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ABSTRACT. In this paper we prove log log type stability estimates for inverse
boundary value problems on admissible Riemannian manifolds of dimension
n > 3. The stability estimates correspond to the uniqueness results in [13].
These inverse problems arise naturally when studying the anisotropic Calderén
problem.

1. Introduction. In the inverse conductivity problem formulated by Calderén [6],
the objective is to determine the electrical properties of a medium from voltage
and current measurements on its boundary. Suppose that the medium is modelled
by a bounded open set Q@ C R™ with Lipschitz boundary, and assume that v =
(v7%) € L>(Q,R™*") is a positive definite symmetric matrix function describing
the electrical conductivity. Then for any boundary voltage f, the voltage potential
u in the medium satisfies the conductivity equation,

div(yVu) =01in Q, wulaq = f.
The boundary measurements are encoded by the Dirichlet-to-Neumann map (DN
map for short)
AV : f — WVu . V|5Q
where v is the unit outer normal of 0. Using a suitable weak definition, the DN
map becomes a bounded linear operator
A, : HY2(0Q) — HY2(09)

where H*®(0%) is the L? based Sobolev space on df2. The inverse problem is to
determine properties of the unknown conductivity function v from the knowledge
of the map A,,.

Assume now that the conductivity is isotropic, that is,

V(@) = ()57

2010 Mathematics Subject Classification. Primary: 35R30, 58J32; Secondary: 35J10, 35R01.
Key words and phrases. Inverse boundary problems, Calderén problem, Stability.


http://dx.doi.org/10.3934/xx.xx.xx.xx

2 P. CARO AND M. SALO

where v € L*>(Q) is a positive function. One can ask the following basic questions
for the Calderén problem with isotropic conductivities:

1. Uniqueness: does A, = A, imply 71 = 727?

2. Reconstruction: find an algorithm for computing v from A..

3. Stability: if A, and A,, are close, are also v; and 7, close?

Both the theoretical and applied aspects of the Calderén problem have been under
intense study, and we refer to the survey [33] for more information. In particular,
there are several uniqueness results [5], [17], [27], [32] and reconstruction procedures
[23], [26]. In this paper we are interested in stability results, and we proceed to
describe these in more detail.

The fundamental stability result due to Alessandrini [1] states that if the coef-
ficients v, and 7o satisfy a priori bounds in H**2(Q) for s > n/2 where n > 3,
then

71 = 2llp (@) S WAy, = Aol 1re s pr-1/2)
where w is a modulus of continuity satisfying

w(t) <Cllog t|™°, 0<t<1/e

with C depending on the a priori bounds. This log type stability for the Calderén
problem (as opposed to Holder or Lipschitz stability) and the required a priori
bounds express the fact that this inverse problem is highly ill-posed. It has been
shown that logarithmic stability is optimal for the Calderén problem [25], although
if one has a priori information then one may have better stability properties [3].
There are several related stability results in the literature as [8] and [11]. We refer
to the survey [2] for further references. We also mention that in practice, the
measured DN map in presence of noise may not coincide with a DN map for any
conductivity, and to rectify this the stability analysis has been combined with a
regularization procedure in [23] for n = 2.

Anisotropic Calderén problem. In this paper we study stability for the Calderén
problem with anisotropic conductivities, where () is a matrix function which may
not be a scalar multiple of the identity matrix. It is well known that the anisotropic
Calderon problem has a simple obstruction to uniqueness: given any anisotropic con-
ductivity v defined in  with smooth boundary and any diffeomorphism F : @ — Q
satisfying F'|apo = Id, one has
Ay =Ap,.

Here F.7 is the pushforward conductivity

t
Fole)= 22020

F=1(x)

where DF' denotes the matrix given by (8$ij) and DF? is its transpose. It is
known that when n = 2, the DN map A, determines  up to such a diffeomorphism
[27], [4], but for n > 3 this is only known for real-analytic conductivity matrices [24].
A simplification of the anisotropic Calderén problem which avoids this obstruction
consists in assuming that 7/% = a'ygk with the matrix (’y(])k) being known and trying
to recover the scalar function o from A,. Note that if (fygk) is the identity matrix,
this is just the Calderén problem for isotropic conductivities.

As was pointed out in [24], whenever the conductivity is smooth and n > 3 the
anisotropic Calderén problem is of geometrical nature and it can be formulated in
Riemannian manifolds as follows. Let (M, g) be an oriented compact Riemannian
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n-dimensional manifold with boundary M and n = dim(M) > 3. The Laplace-
Beltrami operator associated to the metric ¢ = (gj%) and applied to a smooth
function u can be written in local coordinates as

Agu = |g|7120,, (|92 g% Dy 1)

where (g’%) is the inverse matrix of (g;%) and |g| is the determinant of (g;x). Here
we are using Einstein’s summation convention: repeated indices in upper and lower
position are summed. Consider u € H'(M) solving —Agyu = 0 in M™ such that
u|on = f and define the DN map A, : H/2(0M) — H~Y/2(OM) by

(ot |olon) = [ (au.ds),av,

for any f € H'/2(OM) and any ¢ € H'(M). Here (.|.) denotes the duality between
HY2(OM) and H~Y/2(0M). If f is smooth enough one can check that A,f =
g(v, Vu)lom = du(v)|op = v(u)|on where v represents the unit outer normal to
OM. Now, the Calderén problem on manifolds consists in recovering g up to a
boundary fixing diffeomorphism from A,. Once again, it makes sense to consider
the simplification where g belongs to a fixed conformal class defined by some metric
¢' and one tries to recover the unknown conformal factor from A4. Also here one can
consider different aspects such as uniqueness, reconstruction and stability. Here, we
will study the question of stability in the conformal class defined by an admissible
metric ¢'.

Inverse problem for Schrédinger equation. It turns out that the Calderén
problem in a fixed conformal class can be reduced to the inverse boundary value
problem (IBVP) of determining the electric potential of a Schrédinger operator on
a compact Riemannian manifold from boundary measurements of all its solutions.
In order to set up this problem, we consider an oriented compact Riemannian n-
dimensional manifold (M, g), with boundary M and dimension n > 2, and an
electric potential ¢ € L°(M). We define the Cauchy data set of H! solutions to
the Schrédinger operator —A, + ¢ as the set, denoted by C,, of pairs (f,w) €
HY2(OM) x H=Y/2(OM) for which there exists u € H'(M) solving (—A, +q)u = 0
in MM such that ulgys = f and

(wlolorr) = [ (@u.do)y + que)av, 1)

for any ¢ € H'(M). Here (.|.) denotes the duality between H'/2(OM) and H='/2(9M).
For other notations used here and throughout the text see the paragraph Nota-
tion at the end of this section. Again, if f is smooth enough one can check that
w = g(v, Vu)|om = du(v)|om = v(u)|on where v represents the unit outer normal
to OM. Thus, the IBVP under consideration consists in determining the electric
potential ¢ from the Cauchy data set Cj. Associated to this problem there are
several relevant questions, namely, uniqueness, reconstruction and stability. In this
paper, we will consider the question of stability in the case where ¢ is in the confor-
mal class of an admissible metric g’ (that is ¢ = ¢g’ with ¢ denoting the conformal
factor) and n > 3.

In order to establish the relation between the IBVP for Schrodinger operator and
the anisotropic Calderén problem, it is enough to note that u € H*(M) is solution
of —Agju =0in M with g = ¢¢’ if and only if v = T e H'(M) is a solution of
the Schrodinger equation —Agv 4 qv = 0 with ¢ = c_anzAg/chfz. Thus, knowing
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the conformal factor ¢ on OM we can relate A, with Cy for the matrix ¢’. This sort
of relation will be used for studying the questions already mentioned (see Section 2
below).

Main results. We next describe the main results in this paper. Let (M, go) be
a simple' Riemannian oriented smooth compact (n — 1)-dimensional manifold (for
n > 3) with boundary 9My. Assume (M, g) to be a Riemannian oriented smooth
compact manifold with boundary such that there exist a smooth n-dimensional
embedded sub-manifold of R x M{", namely M’, an orientation preserving diffeo-
morphism F' : M — M’ —whose inverse will be denoted by G— and a positive
smooth function ¢ : M — (0, +00) satisfying

g=cF*g,

where ¢’ = (egr @ go)|o and er stands for the euclidean metric in R. A manifold
(M, g) as above will be called, throughout the paper, admissible.

We now state the stability estimates for the IBVP of recovering the electric
potential ¢ from the Cauchy data set C,;. First we introduce the notion of proximity
for Cauchy data sets that will be used to state the stability estimates. Let ¢; and go
belong to L>°(M) and consider the Cauchy data sets Cy, and Cy, as above. Define
the pseudo-metric distance

dist(Cq,, Cg,) = j,knel?l)fz} (fj,j?)chj I((fj,w;5); Cgy)

Il f5 HHl/z(aM)zl

where

F(v0:Ca) = 308 (1= Fillsrsony + s = 0l g-voan)| -

Theorem 1.1. Consider a constant K > 1 and let (M, g) be admissible. There
exists a constant C' > 1 depending on M and g such that

log ( dist(Cy,, Cy,)

lor — @2l L2 rmr-3(a10)) S

“2/4
+ [log dist(Cy,, Cyy)| ™)

whenever q1, ga € L (M)NH*(M) with A € (0,1/2) satisty |14 || oo T | ira ary <
K and dist(Cy,,Cy,) < e~“X. Here the implicit constants only depend on M, g,n, K
and .

Note that we are making an abuse of notation writing g; instead of the extension
by zero of G*¢; out of M.

Remark 1. Assuming a priori bounds for stronger norms of q;, we can replace
the norm on the left hand side of the stability estimate by stronger norms only
losing some power on the right hand side. This can be achieved using appropriate
interpolation arguments (see for example [1]).

LA compact manifold (M,g) with boundary is called simple if, for any point p € M, the
exponential map exp,, is a diffeomorphism from its maximal domain in T, M onto M and the
boundary OM is strictly convex.
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We next state the stability estimates for the Calderén problem in a fixed confor-
mal class of an admissible metric. First recall the operator norm that we will use
to quantify the proximity between the Dirchlet-to-Neumann maps:

Mg flle-1720n0)

[Aglls = sup
semzomngoy I flla12onn

Theorem 1.2. Consider a constant K > 1 and an admissible manifold (M, g). Let
g1 and g2 be two metrics on M satisfying g; = ¢;F*g’ with F* and ¢’ as above. If
c1 and ¢y are smooth and ch_lHLoo(M) + l¢illcsary < K there exists a constant

C > 1 depending on M', ¢’ and n such that

%
ler = eall e qary < | 108 (140, — Agall, + [0g]IAg, — Agall, 1)

whenever ||[Ag, — Ay, ||, < e K. Here 0 is a small positive constant which depends
on n. The implicit constants only depend on M',q’, F,n and K.

In order to prove these theorems we will follow the standard argument based on
complex geometrical optics solutions (CGOs for short). The first step is to use an
integral identity that relates the unknowns in the interior with the boundary mea-
surements. The second step is to extract information on the unknowns by using
special solutions for the equation, namely, CGOs. In our case the information is
described by a mixed Fourier transform/attenuated geodesic ray transform. More
precisely, we are able to prove an estimate controlling a rather weak norm of the
attenuated geodesic ray transform, with attenuation o, of §(o) —the Fourier trans-
form of the unknown in the Euclidean direction at frequency o. This estimate can
be rephrased in terms of the normal operator for the ray transform, which is an
elliptic operator of order —1. Thanks to the ellipticity of the normal operator, we
manage to obtain control of (o) for a small set of low frequencies o. By using
analytic continuation, we enlarge the set of low frequencies and as a consequence
we prove an inequality bounding a weak norm of the unknown. Finally, standard
interpolation arguments yield the stability stated in Theorem 1.1 and Theorem 1.2.

As we mentioned above, the sharp stability estimate of the isotropic Calderén
problem is of log type. Here we only prove log log stability estimates. The extra log
in our results comes up because of the analytic continuation argument that enlarges
the set of controlled frequencies. The small size of this set is due to the fact that
we only apply injectivity of the attenuated geodesic ray transform for small atten-
uations. However, injectivity of the attenuated geodesic ray transform for larger
attenuation would not imply log stability following our approach. One can check
that the implicit constant in Lemma 4.2 (below) grows at least exponentially as
dp increase. This together with the exponential factor in the estimate (16) would
produce a second log in the final stability estimate. Despite this second log for
the stability of the whole problem, we could gain better control from knowing the
injectivity of the attenuated geodesic ray transform for larger attenuation, namely,
we would be able to prove log type stability for the low frequencies of the Fourier
transform of the unknown in the Euclidean direction. This stability would become
exponentially bad with the size of the low-frequency set. Injectivity of the attenu-
ated ray transform on simple surfaces for any attenuation has been proven in [29].
We mention that also in stability results for the Calderén problem with partial data,
both log estimates ([7], [19]) and log log estimates ([9], [10], [18]) appear.
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The arguments we use to prove Theorem 1.1 and Theorem 1.2 are a quantification
of the arguments in [13] that prove uniqueness results for the above inverse problems.
The approach in [13] has been recently followed in [10] to prove log log stability
estimates for the Calderén problem with partial data. The quantification argument
there is slightly different to ours. In [10], the authors do not use explicitly the
ellipticity of the normal operator, they prove a direct estimate for the attenuated
geodesic ray transform. We also mention that the uniqueness results of [13] have
recently been extended in [15].

The outline of this paper is as follows. In Section 2 we provide the integral
estimates that will be used later as starting points to prove the stability estimates
given in the theorems stated above. In Section 3 we review the construction of the
CGOs given in [13]. Finally, in Section 4 we prove the stability estimates.

Notation. Throughout this paper:
o M = M\ OM

o Ay, (+4) 9 and dVj denote respectively the Laplace-Beltrami operator, the
inner product for differential forms and the volume form associated to the
Riemannian metric g.

o A Riemannian metric g is denoted in local coordinates by the matrix (g;).
Moreover, the inverse and the determinant of this matrix are denoted by (g7%)
and |g]|.

e If F' is a smooth map, F, and F* denote the push-forward and pull-back
respectively.

2. From the boundary to the interior. In this section we prove two integral
identities, one for the IBVP for the Schrodinger operator and one for the generalized
Calderéon problem. These identities relate the unknowns in the interior with the
corresponding boundary data. The notation is as in the introduction.

Proposition 1. Let ¢; and q2 belong to L>°(M) and let Cy, and C,, denote the

Cauchy data sets for H' (M) solutions of the operators —A, + ¢ and —A, + g2,

with g = cF*g'. Then for any v; € H'(M') with j € {1, 2} solving the equation
—Agv; + (C*¥Ag/c¥ +cg;j)v; =0

in M!

s we have

‘/ c(q1 — q2)viv2 dVy
]\//

< dist(Cyy, Cg,)Q ||”1||H1(M/) HU2||H1(M/)

where ) = max{1+||g;|| (5 : J = 1,2}. Here we are making an abuse of notation
which consists in writing q; and c instead of G*q; and G*c. The implicit constant
in the inequality depends onn, c, M, M', ¢’ and F.

Proof. Let u; with j € {1,2} be defined by u; = C_%F*U.j. Then u; belongs to
HY(M) and it is a solution to (—A, + ¢j)u; = 0 in M. Let us define v(u;) in the
weak form as in (1), then

< ’uk> / (duj, dug)g + gjuju, dVy,

/ (dvj, dvg)y — (dc™T ,d(c_anzvjvk»g/ + cqjvjvr, dVy
]\//
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with j, k € {1,2}. We are making an abuse of notation in the left hand side writing
uy, instead of ug|sps. Thus, it is immediate to get

<V(U1)‘U2> - <V(U2)‘U1> = / ,C((h — q2)v1v2 dVy.

Since,

(i) - () =

for any (fa, w2) € Cy,, we have that

<V(U1) - wz‘u2> - <V(U2)'U1 - f2> = / c(q1 — qz2)vive dVy
]\/ ’
for any (fa,w2) € Cy,. By the definition of dist(Cy,, Cy,), the estimate

||Uj||H1/2(aM) + ||V(Uj)HH71/2(aM) S+ ||qj||Lac(M)) HUjHHl(M) )

and the definition of u; we get the statement of the proposition. O

Proposition 2. Let g1 and go be two metrics on M satisfying g; = ¢;F*¢’. Let
Ay, and A, denote their corresponding DN maps. Then, for any v; € H'(M') with
j € {1,2} solving

—2 n—2

n
. T4 i R
—Agrvj + ¢; Agrcj v; =0

. /
in M, we have

_n-—2 n—2 _n-—2 n—2
4 4 4 4
(cr " Agey™ —cy T Ay, uivgdVy
’

n—2

_n=2 —
SC(IAg = Agell, + ||z ==

CL(OM)

n—2
4

n—2
ey vt ) il o ezl

where C' = max{l + chHlL/of(M,) + [ld(log ;) e (prry = 4 = 1,2}. Here we are
making an abuse of notation which consists in writing c¢; instead of G*c;. The
implicit constant in the inequality depends onn, M, M', ¢’ and F.

_n=2
Proof. Let u; with j € {1,2} be defined by u; = ¢; * F*v;. Then u; belongs to
H'(M), it is solution to —Ag u; = 0 in M and

n—2

Uk> = <Agj (uj)le; vk> + <Agj (u;)

= [ gt T v, 4V, + (g, )

_n—2 _n=—2
(¢, * —¢; ° )vk>

_n—2 _n—2
(¢ ° —c ! )Uk>

<A9j (u])

with j,k € {1,2}. Here we are making an abuse of notation writing u;, ux and vy
instead of w;|anr, ur|on and F*vg|aar (on the boundary) or F*vy, (in the interior).
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On the other hand,

_ n-—2
| tngdie; T v, av,,

= [ tdvjdun)y = ey T e T )y vy

n—2 n—2

:/ (dvj,dvk)g +c; T Agre; T vjuy dVy

_n=2 n—2
4 4
- c; * (et )vjupdAy
oM’

where dA, is the contraction of dVy with v. Again, we are making an abuse of
notation consisting in writing v instead of F,v. Thus, it is immediate to get

() ()

(Mg @& T = e T ) = (A6 T — g T o)

_n=2 n—2 _n=2 n—2
4 4 4 4
+ (¢ * Agey™ —cg T Agey® v dVy
!

_n-2 n—2 _n-—2 n—2
+/ (¢ T wle® )= T v(eg™ )uivadAy.
oM’

n—2

n—2 n—2 n—2 3
-t T T T
’/ (cq Agey —cp T Agey' JovadVy
M

<Agy = Agoll, Muall gz ary 12ll g ary

{8 0] = o)

O N )

n—2
“‘H% Tt ) e T v(e! )H

_n-—2 n—2 _n—2

Lo (o) HvlnHl(M/) ||U2||H1(M/) )

where ||.||, denotes the norm of the bounded operators from H'/2(M) to H=/2(0M).
On one hand,
1/2
Huj”Hl(M) < (1 + ch”L/oo(M/) + ”d(lOng)”Loo(Mf)) HUJ'”HI(M/) .
On the other hand,

(0 0] = )|

< Ay,

n—2

“J'HH—l/z(aM) HC; !

n—2
s 4
T O N vy

< losllman ez ™ = e |y gary Tl -

Putting together the above estimates we prove the statement of the proposition. [



STABILITY IN ADMISSIBLE GEOMETRIES 9

The estimate given in the previous proposition has terms that are not immedi-
ately controlled by ||Ag, — Ag,||,. However, these terms only depend on the dif-
ference of the conformal factors on the boundary. Since there is stability for this
problem on the boundary we get the following corollary.

Corollary 1. Under the assumptions of Proposition 2 we have that, for any v; €
HY(M'") with j € {1,2} solving
n—2 n—2

) -t T
—Agv; + ¢ Agfcj v; =0

in M[, the estimate

_n=2 n—2 _n=2 n—2
I I 7 1
(¢; " Agey™ —cyg T Agey® JvivadVy
’

A
SC gy = Ao 15 01l v (arey 102l 1 e
(M) (M")

is satisfied with 0 < A < 272" and C depending on llcjlles(ary and infar cj. The
implicit constant in the inequality depends on n, M, M’, ¢’ and F.

Proof. Fix a global coordinate system in M. We claim that one has
ler = eall Lo (anry < CllAg, — Ag, |l
and
ller = ealloronr) + 18u,¢1 = o, callLoeanry < CllAg, — Ag, [I2 (2)

where the constant C' only depends on n, |cjllcsarn, |9llesary, infar ¢j, and the
ellipticity constant inf,ensinf,epn jyj=1 gjk(z)viv* (these expressions involve the
global coordinate system). Also, A = A(n) is a number with 0 < A(n) < 272",
In fact, these two inequalites are an immediate consequence of the results of Kang
and Yun [20], see Theorem 1.3 and formula (4.12) in that paper.

From the second inequality above and from the a priori bounds for the coefficients,
we obtain that

_n—2

_n=-2 _n=2 _n—2
ey © —ex * llerony + 10v, (e * ) =0, (c = Mz
< CllAg, = Ag, |12

for some constants C' and A as above. The result now follows from Proposition
2. O

3. Complex geometrical optics solutions. In this section we review the prop-
erties of the CGOs constructed by Dos Santos Ferreira et al in [13] for admissible
geometries. This construction has its roots in the paper [22] by Kenig et al in the
context of the Calderén problem with partial data. However, we will follow a slight
modification of the original argument given in [21].

Throughout this section, M C R x M will be an embedded n-dimensional
submanifold with boundary. The submanifold M will be assumed to be oriented
and compact and it will be endowed with the Riemannian metric g = (er @ go)|as-
Thus, we are interested in constructing a family {u, : 7 > 7o} C HY(M) with
To > 1,

Uy = e T (g 4 ) (3)
and such that
—Agur +qu; =0 (4)
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in M™ with ¢ € L>(M). Here ¢ and ¢ are real-valued functions, a is a sort
of complex amplitude and r, is a correction term which becomes small when 7
increases.

Note that u, as in (3) solves (4) if and only if

eT(pti) (—Ag+ q)(e—r(wﬂ'zp)n)
=(Ag — @)a—7(2(d(¢ + i), da), + Ag(p + it))a)
+ 72 {d(p + i), d(¢ + W), a.

The first idea in the construction of the CGOs is to arrange that the 7 and 72 terms
on the right hand side of the previous identity vanish. Thus, for a suitable ¢ we
will look for ¢ and a solving

ldely = ldyl3,  (dp,dp)y =0 (5)

and
2(d(p +iy), da)g + Dg(p +itp)a =0 (6)
in M. The second idea is to provide a suitable ¢ that allows us to solve the equation
T (A q) (T = (A, — ) 7

in M. The appropriate candidates ¢ to solve (7) seem to be the limiting Carleman
weights (LCWs for short), that were introduced in [22] and characterized in [13].
See [28] for further discussion on LCWs.

At this point, we will choose ¢ : R x M{"* — R to be a LCW in R x M.
A natural choice is ¢(s,9) = s for any (s,9) € R x M. This choice makes the
equations (5) read as

dy2 =1, 9 =0.
The latter equation forces ¥ : R x M{" — R to be independent of s, and conse-
quently, the former equation becomes a simple eikonal equation in M. Since M,
is simple, the function (s, ) = dist,, (w, ) is a smooth solution of (5) in M{"* for
any w € dMy. Here disty,(w,.) stands for the distance function from w.

In order to solve (6), we will choose local coordinates in R x M. Let y, :
Mt — R"~1 be Riemannian polar normal coordinates from the point w € My
with y.,(9) = (p,61,...,0,_2) for any ¥ € M{*. Since w € dMy and My is simple,
one can choose (01,...,0,_2) € Q where Q = (0,7)"2 C R" 2. Define now
X, R x M — R™ as x,,(s,9) = (s,y,(9)) for any (s,9) € R x Mi". Note that
in these coordinates (s, p, 61, ...,0,_2) = p and equation (6) becomes

(85 +10,)a + (95 +1i9,) (log |g|"/*)a = 0
in x,,(R x Mi**). Multiplying by |g|'/4, we get the equation
(85 +8,)(|g]"*a) = 0.
Therefore we can choose a : R x M{"* — C in such a way that in these coordinates
a = |g|7/*aB where a = a(s,p) satisfying (05 + i9,)a = 0 in R x (0, R) with
R = diamg, My and 5 € C§°(Q).

We finally focus on equation (7). We write this equation in the following equiv-
alent form

e (=Ag +q)(e” ) = e_iTw(Ag —q)a, (8)

where 7, = e~ "%y, Let ¢ € L>®(R x M) still denote the extension by zero of

q € L®(M). Let f denote the element in L?(R x M) such that f, = e~ (A, —q)a

almost everywhere in M and f; = 0 almost everywhere else. By Theorem 4.1 in
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[28] (see also Section 4 in [21]), we know that, for fixed 6 > 1/2, there exists
a constant Cy > 1 depending on d, M, go such that, for all 7 € R with |r| >
max(1, Cy ||q||Leo(M)) and 72 out of the discrete set of the Dirichlet eigenvalues of

—Ag,, there exists a unique solution w; € HE&O(R x My) of
e (=Ag +q)(e"Fwr) = fr
in R x My. Furthermore, this solution satisfies
”wTHLzJ(RxMU) S |T|71 [(Ag = Q)a”Lz(M)
”wTHHi(S(RxMU) S (A — Q)aHLz(M) :
For the sake of completeness, let us provide the definitions of the spaces introduced
above
L25(R x My) = {u € L3 (R x My) : (1+5%)~%?u € L*(R x M)},
H (R x My) = {u € L2 5(R x My) : |du| € L* 5(R x M)},
H!50(R x M) = {u € H' 5(R x M) : ulrxon, = 0};
and their corresponding norms
lullz2 ,®x ) = (1 + %) u) 2 (Rx o)
||U||H£6(RxM0) = ||u||L35(RxMO) + |||dU|||L35(RxMO)~
Finally, we end the construction of CGOs taking 7, = w;|ppne. The implicit

constants only depend on §, M and gg.
We end this section by stating more succinctly the existence of the CGOs.

Proposition 3. There exists a constant Cy > 1 depending on M and gg such that
for
7| > max(Co lall oo ary» 1) 72 & spec(=Ay,),
the function
Ur = e—‘r(tp+i¢)(a + rT)?
with ¢(s,9) = s, ¥(s,9) = disty, (w,9) and a = |g|"/*aB where o solves (ds +
i0,)a =0 and B € C§°(Q), is a solution of

—Agur +qur =0
in M™ . Moreover,

He_iTwTTHHk(M) ST = @all 2 ar) ©)

for k = 0,1. The implicit constant only depends on M and gg.

4. Stability estimates. In this section we will provide the stability estimates for
the problems under consideration, namely, controlling either the difference of the
Schrédinger potentials or the difference of the conformal factors by their correspond-
ing boundary data. The basic idea will be to plug the CGOs from Section 3 into
the inequalities given either in Proposition 1 or Corollary 1.

Since the arguments to show the estimates announced for the two considered
IBVP are quite similar, we will do both at the same time. Thus, if we are considering
the IBVP associated to the Schrédinger operator, we agree the following notation:

g=clq1 —q), e=dist(Cy,Cy,),
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v; is one of the solutions for
n—2 n—2
—Agvj+ (¢ T Agc T +cgj)v; =0

constructed in Section 3 and the implicit constants only depend on n, M, M’, F, ¢, ¢
and K. Here K is as in Theorem 1.1. However, if we consider the simplification of
the generalized Calderén problem, then

_n-—2 n—2 _n-—2

n—z n—2 by
g=c; " Aget —cy T Ageyt e=[|Ag, — Ag I}

where A is as in Corollary 1, v; is one of the solutions for

n-—2 n—2
. 7 T,
—Agvj+c; * Age;t vj=0

constructed in Section 3 and the implicit constants only depend on n, M, M’  F, g’
and K. Here K is as in Theorem 1.2.
We now start with the argument. Let w belong to dMy and consider
vy = ") (ay 4 1y), vy = e TV (ag 4 1y)
constructed as in Section 3, where we choose a; = af8|g'|7*/* and ay = |¢/|~}/*
in the coordinates used in that section. Then, either Proposition 1 or Corollary 1
implies

’/ qayaz dVy
M/
+Irillpz ey + Irill 22 oy 12l pzary -

Recall from Section 3 that @ = (0,7)""2 C R"~2 and R = diamgy, My. Moreover,
introduce some other notation:

S = max{|s| : IV € My, (s,9) € M'} Q =(-5,5) x (0, R).

Now using the form of the solution v; and ve and estimates labelled with (9), we

get
‘ [ amaavy| S e+ gy 1Bl (10)

where k > 2(S + R), the implicit constant depends also on R and 7 > Co K with 72
out of the discrete set of Dirichlet eigenvalues of —A,, and Cy as in Proposition 3.

In order to extract information from the left hand side of (10), we choose a(s, p) =
e~ 7(P*1%) with ¢ € R and check that it becomes

R
‘ [ 50) [ ito.p. 0 dpa
Q 0

Se ol arny 12l g arry + laallzary 72l 2 ary

S (ee* + 77 h)etlel 181l 572 - (11)

where (., p, #) denotes the Fourier transform of (the zero extension of) q(., y;1(p,0))
in the s variable and df is the euclidean volume form in (. Note that the inte-
grand of df on the left hand side of (11) means, at the level of the manifold My,
integrating the Fourier transform of ¢ along a geodesic (starting from w with direc-
tion described by ) with respect to the weight e~??. This brings naturally to this
context the attenuated geodesic ray transform (see for instance [13], [29]).

In order to define the attenuated geodesic ray transform, let us introduce some
notation. The unit sphere bundle on Mj is denoted by SM, and defined by

SMy= |J So, S ={(V,Xy): X9 € TyMy: |Xylg, = 1}.
Y€ My
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For notational convenience, we drop the subindex referring the point and we write

X instead of Xy. This manifold SM, has as boundary 9SMy = {(¢, X) € SMy :
¥ € OMy}. Let Ny denote the unit vector field on dMj pointing outward and define
the manifold

0+SM0 = {(197X) € 3SM0 : go(X, No) S 0}
whose boundary is given by {(J,X) € 0SMp : go(X, No) = 0}. Thus the space
C§°((04+5Mp)™™*) denote the smooth functions on d; .S My vanishing near tangential
directions.

Let t — ~(t; 9, X) denote the unit speed geodesic starting at ¢ € My in direction
X and let t(¢, X) be the time when geodesic exits My. Since (Mpy, go) is simple,
t(9, X) is finite for every (¥,X) € SMy. Let the geodesic flow be denoted by
de(0,X) = (v(&:9,X),%(t;9, X)), where 4(t;9, X) denote the tangent vector at
~v(t; 9, X). Thus, the attenuated geodesic ray transform, with attenuation —o, of a
continuous function f defined on M, is defined by

£(9,X)
If(9,X) = / Frt0, X))e~otdt, V9, X) € 0,8 M.
0

Before going further, let us introduce another operator. Let h belong to C§°((045Mp)™t),
define

Ih(9) = /S PO (o (9, X))dSy(X)

where dSy denotes the natural Riemannian volume form on Sy.
For the point w € 9Mj considered above and some d > 0, we take coordinates

0,:8 ={X €8, :g0(X,Ng) < -0} —Q

such that, given b € C3°((815My)™) with suppb(w,.) C S, 3 can be chosen to
satisfy

b(w,.)dS, = ©*(8d0),
where ©* the pull-back of ©. Thus we see that
R
[5® [ ito.p0)7 dpas
¢ (12)

88

t(w,X)
= b(w, X) (/0 G(o,y(r;w, X))e " dr) ds, (X)

where we agreed to denote F|g(s, v(r;w, X))](o) (the Fourier transform with respect
to the s variable) by ¢(o,v(r;w, X)). Observe that ¢ is not good enough to give
pointwise meaning to I,(4(o,.)), however, Fubini’s theorem ensures that this is in
L'(04SMp). Thus, integrating (12) over My and using (11) we can get

[ e X0, X) (05 M)
845 Mo

(13)

< (eeb™ +T‘1)ek'”|/ 1b(w, 253y dAgo
OMy

where the implicit constant depends on 6. Here d(0SMy) denotes the natural
Riemannian volume form on 05My and dA, is the surface element on dMj.
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We next choose b(w, X) to be p(w, X)I, f(w, X) with p(w, X) = —go(X, Np) for
f € C§°(Mint) with M; a compact subset of M to be chosen later. With this
choice, we would like to show that

[ LfLeedosm) = [ FELGaeD) AV, ()
8+SMD MD
From Lemma 5.4 in [14], we know that

/ L f hpd(9SMp) = / FIRAV,, (15)
8+SMO MO

whenever f € C®(My) and h € C5°((9;5My)™). However, this is not enough
for us since I,,(G(a,.)) only belongs to L*(04SMj). Fortunately, this still holds for
h € L'(0, SMy).

Lemma 4.1. Identity (15) holds for f € C*°(My) and h € L'(04SM;). Conse-
quently, (14) also holds.

Proof. Tt will be convenient to introduce the following notation

hy (y,1) = h(d—(y,—m) (¥ 1))
for all (y,n) € SMy. Note that hy (¢ (z,§)) = h(z, ) for all (z,£) € 04 SMy. Hence
/ L f hpd(9SMp) = / J pd(9SMy)
84 SM, 84S Mo
with

t(2,€) _ .
J(@,&) = /0 f(y(ty @, €))e 70RO =AEROI L (6 (2, €)) dt.

It was proven in Lemma 3.3.2 from [30] (see also Lemma A.8 in [12]), that the pull-
back of dSMj through the diffeomorphism (¢;x,&) € D — ¢¢(x, &) € SMy\ TOMy
with

D= {(t0,€) s (w,€) € 0. Mo, t € [0, ()]}
is given by pd(9+5My) Adt. Therefore, hy, € L*(SMy) since hy, is constantly equal
to h(z,&) through {¢:(x, &) : t € [0,t(x, &)} and h € L1 (8, SMy), and

/ J pd(0SMo) = Fy)e= @D hy (y, 1) ASMo(y, )
94+ S My SMo
= fIZhdV,
Mo
by using Fubini’s theorem twice. This proves that (15) holds for h € L'(9,SM,).
Identity (14) is then an immediate consequence. O

Finally a straightforward computation in normal coordinates based at w gives

F LT (4(0,2) AV | S (2™ + 77| £l g2 s

‘ Mo
for k > 2(S + R), f € C(M*) and 7 > CoK with 72 out of the discrete set
of Dirichlet eigenvalues of —A,4, and Cp as in Proposition 3. Next we will make a
choice for 7 in terms of €. Firstly note that k& can be chosen larger if necessary to
avoid that (|loge|/(2k))? is in the set of Dirichlet eigenvalues of —A,,. Moreover,
if £ < e726CoK we can take

= L j10ge]
T_2k OgE
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to obtain
15 1o (a0, D -2 0y S (617 + [log e 7)Mol (16)
The idea now will be to use the ellipticity of the normal operator 11, to obtain
an estimate for §(o,.). To do so, choose M; C M to satisfy the following assertion:
there exist My and M3 two compact subsets of Mi® such that

M’ c (=8,8) x M, M3 C Mt
Note that supp ¢(o,.) C Ms for all o € R.
Lemma 4.2. Let My, My and M3 as above. Then there exists a g > 0 such that

Il gr-xar) S \?}2?0 oLo fllg-ss1(any» YV E HJQ§<M1)

The implicit constant here depends on &g.

Recall that H]\}’;(Ml) is the space of elements of H~*(M;) whose support is
contained in M3.

Proof. Write N = I*1,. By Proposition 2 in [16], we know that N is an elliptic
pseudodifferential operator of order —1 in Mi™, and there is a pseudodifferential
operator @ of order 1 in Mi"™ and an operator R with kernel in C§° (M1t x pfint)
such that, if f € H]\}};(Ml), then

XQN[f=[f+xRf
with x € C§°(Mi*) with y = 1 near M3. Therefore

I = angy S MINF = anyy + 1 e (ar) 5

for any fixed real . Let X = H;/[’;(Ml), Y = C([~bo,60); H*T1(M3)), and Z =
H*(Ms). The operator N is bounded from X to Y since N is of order —1 and
My C Mimt) and the injection from X to Z is compact if A is small enough. Also,
N is injective, since for any f € X with Nf = 0 one has f € C§°(Mi") by elliptic
regularity and
||Icrf||2Li(8+(SM1)) = (Nf, [z =0

and I, f = 0. By [13], we know that there exists a dy > 0 such that if |o] < Jg then
f =0. By using Lemma 2 in [31], we have

1l any S max N fllgvvsay) -

This implies the result. O

Therefore we know the following estimate
1G(o Ml r-s(aryy S €'/2 +loge| ™" V]o| < &. (17)

Let us remark that the the implicit constant here also depends on &y and the
estimate holds when £ < e 2FCo K

The next step will be to control a mixed norm for q. Since the range of o for which
(17) holds can be very small, we will need to make use of the analytic properties
of §(o,.) (recall that ¢ was compactly supported) to control §(o + i,.) for |o| < R
with R arbitrarily large. This will be enough to bound a mixed norm for ¢ by the
boundary data. In [18] Heck and Wang used a result by Vessella [34] to control an
arbitrary large set of low frequencies by a small one. Our approach here is slightly
different and is based on properties of subharmonic functions. The argument is due
to Dos Santos Ferreira and has been used in [10] to deal with a similar situation.
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The first step will be to obtain from (17) an estimate for certain subharmonic
function. Note that (17) implies

[(d(o,0), I S (€12 + log el )| fll s o) (18)

for all |o| < dp and f € C§°(M7). On the other hand, since g is compactly supported
in [—5, S] x M7y, the analytic extension of the Fourier transform of ¢ in the Euclidean
direction satisfies

[a(o +in,.), /)] S € fllsam) (19)
for all o + in € C such that n > 0. Define
[{g(o +in,-), )]

CILf N #z3 (azy)

where C' is the sum of the implicit constants in (18) and (19). Note that F is
subharmonic and satisfies

F(o,n) <log(e"/? + |loge| ™) 0<0o<éo,
F(o,n) <0 ceR,n>0.

F(Ja 77) = IOg - 5777 (Ja :U‘) € Rza

Next, we will show a lemma that allows to transmit the smallness of F' in the
segment {(0,0) : o] < do} to {(0,1) : |o| < R} where R is arbitrarily large.

Lemma 4.3. Let b and é be positive constants and let F' be a subharmonic function
in an open neighbourhood of

{(z,y) eR? 1y > 0}
such that
F(x,0) < —b 0<2 <0,
F(z,y) <0 reR, y>0.
Then

b 1) -0
F(z,y) < —— <arctan rHo arctan — >
™ Yy Y

for all (x,y) € R? such that y > 0.
Proof. Consider the Poisson kernel for {(z,y) € R? : y > 0}

Ly
( )7;5(}24—:[/2’

5
u(z,y) = l/ Y _q

T )5 (& —2)*+y°
is harmonic in {(x,y) € R? : y > 0} and u(z,0) = 1 for all |z| < § and u(x,0) =0
for || > 6. Thus,

zeR, y>0.

Then,

F(z,0) < —bu(z,0), Vo € R.
Moreover, for every € > 0 there exists R > 0 such that
—bu(z,y) +e=20,  |2[+]yl =R,
since u(x,y) — 0 as |z| + |y| — oo. Therefore,

F(z,y) < —bu(z,y) +¢
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on {(z,0) : x € R}U{(x,y) : |z|+]|y| = R, y > 0}. By the properties of subharmonic
functions

F(z,y) < —bu(z,y) + ¢
in {(z,y) : |z| + |y| < R, y > 0}. Making ¢ vanish and computing u(x,y) explicitly,
we deduce the statement of the lemma. O

1/2

Whenever £!/2 + |loge|~! < 1, Lemma 4.3 can be applied and yields

(o + iy o), F)] S 1F o €F 108 P los= TRy < R
with R > 1, since arctan(z + &) — arctan(z — dg) ~ 280 /2> for & > 1. This provides
a control of the frequencies ¢ + i with |o| < R:
o +4,.)]|  ek1onte/ gl e,
The control of these frequencies and the fact that ¢ € H(R; H=3(M;)) will be
enough to bound a mixed norm for ¢q. The choice of A < 1/2 guarantees that the

extension by zero preserve the regularity and |¢|| HARH-3(My)) 1S bounded by a
constant depending on the a priori bound K, n and M. Indeed,

S ~ .
lall2 s s aryyy <€ / 1300 + 6,35 aryydo
< Reklog(e'/?+|loge| 1) /R

LR / U PP s
o>

Finally, choosing
— = |log(e"/? + [loge| ") /2

we get
—\/4

log(e'/? + |loge| ™)

HQHL?(R;H*@’(Ml)) S (20)

whenever ¢ is small enough. The implicit constant in the last estimate depends
also on A. This ends the proof of Theorem 1.1. However, we will need an extra
argument to prove Theorem 1.2, which is as follows. Note that in this case

n—2 n—2 n—2 n—2 . n—2 n—2
ot et g=1g1""%0, (CchzTg/Jk\g’lamk (loge; ™ —logey ™ )) :
Here we are using Einstein’s summation convention. Observe that logc; — logco
satisfies an elliptic equation so, by its well-posedness, we have

[log c1 — log C2||H1(M) S H‘IHH—l(M) + [llog ¢1 — log CZHHl/z(aM) :

By a simple interpolation argument, the a priori bounds for ¢; and ¢, and estimate
(20) we get that

1/3 2/3
”‘IHH—l(M) < HQ||L2(R;H—1(M1)) < HQHL/2(]R;H—3(M1)) ||Q||L2(M)
—)/12
< log(sl/2 +|loge|™)
Therefore, using (2) we get
—X/12
log ¢1 — log ol 1 apy < |log(e/? 4 |loge|™1) +e.
H1(M)
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Finally, by interpolation and Morrey’s embedding (in the spirit of [8]) we conclude
the proof of Theorem 1.2.
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