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Abstract. In this paper we prove log log type stability estimates for inverse

boundary value problems on admissible Riemannian manifolds of dimension

n ≥ 3. The stability estimates correspond to the uniqueness results in [13].
These inverse problems arise naturally when studying the anisotropic Calderón

problem.

1. Introduction. In the inverse conductivity problem formulated by Calderón [6],
the objective is to determine the electrical properties of a medium from voltage
and current measurements on its boundary. Suppose that the medium is modelled
by a bounded open set Ω ⊂ Rn with Lipschitz boundary, and assume that γ =
(γjk) ∈ L∞(Ω,Rn×n) is a positive definite symmetric matrix function describing
the electrical conductivity. Then for any boundary voltage f , the voltage potential
u in the medium satisfies the conductivity equation,

div(γ∇u) = 0 in Ω, u|∂Ω = f.

The boundary measurements are encoded by the Dirichlet-to-Neumann map (DN
map for short)

Λγ : f 7→ γ∇u · ν|∂Ω

where ν is the unit outer normal of ∂Ω. Using a suitable weak definition, the DN
map becomes a bounded linear operator

Λγ : H1/2(∂Ω)→ H−1/2(∂Ω)

where Hs(∂Ω) is the L2 based Sobolev space on ∂Ω. The inverse problem is to
determine properties of the unknown conductivity function γ from the knowledge
of the map Λγ .

Assume now that the conductivity is isotropic, that is,

γjk(x) = γ(x)δjk
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2 P. CARO AND M. SALO

where γ ∈ L∞(Ω) is a positive function. One can ask the following basic questions
for the Calderón problem with isotropic conductivities:

1. Uniqueness: does Λγ1 = Λγ2 imply γ1 = γ2?
2. Reconstruction: find an algorithm for computing γ from Λγ .
3. Stability: if Λγ1 and Λγ2 are close, are also γ1 and γ2 close?

Both the theoretical and applied aspects of the Calderón problem have been under
intense study, and we refer to the survey [33] for more information. In particular,
there are several uniqueness results [5], [17], [27], [32] and reconstruction procedures
[23], [26]. In this paper we are interested in stability results, and we proceed to
describe these in more detail.

The fundamental stability result due to Alessandrini [1] states that if the coef-
ficients γ1 and γ2 satisfy a priori bounds in Hs+2(Ω) for s > n/2 where n ≥ 3,
then

‖γ1 − γ2‖L∞(Ω) ≤ ω(‖Λγ1 − Λγ2‖H1/2→H−1/2)

where ω is a modulus of continuity satisfying

ω(t) ≤ C|log t|−σ, 0 < t < 1/e

with C depending on the a priori bounds. This log type stability for the Calderón
problem (as opposed to Hölder or Lipschitz stability) and the required a priori
bounds express the fact that this inverse problem is highly ill-posed. It has been
shown that logarithmic stability is optimal for the Calderón problem [25], although
if one has a priori information then one may have better stability properties [3].
There are several related stability results in the literature as [8] and [11]. We refer
to the survey [2] for further references. We also mention that in practice, the
measured DN map in presence of noise may not coincide with a DN map for any
conductivity, and to rectify this the stability analysis has been combined with a
regularization procedure in [23] for n = 2.

Anisotropic Calderón problem. In this paper we study stability for the Calderón
problem with anisotropic conductivities, where γ(x) is a matrix function which may
not be a scalar multiple of the identity matrix. It is well known that the anisotropic
Calderón problem has a simple obstruction to uniqueness: given any anisotropic con-
ductivity γ defined in Ω with smooth boundary and any diffeomorphism F : Ω −→ Ω
satisfying F |∂Ω = Id, one has

Λγ = ΛF∗γ .

Here F∗γ is the pushforward conductivity

F∗γ(x) =
DF γ DF t

detDF

∣∣∣∣
F−1(x)

,

where DF denotes the matrix given by (∂xjF
k) and DF t is its transpose. It is

known that when n = 2, the DN map Λγ determines γ up to such a diffeomorphism
[27], [4], but for n ≥ 3 this is only known for real-analytic conductivity matrices [24].
A simplification of the anisotropic Calderón problem which avoids this obstruction

consists in assuming that γjk = σγjk0 with the matrix (γjk0 ) being known and trying

to recover the scalar function σ from Λγ . Note that if (γjk0 ) is the identity matrix,
this is just the Calderón problem for isotropic conductivities.

As was pointed out in [24], whenever the conductivity is smooth and n ≥ 3 the
anisotropic Calderón problem is of geometrical nature and it can be formulated in
Riemannian manifolds as follows. Let (M, g) be an oriented compact Riemannian
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n-dimensional manifold with boundary ∂M and n = dim(M) ≥ 3. The Laplace-
Beltrami operator associated to the metric g = (gjk) and applied to a smooth
function u can be written in local coordinates as

∆gu = |g|−1/2∂xj (|g|1/2gjk∂xku)

where (gjk) is the inverse matrix of (gjk) and |g| is the determinant of (gjk). Here
we are using Einstein’s summation convention: repeated indices in upper and lower
position are summed. Consider u ∈ H1(M) solving −∆gu = 0 in M int such that

u|∂M = f and define the DN map Λg : H1/2(∂M) −→ H−1/2(∂M) by〈
Λgf

∣∣∣φ|∂M〉 =

∫
M

〈du, dφ〉g dVg

for any f ∈ H1/2(∂M) and any φ ∈ H1(M). Here 〈�|�〉 denotes the duality between
H1/2(∂M) and H−1/2(∂M). If f is smooth enough one can check that Λgf =
g(ν,∇u)|∂M = du(ν)|∂M = ν(u)|∂M where ν represents the unit outer normal to
∂M . Now, the Calderón problem on manifolds consists in recovering g up to a
boundary fixing diffeomorphism from Λg. Once again, it makes sense to consider
the simplification where g belongs to a fixed conformal class defined by some metric
g′ and one tries to recover the unknown conformal factor from Λg. Also here one can
consider different aspects such as uniqueness, reconstruction and stability. Here, we
will study the question of stability in the conformal class defined by an admissible
metric g′.

Inverse problem for Schrödinger equation. It turns out that the Calderón
problem in a fixed conformal class can be reduced to the inverse boundary value
problem (IBVP) of determining the electric potential of a Schrödinger operator on
a compact Riemannian manifold from boundary measurements of all its solutions.
In order to set up this problem, we consider an oriented compact Riemannian n-
dimensional manifold (M, g), with boundary ∂M and dimension n ≥ 2, and an
electric potential q ∈ L∞(M). We define the Cauchy data set of H1 solutions to
the Schrödinger operator −∆g + q as the set, denoted by Cq, of pairs (f, w) ∈
H1/2(∂M)×H−1/2(∂M) for which there exists u ∈ H1(M) solving (−∆g + q)u = 0
in M int such that u|∂M = f and〈

w
∣∣∣φ|∂M〉 =

∫
M

(〈du, dφ〉g + quφ) dVg (1)

for any φ ∈ H1(M). Here 〈�|�〉 denotes the duality betweenH1/2(∂M) andH−1/2(∂M).
For other notations used here and throughout the text see the paragraph Nota-
tion at the end of this section. Again, if f is smooth enough one can check that
w = g(ν,∇u)|∂M = du(ν)|∂M = ν(u)|∂M where ν represents the unit outer normal
to ∂M . Thus, the IBVP under consideration consists in determining the electric
potential q from the Cauchy data set Cq. Associated to this problem there are
several relevant questions, namely, uniqueness, reconstruction and stability. In this
paper, we will consider the question of stability in the case where g is in the confor-
mal class of an admissible metric g′ (that is g = cg′ with c denoting the conformal
factor) and n ≥ 3.

In order to establish the relation between the IBVP for Schrödinger operator and
the anisotropic Calderón problem, it is enough to note that u ∈ H1(M) is solution

of −∆gu = 0 in M with g = cg′ if and only if v = c
n−2
4 u ∈ H1(M) is a solution of

the Schrödinger equation −∆g′v + qv = 0 with q = c−
n−2
4 ∆g′c

n−2
4 . Thus, knowing
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the conformal factor c on ∂M we can relate Λg with Cq for the matrix g′. This sort
of relation will be used for studying the questions already mentioned (see Section 2
below).

Main results. We next describe the main results in this paper. Let (M0, g0) be
a simple1 Riemannian oriented smooth compact (n− 1)-dimensional manifold (for
n ≥ 3) with boundary ∂M0. Assume (M, g) to be a Riemannian oriented smooth
compact manifold with boundary such that there exist a smooth n-dimensional
embedded sub-manifold of R ×M int

0 , namely M ′, an orientation preserving diffeo-
morphism F : M −→ M ′ –whose inverse will be denoted by G– and a positive
smooth function c : M −→ (0,+∞) satisfying

g = cF ∗g′,

where g′ = (eR ⊕ g0)|Ω and eR stands for the euclidean metric in R. A manifold
(M, g) as above will be called, throughout the paper, admissible.

We now state the stability estimates for the IBVP of recovering the electric
potential q from the Cauchy data set Cq. First we introduce the notion of proximity
for Cauchy data sets that will be used to state the stability estimates. Let q1 and q2

belong to L∞(M) and consider the Cauchy data sets Cq1 and Cq2 as above. Define
the pseudo-metric distance

dist(Cq1 , Cq2) = max
j,k∈{1,2}

sup
(fj ,wj)∈Cqj
‖fj‖

H1/2(∂M)
=1

I((fj , wj);Cqk)

where

I((fj , wj);Cqk) = inf
(fk,wk)∈Cqk

[
‖fj − fk‖H1/2(∂M) + ‖wj − wk‖H−1/2(∂M)

]
.

Theorem 1.1. Consider a constant K ≥ 1 and let (M, g) be admissible. There
exists a constant C ≥ 1 depending on M and g such that

‖q1 − q2‖L2(R;H−3(M0)) .

∣∣∣∣ log
(

dist(Cq1 , Cq2)

+ | log dist(Cq1 , Cq2)|−1
)∣∣∣∣−λ/4

whenever q1, q2 ∈ L∞(M)∩Hλ(M) with λ ∈ (0, 1/2) satisfy ‖qj‖L∞(M)+‖qj‖Hλ(M) ≤
K and dist(Cq1 , Cq2) ≤ e−CK . Here the implicit constants only depend onM, g, n,K
and λ.

Note that we are making an abuse of notation writing qj instead of the extension
by zero of G∗qj out of M ′.

Remark 1. Assuming a priori bounds for stronger norms of qj , we can replace
the norm on the left hand side of the stability estimate by stronger norms only
losing some power on the right hand side. This can be achieved using appropriate
interpolation arguments (see for example [1]).

1A compact manifold (M, g) with boundary is called simple if, for any point p ∈ M , the
exponential map expp is a diffeomorphism from its maximal domain in TpM onto M and the

boundary ∂M is strictly convex.
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We next state the stability estimates for the Calderón problem in a fixed confor-
mal class of an admissible metric. First recall the operator norm that we will use
to quantify the proximity between the Dirchlet-to-Neumann maps:

‖Λg‖∗ = sup
f∈H1/2(∂M)\{0}

‖Λgf‖H−1/2(∂M)

‖f‖H1/2(∂M)

.

Theorem 1.2. Consider a constant K ≥ 1 and an admissible manifold (M, g). Let
g1 and g2 be two metrics on M satisfying gj = cjF

∗g′ with F ∗ and g′ as above. If

c1 and c2 are smooth and
∥∥c−1
j

∥∥
L∞(M)

+ ‖cj‖C3(M) ≤ K, there exists a constant

C ≥ 1 depending on M ′, g′ and n such that

‖c1 − c2‖L∞(M) .

∣∣∣∣ log
(
‖Λg1 − Λg2‖∗ + | log ‖Λg1 − Λg2‖∗ |

−1
)∣∣∣∣θ

whenever ‖Λg1 − Λg2‖∗ ≤ e
−CK . Here θ is a small positive constant which depends

on n. The implicit constants only depend on M ′, g′, F, n and K.

In order to prove these theorems we will follow the standard argument based on
complex geometrical optics solutions (CGOs for short). The first step is to use an
integral identity that relates the unknowns in the interior with the boundary mea-
surements. The second step is to extract information on the unknowns by using
special solutions for the equation, namely, CGOs. In our case the information is
described by a mixed Fourier transform/attenuated geodesic ray transform. More
precisely, we are able to prove an estimate controlling a rather weak norm of the
attenuated geodesic ray transform, with attenuation σ, of q̂(σ) –the Fourier trans-
form of the unknown in the Euclidean direction at frequency σ. This estimate can
be rephrased in terms of the normal operator for the ray transform, which is an
elliptic operator of order −1. Thanks to the ellipticity of the normal operator, we
manage to obtain control of q̂(σ) for a small set of low frequencies σ. By using
analytic continuation, we enlarge the set of low frequencies and as a consequence
we prove an inequality bounding a weak norm of the unknown. Finally, standard
interpolation arguments yield the stability stated in Theorem 1.1 and Theorem 1.2.

As we mentioned above, the sharp stability estimate of the isotropic Calderón
problem is of log type. Here we only prove log log stability estimates. The extra log
in our results comes up because of the analytic continuation argument that enlarges
the set of controlled frequencies. The small size of this set is due to the fact that
we only apply injectivity of the attenuated geodesic ray transform for small atten-
uations. However, injectivity of the attenuated geodesic ray transform for larger
attenuation would not imply log stability following our approach. One can check
that the implicit constant in Lemma 4.2 (below) grows at least exponentially as
δ0 increase. This together with the exponential factor in the estimate (16) would
produce a second log in the final stability estimate. Despite this second log for
the stability of the whole problem, we could gain better control from knowing the
injectivity of the attenuated geodesic ray transform for larger attenuation, namely,
we would be able to prove log type stability for the low frequencies of the Fourier
transform of the unknown in the Euclidean direction. This stability would become
exponentially bad with the size of the low-frequency set. Injectivity of the attenu-
ated ray transform on simple surfaces for any attenuation has been proven in [29].
We mention that also in stability results for the Calderón problem with partial data,
both log estimates ([7], [19]) and log log estimates ([9], [10], [18]) appear.
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The arguments we use to prove Theorem 1.1 and Theorem 1.2 are a quantification
of the arguments in [13] that prove uniqueness results for the above inverse problems.
The approach in [13] has been recently followed in [10] to prove log log stability
estimates for the Calderón problem with partial data. The quantification argument
there is slightly different to ours. In [10], the authors do not use explicitly the
ellipticity of the normal operator, they prove a direct estimate for the attenuated
geodesic ray transform. We also mention that the uniqueness results of [13] have
recently been extended in [15].

The outline of this paper is as follows. In Section 2 we provide the integral
estimates that will be used later as starting points to prove the stability estimates
given in the theorems stated above. In Section 3 we review the construction of the
CGOs given in [13]. Finally, in Section 4 we prove the stability estimates.

Notation. Throughout this paper:

• M int = M \ ∂M
• ∆g, 〈�, �〉g and dVg denote respectively the Laplace-Beltrami operator, the

inner product for differential forms and the volume form associated to the
Riemannian metric g.

• A Riemannian metric g is denoted in local coordinates by the matrix (gjk).
Moreover, the inverse and the determinant of this matrix are denoted by (gjk)
and |g|.

• If F is a smooth map, F∗ and F ∗ denote the push-forward and pull-back
respectively.

2. From the boundary to the interior. In this section we prove two integral
identities, one for the IBVP for the Schrödinger operator and one for the generalized
Calderón problem. These identities relate the unknowns in the interior with the
corresponding boundary data. The notation is as in the introduction.

Proposition 1. Let q1 and q2 belong to L∞(M) and let Cq1 and Cq2 denote the
Cauchy data sets for H1(M) solutions of the operators −∆g + q1 and −∆g + q2,
with g = cF ∗g′. Then for any vj ∈ H1(M ′) with j ∈ {1, 2} solving the equation

−∆g′vj + (c−
n−2
4 ∆g′c

n−2
4 + cqj)vj = 0

in M ′int, we have ∣∣∣∣ ∫
M ′

c(q1 − q2)v1v2 dVg′

∣∣∣∣
. dist(Cq1 , Cq2)Q ‖v1‖H1(M ′) ‖v2‖H1(M ′)

where Q = max{1+‖qj‖L∞(M) : j = 1, 2}. Here we are making an abuse of notation

which consists in writing qj and c instead of G∗qj and G∗c. The implicit constant
in the inequality depends on n, c, M , M ′, g′ and F .

Proof. Let uj with j ∈ {1, 2} be defined by uj = c−
n−2
4 F ∗vj . Then uj belongs to

H1(M) and it is a solution to (−∆g + qj)uj = 0 in M . Let us define ν(uj) in the
weak form as in (1), then〈

ν(uj)
∣∣∣uk〉 =

∫
M

〈duj , duk〉g + qjujuk dVg

=

∫
M ′
〈dvj , dvk〉g′ − 〈dc

n−2
4 , d(c−

n−2
4 vjvk)〉g′ + cqjvjvk dVg′
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with j, k ∈ {1, 2}. We are making an abuse of notation in the left hand side writing
uk instead of uk|∂M . Thus, it is immediate to get〈

ν(u1)
∣∣∣u2

〉
−
〈
ν(u2)

∣∣∣u1

〉
=

∫
M ′

c(q1 − q2)v1v2 dVg′ .

Since, 〈
w2

∣∣∣u2

〉
−
〈
ν(u2)

∣∣∣f2

〉
= 0

for any (f2, w2) ∈ Cq2 , we have that〈
ν(u1)− w2

∣∣∣u2

〉
−
〈
ν(u2)

∣∣∣u1 − f2

〉
=

∫
M ′

c(q1 − q2)v1v2 dVg′

for any (f2, w2) ∈ Cq2 . By the definition of dist(Cq1 , Cq2), the estimate

‖uj‖H1/2(∂M) + ‖ν(uj)‖H−1/2(∂M) . (1 + ‖qj‖L∞(M)) ‖uj‖H1(M) ,

and the definition of uj we get the statement of the proposition.

Proposition 2. Let g1 and g2 be two metrics on M satisfying gj = cjF
∗g′. Let

Λg1 and Λg2 denote their corresponding DN maps. Then, for any vj ∈ H1(M ′) with
j ∈ {1, 2} solving

−∆g′vj + c
−n−2

4
j ∆g′c

n−2
4

j vj = 0

in M ′int, we have∣∣∣∣ ∫
M ′

(c
−n−2

4
1 ∆g′c

n−2
4

1 − c−
n−2
4

2 ∆g′c
n−2
4

2 )v1v2 dVg′

∣∣∣∣
.C
(
‖Λg1 − Λg2‖∗ +

∥∥∥c−n−2
4

2 − c−
n−2
4

1

∥∥∥
C1(∂M)

+
∥∥∥ν(c

n−2
4

2 )− ν(c
n−2
4

1 )
∥∥∥
L∞(∂M)

)
‖v1‖H1(M ′) ‖v2‖H1(M ′) ,

where C = max{1 + ‖cj‖1/2L∞(M ′) + ‖d(log cj)‖L∞(M ′) : j = 1, 2}. Here we are

making an abuse of notation which consists in writing cj instead of G∗cj . The
implicit constant in the inequality depends on n, M , M ′, g′ and F .

Proof. Let uj with j ∈ {1, 2} be defined by uj = c
−n−2

4
j F ∗vj . Then uj belongs to

H1(M), it is solution to −∆gjuj = 0 in M and〈
Λgj (uj)

∣∣∣uk〉 =
〈

Λgj (uj)
∣∣∣c−n−2

4
j vk

〉
+
〈

Λgj (uj)
∣∣∣(c−n−2

4

k − c−
n−2
4

j )vk

〉
=

∫
M

〈duj , d(c
−n−2

4
j vk)〉gj dVgj +

〈
Λgj (uj)

∣∣∣(c−n−2
4

k − c−
n−2
4

j )vk

〉
with j, k ∈ {1, 2}. Here we are making an abuse of notation writing uj , uk and vk
instead of uj |∂M , uk|∂M and F ∗vk|∂M (on the boundary) or F ∗vk (in the interior).
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On the other hand,∫
M

〈duj , d(c
−n−2

4
j vk)〉gj dVgj

=

∫
M ′
〈dvj , dvk〉g′ − 〈dc

n−2
4

j , d(c
−n−2

4
j vjvk)〉g′ dVg′

=

∫
M ′
〈dvj , dvk〉g′ + c

−n−2
4

j ∆g′c
n−2
4

j vjvk dVg′

−
∫
∂M ′

c
−n−2

4
j ν(c

n−2
4

j )vjvk dAg′

where dAg′ is the contraction of dVg′ with ν. Again, we are making an abuse of
notation consisting in writing ν instead of F∗ν. Thus, it is immediate to get〈

Λg1(u1)
∣∣∣u2

〉
−
〈

Λg2(u2)
∣∣∣u1

〉
=
〈

Λg1(u1)
∣∣∣(c−n−2

4
2 − c−

n−2
4

1 )v2

〉
−
〈

Λg2(u2)
∣∣∣(c−n−2

4
1 − c−

n−2
4

2 )v1

〉
+

∫
M ′

(c
−n−2

4
1 ∆g′c

n−2
4

1 − c−
n−2
4

2 ∆g′c
n−2
4

2 )v1v2 dVg′

+

∫
∂M ′

(c
−n−2

4
2 ν(c

n−2
4

2 )− c−
n−2
4

1 ν(c
n−2
4

1 ))v1v2 dAg′ .

Since, 〈
Λg2(u2)

∣∣∣u1

〉
=
〈

Λg2(u1)
∣∣∣u2

〉
we have∣∣∣∣ ∫

M ′
(c
−n−2

4
1 ∆g′c

n−2
4

1 − c−
n−2
4

2 ∆g′c
n−2
4

2 )v1v2 dVg′

∣∣∣∣
≤‖Λg1 − Λg2‖∗ ‖u1‖H1(M) ‖u2‖H1(M)

+

∣∣∣∣〈Λg1(u1)
∣∣∣(c−n−2

4
2 − c−

n−2
4

1 )v2

〉∣∣∣∣+

∣∣∣∣〈Λg2(u2)
∣∣∣(c−n−2

4
1 − c−

n−2
4

2 )v1

〉∣∣∣∣
+
∥∥∥c−n−2

4
2 ν(c

n−2
4

2 )− c−
n−2
4

1 ν(c
n−2
4

1 )
∥∥∥
L∞(∂M)

‖v1‖H1(M ′) ‖v2‖H1(M ′) ,

where ‖�‖∗ denotes the norm of the bounded operators fromH1/2(∂M) toH−1/2(∂M).
On one hand,

‖uj‖H1(M) .
(

1 + ‖cj‖1/2L∞(M ′) + ‖d(log cj)‖L∞(M ′)

)
‖vj‖H1(M ′) .

On the other hand,∣∣∣∣〈Λgj (uj)
∣∣∣(c−n−2

4
2 − c−

n−2
4

1 )vk

〉∣∣∣∣
≤
∥∥Λgjuj

∥∥
H−1/2(∂M)

∥∥∥c−n−2
4

2 − c−
n−2
4

1

∥∥∥
C1(∂M)

‖vk‖H1/2(∂M ′)

≤ ‖uj‖H1(M)

∥∥∥c−n−2
4

2 − c−
n−2
4

1

∥∥∥
C1(∂M)

‖vk‖H1(M ′) .

Putting together the above estimates we prove the statement of the proposition.
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The estimate given in the previous proposition has terms that are not immedi-
ately controlled by ‖Λg1 − Λg2‖∗. However, these terms only depend on the dif-
ference of the conformal factors on the boundary. Since there is stability for this
problem on the boundary we get the following corollary.

Corollary 1. Under the assumptions of Proposition 2 we have that, for any vj ∈
H1(M ′) with j ∈ {1, 2} solving

−∆g′vj + c
−n−2

4
j ∆g′c

n−2
4

j vj = 0

in M ′int the estimate∣∣∣∣ ∫
M ′

(c
−n−2

4
1 ∆g′c

n−2
4

1 − c−
n−2
4

2 ∆g′c
n−2
4

2 )v1v2 dVg′

∣∣∣∣
.C ‖Λg1 − Λg2‖

λ
∗ ‖v1‖H1(M ′) ‖v2‖H1(M ′)

is satisfied with 0 < λ < 2−2n+3

and C depending on ‖cj‖C3(M) and infM cj . The
implicit constant in the inequality depends on n, M , M ′, g′ and F .

Proof. Fix a global coordinate system in M . We claim that one has

‖c1 − c2‖L∞(∂M) ≤ C‖Λg1 − Λg2‖∗
and

‖c1 − c2‖C1(∂M) + ‖∂νgc1 − ∂νgc2‖L∞(∂M) ≤ C‖Λg1 − Λg2‖λ∗ (2)

where the constant C only depends on n, ‖cj‖C3(M), ‖g‖C3(M), infM cj , and the

ellipticity constant infx∈M infv∈Rn,|v|=1 gjk(x)vjvk (these expressions involve the

global coordinate system). Also, λ = λ(n) is a number with 0 < λ(n) < 2−2n+3

.
In fact, these two inequalites are an immediate consequence of the results of Kang
and Yun [20], see Theorem 1.3 and formula (4.12) in that paper.

From the second inequality above and from the a priori bounds for the coefficients,
we obtain that

‖c−
n−2
4

1 − c−
n−2
4

2 ‖C1(∂M) + ‖∂νg (c
−n−2

4
1 )− ∂νg (c

−n−2
4

2 )‖L∞(M)

≤ C‖Λg1 − Λg2‖λ∗
for some constants C and λ as above. The result now follows from Proposition
2.

3. Complex geometrical optics solutions. In this section we review the prop-
erties of the CGOs constructed by Dos Santos Ferreira et al in [13] for admissible
geometries. This construction has its roots in the paper [22] by Kenig et al in the
context of the Calderón problem with partial data. However, we will follow a slight
modification of the original argument given in [21].

Throughout this section, M ⊂ R × M int
0 will be an embedded n-dimensional

submanifold with boundary. The submanifold M will be assumed to be oriented
and compact and it will be endowed with the Riemannian metric g = (eR ⊕ g0)|M .
Thus, we are interested in constructing a family {uτ : τ ≥ τ0} ⊂ H1(M) with
τ0 ≥ 1,

uτ = e−τ(ϕ+iψ)(a+ rτ ) (3)

and such that

−∆guτ + quτ = 0 (4)
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in M int with q ∈ L∞(M). Here ϕ and ψ are real-valued functions, a is a sort
of complex amplitude and rτ is a correction term which becomes small when τ
increases.

Note that uτ as in (3) solves (4) if and only if

eτ(ϕ+iψ)(−∆g+ q)(e−τ(ϕ+iψ)rτ )

= (∆g − q)a− τ(2 〈d(ϕ+ iψ), da〉g + ∆g(ϕ+ iψ)a)

+ τ2 〈d(ϕ+ iψ), d(ϕ+ iψ)〉g a.

The first idea in the construction of the CGOs is to arrange that the τ and τ2 terms
on the right hand side of the previous identity vanish. Thus, for a suitable ϕ we
will look for ψ and a solving

|dϕ|2g = |dψ|2g, 〈dϕ, dψ〉g = 0 (5)

and
2〈d(ϕ+ iψ), da〉g + ∆g(ϕ+ iψ)a = 0 (6)

in M . The second idea is to provide a suitable ϕ that allows us to solve the equation

eτ(ϕ+iψ)(−∆g + q)(e−τ(ϕ+iψ)rτ ) = (∆g − q)a (7)

in M . The appropriate candidates ϕ to solve (7) seem to be the limiting Carleman
weights (LCWs for short), that were introduced in [22] and characterized in [13].
See [28] for further discussion on LCWs.

At this point, we will choose ϕ : R ×M int
0 −→ R to be a LCW in R ×M int

0 .
A natural choice is ϕ(s, ϑ) = s for any (s, ϑ) ∈ R ×M int

0 . This choice makes the
equations (5) read as

|dψ|2g = 1, ∂sψ = 0.

The latter equation forces ψ : R ×M int
0 −→ R to be independent of s, and conse-

quently, the former equation becomes a simple eikonal equation in M int
0 . Since M0

is simple, the function ψ(s, ϑ) = distg0(ω, ϑ) is a smooth solution of (5) in M int
0 for

any ω ∈ ∂M0. Here distg0(ω, �) stands for the distance function from ω.
In order to solve (6), we will choose local coordinates in R ×M int

0 . Let yω :
M int

0 −→ Rn−1 be Riemannian polar normal coordinates from the point ω ∈ ∂M0

with yω(ϑ) = (ρ, θ1, . . . , θn−2) for any ϑ ∈M int
0 . Since ω ∈ ∂M0 and M0 is simple,

one can choose (θ1, . . . , θn−2) ∈ Q where Q = (0, π)n−2 ⊂ Rn−2. Define now
xω : R×M int

0 −→ Rn as xω(s, ϑ) = (s,yω(ϑ)) for any (s, ϑ) ∈ R×M int
0 . Note that

in these coordinates ψ(s, ρ, θ1, . . . , θn−2) = ρ and equation (6) becomes

(∂s + i∂ρ)a+ (∂s + i∂ρ)(log |g|1/4)a = 0

in xω(R×M int
0 ). Multiplying by |g|1/4, we get the equation

(∂s + i∂ρ)(|g|1/4a) = 0.

Therefore we can choose a : R×M int
0 −→ C in such a way that in these coordinates

a = |g|−1/4αβ where α = α(s, ρ) satisfying (∂s + i∂ρ)α = 0 in R × (0, R) with
R = diamg0 M0 and β ∈ C∞0 (Q).

We finally focus on equation (7). We write this equation in the following equiv-
alent form

eτϕ(−∆g + q)(e−τϕr̃τ ) = e−iτψ(∆g − q)a, (8)

where r̃τ = e−iτψrτ . Let q ∈ L∞(R ×M0) still denote the extension by zero of
q ∈ L∞(M). Let f denote the element in L2(R×M0) such that fτ = e−iτψ(∆g−q)a
almost everywhere in M and fτ = 0 almost everywhere else. By Theorem 4.1 in
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[28] (see also Section 4 in [21]), we know that, for fixed δ > 1/2, there exists
a constant C0 ≥ 1 depending on δ,M, g0 such that, for all τ ∈ R with |τ | ≥
max(1, C0 ‖q‖L∞(M)) and τ2 out of the discrete set of the Dirichlet eigenvalues of

−∆g0 , there exists a unique solution wτ ∈ H1
−δ,0(R×M0) of

eτϕ(−∆g + q)(e−τϕwτ ) = fτ

in R×M0. Furthermore, this solution satisfies

‖wτ‖L2
−δ(R×M0) . |τ |

−1 ‖(∆g − q)a‖L2(M)

‖wτ‖H1
−δ(R×M0) . ‖(∆g − q)a‖L2(M) .

For the sake of completeness, let us provide the definitions of the spaces introduced
above

L2
−δ(R×M0) = {u ∈ L2

loc(R×M0) : (1 + s2)−δ/2u ∈ L2(R×M0)},
H1
−δ(R×M0) = {u ∈ L2

−δ(R×M0) : |du| ∈ L2
−δ(R×M0)},

H1
−δ,0(R×M0) = {u ∈ H1

−δ(R×M0) : u|R×∂M0 = 0};

and their corresponding norms

‖u‖L2
−δ(R×M0) = ‖(1 + s2)−δ/2u‖L2(R×M0),

‖u‖H1
−δ(R×M0) = ‖u‖L2

−δ(R×M0) + ‖|du|‖L2
−δ(R×M0).

Finally, we end the construction of CGOs taking r̃τ = wτ |M int . The implicit
constants only depend on δ,M and g0.

We end this section by stating more succinctly the existence of the CGOs.

Proposition 3. There exists a constant C0 ≥ 1 depending on M and g0 such that
for

|τ | ≥ max(C0 ‖q‖L∞(M) , 1) τ2 /∈ spec(−∆g0),

the function

uτ = e−τ(ϕ+iψ)(a+ rτ ),

with ϕ(s, ϑ) = s, ψ(s, ϑ) = distg0(ω, ϑ) and a = |g|−1/4αβ where α solves (∂s +
i∂ρ)α = 0 and β ∈ C∞0 (Q), is a solution of

−∆guτ + quτ = 0

in M int. Moreover,∥∥e−iτψrτ∥∥Hk(M)
. |τ |−1+k ‖(∆g − q)a‖L2(M) (9)

for k = 0, 1. The implicit constant only depends on M and g0.

4. Stability estimates. In this section we will provide the stability estimates for
the problems under consideration, namely, controlling either the difference of the
Schrödinger potentials or the difference of the conformal factors by their correspond-
ing boundary data. The basic idea will be to plug the CGOs from Section 3 into
the inequalities given either in Proposition 1 or Corollary 1.

Since the arguments to show the estimates announced for the two considered
IBVP are quite similar, we will do both at the same time. Thus, if we are considering
the IBVP associated to the Schrödinger operator, we agree the following notation:

q = c(q1 − q2), ε = dist(Cq1 , Cq2),
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vj is one of the solutions for

−∆g′vj + (c−
n−2
4 ∆g′c

n−2
4 + cqj)vj = 0

constructed in Section 3 and the implicit constants only depend on n,M,M ′, F, g′, c
and K. Here K is as in Theorem 1.1. However, if we consider the simplification of
the generalized Calderón problem, then

q = c
−n−2

4
1 ∆g′c

n−2
4

1 − c−
n−2
4

2 ∆g′c
n−2
4

2 , ε = ‖Λg1 − Λg2‖
λ
∗

where λ is as in Corollary 1, vj is one of the solutions for

−∆g′vj + c
−n−2

4
j ∆g′c

n−2
4

j vj = 0

constructed in Section 3 and the implicit constants only depend on n,M,M ′, F, g′

and K. Here K is as in Theorem 1.2.
We now start with the argument. Let ω belong to ∂M0 and consider

v1 = eτ(ϕ+iψ)(a1 + r1), v2 = e−τ(ϕ+iψ)(a2 + r2)

constructed as in Section 3, where we choose a1 = αβ|g′|−1/4 and a2 = |g′|−1/4

in the coordinates used in that section. Then, either Proposition 1 or Corollary 1
implies ∣∣∣∣ ∫

M ′
qa1a2 dVg′

∣∣∣∣ .ε ‖v1‖H1(M ′) ‖v2‖H1(M ′) + ‖a1‖L2(M ′) ‖r2‖L2(M ′)

+ ‖r1‖L2(M ′) + ‖r1‖L2(M ′) ‖r2‖L2(M ′) .

Recall from Section 3 that Q = (0, π)n−2 ⊂ Rn−2 and R = diamg0M0. Moreover,
introduce some other notation:

S = max{|s| : ∃ϑ ∈M0, (s, ϑ) ∈M ′} Q′ = (−S, S)× (0, R).

Now using the form of the solution v1 and v2 and estimates labelled with (9), we
get ∣∣∣∣ ∫

M ′
qa1a2 dVg′

∣∣∣∣ . (εekτ + τ−1) ‖α‖H2(Q′) ‖β‖H2(Q) (10)

where k > 2(S+R), the implicit constant depends also on R and τ ≥ C0K with τ2

out of the discrete set of Dirichlet eigenvalues of −∆g0 and C0 as in Proposition 3.
In order to extract information from the left hand side of (10), we choose α(s, ρ) =

e−σ(ρ+is) with σ ∈ R and check that it becomes∣∣∣∣ ∫
Q

β(θ)

∫ R

0

q̂(σ, ρ, θ)e−σρ dρdθ

∣∣∣∣ . (εekτ + τ−1)ek|σ| ‖β‖H2(Q) , (11)

where q̂(�, ρ, θ) denotes the Fourier transform of (the zero extension of) q(�,y−1
ω (ρ, θ))

in the s variable and dθ is the euclidean volume form in Q. Note that the inte-
grand of dθ on the left hand side of (11) means, at the level of the manifold M0,
integrating the Fourier transform of q along a geodesic (starting from ω with direc-
tion described by θ) with respect to the weight e−σρ. This brings naturally to this
context the attenuated geodesic ray transform (see for instance [13], [29]).

In order to define the attenuated geodesic ray transform, let us introduce some
notation. The unit sphere bundle on M0 is denoted by SM0 and defined by

SM0 =
⋃

ϑ∈M0

Sϑ, Sϑ = {(ϑ,Xϑ) : Xϑ ∈ TϑM0 : |Xϑ|g0 = 1}.
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For notational convenience, we drop the subindex referring the point and we write
X instead of Xϑ. This manifold SM0 has as boundary ∂SM0 = {(ϑ,X) ∈ SM0 :
ϑ ∈ ∂M0}. Let N0 denote the unit vector field on ∂M0 pointing outward and define
the manifold

∂+SM0 = {(ϑ,X) ∈ ∂SM0 : g0(X,N0) ≤ 0}

whose boundary is given by {(ϑ,X) ∈ ∂SM0 : g0(X,N0) = 0}. Thus the space
C∞0 ((∂+SM0)int) denote the smooth functions on ∂+SM0 vanishing near tangential
directions.

Let t 7→ γ(t;ϑ,X) denote the unit speed geodesic starting at ϑ ∈M0 in direction
X and let t(ϑ,X) be the time when geodesic exits M0. Since (M0, g0) is simple,
t(ϑ,X) is finite for every (ϑ,X) ∈ SM0. Let the geodesic flow be denoted by
φt(ϑ,X) = (γ(t;ϑ,X), γ̇(t;ϑ,X)), where γ̇(t;ϑ,X) denote the tangent vector at
γ(t;ϑ,X). Thus, the attenuated geodesic ray transform, with attenuation −σ, of a
continuous function f defined on M0 is defined by

Iσf(ϑ,X) =

∫ t(ϑ,X)

0

f(γ(t;ϑ,X))e−σtdt, ∀(ϑ,X) ∈ ∂+SM0.

Before going further, let us introduce another operator. Let h belong to C∞0 ((∂+SM0)int),
define

I∗σh(ϑ) =

∫
Sϑ

e−σt(ϑ,−X)h(φ−t(ϑ,−X)(ϑ,X))dSϑ(X)

where dSϑ denotes the natural Riemannian volume form on Sϑ.
For the point ω ∈ ∂M0 considered above and some δ > 0, we take coordinates

Θω : Sδω = {X ∈ Sω : g0(X,N0) < −δ} −→ Q

such that, given b ∈ C∞0 ((∂+SM0)int) with supp b(ω, �) ⊂ Sδω, β can be chosen to
satisfy

b(ω, �)dSω = Θ∗(βdθ),

where Θ∗ the pull-back of Θ. Thus we see that∫
Q

β(θ)

∫ R

0

q̂(σ, ρ, θ)e−σρ dρdθ

=

∫
Sδω

b(ω,X)

(∫ t(ω,X)

0

q̂(σ, γ(r;ω,X))e−σr dr

)
dSω(X)

(12)

where we agreed to denote F [q(�, γ(r;ω,X))](σ) (the Fourier transform with respect
to the s variable) by q̂(σ, γ(r;ω,X)). Observe that q is not good enough to give
pointwise meaning to Iσ(q̂(σ, �)), however, Fubini’s theorem ensures that this is in
L1(∂+SM0). Thus, integrating (12) over ∂M0 and using (11) we can get∣∣∣∣ ∫

∂+SM0

b(ω,X)Iσ(q̂(σ, �))(ω,X) d(∂SM0)

∣∣∣∣
. (εekτ + τ−1)ek|σ|

∫
∂M0

‖b(ω, �)‖H2(Sδω) dAg0 ,

(13)

where the implicit constant depends on δ. Here d(∂SM0) denotes the natural
Riemannian volume form on ∂SM0 and dAg0 is the surface element on ∂M0.
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We next choose b(ω,X) to be µ(ω,X)Iσf(ω,X) with µ(ω,X) = −g0(X,N0) for
f ∈ C∞0 (M int

1 ) with M1 a compact subset of M int
0 to be chosen later. With this

choice, we would like to show that∫
∂+SM0

Iσf Iσ(q̂(σ, �))µd(∂SM0) =

∫
M0

f I∗σIσ(q̂(σ, �)) dVg0 . (14)

From Lemma 5.4 in [14], we know that∫
∂+SM0

Iσf hµd(∂SM0) =

∫
M0

f I∗σhdVg0 (15)

whenever f ∈ C∞(M0) and h ∈ C∞0 ((∂+SM0)int). However, this is not enough
for us since Iσ(q̂(σ, �)) only belongs to L1(∂+SM0). Fortunately, this still holds for
h ∈ L1(∂+SM0).

Lemma 4.1. Identity (15) holds for f ∈ C∞(M0) and h ∈ L1(∂+SM0). Conse-
quently, (14) also holds.

Proof. It will be convenient to introduce the following notation

hψ(y, η) = h(φ−t(y,−η)(y, η))

for all (y, η) ∈ SM0. Note that hψ(φt(x, ξ)) = h(x, ξ) for all (x, ξ) ∈ ∂+SM0. Hence∫
∂+SM0

Iσf hµd(∂SM0) =

∫
∂+SM0

J µd(∂SM0)

with

J(x, ξ) =

∫ t(x,ξ)

0

f(γ(t;x, ξ))e−σt(γ(t;x,ξ),−γ̇(t;x,ξ))hψ(φt(x, ξ)) dt.

It was proven in Lemma 3.3.2 from [30] (see also Lemma A.8 in [12]), that the pull-
back of dSM0 through the diffeomorphism (t;x, ξ) ∈ D −→ φt(x, ξ) ∈ SM0 \T∂M0

with
D = {(t;x, ξ) : (x, ξ) ∈ ∂+SM0, t ∈ [0, t(x, ξ)]}

is given by µd(∂+SM0)∧dt. Therefore, hψ ∈ L1(SM0) since hψ is constantly equal
to h(x, ξ) through {φt(x, ξ) : t ∈ [0, t(x, ξ)} and h ∈ L1(∂+SM0), and∫

∂+SM0

J µd(∂SM0) =

∫
SM0

f(y)e−σt(y,−η)hψ(y, η) dSM0(y, η)

=

∫
M0

f I∗σhdVg0

by using Fubini’s theorem twice. This proves that (15) holds for h ∈ L1(∂+SM0).
Identity (14) is then an immediate consequence.

Finally a straightforward computation in normal coordinates based at ω gives∣∣∣∣ ∫
M0

f I∗σIσ(q̂(σ, �)) dVg0

∣∣∣∣ . (εekτ + τ−1)ek|σ| ‖f‖H2(M0)

for k > 2(S + R), f ∈ C∞0 (M int
1 ) and τ ≥ C0K with τ2 out of the discrete set

of Dirichlet eigenvalues of −∆g0 and C0 as in Proposition 3. Next we will make a
choice for τ in terms of ε. Firstly note that k can be chosen larger if necessary to
avoid that (| log ε|/(2k))2 is in the set of Dirichlet eigenvalues of −∆g0 . Moreover,
if ε ≤ e−2kC0K we can take

τ =
1

2k
| log ε|
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to obtain
‖I∗σIσ(q̂(σ, �))‖H−2(M1) . (ε1/2 + | log ε|−1)ek|σ|. (16)

The idea now will be to use the ellipticity of the normal operator I∗σIσ to obtain
an estimate for q̂(σ, �). To do so, choose M1 ⊂M int

0 to satisfy the following assertion:
there exist M2 and M3 two compact subsets of M int

1 such that

M ′ ⊂ (−S, S)×M int
3 , M3 ⊂M int

2 .

Note that supp q̂(σ, �) ⊂M3 for all σ ∈ R.

Lemma 4.2. Let M1,M2 and M3 as above. Then there exists a δ0 > 0 such that

‖f‖H−k(M1) . max
|σ|≤δ0

‖I∗σIσf‖H−k+1(M1) , ∀f ∈ H−kM3
(M1).

The implicit constant here depends on δ0.

Recall that H−kM3
(M1) is the space of elements of H−k(M1) whose support is

contained in M3.

Proof. Write N = I∗σIσ. By Proposition 2 in [16], we know that N is an elliptic
pseudodifferential operator of order −1 in M int

1 , and there is a pseudodifferential
operator Q of order 1 in M int

1 and an operator R with kernel in C∞0 (M int1 ×M int
1 )

such that, if f ∈ H−kM3
(M1), then

χQNf = f + χRf

with χ ∈ C∞0 (M int
2 ) with χ = 1 near M3. Therefore

‖f‖H−k(M3) . ‖Nf‖H−k+1(M2) + ‖f‖Hλ(M2) ,

for any fixed real λ. Let X = H−kM3
(M1), Y = C([−δ0, δ0];H−k+1(M2)), and Z =

Hλ(M2). The operator N is bounded from X to Y since N is of order −1 and
M2 ⊂ M int

1 , and the injection from X to Z is compact if λ is small enough. Also,
N is injective, since for any f ∈ X with Nf = 0 one has f ∈ C∞0 (M int

1 ) by elliptic
regularity and

‖Iσf‖2L2
µ(∂+(SM1)) = (Nf, f)L2(M1) = 0

and Iσf = 0. By [13], we know that there exists a δ0 > 0 such that if |σ| ≤ δ0 then
f = 0. By using Lemma 2 in [31], we have

‖f‖H−k(M1) . max
|σ|≤δ0

‖Nf‖H−k+1(M2) .

This implies the result.

Therefore we know the following estimate

‖q̂(σ, �)‖H−3(M1) . ε
1/2 + | log ε|−1 ∀|σ| ≤ δ0. (17)

Let us remark that the the implicit constant here also depends on δ0 and the
estimate holds when ε ≤ e−2kC0K .

The next step will be to control a mixed norm for q. Since the range of σ for which
(17) holds can be very small, we will need to make use of the analytic properties

of q̂(σ, �) (recall that q was compactly supported) to control q̂(σ + i, �) for |σ| ≤ R̃

with R̃ arbitrarily large. This will be enough to bound a mixed norm for q by the
boundary data. In [18] Heck and Wang used a result by Vessella [34] to control an
arbitrary large set of low frequencies by a small one. Our approach here is slightly
different and is based on properties of subharmonic functions. The argument is due
to Dos Santos Ferreira and has been used in [10] to deal with a similar situation.
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The first step will be to obtain from (17) an estimate for certain subharmonic
function. Note that (17) implies

|〈q̂(σ, �), f〉| . (ε1/2 + | log ε|−1)‖f‖H3(M1) (18)

for all |σ| ≤ δ0 and f ∈ C∞0 (M1). On the other hand, since q is compactly supported
in [−S, S]×M1, the analytic extension of the Fourier transform of q in the Euclidean
direction satisfies

|〈q̂(σ + iη, �), f〉| . eSη‖f‖H3(M1) (19)

for all σ + iη ∈ C such that η ≥ 0. Define

F (σ, η) = log
|〈q̂(σ + iη, �), f〉|
C‖f‖H3(M1)

− Sη, (σ, µ) ∈ R2,

where C is the sum of the implicit constants in (18) and (19). Note that F is
subharmonic and satisfies

F (σ, η) ≤ log(ε1/2 + | log ε|−1) 0 ≤ σ ≤ δ0,
F (σ, η) ≤ 0 σ ∈ R, η ≥ 0.

Next, we will show a lemma that allows to transmit the smallness of F in the
segment {(σ, 0) : |σ| ≤ δ0} to {(σ, 1) : |σ| ≤ R̃} where R̃ is arbitrarily large.

Lemma 4.3. Let b and δ be positive constants and let F be a subharmonic function
in an open neighbourhood of

{(x, y) ∈ R2 : y ≥ 0}

such that

F (x, 0) ≤ −b 0 ≤ x ≤ δ,
F (x, y) ≤ 0 x ∈ R, y ≥ 0.

Then

F (x, y) ≤ − b
π

(
arctan

x+ δ

y
− arctan

x− δ
y

)
for all (x, y) ∈ R2 such that y ≥ 0.

Proof. Consider the Poisson kernel for {(x, y) ∈ R2 : y > 0}

Py(x) =
1

π

y

x2 + y2
, x ∈ R, y ≥ 0.

Then,

u(x, y) =
1

π

∫ δ

−δ

y

(x− z)2 + y2
dz

is harmonic in {(x, y) ∈ R2 : y > 0} and u(x, 0) = 1 for all |x| ≤ δ and u(x, 0) = 0
for |x| > δ. Thus,

F (x, 0) ≤ −bu(x, 0), ∀x ∈ R.
Moreover, for every ε > 0 there exists R > 0 such that

−bu(x, y) + ε ≥ 0, |x|+ |y| = R,

since u(x, y) −→ 0 as |x|+ |y| −→ ∞. Therefore,

F (x, y) ≤ −bu(x, y) + ε
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on {(x, 0) : x ∈ R}∪{(x, y) : |x|+|y| = R, y ≥ 0}. By the properties of subharmonic
functions

F (x, y) ≤ −bu(x, y) + ε

in {(x, y) : |x|+ |y| ≤ R, y ≥ 0}. Making ε vanish and computing u(x, y) explicitly,
we deduce the statement of the lemma.

Whenever ε1/2 + | log ε|−1 < 1, Lemma 4.3 can be applied and yields

|〈q̂(σ + i, �), f〉| . ‖f‖H3(M1)e
k̃ log(ε1/2+| log ε|−1)/R̃2

∀|σ| ≤ R̃

with R̃ ≥ 1, since arctan(x+ δ0)−arctan(x− δ0) ∼ 2δ0/x
2 for x ≥ 1. This provides

a control of the frequencies σ + i with |σ| ≤ R̃:

‖q̂(σ + i, �)‖ . ek̃ log(ε1/2+| log ε|−1)/R̃2

.

The control of these frequencies and the fact that q ∈ Hλ(R;H−3(M1)) will be
enough to bound a mixed norm for q. The choice of λ < 1/2 guarantees that the
extension by zero preserve the regularity and ‖q‖Hλ(R;H−3(M1)) is bounded by a

constant depending on the a priori bound K, n and M . Indeed,

‖q‖2L2(R;H−3(M1)) ≤e
2S

∫
R
‖q̂(σ + i, �)‖2H−3(M1)dσ

.R̃ek̃ log(ε1/2+| log ε|−1)/R̃2

+ R̃−2λ

∫
|σ|>R̃

(1 + |σ|2)λ‖q̃(σ + i, �)‖2H−3(M1) dσ.

Finally, choosing

k̃

R̃2
= | log(ε1/2 + | log ε|−1)|−1/2

we get

‖q‖L2(R;H−3(M1)) .

∣∣∣∣ log(ε1/2 + | log ε|−1)

∣∣∣∣−λ/4 (20)

whenever ε is small enough. The implicit constant in the last estimate depends
also on λ. This ends the proof of Theorem 1.1. However, we will need an extra
argument to prove Theorem 1.2, which is as follows. Note that in this case

c
n−2
4

1 c
n−2
4

2 q = |g′|−1/2∂xj

(
c
n−2
4

1 c
n−2
4

2 g′jk|g′|∂xk(log c
n−2
4

1 − log c
n−2
4

2 )
)
.

Here we are using Einstein’s summation convention. Observe that log c1 − log c2
satisfies an elliptic equation so, by its well-posedness, we have

‖log c1 − log c2‖H1(M) . ‖q‖H−1(M) + ‖log c1 − log c2‖H1/2(∂M) .

By a simple interpolation argument, the a priori bounds for c1 and c2 and estimate
(20) we get that

‖q‖H−1(M) ≤ ‖q‖L2(R;H−1(M1)) ≤ ‖q‖
1/3
L2(R;H−3(M1)) ‖q‖

2/3
L2(M)

.

∣∣∣∣ log(ε1/2 + | log ε|−1)

∣∣∣∣−λ/12

.

Therefore, using (2) we get

‖log c1 − log c2‖H1(M) .

∣∣∣∣ log(ε1/2 + | log ε|−1)

∣∣∣∣−λ/12

+ ε.
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Finally, by interpolation and Morrey’s embedding (in the spirit of [8]) we conclude
the proof of Theorem 1.2.
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[7] P. Caro, On an inverse problem in electromagnetism with local data: stability and uniqueness,

Inverse Probl. Imaging 5 (2011), 297–322.
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