(2.10) is a particular ADMM called ALG-2 by various practitioners (see, e.g.,
[4, 22, 24, 29]). Among the several algorithms of the ALG-2 type, the following is considered
in this paper.
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Algorithm 1.

Input: f, ε, s, r, N
Initialize(u0,p0

1,p
0
2,p

0
3, ψ

0;λ0
1,λ

0
2, λ

0
3)

for n = 0, . . . , N do

(pn+1
1 ,pn+1

2 ) = arg min(q1,q2)∈E12
Lr (u

n,q1,q2,p
n
3 , ψ

n;λn
1 ,λ

n
2 , λ

n
3 )(2.12)

pn+1
3 = arg minq3∈H(Ω;div)Lr

(
un,pn+1

1 ,pn+1
2 ,q3, ψ

n;λn
1 ,λ

n
2 , λ

n
3

)
(2.13)

ψn+1 = arg minϕ∈L2(Ω)Lr

(
un,pn+1

1 ,pn+1
2 ,pn+1

3 , ϕ;λn
1 ,λ

n
2 , λ

n
3

)
(2.14)

un+1 = arg minv∈V Lr

(
v,pn+1

1 ,pn+1
2 ,pn+1

3 , ψn+1;λn
1 ,λ

n
2 , λ

n
3

)
(2.15)

λn+1
1 = λn

1 + r1(∇un+1 − pn+1
1 )

λn+1
2 = λn

2 + r2(p
n+1
2 − pn+1

3 )

λn+1
3 = λn3 + r3(∇·pn+1

3 − ψn+1)

if stopping criterion is satisfied then
return (un+1,pn+1

1 ,pn+1
2 ,pn+1

3 , ψn+1)
end if

end for
return ERROR

A more explicit formulation of subproblem (2.12) reads as follows:

(pn+1
1 ,pn+1

2 ) = arg min(q1,q2)∈E12

[
1

2

∫
Ω

(
r1|q1|2 + r2|q2|2

)
dx

−
∫
Ω
(r1∇un + λn

1 ) · q1dx−
∫
Ω
(r2p

n
3 − λn

2 ) · q2dx

]
.

(2.16)

Similarly, the minimization problem (2.13) is equivalent to the following well-posed linear
variational problem in H(Ω; div):

pn+1
3 ∈ H(Ω; div),

r2

∫
Ω
pn+1
3 · q dx+ r3

∫
Ω
∇·pn+1

3 ∇·q dx =

∫
Ω

(
r2p

n+1
2 + λn

2

)
· q dx

+

∫
Ω
(r3ψ

n − λn3 )∇·q dx, ∀q ∈ H(Ω; div).

(2.17)

Next, a more explicit formulation of the minimization problem (2.14) is given by

ψn+1 = arg minϕ∈L2(Ω)

[
ε

∫
Ω
|ϕ| dx+

r3
2

∫
Ω
|ϕ|2 dx

−
∫
Ω

(
r3∇·pn+1

3 + λn3
)
ϕ dx

]
.

(2.18)
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Finally, the minimization problem (2.15) is nothing but equivalent to the following well-posed,
nonlinear, elliptic, variational problem (linear if s = 2):

un+1 ∈ V,

r1

∫
Ω
∇un+1 · ∇v dx+

∫
Ω

∣∣un+1 − f
∣∣s−2

(un+1 − f) v dx

=

∫
Ω

(
r1p

n+1
1 − λn

1

)
· ∇v dx ∀v ∈ V.

(2.19)

Remark 3. Assuming the minimizing sequences converge to a limit, we do not know in
which space the related weak convergence takes place and if the functional under consider-
ation has the weak lower semicontinuity property necessary to guaranty the convergence to
a minimizer. Indeed, since our main concern is mostly to find a simpler alternative to the
method discussed in [52], we skip this theoretical aspect of the problem.

Remark 4. As mentioned in the introduction, the augmented Lagrangian approach dis-
cussed in this section is largely formal, unlike its finite element realization discussed in section
3. This formality yields to various variational crimes, one of them being to take ϕ in L2(Ω),
and consequently q3 in H(Ω; div), while the natural functional space for ϕ is obviously L1(Ω).
Actually, a similar variational crime is committed when associating (as done by various prac-
titioners today) with the functional J defined by (1.3) the augmented Lagrangian

Lr(v,q;μ) = ε

∫
Ω
|q| dx+

1

2

∫
Ω
|f − v|2 dx

+
r

2

∫
Ω
|∇v − q|2 dx+

∫
Ω
μ · (∇v − q) dx,

(2.20)

which is well suited to operations in H1(Ω), but definitely not in BV (Ω), which is the natural
space in which to minimize the above functional J . Of course, the finite dimensional analogues
of (2.20) make sense, authorizing, for example, the use of ADMM to solve the corresponding
minimization problem.

3. Finite element realization.

3.1. Generalities. The rationale for using finite elements instead of finite differences was
given in the introduction. An inspection of relations (2.16)–(2.19) shows that none of them
explicitly involve derivatives of an order higher than one, implying that finite element spaces
consisting of piecewise polynomial functions are well suited for defining a discrete analogue of
Algorithm 1. Moreover, the expected lack of smoothness of the solutions (or quasi solutions)
of problem (1.5) strongly suggests employing low degree polynomials (of a degree typically
less than or equal to one). Actually, the approximation we will use is of the mixed type, like
those used, for example, in [9, 16, 21, 31]; it allows solving a nonsmooth fourth-order elliptic
problem using approximation spaces commonly used for the solution of second-order elliptic
problems. For a thorough discussion of mixed finite element methods and some applications,
see [6].

Concerning the solution of problem (1.5), we assume that Ω is a rectangle and denote by
∂Ω the boundary of Ω. Since Ω is polygonal, we can triangulate it using a standard finite
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AUGMENTED LAGRANGIAN MEAN CURVATURE DENOISING 103

element triangulation Th (verifying therefore the assumptions listed in, e.g., [24]). A typical
finite element triangulation (uniform here) is shown in Figure 1.

x2

x1

Figure 1. A uniform triangulation of Ω = (0, 1)2.

We denote by Σh (respectively, Σ0h) the finite set of the vertices of Th (respectively, the
finite set of the vertices of T0h that do not belong to ∂Ω). From now on we will assume that

Σ0h = {Pj}N0h
j=1 and Σh = Σ0h ∪ {Pj}Nh

j=N0h+1 ,(3.1)

where N0h (respectively, Nh) is the number of elements of Σ0h (respectively, Σh). Finally, we
denote by Ωj the polygon that is the union of those triangles of Th that have Pj as a common
vertex, and by |Ωj | the measure of Ωj.

3.2. Fundamental finite element spaces and the discrete divergence operator. Follow-
ing Remark 2, we assume from now on that V = H2(Ω). Using the appropriate discrete
Green’s formula, there is no difficulty in approximating the saddle-point problem (2.9)–(2.10)
using classical C0-conforming finite element spaces. To approximate the spaces H1(Ω) and
H2(Ω), we will use

Vh =
{
v ∈ C0(Ω̄) : v|T ∈ P1 ∀ T ∈ Th

}
.(3.2)

Above, P1 is the space of the polynomials of two variables of degree less than or equal to one.

Now, for j = 1, . . . , Nh, let us uniquely define the shape function wj associated with the
vertex Pj by

⎧⎪⎨
⎪⎩
wj ∈ Vh,

wj(Pj) = 1,

wj(Pk) = 0 ∀k, 1 ≤ k ≤ Nh, k 
= j.

(3.3)
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104 M. MYLLYKOSKI, R. GLOWINSKI, T. KÄRKKÄINEN, AND T. ROSSI

The set Bh = {wj}Nh
j=1 is a vector basis of Vh, and we have

v =

Nh∑
j=1

v(Pj)wj ∀v ∈ Vh.(3.4)

Other finite element spaces will prove useful in what follows. The first, denoted by V0h, is
the subspace of Vh consisting of the functions vanishing on ∂Ω, that is,

V0h = {v ∈ Vh : v(Pj) = 0 ∀j = N0h + 1, . . . , Nh} ;(3.5)

we clearly have

v =

N0h∑
j=1

v(Pj)wj ∀v ∈ V0h.(3.6)

The other space, denoted by Qh, is defined by

Qh =
{
q ∈ (L∞)2 : q|T ∈ (P0)

2 ∀ T ∈ Th
}
,(3.7)

where P0 is the space of those polynomials that are constant. We clearly have

q =
∑
T∈Th

(q|T )χT
∀q ∈ Qh,(3.8)

where χT is the characteristic function of T and

∇Vh ⊂ Qh.(3.9)

The linear space Qh is a suitable candidate for the approximation of the space H(Ω; div),
the main issue being to properly approximate the divergence of an arbitrary element of Qh.
Suppose that q ∈ H(Ω; div) and v ∈ H1

0 (Ω); we have (from the divergence theorem)∫
Ω
∇·q v dx = −

∫
Ω
q · ∇v dx ∀(v,q) ∈ H1

0 (Ω)×H(Ω; div).(3.10)

Suppose now that q ∈ Qh; relation (3.10) suggests defining the discrete divergence operator
divh by: ∀q ∈ Qh we have

divhq ∈ V0h,∫
Ω
(divhq) v dx = −

∫
Ω
q · ∇v dx ∀v ∈ V0h,

(3.11)

or equivalently ∀q ∈ Qh, we have

divhq ∈ V0h,∫
Ωj

(divhq)wj dx = −
∫
Ωj

q · ∇wj dx ∀j = 1, . . . , N0h.
(3.12)
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Since the functions q and ∇wj are constant over the triangles of Th, the integrals on the right-
hand sides of the equations in (3.12) can be computed exactly (and easily). On the other
hand, to simplify the computation of the integrals on the left-hand sides, we advocate using
the trapezoidal rule to compute (approximately this time) these integrals; we then obtain

(divhq)(Pj) = − 3

|Ωj|

∫
Ωj

q · ∇wj dx ∀j = 1, . . . , N0h.(3.13)

Remark 5. Albeit satisfactory conceptually, the use of the discrete Green’s formulas (as
done above to approximate the divergence operator) may lead to spurious oscillations (see
[9] for dramatic evidence of this unwanted phenomenon), particularly when combined with
low-order approximations, as in the case here. In order to eliminate (or at least strongly
dampen) these unwanted oscillations, we advocate the following regularization (some say also
stabilization) procedure: replace (3.12) or (3.13) by: ∀q ∈ Qh we have

divhq ∈ V0h,

C
∑
T∈Th

∫
T
|T |∇(divhq) · ∇v dx+

∫
Ω
(divhq) v dx

= −
∫
Ω
q · ∇v dx ∀v ∈ V0h,

(3.14)

with C(> 0); boundary layer thickness considerations suggest C ≈ 1. The above kind of
Tychonov regularization procedure has been successful when applied to the solution of the
Dirichlet problem for the Monge–Ampère equation in two dimensions, using mixed finite
element approximations based on low-order C0-conforming finite element spaces; see [9] for
further details. Actually, it has not been tested yet for the solution of problem (1.5).

3.3. Discrete Lagrangian and discretized subproblems. Since our goal in this paper is to
compute and approximate the solution of problem (1.5), using a discrete variant of Algorithm
1, a first step in that direction is to define an approximation of the augmented Lagrangian
(2.8). The candidate functional Lrh : (Vh × Q3

h × V0h) × (Q2
h × V0h) → R proposed in this
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paper is the following:

Lrh(v,q1,q2,q3, ϕ;μ1,μ2, μ3) =
ε

3

N0h∑
j=1

|Ωj||ϕ(Pj)|

+
1

3s

Nh∑
j=1

|Ωj||f(Pj)− v(Pj)|s

+
r1
2

∫
Ω
|∇v − q1|2dx+

∫
Ω
μ1 · (∇v − q1)dx

+
r2
2

∫
Ω
|q2 − q3|2dx+

∫
Ω
μ2 · (q2 − q3)dx

+
r3
6

N0h∑
j=1

|Ωj||(divhq3)(Pj)− ϕ(Pj)|2

+
1

3

N0h∑
j=1

|Ωj|μ3(Pj) [(divhq3)(Pj)− ϕ(Pj)] ,

(3.15)

where (q1,q2) ∈ E12h with

E12h =

{
(q1,q2) ∈ Q2

h : q2 =
q1√

1 + |q1|2

}
.(3.16)

Based on Lrh, subproblem (2.12) can be approximated by

(pn+1
1 ,pn+1

2 ) = arg min(q1,q2)∈E12h

[
1

2

∫
Ω

(
r1|q1|2 + r2|q2|2

)
dx

−
∫
Ω
(r1∇un + λn

1 ) · q1dx−
∫
Ω
(r2p

n
3 − λn

2 ) · q2dx

]
.

(3.17)

Since functional (3.17) does not contain derivatives of q1 and q2, its minimization can be
performed pointwise (in practice on the triangles of the finite element triangulation Th). This
leads to the solution, a.e. in Ω, of a four-dimensional problem of the following type:

(x1,x2) = arg min(y1,y2)∈e12

[
1

2

(
r1|y1|2 + r2|y2|2

)
− b1 · y1 − b2 · y2

]
,(3.18)

with b1,b2 ∈ R
2 and

e12 =

{
(y1,y2) ∈ R

2 × R
2 : y2 =

y1√
1 + |y1|2

}
.(3.19)

The term y2 from (3.18) can be easily eliminated using the nonlinear relation in (3.19). This
leads to the following unconstrained (and nonconvex) two-dimensional problem:

x1 = arg miny∈R2

[
|y|2
2

(
r1 +

r2
1 + |y|2

)
−
(
b1 +

b2√
1 + |y|2

)
· y
]
.(3.20)
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Since the objective function in (3.20) is differentiable, an obvious choice for the solution of
the problem is Newton’s method.

Problem (3.20) can be reduced even further by observing that if x is a solution of (3.20),
then it follows from the Schwarz inequality in R

2 that x and the vector b1 + b2√
1+|x|2

are

positively co-linear, that is, there is α ≥ 0 such that

x1 = α

(
b1 +

b2√
1 + |x1|2

)
.(3.21)

It follows from (3.20) and (3.21) that

x1 = α

(
b1 +

b2√
1 + ρ2

)
,

(ρ, α) = arg min(σ,τ)∈A

[
τ2

2

∣∣∣∣b1 +
b2√
1 + σ2

∣∣∣∣
2(

r1 +
r2

1 + σ2

)

− τ

∣∣∣∣b1 +
b2√
1 + σ2

∣∣∣∣
2
]
,

(3.22)

where

A =

{
(σ, τ) ∈ R

+ ×R
+ : τ

∣∣∣∣b1 +
b2√
1 + σ2

∣∣∣∣ = σ

}
.(3.23)

Now clearly, due to (3.23), we have

α =
ρ∣∣∣∣b1 +

b2√
1+ρ2

∣∣∣∣
,(3.24)

and thus

ρ = arg minσ∈R+

[
σ2

2

(
r1 +

r2
1 + σ2

)
− σ

∣∣∣∣b1 +
b2√
1 + σ2

∣∣∣∣
]
.(3.25)

Similarly, subproblem (2.17) can be approximated by

pn+1
3 ∈ Qh,

r2

∫
Ω
pn+1
3 · q dx+

r3
3

N0h∑
j=1

|Ωj |(divhpn+1
3 )(Pj)(divhq)(Pj)

=

∫
Ω
(r2p

n+1
2 + λn

2 ) · q dx+
1

3

N0h∑
j=1

|Ωj|(r3ψn − λn3 )(Pj)(divhq)(Pj)

∀q ∈ Qh.

(3.26)
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The bilinear functional on the left-hand side of (3.26) being positive definite and symmetric,
an obvious choice for the solution of the above problem is the conjugate gradient algorithm,
initialized with the vector-valued function pn

3 .
Subproblem (2.18) can be approximated by

ψ = arg minϕ∈V0h

[
ε

N0h∑
j=1

|Ωj ||ϕ(Pj)|+
r3
2

N0h∑
j=1

|Ωj||ϕ(Pj)|2

−
N0h∑
j=1

|Ωj|(r3divhpn+1
3 + λn3 )(Pj)ϕ(Pj)

]
.

(3.27)

Let Xn
j = (r3divhp

n+1
3 + λn3 )(Pj). The closed form solution of subproblem (3.27) is given by

ψn+1(Pj) =
1

r3
sgn(Xn

j )max(0,
∣∣Xn

j

∣∣− ε) ∀j = 1, . . . , N0h.(3.28)

Finally, subproblem (2.19) can be approximated by

un+1 ∈ Vh,

r1

∫
Ω
∇un+1 · ∇v dx+

1

3

Nh∑
j=1

|Ωj||(un+1 − f)(Pj)|s−2(un+1 − f)(Pj)v(Pj)

=

∫
Ω
(r1p

n+1
1 − λn

1 ) · ∇v dx ∀v ∈ Vh.

(3.29)

Problem (3.29) could be solved, for 1 ≤ s < 2, for example, using a semismooth Newton
method or a nonlinear overrelaxation method like that discussed in [26]. Alternately, if s = 2,
problem (3.29) reduces to

un+1 ∈ Vh,

r1

∫
Ω
∇un+1 · ∇v dx+

1

3

Nh∑
j=1

|Ωj|(un+1 − f)(Pj)v(Pj)

=

∫
Ω
(r1p

n+1
1 − λn

1 ) · ∇v dx ∀v ∈ Vh.

(3.30)

It that case, a wide variety of methods could be applied. This article advocates a method
called radix-4 partial solution variant of the cyclic reduction (PSCR) [36, 37, 43, 47] in the
cases where the discretization mesh is orthogonal. In other cases, subproblem (3.30) could be
solved, for example, using multigrid-type methods.

4. Implementation. Subproblems excluding the first one can be addressed in a straight-
forward fashion. Subproblem (3.26) is solved using the conjugate gradient method without
any preconditioning since we use a uniform mesh in practice. The subproblem (3.30) is solved
using the radix-4 PSCR method. Finally, the solution of subproblem (3.27) is a simple trian-
glewise operation.
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Before a digital image v̂ : {1, . . . , Ŵ} × {1, . . . , Ĥ} → R can be presented as a member of
the finite element space Vh, we must first choose how we are going to deal with the dimensions
of Ω and the spatial discretization step h. When one of these is chosen, the other is also fixed.
We decided to normalize the dimensions of Ω = (0,W ) × (0,H) by setting max(W,H) = 1.
As a result, the spatial discretization step h is fixed to 1/(max(Ŵ , Ĥ) − 1), implying h � 1
in practice. The fact that the spatial discretization step depends on the pixel size of the
image could potentially have an effect on the final denoised image. See Remark 7 for further
discussion.

4.1. Solution of the first subproblem. Apparently the most involved part of the discrete
analogue of Algorithm 1 is the solution of the first subproblem (3.17). We could solve either
the two-dimensional form (3.20) or the one-dimensional form (3.25). Depending on b1,b2 and
r1, r2 both forms can have multiple local minimas due to the nonconvex nature of the mean
curvature. Our actual realization first applies Newton’s method to the two-dimensional form
(3.20) starting from obvious initial guess pn

1 (x). Assuming that the method converges and
the achieved solution is actually a local minimum, we then use the explicit relation (3.21) to
test the obtained solution candidate. Only then is the solution candidate accepted.

If Newton’s method fails, we proceed with the one-dimensional form (3.25) and apply
the well-known bisection method. Some fine-tuning is needed because the best local mimima
should be obtained to guarantee overall convergence. Hence, our actual heuristic algorithm
for the minimization of the one-dimensional form (3.25) reads as follows:

Algorithm 2.

η = � log4(
√
2h−1)�

L = {[4k−1, 4k] : k = 1, . . . , η} ∪ {{0}, [0, 1], [4η ,+∞[}
K =

{
bisection(Ψ, l, 1

10) ∈ R : l ∈ L
}

k̄ = arg mink∈K Ψ(k)
ρ = bisection(Ψ, [k̄ − 1

10 , k̄ +
1
10 ], σ)

pbisection(x) =
ρ

∣
∣
∣
∣
b1+

b2√
1+ρ2

∣
∣
∣
∣

(
b1 +

b2√
1 + ρ2

)

Above, Ψ is the objective function from the one-dimensional form (3.25), and the function
bisection(Ψ, l, ς) applies the bisection search to the function Ψ on the interval l with accuracy
tolerance ς. If interval l is unbounded, then interval l is adjusted by moving the right-hand
side boundary in such a way that the value of the function Ψ is larger on the right-hand side
boundary than it is on the left-hand side boundary. In addition, h is the spatial discretization
step and σ (> 0) is the requested accuracy. Finally, we set

pn+1
1 (x) = arg minq∈{pnewton,pbisection,p

n
1 (x)}Φ(q),(4.1)

where Φ is the objective function from (3.20) and pnewton is the solution (or the result of the
last iteration) obtained by Newton’s method.

We obtained this heuristic algorithm by observing the cases where Newton’s method
failed to solve the two-dimensional form (3.20) and by investigating the behavior of the one-
dimensional form (3.25) on those cases. Since pn

1 begins to approximate the gradient of un

as the discrete analogue of Algorithm 1 progresses and the solution of the one-dimensional
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form (3.25) is the length of pn
1 , it makes sense to concentrate on the interval [0,

√
2h−1] (as-

suming Im(un) ⊂ [0, 1]). The overall shape of the graph motivated us to divide the interval
into subintervals as described above. In rare cases, the global mimima was actually located
outside the range [0,

√
2h−1], which also had to be taken into account.

In practice, the combination of the two aforementioned algorithms works well in almost all
cases. Newton’s method converges quickly for most of the triangles of Th; for the few triangles
for which Newton’s method fails, one uses Algorithm 2. The cases where both algorithms fail
are rare and are limited to individual triangles.

4.2. Initialization and stopping criterion. Concerning the use of the discrete variant
of Algorithm 1, several issues will be addressed, obvious ones being initialization, stopping
criterion, and the choice of the Lagrange multipliers r and ε. The choice of parameters r
and ε is addressed in section 5, and thus only the initialization and stopping criterion will be
discussed here.

A number of different kinds of initialization methods were considered; the most prominent
were

u0 = f, q0
1 = ∇u0, q0

2 =
q0
1√

1 + |q0
1|2
, q0

3 = q0
2, ψ

0 = ∇·q0
3,

λ0
1 = λ0

2 = 0, λ03 = 0,

(4.2)

and

u0 = 0, q0
1 = q0

2 = q0
3 = 0, ψ0 = 0,

λ0
1 = λ0

2 = 0, λ03 = 0.
(4.3)

In the case of initialization (4.2), only the term corresponding to the mean curvature of the
image surface is nonzero in the functional Lrh; and, in the case of initialization (4.3), only the
term |u − f |s is nonzero. These differences play a major role in the overall behavior of the
algorithm; the effect of both initializations will be discussed in further detail in section 5.

The second issue to be addressed is the stopping criterion. Several candidates were con-
sidered, such as

|un − un+1|∞
|un|∞

< δ,
|un − un+1|2

|un|2
< δ, and

|J (un)− J (un+1)|
|J (un)| < δ,(4.4)

where δ > 0. The following criterion was found to be the most straightforward:

|Lrh(ω
n)− Lrh(ω

n+1)|
|Lrh(ωn)| < δ,(4.5)

where ωn = (un,pn
1 ,p

n
2 ,p

n
3 , ψ

n;λn
1 ,λ

n
2 , λ

n
3 ).

The aforementioned criterion works well as long as the Lagrange multipliers r1, r2, and
r3 are selected to be large enough so that they accurately enforce the equality constraints in
(2.4).
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5. Numerical results. In order to demonstrate the functionality of the discrete variant of
Algorithm 1, we applied it against a large variety of test problems. These problems include
synthetic and photographic images. For all these test problems, the values of the noise function
g are uniformly distributed on the closed interval [−p, p], p > 0. We took δ = 10−4 for the
stopping criterion defined by (4.5). All images are grayscale, and the original images are
scaled to the range [0, 1].

5.1. Choice of initialization method and parameters. The behavior of the algorithm
varied drastically depending on its initialization. Initialization (4.2) had a tendency to cause
extremely slow convergence and an imperceptible low decrease of the value of the objective
function in (1.5). By adjusting the parameters ε and r accordingly, reasonably good results
were obtained in some cases. Usually this required a large parameter ε and small values for the
Lagrange multipliers r1, r2, and r3. However, each Lagrange multiplier combination worked
only for a specific problem, and the undertaking of finding a Lagrange multiplier combination
applicable to all problems proved futile. When the method was successfully initialized this
way, it retained a considerable amount of detail while leaving some residual noise.

On the other hand, the initialization (4.3) caused a completely different behavior as the
convergence was much faster, particularly during the first few tens of iterations. Finding a
suitable Lagrange multiplier combination was difficult. The equality constraints in (2.4) and
a crude dimensional analysis suggest that if |∇u|2 � 1, the augmentation functionals behave
such that p1 ∼ h−1,p2 ∼ h−1,p3 ∼ h−1, and ψ ∼ h−2. Thus, taking into account the
homogeneity considerations, we should choose the following: ε ∼ h2, r1 ∼ h2, r2 ∼ h2, and
r3 ∼ h4. On the other hand, the same analysis suggests that for |∇u|2 � 1, the augmentation
functionals behave such that p1 ∼ h−1,p2 ∼ 1,p3 ∼ 1, and ψ ∼ h−1, and thus we should
choose the following: ε ∼ h, r1 ∼ h2, r2 ∼ 1, and r3 ∼ h2. In addition, from the formulation of
subproblem (3.26), it can be seen that h2r2 ≈ r3 could be a suitable choice because it would
balance the left-hand side terms. Otherwise the conjugate gradient method would converge
extremely slowly.

However, by applying the discrete analogue of Algorithm 1 against a large number of test
problems and observing the residuals associated with the equality constraints in (2.4), we
concluded that we should choose ε ∼ h, r1 ∼ h, r2 ∼ 1, and r3 ∼ h2. This was due to the
fact that the equality constraint associated with the Lagrange multiplier r1 did not converge
when r1 ∼ h2. Further testing leads us to the following Lagrange multiplier combination:

ε = r0h,

r1 = 10r0h,

r2 = 5r0,

r3 = 5r0h
2,

(5.1)

where r0(> 0) is a parameter that can be tuned depending on the amount of noise.

In (5.1), the Lagrange multipliers r1, r2, and r3 are large enough to accurately enforce
the equality constraints in (2.4) while keeping the convergence speed reasonable. When one
combines the initialization (4.3) with the above-mentioned Lagrange multipliers, the method
removes a considerable amount of noise while filtering out some detail. From these observations
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it was decided to use initialization (4.3) and the Lagrange multiplier combination (5.1) for all
examples and comparisons.

Remark 6. A “simple” way to fix the problem with the selection of ε is to take

ε = Ch
1+ 1

1+|∇u|2 ,(5.2)

with C on the order of 1 (other nonlinear functions of |∇u| are possible). We intend to inves-
tigate this approach in another paper. A simple way to use this variable in space parameter
ε is as follows:

1. Solve the image restoration problem using a simpler method (based on BV-regulariza-
tion, for example). Call u0 the solution to this problem.

2. Set ε0 = Ch
1+ 1

1+|∇u0|2 .
3. For i = 1, . . . ,M , solve

ui = arg minv∈V

∫
Ω
εi−1

∣∣∣∣∣∇· ∇v√
1 + |∇v|2

∣∣∣∣∣ dx+
1

s

∫
Ω
|f − v|s dx(5.3)

and set εi = Ch
1+ 1

1+|∇ui|2 . We believe that M = 2 should be enough.

Remark 7. In our approach, Ω = (0,W )× (0,H) is normalized such that max(W,H) = 1.
This means that the spatial discretization step h depends on the pixel dimensions of the image.
However, this issue was treated very differently in [51] and [52]. In these papers, the spatial
discretization step h was chosen first and, thus, in contrast to our approach, the dimensions
of Ω depend on the pixel dimensions of the image.

As pointed out in [51] and [52], the spatial discretization step h plays an important role
in the behavior of the method. This is due to the fact that h affects the magnitude of the
gradient. In order to justify the choices made in this paper we investigated the behavior of
the discrete regularization term

k(v)(Pj) =

∣∣∣∣∣
(
divh

∇v√
1 + |∇v|2

)
(Pj)

∣∣∣∣∣ , v ∈ Vh, Pj ∈ Σ0h.(5.4)

Our goal was to find out how k(v) behaves pointwise as a function of h. This refines the
view on how h should be chosen. We generated a large number of test images containing
only random noise and analyzed the obtained data statistically. In addition, we modified our
implementation so that the parameter h we consider in the remainder of the current remark
is consistent with the one used in [51], [52], implying that h may be chosen freely, and tested
various values of this parameter (including some larger than 1).

Figures 2, 3, and 4 show the obtained results. In Figure 2, the pixel values are uniformly
distributed over various intervals; i.e., the figure shows how the regularization term reacts to
the changes in the “intensity” of the noise. In Figure 3, the nonzero pixel values are uniformly
distributed in the interval [−0.2, 0.2], but only a certain percentage of the pixels contains
nonzero values; i.e., the figure shows how the regularization term reacts to the changes in the
“quantity” of the noise. Figure 4 shows the same results in a scaled form.
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Figure 2. The average pointwise behavior of the discrete regularization term k(v) as a function of h. The
pixel values are uniformly distributed in the interval [−p, p].

Figure 3. The average pointwise behavior of the discrete regularization term k(v) as a function of h. Only
a certain percentage of the pixels contains nonzero values.

Figure 4. Scaled versions of Figures 2 (on the left) and 3 (on the right).

It is clear that k(v) exhibits three different behaviors when the value of h is varied:

1. If h is small enough (∼ 10−3), then k(v) ∼ h−1, which is consistent with the afore-
mentioned dimensional analysis. Another defining property is that the regularization
term k(v) is unable to differentiate between low intensity and high intensity noise.
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This has three main consequences: First, the regularization term is almost always
very large when dealing with photographic images; thus the model wants to produce
overly smooth solutions. As a result, the parameter ε must be small to preserve small
details. Second, it is likely that the model may misidentify some noise as a true jump
in the data and preserve it. This observation was also noted in [51] and [52]. Third,
the regularization term probably becomes even more difficult to deal with because
the transition from a smooth image to a noisy image is extremely steep. This could
also explain why the initialization (4.2) did not work: If u0 = f , then the value of
the regularization term would be the same almost everywhere at u0, and a transition
to even slightly lower “energy” would require significant smoothing of the image. In
other words, it is nearly impossible to find a descending path from u0 to the global
minimizer because the regularization term is “flat” near u0 (= f). It should be noted
that the regularization term can still differentiate between low and high quantity of
noise.

2. If h is large enough (∼ 101), then k(v) ∼ h−2, which is again consistent with the
aforementioned dimensional analysis. The results show that the value of the regular-
ization term is directly proportional to the intensity of the noise (see, in particular,
Figure 4). This is not particularly surprising because k(v) ∼ �v when |∇v|2 � 1.
Numerical experiments indicate that our method works really well when h = 1, but
the output images are quite blurred, as expected, since the regularization term favors
shallow gradients over the steeper ones. In addition, the initialization (4.2) actually
works even better than the initialization (4.3) in the sense that the method converges
much faster. Both initializations also lead to the same solution in most cases. Again,
this is not a surprise because the nonconvex part of the regularization term does not
have a major impact when |∇v|2 � 1.

3. If h ∼ 10−1, then the regularization term does not have a clear asymptotic behavior.
This parameter range is clearly the most interesting because of the way the regulariza-
tion term reacts to the changes in the intensity of the noise. The value of h determines
how steep the transition from a smooth image to a noisy image is, and, thus, it has
a significant effect on the final output image. Unfortunately, it is far from clear how
h should be chosen. In principle, the parameter h determines how the regularization
term reacts to noise, and the parameter ε determines how strongly this reaction is
taken into account. However, in practice, there seems to be some overlap between
these two parameters.

Our choice of h falls into the first category if it is assumed that the number of pixels is
large. Although this choice has many disadvantages, the effects of which can be seen in some
of the numerical results presented in this paper, we believe that our choice is justified, at
least in the context of this paper, for the following reasons: (i) If the input image contains
substantial amount of noise, then only a limited amount of information can be recovered even
under the best conditions. By taking this into consideration, a solution that is a little too
smooth is not a big disadvantage. In addition, if the original image is smooth, then small
h is a reasonable choice. (ii) If h � 1, then the two terms in the objective function can be
easily balanced by selecting ε ∼ h. This means that tuning the parameters is going to be a
much easier task. Considering that the goals of this paper are purely algorithmic, we do not
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want to focus too much on such tuning. (iii) Since the objective function is likely to be more
challenging to deal with when h is chosen to be small, problems with small h can be seen as
benchmark problems. In that sense, small h is is well suited for the goals of this paper.

5.2. Examples and comparisons. Figure 5 shows the results obtained while applying
the implementation against one of the synthetic test images (Test9). This synthetic test
image contains only simple patterns and shapes. The purpose of this test image is to show
that the algorithm works effectively in the sense that edges, corners, and image contrast are
preserved. Here the noise parameter p was 0.2, and the parameter r0 was 0.015. The value
of the objective function in (1.5) at noisy image f was 0.027159 and J (u0) = 0.364139. The
convergence to the given tolerance was achieved after 291 iterations with J (u291) = 0.007054.
The l2-residual between the vector representations of the original and noisy images was 58.95.
A similar residual between the original and output images was 9.049. The algorithm was
able to eliminate practically all noise, and the output image is almost indistinguishable from
the original image. However, when the difference between the output and noisy images is
examined more closely, it is clear that the algorithm had some minor difficulties with the
diagonal tips of the star.

Figure 6 shows similar results for a second synthetic test image (Test6). This synthetic test
image contains many different challenges (sine waves, high and low contrast text, gradients,
edges, corners, and narrow bounces) to the algorithm. Here p = 0.2, r0 = 0.004, J (f) =
0.004503, and J (u0) = 0.207021. The convergence to the given tolerance was achieved after
215 iterations with J (u215) = 0.004130. The residuals between the noisy and original and the
output and original images were 58.16 and 14.35, respectively. The algorithm filtered out a
considerable amount of noise, and it is very clear that the algorithm does not have problems
with sine waves or gradients. However, the algorithm had difficulties in preserving certain
details, such as low-contrast text and the narrowest bounces in the surface.

Figure 7 shows results for a photographic image (Barbara). This test image is particularly
challenging because it contains image details and noise on similar scales. Here, p = 0.2,
r0 = 0.005, J (f) = 0.008823, and J (u0) = 0.134979. After 268 iterations, the value of the
objective function in (1.5) was 0.008394. The residuals between the noisy and original and the
output and original images were 58.86 and 35.50, respectively. Again, the algorithm filtered
out a considerable amount of noise, but some details were lost in the process as it is clear that
the algorithm was unable to resolve the stripes and grids in the table cloth and pants. This
can be seen clearly in the intersection plot.

The values of the objective function along the iterations are plotted in Figures 8, 9, and
10. The figures also include the following normalized residuals:

Rn
1 =

1

2

|∇un − pn
1 |

max(|∇un|, |pn
1 |)
,

Rn
2 =

1

2

|pn
2 − pn

3 |
max(|pn

2 |, |pn
3 |)
,

Rn
3 =

1

2

|divhpn
3 − ψn|

max(|divhpn
3 |, |ψn|) .

(5.5)

In all three cases, the value of the objective function drops sharply during the first few tens of
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Figure 5. A synthetic test image (Test9) containing simple shapes. From top left: Original image, noisy
image (p = 0.2), output image, difference between the output and noisy images, and two horizontal intersections.
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Figure 6. A synthetic test image (Test6) containing sine waves, text, gradients, and narrow bounces. From
top left: Original image, noisy image (p = 0.2), output image, difference between the output and noisy images,
and two horizontal intersections.

iterations. However, in the case of the last two, it takes a few tens of iterations more before
the value of the objective function drops below J (f). Also, the decrease is not monotonic as
the value of the objective function jumps momentarily after a few iterations. This jump takes
place at the same time as the value of the normalized residual Rn

1 jumps and was observed
with almost all the test images in varying extent. Similar behavior was also presented in [52].

Figure 11 shows a comparison between different test problems with varying amounts of
noise. The relevant parameters, objective function values, iteration counts, and residuals are
shown in Table 1. It is clear that the algorithm performed commendably when p = 0.05 or
p = 0.1. In the case of p = 0.2, more details were lost in the process, and when p = 0.4,
almost all small details were lost.

Finally, Figure 12 visualizes the influence of r0 on the resulting denoised image. The
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Figure 7. A photographic test image (Barbara). From top left: Original image, noisy image (p = 0.2),
output image, difference between the output and noisy images, and horizontal intersection from the center of
the image.
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Figure 8. Values of the objective function in (1.5) and normalized residuals (5.5) along the iterations for
a synthetic test image (Test9).

Figure 9. Values of the objective function in (1.5) and normalized residuals (5.5) along the iterations for
a synthetic test image (Test6).

Figure 10. Values of the objective function in (1.5) and normalized residuals (5.5) along the iterations for
the photographic test image (Barbara).

relevant objective function values, iteration counts, and residuals are shown in Table 2. In
all cases, p = 0.2. It is clear that the optimal value of r0 is somewhere near 0.005. These
results illustrate a clear trend that can be observed in all considered test images: the larger
the value of r0 is, the better the algorithm behaves. Actually, when r0 = 0.001, the value of
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Figure 11. A comparison between different test problems with varying amounts of noise: p = 0.05 (r0 =
0.001), p = 0.1 (r0 = 0.002), p = 0.2 (r0 = 0.005), and p = 0.4 (r0 = 0.02). From left to right: The noisy
image, the output image, and a horizontal intersection from the center of the image.
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the objective function at the achieved solution un is higher than it is at the noisy image f ,
although the algorithm appears to be working properly otherwise. On the other hand, a large
value of r0 means that more detail is lost in the process. Thus, selecting an optimal value for
r0 is a difficult balancing act. Fortunately, it appears that the optimal value of the parameter
r0 mainly depends on the amount of noise and does not depend as strongly on the image itself.
The previous sentence holds true at least when success is measured by the l2-norm. If success
is estimated by visual inspection, then it appears that r0 must be selected image dependently,
because even a small change in the value of the parameter r0 can have a visible impact on the
final result. This is consistent with comments in [52]. However, the values provided in Table
2 work fairly well for most images.

All presented numerical results show that the L1-mean curvature allows both smooth
transitions and large jumps without staircasing. In two dimensions the output results do not
appear perfect, but the one-dimensional intersections demonstrate desired overall behavior;
the qualitative challenges and difficulties are mostly related to the mixtures of image details
and noise on similar scales.

Table 1
A comparison between different test problems with varying amounts of noise, with n denoting the number

of iterations necessary to achieve convergence and un the achieved solution. The Residuals column shows the
residuals between the vector presentations of the original and noisy images and the original and output images.

p r0 J (f) J (u0) J (un) Iterations Residuals

0.05 0.001 0.001626 0.145999 0.000831 150 14.72, 13.10
0.1 0.002 0.003435 0.147198 0.002228 173 29.48, 18.53
0.2 0.005 0.008909 0.152132 0.007485 255 58.99, 26.49
0.4 0.020 0.036206 0.172260 0.029445 181 117.8, 37.31

Table 2
A comparison between different values of r0. The Residuals column shows the residuals between the vector

presentations of the original and noisy images and the original and output images. The function un is the
achieved solution.

r0 J (f) J (u0) J (un) Iterations Residuals

0.001 0.001795 0.142086 0.004210 193 58.93, 39.59
0.005 0.008979 0.142142 0.007126 220 58.92, 21.13
0.01 0.017945 0.142136 0.007911 180 58.85, 21.91
0.05 0.089864 0.141968 0.010577 242 58.87, 33.91
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Figure 12. A comparison between different values of r0: 0.001, 0.005, 0.01, and 0.05. The left side shows
the output images, and the right side shows the horizontal intersections from the center of the image.
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6. Conclusions. This paper presents an image denoising algorithm based on an augmented
Lagrangian approach that uses the L1-mean curvature of the image surface as a regularizer.
The main difference between this paper and existing literature (e.g., [52]) is that our method-
ology relies on a novel augmented Lagrangian functional where the equality constraints treated
by augmentation-duality are all linear, resulting in different (and simpler) subproblems. The
functionality of the proposed algorithm was demonstrated by applying it against a large set
of different types of test problems, some of which were presented in further detail. Based on
the numerical experiments, it can be concluded that the algorithm can remove considerable
amounts of noise within a reasonable number of iterations. The cpu time used by our imple-
mentation is dominated by the solution of the first subproblem; thus we feel that the effort of
improving our method should be directed toward this subproblem.
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