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JYFL RESEARCH REPORT 9/14

Spherically Symmetric Inhomogeneous

Cosmological Models

BY
MIKKO PÄÄKKÖNEN
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Abstract

Universe is statistically homogeneous and isotropic in our cosmic neighbourhood.
In the standard model such universe is described with perfectly homogeneous
and isotropic Friedmann-Lemâıtre-Robertson-Walker (FLRW) model. However,
statistical homogeneity is not observationally established up to Gpc scales. This
poses a problem: if the actual local spacetime geometry deviated from that of
the FLRW model on cosmological scales, how would this affect our interpretation
of observations?

In this thesis we employ spherically symmetric models in order to study the
gravitational evolution of inhomogeneous coexisting perfect fluids. In particular,
we study how a local large-scale inhomogeneity could alter our interpretation of
cosmological observations.

A dust cosmology with a local underdensity can reproduce apparent acceleration
on the luminosity distance-redshift relation fitting the supernovae type Ia obser-
vations. We study this so-called local-void scenario by doing likelihood analysis
on models with both, a local void and a cosmological constant. It is found out
that accommodating all the observations is difficult requiring a lot of fine tuning.
We also find that a small local void would not alter the parameter extraction
of the standard model. We also study models with a dark-energy component
with vanishing speed of sound. In this case we find out that a local large-scale
inhomogeneity of order δ0 ≈ 0.1 in present-day dust density contrast, compatible
with inflationary origin, could significantly alter our perception of dark energy
equation of state. In conclusion we state that relaxing the prior of local ho-
mogeneity leads up to atleast 10% level uncertainties in cosmological parameter
extraction.
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1 INTRODUCTION

1 Introduction

Cosmology differs from other physical sciences by its phenomenology fundamen-
tally in that we, as observers, are confined to essentially one spacetime point to
make observations on one specific system along past lightcone. We are clearly
observing a physical system, but we have no control over the initial conditions
through a preparation procedure. Moreover, we are not even able to make direct
observations of the actual state of the whole system. In other words the nature
of reality restricts us, when it comes to cosmology, from seeing nothing but a
slice of the vast universe from one specific location at a one moment in time.
Understanding such a setup naturally requires strong working hypothesis’.

One of the standard assumptions in modern cosmology is the so-called Coperni-
can principle which states that the region of the universe we happen to inhabit
does not possess cosmologically relevant peculiar features of any kind, so that the
statistical features of the universe seen by us would be the same as those seen
by an observer at any other randomly chosen place in the universe. Another
standard assumption in cosmology is that the spatial distribution of the matter
content of the universe possesses a high degree of statistical isotropy. This as-
sumption is favoured by the observations of the cosmic microwave background
radiation (CMB) [1] and the distribution of galaxies [2], [3]. If these two assump-
tions were true, it would then naturally follow that universe is also statistically
homogeneous.

Stressing the idea of statistical homogeneity and isotropy, it is then assumed
that the universe around us can be described essentially as a general relativistic
homogeneous and isotropic perfect fluid with an associated homogeneous and
isotropic Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. Although the
present-day universe is clearly very far from exact homogeneity, the fact that
the CMB temperature-fluctuation amplitudes are of order 10−5 suggests that
matter was quite homogeneously distributed on the recombination surface. This
then suggests that perhaps the exact metric of the universe converges towards a
linearly perturbed FLRW metric at the early times. However, due to the non-
linearity of general relativity, evolving the metric with an averaged source gives
generally different results than solving for the full metric with an inhomogeneous
source and then taking the average. The difference between the FLRW average
of the evolved true metric and the evolved FLRW average is called backreaction.

In the current best-fit FLRW model, the concordance ΛCDM model, roughly 70%
of the present-day energy density is attributed to the dark energy in the form of
cosmological constant. By dark energy we mean a source of negative pressure on
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1 INTRODUCTION

cosmological scales. In the context of an FLRW model such pressure is required
in order to accommodate that apparent acceleration observed on the type Ia
supernovae magnitude-redshift relation. However, we do not have more profound
knowledge about any fundamental physics to explain the dark energy, and the
very small value of the cosmological constant invokes a fine-tuning problem; why
the dark-energy dominance in the cosmic evolution has began only just lately in
our cosmic past. However, the cosmological constant is only the simpliest way to
accommodate the dark energy. Dark energy can also be modelled with effective
dynamical fluids with negative pressure such as a dynamical scalar field (called
quintessence) and such models have been studied in great detail [4]. Another
approach is to generalize the Einstein-Hilbert action of general relativity, thus
modifying the gravitational dynamics. The cosmological constant can be viewed
also as such a generalization.

In addition to observations and theoretical considerations, numerical many-body
simulations are used to study the evolution of large scale structures [5]. In N-body
simulations one places a grid of mass points in an FLRW background and lets the
mass points gravitate according to Newtonian gravity. However, In Newtonian
gravity backreaction reduces to a boundary term which vanishes for boundary
conditions applied in N-body simulations [6], [7]. Thus, N-body simulations
neglect the backreaction. Indeed, in addition to invoking new physics (such as
new fields or modified gravity) to solve the dark-energy problem, there are also
more conservative lines of research trying to understand it in the context of
backreaction. Some studies of the back reaction in a linearly perturbed FLRW
metric, however, seem to imply that the effect on the Hubble rate due to the
backreaction caused by linear contributions is negligible [8], [7].

It is, however, interesting to note that the statistical homogeneity in our cosmic
neighborhood is not well established observationally up to gigaparsec scales [9],
[10]. The type Ia supernovae luminosity distance-redshift relation could then
in principle be reproduced in the context of locally inhomogeneous cosmological
models. The interpretation of the measured cosmic observables then remain
open to the possibility that the Copernican principle might not hold. Therefore,
it seems tempting to try to explain the apparent acceleration rather with locally
varying expansion rate than with a globally accelerating expansion rate. Such
effect can be achieved in local-void models. These have been studied thoroughly
recently, mostly in the context of spherically symmetric Lematre-Tolmann-Bondi
(LTB) spacetimes [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

Even though the local-void scenario can accommodate the major observational
features surprisingly well, it comes with serious difficulties. The local-void sce-
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1 INTRODUCTION

nario as an alternative to dark energy was studied in paper [I]. The results and
difficulties mentioned are summarized in sections 5 and 6. However, apart from
explaining away the need for dark energy we could still have a mixed scenario.
Even if there is global acceleration due to some form of DE, the present state of
observations can not prove the high degree of local homogeneity on Gpc scales
assumed in the ΛCDM model. For this reason we can perfectly well ask how
our intepretation of observations would change if we had a prior knowledge, say
from future surveys, of such a local feature in the local matter distribution. In-
deed, very large unvirialized structures are observed in the universe, such as large
quasar groups (LQG’s) possibly extending in length up to roughly one Gpc [26],
[27], and hot and cold spots on the CMB which, if interpreted as of cosmologi-
cal origin, would again correspond to structures up to a Gpc scale in diameter
[29, 30, 31, 32].

In this thesis, assumption of spherical symmetry is used to compare void models
of acceleration with the ΛCDM model and estimate uncertainties on cosmologi-
cal parameters due to our ignorance of actual large-scale structure in our cosmic
neighbourhood. Furthermore, the ADM formalism is employed to cast the equa-
tions of paper [II] in form with a wider numeric solvability and equations for set-
ting appropriate initial conditions for more general models are presented. These
results go beyond those contained in papers [I-III]. On the basis of likelihood
analysis, the local-void explanation for dark energy does not seem to be a work-
ing alternative for cosmological constant. However, it turns out that dropping
the prior of local homogeneity on large scales introduces significant uncertainties
on our perception of dark energy. This was the main result of paper [III] for
which we used a model developed in paper [II].

The thesis is organised as follows: section 2 introduces the principles of gravi-
tational physics and their application to cosmology in the standard model. Sec-
tion 3 summarizes the most important cosmic observables and the cosmological
implications of their measurements. Section 4 consists of introduction of the
spherically symmetric spacetimes and perfect-fluid sources, and of how to ap-
ply them in modelling local unvirialized inhomogeneous structures. In section 5,
the cosmological applications studied in the papers [I-III] with their results are
presented, and finally, section 6 is reserved for conclusions and discussion.
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2 GRAVITATION AND COSMOLOGY

2 Gravitation and Cosmology

2.1 General Relativity

The present understanding of gravitational physics culminates in the theory of
general relativity (GR) which is a classical, background independent field theory
for gravity. In GR an idealized event is characterized by four numbers that
will eventually correspond to the events position in the spacetime relative to
other events. The multitude of all possible events is then thought to form a
four dimensional spacetime continuum which is locally trivial, meaning that for
each point on the continuum there exists a neighbourhood which can be mapped
one-to-one on <4. Such structure is called a differentiable manifold.

2.1.1 Spacetime Metric

In order to relate the points on the manifold to the physical distances between
the corresponding events, the manifold is endowed with a metric structure. The
metric structure is an inner product represented as a rank two covariant tensor,
i.e. the metric tensor, usually denoted with ds2. The metric tensor then encodes
the information of the gravitational field by determining the measurable spatio-
temporal distances between possible events.

A coordinate system xµ determines a basis on the cotangent (tangent) bundle by
the exterior derivatives dxµ (partial derivative operators ∂µ). In this basis one
writes

ds2 = gµνdx
µdxν , (2.1)

where the functions gµν are the components of the metric tensor in the coordinate
basis and are postulated to be symmetric under exchange of indices µ and ν, thus
leaving one with total of ten unknown functions. The metric tensors maps vectors
into covectors forming the duality between tangent and cotangent spaces. The
same applies to components of tensors so that in the coordinate basis the indices
of tensor components can be raised and lowered by contracting with the inverse
metric tensor and the metric tensor, respectively.

4



2 GRAVITATION AND COSMOLOGY

2.1.2 Covariant Derivative

The space-time manifold is given the Lorentzian signature (−,+,+,+) divid-
ing vectors into time-like, light-like and space-like types depending weather their
amplitude squared is negative, null or positive, respectively, thus giving the man-
ifold the causal structure of the space-time by making it locally Minkowskian.
A vector in one Minkowskian tangent space is mapped into another by parallel
transporting it along a curve joining the two points on the manifold. This pro-
cedure requires a covariant derivative operator ∇ which maps cotensors of rank
k into cotensors of rank k+ 1. For a covector v the covariant derivative reads in
the coordinate basis

∇µvν = ∂µvν + Γξµνvξ, (2.2)

where repeated index in contravariant and covariant positions is understood to be
summed over and Γξµν is the affine connection coefficient. In GR it is taken to be
the Christoffel connection, which is the unique torsionless and metric compatible
connection i.e. it satisfies no torsion Γµνξ − Γµξν = 0 and metric compatibility
∇µgνξ = 0 conditions. These two conditions determine the connection unam-
biguously. In the metric variables and coordinate basis we have

Γµνξ =
1

2
gµρ (gνρ,ξ + gρξ,ν − gνξ,ρ) , (2.3)

where prime before an index denotes the partial derivative with respect to the
corresponding coordinate.

Considering parallel transportation of the tangent vactor dxµ/dλ of a curve xµ(λ)
gives the geodetic equation

d2xµ

dλ
+ Γµνξ

dxν

dλ

dxξ

dλ
= 0. (2.4)

Solutions to this equation are called affine geodesics and in GR free particles, i.e.
particles moving under the influence of gravity only, follow such geodesics. In
fact the Christoffel connection is exactly the connection for which the geodesic
equation is exactly the same as the Euler-Lagrange equation of motion for a
free particle in curved background. Solutions to the latter being called metric
geodesics.
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2 GRAVITATION AND COSMOLOGY

2.1.3 Riemann Tensor

The curvature of a Riemannian manifold with no torsion is encoded in the Rie-
mann tensor R which is a rank 4 tensor of (1, 3)-type. It can be understood as
the tensor determining local parallel transportation of a covector v around an
infinitesimally small closed loop, giving a defining equation for the components
in the coordinate basis

∇µ∇νvξ −∇ν∇µvξ = R ρ
µνξ vρ. (2.5)

Written in terms of Christoffel connection this equation gives

Rµ
νξρ = Γµρν,ξ − Γµξν,ρ + ΓµξσΓσρν − ΓµρσΓσξν . (2.6)

The Riemann tensor has the skew symmetry Rµνξρ = −Rνµξρ = Rνµρξ and the
interchange symmetry Rµνξρ = Rξρµν . Moreover, we define the Ricci tensor as
the rank 2 covariant tensor formed from the Riemann tensor by the contraction
Rµν = Rξ

µξν , which is symmetric by the interchange symmetry, and the Ricci
scalar by the double contraction R = Rµ

µ.

2.1.4 Einstein Equation

Gravity is sourced by the symmetric stress-energy tensor Tµν dictated by the
matter content and which satisfies the stress-energy-conservation law

∇νTνµ = 0. (2.7)

The metric of the manifold is then related to the matter content of the manifold
by the Einstein equation

Gµν = κTµν , (2.8)

where Gµν ≡ Rµν − 1
2
gµνR is the Einstein tensor, for which the conservation law

∇µGνµ = 0 manifestly holds (due to Bianchi identities), and κ = 8πG is the
Einstein’s gravitational constant. From now on we adopt units for which κ = 1
and c = 1.

Einstein equation in vacuum can be obtained as Euler-Lagrange equation of
motion with respect to metric from the Einstein-Hilbert action

SEH [gµν ] =

∫
d4x
√
−gR, (2.9)

6



2 GRAVITATION AND COSMOLOGY

where g is the determinant of the metric tensor and R is the Ricci scalar. The
energy-momentum-tensor part is obtained by including an action for the matter
content.

Since the Einstein equation manifestly satisfies also the energy-momentum con-
servation equation, instead of ten, we actually have only six independent equa-
tions. This reflects the fact that we are dealing with a constrained system and
four out of ten independent variables are actually unphysical gauge degrees of
freedom.

2.1.5 ADM formalism

It is a remarkable fact that the covariant formulation of GR presented in the
previous subsection does not give any preference for any particular choice of a
time coordinate. However, direct applications require that the Einstein equation
can be formulated as an initial value problem. In order to be able to cast the
field equations of GR as a valid initial value problem, the Lorentzian space-time
manifold needs to have the topology of < × σ, where σ is a three dimensional
compact Riemannian manifold without boundaries [33]. This implies that the
solution manifold can always be understood as a one-parameter family of space-
like hypersurfaces Σt called a foliation of the space-time, while the individual
hypersurfaces are called leaves of foliation.

If we denote a coordinate patch on σ with coordinate labels x′i, where i = 1, 2, 3,
then we can find a time coordinate t′ such that xµ = (t′, x′i) forms a coordinate
patch on the foliation Σt′(σ). In these coordinates the metric tensor reads

ds2 = −dt′2 + h′ijdx
′idx′j, (2.10)

where h′ij = h′ij(x
′µ) is the induced metric on the three dimensional Riemannian

manifolds formed by the embeddings Σt′(σ). This special form restricts the
reference frame to such that the coordinate time t′ measures common proper
time for all stationary observers. Due to the diffeomorphism invariance, however,
we can always choose another coordinate system xµ = xµ(x′ν) which takes the
expression of Eq. (2.10) for the metric into

ds2 = −α2dt2 + hij
(
dxi + βidt

) (
dxj + βjdt

)
, (2.11)

where functions α ≡
(
∂t′

∂t

)
and βi ≡ hij

(
∂t′

∂xj

) (
∂t′

∂t

)
are called the lapse and

shift function, respectively. Thus, the metric can, without loss of generality, be

7



2 GRAVITATION AND COSMOLOGY

presented in the formally coordinatized form of Eq. (2.11), where the gauge
degrees of freedom are readily separated into the lapse and shift functions by
choosing a coordinate time t formally specifying the foliation. This form for
the metric is called the ADM metric due to the Hamiltonian formulation of GR
derived by Arnowitt, Deser and Misner using these specific variables [34].

The Hamiltonian formulation for GR can be achieved by starting from the Pala-
tini action, which is just the Einstein-Hilbert action of Eq. (2.9), where however
the connection coefficients are understood as independent variables. In this case
the Christoffel connection is obtained as a solution to the equation of motion,
and obtaining a Hamiltonian for hij and its canonically conjugate momenta πij
can be done as in [34]. The same result can also be achieved by projecting the
tensor calculus onto the spatial manifold with the metric hij as in [33].

The extrinsic curvature tensor, or the second fundamental form of the foliation,
is defined as

2Kµν ≡
(
Lnh̃

)
µν

= h̃ α
µ h̃

β
ν ∇(αnβ), (2.12)

where hµν ≡ gµν + nµnν is the projected metric on the leaves of foliation in
four dimensions, which can be pulled back into hij of the spatial manifold. By
projecting the extrinsic curvature on the spatial manifold one then obtains

Kij ≡
1

2α

(
−ḣij + Lβhij

)
, (2.13)

where dot denotes the partial derivative with respect to the time coordinate
and Lβ denotes the Lie derivative along the shift-vector field βi. The extrinsic
curvature (2.13) is related to the canonically conjugate momenta πij through [36]

πij = −
√
h (Kij − hijK) , (2.14)

where h is the determinant of hij and K is the trace of the extrinsic curvature
Kij.

Equations of motion for these twelve independent variables become first order in
time and read [37]:

ḣij − Lβhij = −2αKij, (2.15)

K̇ij − LβKij = −DiDjα + α
(
Rij − 2KilK

l
j + 2KKij −Mij

)
, (2.16)

where D is the covariant derivative induced on the spatial manifolds and Rij the
corresponding Ricci tensor. The matter source term Mij is defined in terms of

8



2 GRAVITATION AND COSMOLOGY

projections of the energy momentum tensor as

Mij ≡ Sij +
1

2
hij (ρ− S) , (2.17)

where

ρ ≡ nµnνT
µν , (2.18)

Si ≡ −hiµnνT µν , (2.19)

Sij ≡ hiµhjνT
µν , (2.20)

and S = hijSij is the trace of Sij. The covector nµ is the time-like unit covector
normal to the hypersurfaces Σt. Dynamic equations for variables hij in Eq. (2.16)
follow from the definition of the extrinsic curvature of Eq. (2.12), while equations
for the extrinsic curvature follow as Euler-Lagrange equations of motion for πij
from the Lagrangian of the Palatini action written in terms of α, βi, hij and πij
[36]. There is no dependence on the time derivatives of α or βi in the action so
they can be interpreted as Lagrangian multipliers corresponding to constraints
on phase space of the system. The equation of motion for α in particular gives
the Hamiltonian constraint

H ≡ 2ρ−R +KijK
ij −K2 = 0, (2.21)

which is the relativistic Hamiltonian of GR. Similarly the equation of motion for
βi gives the momentum-, or the diffeomorphism constraint:

Si −DjK
j
i +DiK = 0. (2.22)

The ADM equations (2.16) present the gravitational dynamics in linear, first-
order form in the coordinate time, allowing a clear initial value formulation for
a general gravitational system in principle. However, the numerical stability of
ADM equations in this formulation is not always guaranteed. This problem along
with a proposition for numerically better adjusted variables (BSSN variables),
was discussed in Ref. [37]. In any case, the ADM variables turn out to be
sufficiently stable for our purposes.

2.2 Homogeneity

2.2.1 FLRW model

The Friedman-Lemâıtre-Robertson-Walker model (FLRW) is the solution in GR
for an exactly homogeneous and isotropic perfect fluid source. While homogene-

9



2 GRAVITATION AND COSMOLOGY

ity in GR clearly includes more than just the FLRW model, the latter has found
the most extensive usage due to its application to cosmology. For this reason, it
is sufficient to concentrate only on the FLRW model in relation to homogeneous
models for purposes of this thesis. In coordinate basis, in lapseless and shift-
less gauge and in spherical, co-moving coordinates the Robertson-Walker metric
reads

ds2 = −dt2 + a(t)2

(
1

1− kr2
dr2 + r2(dθ2 + sin2θdφ2)

)
, (2.23)

where a(t) is the scale factor and k = −1, 0, 1 is the curvature of the homogeneous
spatial slices. Thus, the FLRW model consists of a homogeneous and isotropic
three-dimensional spatial manifold which is of either hyperbolic (k = −1), flat
(k = 0) or elliptic (k = 1) geometry and on which the physical distances evolve
with time coordinate according to the scale factor a(t).

Matter content in the FLRW model is given by the perfect-fluid-energy-momentum
tensor

Tµν = (ρ+ p)uµuν + pgµν , (2.24)

where the energy and pressure densities ρ and p are functions of the time coor-
dinate only and uµ = (1, 0, 0, 0) is the four-velocity of the fluid. Actually, since
the densities are perfectly isotropic and homogeneous, two simultanously existing
fluid components don’t develop relative velocities, so that the energy-momentum
tensor of Eq. (2.24) can be understood as comprising of several perfect-fluid com-
ponents i.e. just writing ρ =

∑
i ρi and p =

∑
i pi. Assuming equation of state

p = wρ, where w is a constant, the 0-component of the conservation equation
(2.7) gives the continuity equation

ρ̇ = −3(1 + w)Hρ, (2.25)

where H = ȧ/a is the Hubble rate. The overdot denotes derivation with respect
to t. This equation is solved by the scaling relation for ρ

ρ = ρ0

(
a

a0

)−3(1+w)

, (2.26)

where the subscript 0 refers to evaluation at the value for the coordinate time
t0 corresponding to the present time. Continuity equation (2.25) is in fact satis-
fied for each individual component separately, also the scaling relation (2.26) is
satisfied for each individual component.

10



2 GRAVITATION AND COSMOLOGY

For the Robertson-Walker metric of Eq. (2.23) and the energy-momentum tensor
of Eq. (2.24) the Einstein equation (2.8) gives two independent equations(

ȧ

a

)2

=
1

3
ρ− k

a2
, (2.27)

ä

a
= −1

6
(ρ+ 3p). (2.28)

The first equation is called the Friedmann equation and the second is called the
acceleration equation. One immediately observes that in order the FLRW model
to have positively accelerated expansion one must have w < −1/3. Since the
acceleration equation can be obtained by differentiating the Friedmann equation
and using the continuity equation, only two out of Eq’s (2.25), (2.27) and (2.28)
are independent.

The cosmic redshift of light z, due to the expansion of the universe, emitted by
a distant object and observed by an observer in an FLRW universe, is related
to the scale factor as a(z) = a0

1+z
, where a0 is the scale factor evaluated at the

present epoch t0. Then writing density ρ in units of critical density Ω = ρ
ρcr

,

where ρcr = 3H2, and using the scaling relation (2.26), the Friedmann equation
(2.27) gives for the Hubble rate in an FLRW model with n decoupled perfect
fluids with equations of state pi = wiρi

H(z)2 = H2
0

(
n∑
i=1

Ωi(1 + z)3(1+wi) + Ωk(1 + z)2

)
, (2.29)

where Ωi refers to the density of the i:th component evaluated at the present
epoch t0, and Ωk = − k

3a2
0H

2
0
.

Sometimes it is advantageous to rewrite the metric (2.23) in terms of the so-
called conformal η =

∫
dt
a(t)

i.e. dη = 1
a(t)

dt. In the conformal form the flat
FLRW metric becomes

ds2 = a(η)2
(
−dη2 + d~x 2

)
, (2.30)

where d~x 2 denotes the metric tensor of a three-dimensional Euclidean space.
By using the conformal time as the time coordinate, a flat FLRW metric thus
becomes a Minkowski space where physical (proper) distances between spacetime
points get stretched according to evolution of the scale factor a(η).

11



2 GRAVITATION AND COSMOLOGY

2.2.2 Linear Perturbation Theory

When the actual metric can be considered to be close to the actual average
metric, called the background metric, it is useful to decompose the metric tensor
as gµν = g̃µν + hµν , where g̃µν represents the metric tensor of the background
spacetime and hµν the deviation from it. For example, a perturbed flat FLRW
metric in conformal time coordinate (2.30) can be written, in the conformal
Newtonian gauge, as [42]

ds2 = a2(η)
(
−(1 + 2Φ)dη2 − 2w⊥α dηdxα +

(
(1− 2ψ)δab + h⊥⊥ab

)
dxadxb

)
,

(2.31)

where Φ, ψ, w⊥α and h⊥⊥ab are functions of coordinates η and ~x, and δab denotes
the cartesian components of the three-dimensional Euclidean metric. Functions
Ψ and ψ are scalar perturbations while w⊥α and h⊥⊥ab are vector and tensor per-
turbations, respectively, both containing two independent degrees of freedom.

Assuming that there are no anisotropic pressures sets ψ = Φ. Furthermore, it
turns out that vector and tensor perturbations decouple from the scalar per-
turbation in the linearized Einstein equation. Thus, for the evolution of scalar
perturbations in presence of isotropic pressure, it is enough to consider the per-
turbed metric with just one scalar degree of freedom [42].

ds2 = a2(η)
(
−(1 + 2Φ)dη2 + (1− 2Φ)δabdx

adxb
)
. (2.32)

Linearized equations of motion for perturbed perfect fluid source with equation
of state p = wρ, where w = c2

s ≡
∂p
∂ρ

is the adiabatic sound speed squared, lead

to the equation [42]

Φ′′ +
6(1 + w)

1 + 3w

Φ′

η
− k2wΦ = 0 (2.33)

for the gravitational potential Φ, where k is the mode number and prime denotes
a derivative with respect to η. Equation (2.33) shows (this can be more explic-
itly seen e.g. by making the change of variables η → x ≡ kη) that perturbations
of perfect fluids on scales much larger than the Hubble radius (for kη � 1 the
first-order term dominates over the last term) remain frozen with constant am-
plitude, and perturbations on scales well within the Hubble radius (when kη � 1
i.e. when the last term dominates overt the first-order term) undergo damped
oscillations due to the small-scale effects of pressure gradients. This produces
acoustic waves propagating in the primordial baryonic plasma, which then pro-
duce the features (acoustic peaks) observed on the CMB anisotropy spectrum, as

12



2 GRAVITATION AND COSMOLOGY

well as on the large-scale galaxy distribution. When there are both radiation and
dust are present in the plasma the growth of dust perturbations on sub-Hubble
scales is suppressed into logarithmic during the radiation dominated phase, while
they grow linearily during the matter domination [42]. This suppression is due
to the acoustic oscillations in the radiation component dominating the dynamics
of the gravitational potential.

2.2.3 Averaging and Backreaction

The standard model describes the evolution of the universe with an FLRW model,
where the densities are understood as spatial averages over cosmological scales.
This description poses a problem because even if the universe was very nearly
isotropic and homogeneous after the big bang, the real universe is obviously far
from perfect isotropy and homogeneity. Spatial average over a true inhomoge-
neous solution is in general different from a solution to equations constructed
with prior assumption of perfect homogeneity and isotropy. Difference between
these two on an observable is called backreaction [44], [45], [46].

Once the time slicing of the manifold is chosen one can define averages over
different scales on the spatial manifolds. Such considerations lead, in the context
of the back-reaction problem, to the Buchert scheme [43], which is a widely used
formalism to adress the problem of backreaction for irrotational dust cosmologies.
When this procedure is employed, new terms arise in the spatially averaged
Raychaudhuri equation and Hamiltonian constraint [43]:

3
äD
aD

+
1

2
ρD − Λ = QD, (2.34)

3

(
ȧD
aD

)2

− ρD +
1

2
〈R〉D − Λ = −1

2
QD. (2.35)

Here the average scale factor aD is defined as the cubic root of the volume VD
of the averaging spatial domain, i.e. aD ≡ (VD)

1
3 , while ρD ≡ MD/VD and 〈R〉D

are the spatially averaged mass-energy density and spatially averaged spatial
Ricci scalar, respectively. As before, Λ is the cosmological constant. Finally the
backreaction term QD is defined as:

QD ≡
2

3
〈(θ − 〈θ〉D)2〉D − 2〈σ2〉D, (2.36)

where θ and σ are the expansion- and shear scalars, respectively. Expansion
scalar is the trace θ = gµνθµν of the expansion tensor θµν defined in Eq. (4.35).
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Shear scalar σ is defined in Eq. (A.17) of paper [II]. Equation (2.34) shows that a
positive back-reaction term contributes to the acceleration equation in the same
way as a cosmological constant.

The backreaction problem has been adressed in the context of the Buchert for-
malism for a linearily perturbed FLRW model with different gauge choices for
example in [47], [7], [8]. These authors concluded that in irrotational dust mod-
els the linear contributions are not likely to produce appreciable backreaction.
However, their arguments are not entirely convincing due to their omitting the
nonlinear and possibly nonanalytic contributions.

Swiss-cheese models are exact dust solutions to Einstein equation where spheri-
cally symmetric patches (with LTB metric) are smoothly embedded in an FLRW
background. Backreaction in swiss-cheese models was studied e.g. in [48, 49, 50,
51, 52]. It was found that for models with a flat FLRW background and typical
LTB patches with compensated inhomogeneity profiles, the backreaction effects
to the local expansion rate are negligible. However, one may argue that these
models have negligible backreaction by construction, because of the compen-
sating ridge included to match the spherical dust model with the exact FLRW
background. It can then be argued that we do not know with certainty how the
actual spacetime metric should be described to accomodate the effects from the
observed large-scale structure. Quite interestingly a statistically isotropic and
homogeneous swiss-cheese model with spherical dust holes was developed in Ref.
[53] in which the backreaction was of the order of magnitude comparable to dark
energy in ΛCDM. In this model the holes are formally modelled by the LTB met-
ric, but the authors had relaxed the usual assumption of monotoniously growing
angular-diameter distance as viewed from the center of the hole. Despite of be-
ing a toy model and not an attempt at accurately describe the actual universe,
it suffices to produce an example of statistically isotropic and inhomogeneous
model with backreaction large enough to account for apparent acceleration of
observed proportions. Furthermore, it should also be noted that it is not clear
how the actual large-scale geometry of the universe should be modelled in the
first place.

2.3 Standard Model

The current standard model of cosmology, the concordance ΛCDM-model, ap-
plies the ideas of cold dark matter (CDM) and inflation in a linearly perturbed
FLRW-model-framework. And indeed, a flat FLRW cosmology seems to fit var-
ious observations supringly well. However, the cosmic concordance in an FLRW
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model also requires inclusion of a non-vanishing cosmological constant. This is
a straightforward implication of the observed luminosity distance-redshift rela-
tion of type Ia supernovae, which shows apparent acceleration in the late-time
expansion of the universe in the FLRW context. A solution to this is a new fluid
component, dark energy (DE), with negative pressure dominating on cosmolog-
ical scales [4].

2.3.1 Inflation

The isotropy of the CMB implies that the real universe was very close to an
FLRW solution at the time of recombination. This is problematic, since the
CMB sky consists of several patches that shouldn’t have been in causal contact
before the recombination. Secondly, universe seems to be nearly flat, i.e. Ω = 1.
This is suprising since small initial deviations from the critical density grow
during normal expansion, and so universe had to be extremely close to critical
density at early times.

These problems are solved in a scenario where the early universe undergoes a
phase of exponential expansion called inflation [38]. During exponential expan-
sion the physical distances grow faster than the causal horizon. Thus the entire
CMB sky may have been in causal contact at early times, if the inflationary phase
was sufficiently long. Furthermore, exponential expansion takes Ω towards unity
regardles of its initial value. Thus, inflation explains why universe is nearly flat
today. This can be seen from the scaling relation (2.26) which implies that infla-
tion dilutes all other densities except that of the inflaton field itself. At the same
time H is constant, so that inflaton field density is driven towards the critical
density, leaving the universe nearly flat on scales of the observable universe.

Inflation provides a mechanism to generate perturbations in energy density which
seed the present-day structure of the universe. This happens through quantum
field fluctuations which are stretched beyond the causal horizon during the ex-
ponential expansion. Actual inflationary models typically include a scalar field
whose potential drives the inflation. However, the classical inflaton field must
evolve slowly during inflation, and hence inflation can be approximated with a de
Sitter solution [39]. It is thus effectively sourced only by a cosmological constant.
From the Friedmann equation (2.27) we then have(

ȧ

a

)2

= H2 =
Λ

3
, (2.37)
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which implies that a(t) = a0e
√

Λ
3
t. Thus, we find the constant causal-horizon

distance lH we get

lH = a0

∫ t0

0

dt

a
=

1

H
, (2.38)

as discussed above. Thus the physical Hubble radius remains constant, while
the exponential evolution of the scale factor pushes all physical scales beyond
the causal horizon. Deep within the Hubble radius the fluctuations around the
classical inflaton field trajectory behave as quantum fields, but as the physical
size of the mode grows beyond the causal horizon, the modes freeze as classical
fluctuations in the primordial fluctuation spectrum, distributed in a scale invari-
ant manner, i.e. producing the self-similar Harrison-Zel’dovich spectrum. See
e.g [39] for details. This primordial spectrum then sets the initial conditions for
structure formation and acoustic oscillations in the baryon-photon plasma.

The observationally interesting quantity, often used to describe the fluctuations
quantitatively is the power spectrum P(k), or the variance of the Fourier mode
δk of fluctuations δ ≡ ρ−ρ0

ρ0
at scale k i.e.

P(k) = 〈|δk|2〉, (2.39)

where 〈...〉 denotes taking a quantum ensemble average.

The simpliest inflation models predict a gaussian distribution of scalar fluctua-
tions with a power law spectrum i.e. P∫ (k) ∝ kns−1, where ns is the spectral
index and k the Fourier mode. When ns = 1 the power spectrum is scale invariant
and thus the fluctuation amplitudes on different scales are drawn from the same
Gaussian distribution. The fluctuation spectrum of the CMB is indeed observed
to be nearly scale invariant, with ns = 0.9675, and Gaussian with high accuracy
[1]. As the fluctuations on different scales are of similar amplitudes and larger
scales fell back into the causal horizon later in the cosmic evolution, the large
scale fluctuations have had less time to evolve inside horizon. Together with the
dust-like nature of the cold dark matter these features indicate a ”bottom-up”
hierarchy of structure formation, where small structures form first. This predic-
tion is backed up by both observations and N-body simulations [78]. For this
reason the standard inflationary paradigm poses a problem for the local-super-
void explanation for the dark energy: practically all fluctuations on adequate
scales should be deep within the linear regime.

Simple inflationary models predict a power-law spectrum for the tensor pertur-
bations as well. The ratio of the scalar and tensor power spectra r is called
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scalar-to-tensor ratio and it is an important discriminator between different in-
flationary models (see section 3.2).

2.3.2 Brief History of the Universe

Inflation can produce a nearly scale-invariant primordial fluctuation spectrum
with Gaussian statistics. As discussed above, this eventually sets the initial
conditions for the structure formation. After inflation ends the inflaton field
decays and the energy stored in the inflaton field goes into reheating the universe
as the decay products thermalize. At this time the inflaton field fluctuations turn
into fluctuations in the various species in the plasma. The spectrum of the large-
scale primordial fluctuations is not modified by microphysical processes in the
plasma at this time. These are encoded in the curvature perturbations, which
is conserved outside the horizon. As universe cooled due to its expansion it
underwent several important phases, such as the electroweak phase transition
at around 100 GeV temperature and hadronization of the quark-gluon plasma,
at around 1 GeV temperature. Then, at around 1 MeV temperature neutrinos
decoupled from the plasma forming cosmic neutrino background radiation, and
at around same temperature electrons and positrons annihilated. At this point
the elementary-particle content of the universe was finally stabilized.

At around 1 MeV temperatures universe was cooled enough for ignition of nuclear
fusion in the plasma. This process is called big-bang nucleosynthesis (BBN).
During BBN the primordial light-element abundancies are produced. Protons
and neutrons in the plasma combined to produce mainly helium, deuterium and
lithium. The only cosmological parameter relevant for this process is the baryon-
to-photon ratio, otherwise it is the standard low energy nuclear physics that
determines the details of the BBN.

Requiring that the predicted hydrogen and helium abundancies satisfy the ob-
servational limits determines the baryon-to-photon ratio in a CDM universe at
the epoch of nucleosynthesis. While the standard model accommodates neatly
the deuterium- and helium abundancies, there is a yet some discrepancy between
the observations and the standard model prediction for the lithium abundance.
The primordial lithium abundance is measured from poor-metallicity stars within
our own galaxy yielding a value of roughly a third of what is expected in the
standard big-bang nucleosynthesis model. One possibility is that the observed
abundancies are not primordial, and lithium is somehow depleted in these stars,
although such mechanisms are not well known. Another explanation is of course
that some ’non-standard model’ -physics influenced the lithium abundance dur-
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ing the big-bang nucleosynthesis [54]. It is interesting to note, that there’s also
been a suggestion to solve the lithium problem as a variation in the local lithium
abundance due to a local large-scale inhomogeneity [55].

After BBN the universe continues to cool and expand. The baryonic plasma is
kept ionized by Thomson scattering between protons and electrons. At recom-
bination, which takes place at around 0.3 eV temperature (z ≈ 1100), when the
number of high-energy photons has fallen sufficiently low, the protons and elec-
trons can bind together to form neutral hydrogen. While this process is extended
in time, this time scale is cosmologically negligible. For this reason, observation-
ally the recombination is thought of as a surface. At recombination universe
becomes visible and the released radiation is observed as the cosmic microwave
background radiation.

2.3.3 Concordance ΛCDM Model

The current standard model of cosmology is an FLRW model sourced by cold
dark matter [40], [41] and baryons, radiation comprising the cosmic microwave
and neutrino background and of dark energy driving the accelerated expansion
[56], [57], [4], [58]. According to the most recent Planck data [1], the standard-
model parameters (with 68% CL) are

ΩΛ = 0.67+0.027
−0.023,

Ωbh
2 = 0.02217± 0.00033,

Ωk = −0.0096+0.010
−0.0082,

H0 = (67.9± 1.5) km s−1 Mpc−1,

ns = 0.9635± 0.0094,

θ∗ = (1.19355± 0.00078)◦, (2.40)

where θ∗ is the current angular scale of the acoustic horizon at the time of
recombination.

The primordial fluctuation spectrum generated by inflation sets the initial condi-
tions for density fluctuations in the primordial plasma. This, in turn, is depicted
as a linearly perturbed FLRW model, the details of which are determined by the
microphysics.

It is well established observationally that universe contains significant amounts of
some yet unknown form of dark matter, which does not interact electromagnet-
ically. Observations over very wide range of mass scales, from galactic rotation
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curves to velocities of galaxies in clusters and the gravitational lensing due to
clusters, imply that these structures should be roughly five times more mas-
sive than what can be accounted for by the luminous matter within them [59].
Furthermore, dark matter plays significant role in explaining the structure forma-
tion. Before recombination the pressure gradients evened out density fluctuations
in the baryon-photon plasma to the point that the smooth distribution of the
baryonic density seen in the CMB could not have evolved into dense galactic
structures seen today fast enough without some enhancement mechanism. The
cold dark matter decoupled from the primordial plasma relatively early, and by
the time of recombination the CDM-density fluctuations had evolved into strong
gravitational potentials into which the baryonic matter fell after recombination
giving the needed enhancement for the structure formation.

The standard model describes the cosmic evolution of the universe quantitatively
well after the recombination. The increasing number of type Ia supernovae obser-
vations revealed a puzzling fact that on larger redshifts the supernovae appeared
to be fainter than expected. In the context of the FLRW model this observation
shows that the expansion of the universe is accelerating, constituting the dark-
energy problem. With the current parameters, the cosmic evolution has recently
transmitted from a matter dominated phase into a phase of accelerating expan-
sion driven by cosmological constant. Extrapolating the model further in time
then suggests that the universe is again entering into an exponentially expanding
de Sitter -phase.

2.4 Dark Energy

Dark energy can be observationally probed on cosmological scales only. The
observation most sensitive to its existence is the magnitude-redshift relation of
type Ia supernovae. It appears that (see Fig. 5) the universe has turned into a
phase of accelerating expansion roughly at redshift z ≈ 1. In ΛCDM the value
of cosmological constant needs to be fine tuned in order to have universe enter
the accelerating expansion that late. This is known as the coincidence problem
[60]. It is then quite interesting that at large scales the structure formation has
entered non-linear regime also at around z ≈ 1. Also, the Buchert equations
(2.34) and (2.35) show that an inhomogeneous dust cosmology could produce a
backreaction term which would lead to apparent acceleration. This tempts us to
consider alternatives for dark energy by elaborating the modelling of large-scale
structure.

Another fine-tuning problem in the context of ΛCDM concerns the smallness of
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the cosmological constant. General relativity contains two fundamental constants
of nature κ ≡ 8πG and Λ, with G being the Newton’s gravitational constant and
Λ the cosmological constant. The product of these two constants is a dimesionless
quantity and in the standard model we have κΛ ≈ 4×10−120. Attemps to explain
this low value as a vacuum-energy density is problematic since quantum field
theory estimates for κΛvacuum are of order one [60].

There are three generic alternatives to explain the observed apparent accelera-
tion of the universe. The first is some unknown matter component with high
enough negative pressure. Second is some modification to general relativity at
large distances. Cosmological constant can be interpreted as belonging to either
of these two, depending on which side of the Einstein equation the term is inter-
preted as belonging to. Third possibility is that Λ is an illusion caused by the
nonlinear effects due to the cosmic structure, i.e. the backreaction as suggested
by the Buchert equations.

2.4.1 Void Models

It has been suggested that,instead of accelerated expansion, the supernovae
magnitude-redshift relation could be explained by faster than average expansion
locally. In terms of dust-model cosmology, this means that we would live near the
center of a deep Gpc scale underdensity [14, 15, 16, 17, 18, 19, 20, 21, 22]. This
scenario is easily modelled by use of spherical symmetry. A spherically symmet-
ric inhomogeneous and irrotational dust model, or the Lemâıtre-Tolman-Bondi
model (LTB model) is described by the LTB-metric:

ds2 = −dt2 +
Y ′

1 + 2E
+ Y 2

(
dθ2 + sin2θdφ2

)
. (2.41)

Here the angular scale function Y depends on r and t, and the energy function E
depends on r only, and prime denotes a partial derivative with respect to r. This
form for the metric allows an analytic solution to the Einstein equation (2.8) with
a spherically symmetric comoving dust source. The energy-momentum tensor for
such a source is

T µν = ρuµuν , (2.42)

where ρ = ρ(t, r) is the dust energy density and uµ = (−1, 0, 0, 0) is the dust
4-velocity.

It is in fact easy to build an LTB model which reproduces the observed super-
nova magnitude-redshift relation. However, simultaneously requiring the model
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to satisfy other observational constraints turns out to be difficult. These diffi-
culties are examined in more detail in section 5. Moreover, the density contrast
δM ≡ (ρin − ρout)/ρout, where δM ≡ (ρin − ρout)/ρout denotes the dust energy-
density contrast between the underdensity center ρin and the background ρout,
of the Gpc scale underdensity required would have to be of order δM ∝ 10−3 at
recombination. This is roughly two orders of magnitude greater than the fluctua-
tion scale inferred by the CMB temperature anisotropies which implies that such
structure would not be of inflationary origin. Also, the fact that we would have
to be located very near to the center of the underdensity in order to preserve the
observed isotropy of the universe constitutes a new fine-tuning proplem.

Despite these difficulties, the conceptual simplicity of this scenario makes it an
interesting alternative for dark energy. However large the underdensity would
have to be, it turns out that the present state of observations can not conclu-
sively exclude the local-void scenario. It should also be remembered that dark
energy itself is very problematic: though the cosmological constant fits with the
observations well, its fundamental nature and size remains a complete mystery
with a fine-tuning problem of its own. Inflation on the other hand, although
seemingly succesful, is a paradigm and ideas about underlying physics remain
highly speculative. Moreover, even within the inflationary paradigm such vast
structure could in principle find some other than inflationary origin.

3 Cosmic Observables

3.1 Local Expansion Rate

The local expansion rate of the universe is measured from the slope of the veloc-
ities of galaxies in our cosmic neighbourhood as a function of distance:

v = H0r, (3.1)

where H0 is the Hubble constant. In order to observe the linear trend, the
galaxies need to be sufficiently far so that they are not gravitationally bound to
the local neighbourhood of the observer, and on the other hand not too far so that
the linear approximation holds. In practice H0 is determined from systematic
cosmological redshifts of nearby galaxies within a distance of roughly 200 Mpc’s
[61], [62], [63].

One of the most important distance measurements use the cepheid variables
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Figure 1: Figure shows the magnitude-redshift data for nearby (z < 0.1) type Ia
supernovae and the best linear fit yielding the present day determination for the Hubble
constant. Figure is taken from Ref. [63].

stars. Cepheids are very bright pulsating stars with a strong correlation between
the luminosity and the pulsation period. This makes them good standard can-
dles, which allow extending the cosmic ladder beyond our own galaxy after their
luminosities are calibrated with parallax measurements within our local galactic
neighbourhood. Cepheids can in turn be used to calibrate the distances to more
distant galaxies where another type of much more luminous standard candles are
observed, the type Ia supernovae. Figure 1 from Ref. [63] shows a linear fit to
the logarithm of the redshift of 240 nearby (z < 0.1) type Ia supernovae as a
function of their apparent magnitude.

There are also other independent means of measuring the Hubble constant and
they support the calibration and results obtained with the cepheid variables
and supernovae [65]. One of those uses the stars at the tip of the red giant
branch. Others include maser galaxies in which sparse, heating water vapor in
the galactic disk acts as a maser source, or Tully-Fisher relation which is based
on a correlation between a spiral galaxy’s total luminosity and its maximum
rotational velocity. Yet there is a surface brightness fluctuation method which
is also based on the red giant branch stars but on the statistics of the entire
population. All these methods can be used as checks on the determination of the
distance scale as well as alternative means of calibration.
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The most accurate present-day determination of Hloc is given in Ref. [63], based
on type Ia supernovae magnitude-redshift relation. Reference [63] gives two de-
terminations for the local Hubble rate. The more accurate one is based on cepheid
distance calibration by the maser galaxy NGC 4258 which contains cepheids of
wide variety of different metallicities, which affect the absolute magnitude of
cepheids. The other one is based on cepheid distance calibration by cepheids
found in the Large Magellanic Cloud (LMC). The distance to the LMC can be
measured e.g. by the tip of the red giant branch method. However, there is
uncertainty in the determination of the distance to the LMC and the cepheids
found there are of different metallicities than the ones used for calibration of the
supernovae. The value using the LMC calibration is

Hloc = 73.3± 4.6km s−1 Mpc−1, (3.2)

while the more accurate one using the maser-galaxy calibration is

Hloc = 74.2± 3.6km s−1 Mpc−1. (3.3)

Both values are clearly consistent with each other. However, in Ref. [64] the
analysis of [63] was critically discussed and they also presented an improved
analysis.

3.2 Cosmic Microwave Background

Cosmic microwave background radiation (CMB) is nearly isotropic, almost per-
fect black-body radiation of roughly 2.725 K temperature observed in all direc-
tions in the sky. CMB radiation was formed when the photons were released
when initially free, charged protons and electrons recombined into neutral hy-
drogen atoms. Recombination occured relatively quickly and it turns out that
the photons last scattered at around z ≈ 1100. So the observed photons carry
information about the structure of the universe.

Indeed, the temperature fluctuations in the CMB are directly related to the
fluctions in the baryonic density on the last-scattering surface. The most accurate
map of the CMB up to date has been measured lately by the Planck satellite [1].
Figure 2 shows the CMB temperature map as seen by the Planck satellite after
filtering out the foreground noise. Regions shown in blue are colder and those
shown in red hotter than the average temperature. The scale of the fluctuations
is µK, i.e. ∆T

T
∝ 10−5.
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Figure 2: Figure shows the foreground filtered CMB temperature anisotropy map as
measured by the Planck satellite. Large areas with hotter or colder temperatures than
on average are clearly visible on the map, these are the hot and cold spots. Figure is
taken from Ref. [1].

The two dimensional temperature map over the sky is naturally presented in
spherical harmonics. Figure 3 shows the acoustic features in the spectrum of
such a multipole expansion of the anisotropy map. The location of the first peak
in particular is determined by the acoustic horizon in the plasma at the recombi-
nation and by the angular-diameter distance to the recombination surface. The
observed temperature spectrum is in an excellent agreement with a six param-
eter ΛCDM model and with the BBN determination of the baryon density [1].
Also, within the context of Friedmannian cosmology, Planck results constrain
the spatial curvature to flat within percent level [1].

The Hubble rate can be determined from the CMB data independent of the
local measurements. The Planck mission best-fit Hubble rate is H0 = (67± 1.2)
km s−1 Mpc−1 [1] which is significantly lower than the local determination of Eq.
3.3. The origin of this discrepancy remains unclear. This creates some tension
in the ΛCDM model but it would be naturally explained by a shallow, local
large-scale underdensity in the matter distribution.

Inflationary models predict also a power-law spectrum of gravitational waves,
i.e. tensor perturbations. The ratio of the amplitudes of the tensor and scalar
power spectra at some scale is called scalar-to-tensor ratio r. This ratio can
be measured from the Planck CMB temperature anisotropy map and from the
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Figure 3: CMB multipole expansion spectrum. Figure is taken from Ref. [1].

CMB polarization data. Figure 4 shows constraints on the (ns, r)-plane drawn
from the temperature-anisotropy data alone together with plausible parameter
areas for simple inflationary models. However, BICEP 2 [67] favors roughly a
scalar-to-tensor ratio of 0.2 and is at 1.3σ discrepancy with the Planck result
[68].

3.3 Type Ia Supernovae

Let us return to discuss the use of type Ia supernovae as standard candles. The
progenitors of these objects are white dwarfs in binary star systems, which are
brought over the critical mass by accretion of gas from the companion star.
Because of their similar birth mechanism their intrinsic luminosites should also
be similar, which is what makes them potentially good standard candles.

The most thorough supernovae cataloque to date is the Union2.1 SNe compilation
[69]. However, here we consider the earlier Union 2 compilation [70] which was
also used in papers [I] and [III]. It consists of data from 557 type Ia supernovae in
the redshift range z = 0.015−1.4. Because the cepheid variable population starts
getting sparse at redshifts at which the type Ia supernovae start getting abundant
there are only a few cepheids to calibrate the supernovae distances. In fact the
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Figure 4: Figure shows the marginalized likelihood with 95% and 68% confidence
levels on (ns,r)-plane. Figure is taken from Ref. [1].

magnitudes of the supernovae are calibrated by only six cepheid variables each
of which shares the host galaxy with a type Ia supernova [65]. Figure 5 shows
the data points of the Union2 compilation with the distance-modulus-redshift
relation of the best fit ΛCDM-model.

It is interesting to note that the type Ia supernovae data shows hemispherical
asymmetries in the Hubble diagram of ∆H0/H0 ≈ 10%, with statistical signifi-
cance at the 95% C.L. [60]. It is yet unclear, if it is not just simply a statisti-
cal fluctuation, whether this sould be regarded as an indication of violation of
isotropy in the local neighbourhood or if it is just due to some unknown system-
atic issue in the observations.

3.4 Observable signals from inhomogeneities

Observables introduced in previous subsections provide model independent sig-
nals about local and global features of the universe. However, the intervening
inhomogeneous matter content affects the properties of light passing through the
structure. This is expected to produce obsevable signals in systematic fashion
because the matter distribution displays statistical homogeneity and isotropy.
This makes the large-scale structure itself an important cosmological probe.
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Figure 5: In the upper panel we have the type Ia supernova magnitude-redshift
relation from the Union 2 compilation. The curve is for the best-fit ΛCDM model.
The lower panel shows residuals from the data points (grey points for individual SNe
and black for bins) when the best-fit model is subtracted from the peak magnitudes.
Figure is taken from Ref. [70].

3.4.1 kSZ effect

CMB photons scatter off free electrons in the intergalactic medium. The sys-
tematic effect on the CMB map due to this phenomenom is called the kinematic
Sunyaev-Zeldovich effect (kSZ effect). The magnitude of the effect depends on
the peculiar velocities of galaxies with respect to the CMB restframe. While in
an FLRW model the CMB remains isotropic everywhere, thus making the kSZ
effect a perturbative quantity, in inhomogeneous models the general isotropy is
lost. Large-scale inhomogeneities induce large peculiar velocities and the local
CMB dipole responsible for the kSZ effect can be decomposed into contributions
due to the inhomogeneous background and perturbative velocities [24]. So the
kSZ effect can be used to detect and constrain the large-scale structure. On the
other hand, the Copernican principle itself can be revoked and constrained by
kSZ observations by detecting or constraining peculiar velocities accociated with
local bulk flow of the matter density. In this context the kSZ effect has been
studied in Ref’s. [23], [24], [71], [25].
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Figure 6: Figure shows linearly perturbed FLRW model predictions for the two-point
correlation function as a function of the comoving separation on the redshift z = 0.35
slice and results for the correlation function drawn from the same redshift slice of the
SDSS-data. The shown models from top down are ΩMh

2 = 0.12 (green), 0.13 (red),
and 0.14 (blue), all with Ωbh

2 = 0.024 and ns = 0.98. The bottom line (magenta)
lacking the bump is a pure CDM model with ΩMh

2 = 0.105. Figure is taken from Ref.
[75].

3.4.2 SW and ISW -effects

Gravitational potentials directly influence photon properties. The Sachs-Wolfe
effect (SW effect) refers to the linear contribution to the gravitational redshift of
photons due to the gravitational potential of the source. The integrated Sachs-
Wolfe effect (ISW effect) refers to the total gravitational redshift due to all poten-
tials between the source and observer. For a continuous, spherically symmetric
dust inhomogeneity the ISW effect vanishes for an observer outside the inhomo-
geneity looking through it, unless there is some form of dark energy to unbalance
the compensating effects of the profile. Therefore, the ISW effect is considered a
prominent observable to have another independent, direct detection of the dark
energy.
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3.4.3 Stacked ISW-effect

A signal from the ISW-effect can be extracted by comparing the CMB-map at
the positions and solid angles subtended by large-scale structures identified from
galaxy catalogues. Such signal is called stacked ISW-effect.

The Planck collaboration [1] reported roughly a 3σ detection of a stacked ISW-
signal, under the flat Friedmannian prior, compatible with signal detected from
the WMAP data [73]. Under the same prior, the Planck collaboration reports
also an ISW detection of ≈ 2.5σ from CMB alone by cross-correlating secondary
anisotropies with the lensing signal [1]. Along with the Planck results, the detec-
tion of an ISW signal provides strong complementary evidence for accelerating
late time expansion, and thus for ΩΛ ≈ 0.7 under the flat ΛCDM prior.

3.4.4 BAO scale

Baryon acoustic oscillations (BAO) are the imprint of acoustic oscillations in
the primordial baryonic plasma on the three dimensional spatial distribution of
galaxies [74], [75], [76]. BAO feature was generated before recombination in the
baryon-photon plasma by the same mechanism that created the acoustic feature
in the CMB-spectrum. This imprint can be observed from the galaxy distribution
as seen today. Indeed, the SDSS luminious-red-galaxy sample shows the acoustic
baryonic feature on the galaxy distribution in the two-point-correlation function.
Figure 6 shows the data for the two-point correlation function on a redshift
z = 0.35 slice of the SDSS galaxy catalogue, fitted with predictions from different
linearly perturbed FLRW models. The FLRW models shown in the figure are flat
ΛCDM models. Parameters ΩM , Ωb are present-day density parameters for total-
dust-, and baryon densities, respectively. The dimensionless Hubble parameter
h is just the local Hubble rate in units of 100 (km/s)/Mpc. The data clearly
shows a bump at 115 Mpc’s on the comoving scale. This feature is reproduced
by FLRW models with sufficient baryonic matter content. However, the model
independent significance of this detection has been under dispute [77].

3.5 Large-scale structure

On large scales the matter density of the universe has evolved into dense filamen-
tary structures encircling large and empty voids. Understanding the formation
of this weblike structure is crucial to cosmology. Not only because of its role in

29



3 COSMIC OBSERVABLES

Figure 7: Figure shows the detailed large-scale structure of the universe on various
length scales as seen in N-body simulations. Figure is taken from Ref. [5].

giving birth to signals described in previous subsection, but also because it is an
observable probe for the cosmological model in itself. There are several ways to
obtain explicit information about the matter distribution on large scales.

3.5.1 N-body Simulations

Large-scale N-body simulations [5] (see Fig. 7) have shown that nearly Gaus-
sian initial conditions for the matter distribution and scale invariant power spec-
trum evolve into a web-like structure with thick filaments and sheets surrounding
empty, expanding voids. This is also exactly what is seen in the galaxy catalo-
ques examples of which are shown in Fig. 8. Dark matter forms the backbone of
this cosmic web, towards which the baryonic matter is drawn under the influence
of gravity.
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3.5.2 Lyman-α -forest

Large-scale structure can also be probed by the absorption line structure in the
spectrum of light emitted by distant quasars. Indeed the diffuse baryonic gas
component present on large-scale structure induces Lyman-α absorption lines
at different wavelengths at different redshifts to the spectrum of light passing
through filamentary structures. The detailed form of this so-called Lyman-α for-
est provides important complementary information about the large-scale struc-
ture at high redshifts in addition to galaxy cataloques, lensing studies and N-body
simulations.

3.5.3 Weak Lensing

Yet more information about the local large-scale structure can be obtained from
the distortions of the images of galaxies due to the weak lensing by the gravita-
tional field of the cosmic web [78]. The statistics of weak lensing provides high
precision measurement given a large enough sample. As the distortions depend
essentially only on the gravitational field in the intergalactic space, the signal is
also largely independent of galactic astrophysics [78]. The latest SDSS cataloque
[2] comprises data from almost a million of galaxies. The distortions in the im-
ages of distant galaxies shows systematic alignment depending on the intervening
matter content. For this reason the weak lensing produces a signal probing the
matter distribution.

3.5.4 Superstructures

Large quasar groups are the largest structures observed in the universe, extend-
ing over hundreds of megaparsecs. These structures, seen in relatively early
universe, are probably seeds for superclusters and supercluster complexes, such
as the Sloan Great Wall observed at z ≈ 0.073 (see Fig. 8). There exists even
putative observations of extremely large quasar groups (LGQ’s), extending up to
Gigaparsec scales [26], [27]. The largest of these has a characteristic size of 500
Mpc’s, extends well over one Gpc in the longest dimension, and is estimated to
have density contrast roughly between 1.2 and 1.4 [27]. The characteristic size
is just the cubic root of the proper volume today (under the ΛCDM prior). On
the other hand, homogeneity scale in ΛCDM, backed up by the SDSS data [28],
is reached at around 60 Mpc’s. This suggests that the local spacetime metric as-
sociated with structures of this size deviates significantly from the global ΛCDM
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Figure 8: Figure shows slices of galaxy cataloques, illustrating the local structure of
the universe, drawn from 2df and SDSS surveys, and from the millenium simulation.
The Sloan great wall is the dense structure shown in the uppermost slice. Figure is
taken from Ref. [78].

metric also on cosmological scales.

Other superstructures have been observed in the CMB. Exeptionally large cold
and hot spots seen in the CMB temperature map indeed seem to imply exis-
tence of very large structures. The foreground-corrected CMB data shows low-
multipole anomalies including large cold spots extending up to ten degrees in
angular diameter. These anomalies have been suggested to be (for the cold
spots) due to large and empty voids with sizes up to 300h−1 Mpc’s between the
last-scattering surface and the observer [29, 30, 31, 32]. In this case the ”coldness
of the spot” would result due to the integrated Sachs-Wolfe effect.

However, the structures causing the CMB-anomalies do not neccessarily have to
lie between us and the last-scattering surface, but they could also reside on the
last-scattering surface itself. Indeed, the amplitudes of the hot and cold spots
are of order 10−5, i.e. they are perfectly compatible with the almost flat power
spectrum. If these spots were to be originated due to structures on the recombi-
nation surface, in which case they would result due to the Sachs-Wolfe effect, the
cold spots would correspond to overdensities (and hot spots to underdensities).
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The sizes of the corresponding structures in the latter case were estimated e.g.
in [30], with a conclusion that in this case the corresponding inhomogeneities are
again of Gpc scale in diameter.

In conclusion, the statistical homogeneity in our cosmic neighbourhood is not
yet established up to Gpc scales. This rises a question about the intepretation
of cosmological data: If the local homogeneity is violated on Gpc scales, how
much the FLRW prior misleads us in estimating the cosmological parameters?
The first approximate answers to this issue can be obtained by studies invoking
spherical symmetry.

4 Spherically Symmetric Perfect Fluids

In this section the dynamics of spherically symmetric multi-component perfect
fluids are studied using the ADM formalism. The model is the same as in Ref.
[II], but system of equations derived here is free from numeric problems encoun-
tered in [II]. Thus, the system of equations derived is readily solvable for wider
range of models. Subsection 4.4 contains an unpublished result on how to set
initial conditions for initially super Hubble inhomogeneities in a general multi-
component models. Previous approaches in the literature have only made use of
the exactly solvable condition for the LTB model.

4.1 Metric and Source

The most general spherically symmetric metric written in the ADM form (2.11)
is

ds2 = −α2dt2 + hrr (βrdt+ dr)2 + hθθdΩ2. (4.1)

Here α is the lapse function, βr is the radial shift function. These, as well as the
angular and radial metric components hθθ and hrr are functions of coordinates
t and r. In order to keep the equations simple we choose to work in a shiftless
gauge, where βr = 0. In this gauge the metric (4.2) becomes exactly of the same
form as the Lemâıtre metric [79, 80, 81]:

ds2 = −e2λdt2 +
Y ′2

1 + 2E
dr2 + Y 2dΩ2, (4.2)

where we made the replacements: α ≡ eλ, hθθ ≡ Y 2 and hrr = Y ′2

1+2E
. These
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variables were used in paper [II]. Here we will start directly with the ADM for-
mulation, because it leads to a system which is numerically more easily solvable.

The energy-momentum tensor for a perfect fluid in the coordinate basis reads

T µν = (ρ+ p)uµuν + pgµν , (4.3)

where uµ is the fluid four velocity, normalized as u2 = −1, and ρ and p are the
fluid energy and pressure densities, respectively. For a spherically symmetric
fluid

uµ = γ

(
1

α
, vc, 0, 0

)
= γ

(
1

α
,
vp√
hrr

, 0, 0

)
, (4.4)

where vc is the radial comoving velocity field of the fluid, and vp =
√
hrrvc is the

corresponding proper velocity, and γ ≡ 1/
√

1− v2
p is the corresponding Lorentz

boost factor. Functions ρ, p and vc are also to be understood as functions of coor-
dinates t and r. Metric of Eq. (4.2) can be sourced by a tensor sum of spherically
symmetric perfect-fluid components. In principle there could be couplings be-
tween different components, but here we will assume that all components satisfy
energy-momentum tensor conservation equation individually. Constraining the
source to a comoving dust, i.e. vc = 0 and p = 0 imposes α ≡ 1, and by the
Einstein equation (2.8)

hrr = C(r)
h2
θθ,r

4hθθ
, (4.5)

yielding the LTB metric 2.41. If the source fluids are also homogeneous we further
find:

hrr =
a(t)2

1− kr2
(4.6)

hθθ = a(t)2r2, (4.7)

yielding the FLRW metric (2.23). The condition α ≡ 1 for the lapse function is
called a geodetic slicing. It specifies a freely falling coordinate system up to a
radial comoving velocity vc between the source and the coordinate system.

The independent, non-vanishing components of the energy-momentum tensor for
n perfect-fluid components such as in Eq. (4.3), with four-velocities as in Eq.
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(4.4), in the spherically symmetric case are

Ttt =
n∑
i=1

α2γ2
i (ρi + v2

i,ppi),

Ttr = −
n∑
i=1

α
√
hrrγ

2
i vi,p(ρi + pi),

Trr =
n∑
i=1

(
hrrγ

2
i v

2
i,p(ρi + pi) + hrrpi

)
,

Tθθ =
n∑
i=1

hθθpi. (4.8)

It is useful to define an effective gravitational mass F = F (t, r) in a spherically
symmetric model as the mass parameter of the Schwarzschild metric, which at a
given time t and radius r smoothly joins the corresponding interior metric (4.2).
For the metric (4.2), the effective gravitational mass is given by [83, 84, 82]

F = πα2 ḣ
2
θθ

h
3/2
θθ

− π
h2
θθ,r

hrr
√
hθθ

+ 4π
√
hθθ. (4.9)

Next we write down the ADM equations given in section 2.1.5 for the variables
hrr, hθθ, Krr and Kθθ. The independent source terms appearing in the ADM
equations, following from the projections of Eq. (2.20) for a radially symmetric
n fluid-component energy-momentum tensor as in Eq. (4.8) are given by:

ρ =
1

α2
T tt,

Sr =
1

α
Ttr,

Mrr =
1

2

hrr
α2
Ttt +

1

2
Trr −

hrr
hθθ

Tθθ,

Mθθ =
1

2

hθθ
α2
Ttt −

1

2

hθθ
hrr

Trr. (4.10)

The equations of motion (2.16) here become the following four independent equa-
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tions for metric components hrr, hθθ and extrinsic curvatures Krr and Kθθ:

ḣrr = −2αKrr,

ḣθθ = −2αKθθ,

K̇rr = −α,rr +
1

2

α,rhrr,r
hrr

+ α

(
− hθθ,rr

hθθ
+

1

2

(
hθθ,r
hθθ

)2

+
1

2

hrr,rhθθ,r
hrrhθθ

−K
2
rr

hrr
+ 2

KrrKθθ

hθθ
−Mrr

)
,

K̇θθ = −1

2

α,rhθθ,r
hrr

+ α

(
1

4

hrr,rhθθ,r
h2
rr

− 1

2

hθθ,rr
hrr

+
KrrKθθ

hrr

+2

(
Kθθ

hθθ

)2

+ 1−Mθθ

)
. (4.11)

The constraint equations (2.21) and (2.22) on the other hand give rise to the
Hamiltonian constraint:

2ρ+ 2
hθθ,rr
hrrhθθ

− 1

2

h2
θθ,r

hrrh2
θθ

− hrr,rhθθ,r
h2
rrhθθ

− 4
KrrKθθ

hrrhθθ
− 2

(
Kθθ

hθθ

)2

− 2

hθθ
= 0, (4.12)

and the momentum constraint

Sr − 2
Kθθ,r

hθθ
+
hθθ,r
hθθ

(
Krr

hrr
+
Kθθ

hθθ

)
= 0. (4.13)

First, it turns out that hθθ behaves as r2 near the origin, as expected from the
homogeneous limit. We then notice that the two first terms in parenthesis on
the right-hand side of the K̇θθ-equation in (4.11) both diverge at the origin. The
terms cancel each other exactly, but such cancellation is difficult to achieve to
high accuracy numerically. In order to cast the equations to a numerically more
manageable form we need to handle such cancellations analytically. To do this
we make the change of variable:

hθθ → H2
θθ. (4.14)

The variable Hθθ then is actually exactly the same as the scale factor Y of paper
II. The two problematic terms then become

−hθθ,rr
hθθ

+
1

2

(
hθθ,r
hθθ

)2

= −2
Hθθ,rr

Hθθ

.
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This combines the two cancelling terms into one and of course, as hθθ ∝ r2,
Hθθ ∝ r and thus the term on the right-hand side vanishes at the origin. In
addition it is convenient to change the variable hrr into its square root, and
change the extrinsic curvatures into their mixed-form components i.e.

hrr → H2
rr (4.15)

Krr → hrrK
r
r (4.16)

Kθθ → hθθK
θ
θ. (4.17)

The mixed components of the extrinsic curvature Kr
r and Kθ

θ are, respectively,
just the negative of the longitudinal and transversal Hubble rates defined in paper
[II]. With these changes of variables the source terms (4.11) eventually read

ρ =
n∑
i=1

γ2
i (ρi + v2

i,ppi),

Sr = −Hrr

n∑
i=1

γ2
i vi,p(ρi + pi),

Mrr =
1

2
H2
rr

n∑
i=1

(
ρi − pi + 2γ2

i v
2
i,p(ρi + pi)

)
,

Mθθ =
1

2
H2
θθ

n∑
i=1

(ρi − pi). (4.18)

Since Hθθ ∝ r at the origin, it is convenient to make yet another change of
variables:

Hθθ → rĤθθ (4.19)

and use a notation

X ≡ Hθθ,r

Hrr

. (4.20)

With these definitions, and using (4.18) the dynamical equations can be written

37



4 SPHERICALLY SYMMETRIC PERFECT FLUIDS

as

Ḣrr = −αHrrK
r
r,

˙̂
Hθθ = −αĤθθK

θ
θ,

K̇r
r = −α,rr

H2
rr

+
α,rHrr,r

H3
rr

+ α

(
− 2

HrrĤθθ

X,r

r
+ (Kr

r)
2 + 2Kr

rK
θ
θ

−1

2

n∑
i=1

(
ρi − pi + 2γ2

i v
2
i,p(ρi + pi)

))
,

K̇θ
θ = − α,r

HrrĤθθ

X

r
+ α

(
− 1

HrrĤθθ

X,r

r
+

1

Ĥ2
θθ

1−X2

r2
+Kr

rK
θ
θ

+2
(
Kθ

θ

)2 − 1

2

n∑
i=1

(ρi − pi)

)
, (4.21)

and the constraint equations as

2

HrrĤθθ

X,r

r
− 1

Ĥ2
θθ

1−X2

r2
− 2Kr

rK
θ
θ −

(
Kθ

θ

)2
= −

n∑
i=1

γ2
i (ρi + v2

i,ppi) (4.22)

and

2Kθ
θ,r − 2

(
Ĥθθ,r

Ĥθθ

− 1

r

)(
Kr

r +Kθ
θ

)
= −Hrr

n∑
i=1

γ2
i vi,p(ρi + pi). (4.23)

One can now use Eq. (4.23) to solve for Kr
r in terms of Kθ

θ and Ĥθθ:

Kr
r = Kθ

θ +
rĤθθ

rĤθθ,r + Ĥθθ

(
Kθ

θ,r +
Hrr

2

n∑
i=1

γ2
i vi,p(ρi + pi)

)
. (4.24)

We can thus drop the equation for K̇r
r. Dividing the Hamiltonian constraint by

two and adding it within the parenthesis on the right-hand side of the equation
for K̇θ

θ in (4.21) yields

K̇θ
θ = − α,r

HrrĤθθ

X

r
+ α

(
1

2Ĥ2
θθ

1−X2

r2
− 1

2

(
Kθ

θ

)2
+

1

2

n∑
i=1

γ2
i

(
v2
i,pρi + pi

))
.

(4.25)
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The term proportional to (1 − X2)/r2 is apparently still problematic. It must
be finite, but its finiteness only follows from two divergent terms cancelling one
another at the origin. In variables Hθθ, Hrr =

Hθθ,r√
1+2E

, used in paper [II], we

observe that 1−X2 = −2E so that it is useful to make the following change of
variables: Hrr → Hθθ,r√

1+2r2Ẽ
. With these manipulations and changes of variables,

and using Eq. (4.24) to solve for Kr
r, the system of equations for variables Ĥθθ,

Kθ
θ and Ẽ finally becomes:

˙̂
Hθθ = −αĤθθK

θ
θ,

K̇θ
θ = −α,r(1 + 2r2Ẽ)

r(rĤθθ),rĤθθ

+ α

(
− Ẽ

Ĥ2
θθ

+
3

2

(
Kθ

θ

)2
+

1

2

n∑
i=1

γ2
i

(
r2ṽ2

i ρi + pi
))

,

˙̃E =
1

2
αĤθθ

√
1 + 2r2Ẽ

n∑
i=1

γ2
i ṽi (ρi + pi)−

α,r(1 + 2r2Ẽ)ĤθθK
θ
θ

r(rĤθθ),r
, (4.26)

where ṽi ≡ vi,p
r

. This is a complete set of equations when the sources are defined.
However, we are still left with the Hamiltonian constraint

n∑
i=1

γ2
i (ρi + r2ṽ2

i pi) +
2

(rĤθθ),rĤθθ

(
2rẼ + r2Ẽ,r

)
+

2Ẽ

Ĥ2
θθ

− 2Kr
rK

θ
θ −
(
Kθ

θ

)2
= 0,

(4.27)

which we did not use to reduce the number of variables. It can be, however,
used as a check to monitor that the numerical solution remains correct during
the time evolution.

Equations (4.26) must be complemented by equations for the source terms. These
follow from the conservation of energy-momentum tensor.

4.2 Stress-Energy Conservation

Indeed, as we are considering an ideal fluid source comprised of n decoupled
components, where each component is conserved individually:

∇νT
µν
i = 0, (4.28)

where ∇µ denotes the covariant derivative. From here on we’ll drop the i indices,
but it is to be understood that following equations hold for each component sep-
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arately. The components of these equations (see paper [II]) give rise to the rela-
tivistic energy-conservation and Euler equations, respectively, for non-comoving
fluids:

dρ

dτ
= −Θ (ρ+ p) , (4.29)

dp

dσ
= −a (ρ+ p) , (4.30)

where Θ and a are the expansion and acceleration scalars, respectively, related
to expansion tensor and four-acceleration to be defined below. On the left-hand
side we have convective derivatives with respect to the proper time τ , and with
respect to σ along the four-acceleration aµ e.g.:

d

dτ
≡ uµ∂µ =

γ

α

∂

∂t
+
γvp
Hrr

∂

∂r
, (4.31)

d

dσ
≡ aµ

a
∂µ =

γvp
α

∂

∂t
+

γ

Hrr

∂

∂r
. (4.32)

Note that in the rest frame of the fluid component the derivative with respect
to τ reduces to α−1 ∂/∂t and the derivative with respect to σ to H−1

rr ∂/∂r. We
will use this for the dust component. Eq. (4.30) is indeed just a contracted form
of the standard Euler equation, which in general reads hµν∂νp = −aµ (ρ + p).
From Eq. (4.30) it is clear that the four-velocity of a dust (p = 0) component is
geodesic.

The nonzero components of the four acceleration of a fluid component, in general
defined as aµ ≡ uν ∇νuµ are given by:

at = −αγ vp a and ar = γ Hrr a . (4.33)

Here the acceleration scalar a is defined as

a =
√
gαβaαaβ = v−1

p

(
ΘT + v2

p ΘR

)
, (4.34)

and ΘT and ΘR are again related to expansion tensor Θµν defined as:

Θµν = qαµq
β
ν ∇(αuβ) = ∇(µuν) + a(µuν). (4.35)

The quantity qµν = gµν +uµuν is the projection of the metric on the hypersurface
orthogonal to uµ. In the second equality we used the fact that uν∇µuν = 0. The
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four-velocity field uµ of the fluid component is a time-like unit vector. Thus,
the spatial hypersurfaces orthogonal to uµ define a foliation of the spacetime.
Comparing the equation (4.35) with the definition of the extrinsic curvature
(2.12) shows that the expansion tensor is just two times the extrinsic curvature
of the spatial hypersurfaces comoving with the fluid component. From the ADM
equations (2.16) we can then conclude that it is the expansion tensor that drives
the time evolution of the spatial hypersurfaces.

The quantity of interest here, however, is the expansion scalar, which can be
obtained without calculating explicitly the components of the expansion tensor:

Θ = gµνΘµν = ∇αu
α =

∂α(
√
−guα)√
−g

= ∂αu
α +

d ln
√
−g

dτ
, (4.36)

where the determinant of the metric g can be written as
√
−g ≡ JT JR JA, with

JT ≡ α , JR ≡
Ĥθθ + rĤθθ,r√

1 + 2E
and JA ≡ r2Ĥ2

θθ sin θ . (4.37)

Physically expansion scalar represents the rate of change of infinitesimal volume
of the fluid.

We then define the temporal, radial and angular expansion scalars:

ΘT ≡ ∂tu
t +

d ln JT
dτ

=
r

α
γ3 ˙̃vp +

γvp
Hrr

α,r
α
,

ΘR ≡ ∂ru
r +

d ln JR
dτ

= ∂r

(
γvp
Hrr

)
+ γ

(
−Kr

r + SR

)
,

ΘA ≡ ∂θu
θ + ∂φu

φ +
d ln JA
dτ

= 2γ

(
−Kθ

θ + SA

)
, (4.38)

where we defined:

SR ≡ vp
Hrr,r

Hrr

= rṽ

(
2Ĥθθ,r + rĤθθ,rr

Ĥθθ + rĤθθ,r

− r 2Ẽ + rẼ

1 + 2r2Ẽ

)
, and

SA ≡ vp
Hθθ,rr

HrrHθθ

= ṽ

√
1 + 2r2Ẽ

Ĥθθ

. (4.39)

The quantities SR and SA can be understood as the radial and angular spatial
expansion rates relevant for non-comoving fluids.
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Substituting expressions (4.38) into equations (4.34) and (4.36) we eventually
get the desired expressions for the acceleration and expansion scalars

a = γ2dvp
dτ
− rγṽKr

r +
γ

Hrr

α,r
α
,

Θ = γ2dvp
dσ
− γK + 2γṽ

Ĥθθ + rĤθθ,r

HrrĤθθ

+
γvp
Hrr

α,r
α
. (4.40)

Here we used notation Hrr ≡ (rĤθθ),r/
√

1 + 2r2Ẽ.

Next we assume that each fluid component satisfies a barotropic equation of state

p = wρ, (4.41)

where w = w(t, r, ρ). Now, the true dynamical variables in equations (4.29)-
(4.30) are the energy density ρ and the velocity of the fluid vc. Substituting
expressions (4.40) into these equations and manipulating them slightly, we can
finally obtain equations for ρ and scaled velocity variable ṽ ≡ vp/r

˙̃v = − α (1− c2
s) ṽ

Hrr (1− r2c2
sṽ

2)
(ṽ + rṽ,r) +

α

γ (1− r2c2
sṽ

2)
C, (4.42)

ρ̇ = −αrṽ
Hrr

(
1− c2

s

γ2 (1− r2c2
sṽ

2)

)
ρ,r +

r2ṽ2ẇ

1− r2c2
sṽ

2
ρ+

rṽ

Hrr

αw,r
1− r2c2

sṽ
2
ρ

− α

1− r2c2
sṽ

2
D (ρ+ p) , (4.43)

where we defined the adiabatic speed of sound

c2
s ≡

(
∂p

∂ρ

)
(4.44)

and furthermore

C ≡ ṽ

γ

(
Kr

r − c2
sK −

1

α

ẇ

1 + w
− 1

Hrr

w,r
1 + w

)
− c2

s

rγ3Hrr

ρ,r
ρ+ p

+2
c2
sṽ

2

γ

√
1 + 2r2Ẽ

Ĥθθ

− 1

rγHrr

α,r
α
,

D ≡ 2ṽ

Ĥθθ

√
1 + 2r2Ẽ −K + r2ṽ2Kr

r +
(ṽ + rṽ,r)

Hrr

+
rṽ

Hrr

α,r
α
. (4.45)
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Remember that Kr
r can be solved as in equation (4.24).

Let us make a couple of observations of the fluid equations. First, identifying
the reference-frame velocity uαrf with the velocity uαī of the ī:th fluid-component
we can obtain the rest-frame expressions of Eqs. (4.29-4.30) by simply setting
vp = 0:

1

α
ρ̇ī = −Θrf (ρī + pī) , (4.46)

p′ī = −ar, rf (ρī + pī) , (4.47)

where ar, rf = α′

α
and at, rf = 0 (see Appendix of paper [II]). The last equation in

particular shows that the pressure gradients are the sole cause for non-geodesity.

Second, because of the (twice contracted) Bianchi identity the Einstein tensor is
covariantly conserved ∇µG

µν = 0, and we find that

n∑
i=1

∇µT
µν
i = 0 . (4.48)

In the spherically symmetric case the equations with ν = t and ν = r are
independent. As a result of these constraints, two conservation equations out of
the total of 2n fluid equations are not independent when considered together with
the Einstein equations. This just clarifies why the constraint equations could be
left out of the set.

4.3 Dust Frame

In all models of interest for us we have at least one dust component. In these
cases we can choose the coordinate system comoving with the dust. Since dust
has a vanishing pressure, the dust frame coincides with the geodesic slicing α ≡ 1,
in addition to requirement that the radial velocity field of the dust component
vanishes. This can also be seen from equation (4.43) by writing K in terms of
Ĥθθ, Hrr and their time derivatives. In this case the energy density of the dust
ρM can be solved analytically in terms of the metric variables, yielding

ρM = ρ̄M

¯̂
H2
θθH̄rr

H2
θθHrr

. (4.49)

Here the overbar denotes the initial-value profile.
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Now, consider a model where we have a dust component and n perfect-fluid
components with equations of state pi = wiρi, where wi = wi(t, r, ρi) and i =
1, ..., n. Choosing the dust frame coordinate system as defined above, we find a
complete system of equations for the variables Ĥθθ, K

r
r, Ẽ, {ṽi}ni=1 and {ρi}ni=1

as follows:

˙̂
Hθθ = −ĤθθK

r
r,

K̇θ
θ = − Ẽ

Ĥ2
θθ

+
3

2

(
Kθ

θ

)2
+

1

2

n∑
i=1

γ2
i

(
r2ṽ2

i + wi
)
ρi,

˙̃E =
1

2
Ĥθθ

√
1 + 2r2Ẽ

n∑
i=1

γ2
i ṽi (1 + wi) ρi,

˙̃vi = −
(
1− c2

s,i

)
ṽi

Hrr

(
1− r2c2

s,iṽ
2
i

) (ṽi + rṽi,r) +
1

γ
(
1− r2c2

s,iṽ
2
i

)C, (4.50)

ρ̇i = − rṽi
Hrr

(
1−

c2
s,i

γ2
(
1− r2c2

s,iṽ
2
i

)) ρi,r +
r2ṽ2

i ẇ

1− r2c2
s,iṽ

2
i

ρ

+
rṽi
Hrr

wi,r
1− r2c2

sṽ
2
i

ρi −
1

1− r2c2
s,iṽ

2
i

D (1 + wi) ρi, (4.51)

where definitions for C and D are given in Eq. (4.45). These equations form a
complete set of nonsingular, well behaved equations for numerical applications

4.4 Initial Values and Boundary Conditions

The initial conditions for the curvature fuction Ē ≡ E(t̄, r) in the multi-component
model can be set to correspond to simultaneous big-bang singularity in the coor-
dinate time. This condition ensures that there are no decaying modes. As long
as the initial conditions are given well after inflation, non-negligible decay modes
would have had to be of enormous size at the onset of inflation. For this reason
decay modes are considered to conflict with the inflationary paradigm [85]. In
our current variables the equation for vanishing bang-time function is (see Eq.
(2.37) of paper [II]):

t̄ =

∫ t̄

0

dt
Ḣθθ

α
√

F
4πHθθ

+ 2r2Ẽ
. (4.52)

Here a problem is that the lapse α, the effective gravitational mass F and the
curvature function E depend on the time coordinate. In the pure LTB model they
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are time independent and thus the integration variable can be easily changed to
Hθθ. However, if we consider lapseless gauge α ≡ 1, and a model with constant
equation of state parameters wi and specify initial conditions at sufficiently early
times t̄, such that the size of the inhomogeneity is much larger than the causal
horizon (the pressure gradients can be neglected), the evolution of causal patches
effectively followed an FLRW model before t̄, approximately setting E(t, r) = Ē
before t̄. This observation gives the scaling relations for individual components,
so that by equation (2.26) we can approximate the time dependence of F as

F ≈
n∑
i=1

(
H̄θθ

Hθθ

)3wi

F̄i, (4.53)

where F̄i is the initial profile for the i:th component gravitating mass. While
there is no really meaningful division into components for the gravitating mass
in general, such division is useful prescription for the initial gravitating mass.

Using Eq. (4.53) and making the change of variables Hθθ −→ ỹ ≡ Hθθ
H̄θθ

in the

integral of Eq. (4.52) then yields√
F̄

4πH̄3
θθ

t̄ ≈
∫ 1

0

dỹ
1√∑n

i=1 ỹ
−3wi−1 F̄i

F̄
+ 8πH̄θθĒ

F̄

. (4.54)

For a flat FLRW background metric effective gravitating mass would be

Fbkg = 4πH̄2(rā)3

n∑
i=1

Ω̄i

( ā
a

)3wi

, (4.55)

where Ω̄i is the background energy density of the i:th component in units of
the critical density ρcr and H̄ the Hubble rate at t̄. Clearly we have F̄bkg =
4πH̄2(rā)3. Next we fix the r coordinate so that H̄θθ ≡ rā and choose to work
with such initial density profiles that effectively F̄i ≈ Ω̄iF̄ . Note here that
when i 6= 1 the factor Ω̄i should actually have r dependence, but its effect on the
integral would be negligible. We also observe that by definition in the background
model:

H̄t̄ ≡
∫ 1

0

dỹ
1√∑n

i=1 Ω̄iỹ−3wi−1
≡ I1/2. (4.56)

Then, expanding (4.54) around 8πH̄θθĒ
F̄

= 0, using (4.56) we find that to the
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lowest order in δ̄F̄ ≡ F̄
F̄bkg
− 1:

Ē ≈ −1

2

(
rāH̄

)2 I1/2

I3/2

δ̄F̄ , (4.57)

where

I3/2 ≡
∫ 1

0

dỹ
1(∑n

i=1 Ω̄iỹ−3wi−1
)3/2

. (4.58)

This result is a generalization of the result of Ref. [86] for the LTB model which
was used in the papers [II] and [III] where the initial conditions were set during
matter domination. Indeed, in the pure dust case Eq. (4.57) clearly reduces to
the result

Ē(r) = −5

6
(rāHout)

2δ̄FM (r). (4.59)

For a comparison, in the pure radiation case (i.e. w = 1
3
) we find instead

Ē(r) = −1

6
(rāHout)

2δ̄Frad
(r). (4.60)

The initial condition for the dust and radiation case can also be integrated ana-
lytically. We find

Ē(r) =
5

3
r2Ω̄2

M

3Ω̄M − 2 + 2Ω̄
3/2
R

16
(

1− Ω̄
5/2
R

) δ̄F (r), (4.61)

where Ω̄M + Ω̄R ≡ 1

4.5 Effective FLRW Model at Early Times

The acoustic oscillation features seen in the CMB spectrum are supposed to have
arisen from the gravitational instabilities seeded by the primordial fluctuations.
At that time the universe effectively looked like a linearly perturbed FLRW model
so that inhomogeneous models may be embedded in an FLRW background in-
dependently of the acoustic oscillations. As a result the local inhomogeneous
structure only affects the high-multipole end of the CMB spectrum through the
distance to the recombination surface [20]. However, for a real inhomogeneity
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its geometry would most likely dominate the low multipoles. As a result the low
multipoles in the spectrum are really not meaningful quantities in spherically
symmetric local models. Because the inhomogeneity distorts the observed local
Hubble rate and thereby the temperature of the CMB compared to an observer
in the background FLRW universe, the present-day values of cosmological pa-
rameters of the two must be related before the results for the acoustic peaks in
an FLRW background can be used to constrain the model.

Studies of spherically symmetric large-scale inhomogeneities have been based on
the assumption that radiation does not have to be included to the actual inho-
mogeneous source. The distances of the inhomogeneous model and the effective
FLRW background with radiation can be matched during the matter domination
and well beyond the actual inhomogeneity scale. Effects of the weak radiation
background on the cosmic evolution are expected to be negligible after that par-
ticular redshift. Due to the different expansion rates within the inhomogeneity,
the present-day CMB temperature in the FLRW background differs from the
observed value. See section 3 of paper [I] for more details on determining the
effective FLRW model. However, it is not conclusively clear a priori how the
initial conditions for the baryonic component at recombination should be set.
This is due to pre-recombination plasma phase of the baryonic matter which has
not been modelled in the context of exact inhomogeneous models.

5 Cosmological Applications

In this section we go through the results of papers [I]-[III]. In paper [I] we di-
rectly compared ΛCDM and local-void models by extending the pure dust LTB
model in to same parameter space with ΛCDM by inclusion of the cosmological
constant. This way the ambiguities in the number of degrees of freedom associ-
ated with the likelihood comparison were removed. In addition to comparison of
the two scenarios, this also allowed to study how a mixed scenario would affect
the determination of cosmological parameters. In paper [II] we studied more
general spherically symmetric models sourced by multitude of perfect fluid com-
ponents with arbitrary equations of state. We were able to present the dynamical
equations in compact and tractable form, but were faced with difficulties with
numerical implementation for more general equations of state. These difficul-
ties were confronted with the ADM formalism in previous section. However, we
found an interesting fluid model with negative pressure and without pressure
gradients. This model, which depicts dark energy with zero sound speed, turned
out to be numerically easily manageable. This model allowed to study how local
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Figure 9: Evolution of the contrasts of M component energy density (left panel) and
N component energy density (right panel) for z =5 (red), 3, 1 and 0 (blue). Figure is
from paper [II]

large-scale inhomogeneities would affect our perception of the equation of state
for dark energy which was the subject of paper [III].

Other studies on spherically symmetric multi-component fluids have concentrated
on the case with dust and radiation. Reference [22] presented the necessary equa-
tions linearized in the relative verlocity. However, the authors did not analyze
the solution to these equations in any detail. The case with dust and radiation
was studied with a succesful numerical implementation for initially superhorizon
inhomogeneities in [87]. However, they only presented a scheme for numerical
implementation and left further applications for future work.

All models studied in this section use the homogeneous big-bang condition (4.59),
which guarantees vanishing decay modes. Models with an inhomogenous bang-
time function were studied in [21] in the context of the local void explanation
for the dark energy. This was done to find out if allowing decay modes would
relax the difficulties with satisfying all the observational constraints in pure dust
void models. They found out that there was no significant improvement to
be achieved, but left open the possibility for having non-negligible effects by
including the radiation when modelling the early evolution of an inhomogeneity.
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Figure 10: Left panel: evolution of the velocities relative to the background vM ≡
−Hθθ(Kθ

θ,out−Kθ
θ) = Y∆H/c of the M component for z =5 (red), 3, 1 and 0 (blue).

Right panel: evolution of the proper velocities of the N component with respect to the
M component for z =5 (red), 3, 1 and 0 (blue). Figure is from paper [II]

5.1 Non-comoving dust

In the post-recombination evolution the standard model has essentially two dust-
components: baryonic and cold dark matter. Dust is, by definition, in geodetic
motion, so if initially two dust components are in rest with respect to each
other, they will not develop velocities with respect to each other later during the
evolution. However, the fact that CDM decoupled before baryons introduces a
difference in their perturbed densities. Thus, they should be described as two
non-comoving dust components from the epoch of the last scattering onwards
until baryons fall in to CDM potential wells. The delayed decoupling of baryons
results from the pressure in the photon-baryon plasma, when gradients push
the baryonic inhomogeneities away from the geodetic flow and initially prevents
baryonic matter from falling into the gravitational potential wells associated with
the CDM distribution.

The nonlinear relativistic evolution of inhomogeneities in a dust-baryonic-plasma
would be interesting. Under the spherically symmetric prior, this can be done
using the formalism presented in the previous section. This would allow to study
non-comoving dust inhomogeneities with realistic initial relative velocity profiles.
In the case studied in paper [II], which we present here, the initial profile was
rather arbitrarily chosen.
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Figures 9 and 10 illustrate the case of an underdensity with two non-comoving
dust components in a standard ΛCDM background. The subscript M refers to
the rest-frame dust component and N to the dust component with initially non-
vanishing relative velocity. In figure 9 we see evolution of local density contrasts
δM and δN . The figure shows how the evolution of the non-comoving component
induces a feature on the rest-frame components profile. Both the density con-
trasts show a realistic evolution, with overdense regions contracting and becom-
ing thin shells (mimicking structures), and underdense regions becoming larger
and deeper (mimicking voids). Note in particular how the N component induces
gravitationally a peak in the density of the M component. In figure 10 we see the
evolution of local velocities associated with the two components. Velocities are
seen by an observer situated in the background for the rest-frame component(left
panel), and relative proper velocities vp for the non-comoving component (right
panel). We can see that the velocities relative to the background increase as
the underdensity gets emptier. On the other hand, the gravitational attraction
between the two components reduces their relative velocities vp. The redshifts
in the figures are relative to the background solution.

5.2 ΛLTB model

The pure dust solution, i.e. LTB model which is exactly solvable, can easily be
extended with a non-vanishing cosmological constant. In this case the model
is still exactly solvable, and the solution can be represented in terms of elliptic
integrals [91]. With a non-vanishing cosmological constant the LTB model is
effectively extended into the same parameter space with the ΛCDM model when
the early evolution is understood in terms of the effective metric. This allows
to make a direct comparison between the ΛCDM and the local-void model. In
particular the model allows to find out if there are degeneracies between the
value of cosmological constant and dimensions of a local inhomogeneity.

This was done in paper [I]. We compared the models with standard χ2-likelihood
analysis in the parameter space consisting of seven parameters. Parameters which
specify the FLRW background model, are background curvature density ΩK,out,
DE density ΩΛ,out, present age of the universe t0 and the spectral index ns,
respectively. Parameters ΩM,in, r0 and ∆r, which specify the void dimensions,
are free parameters associated with the chosen dust density profile

ΩM(r) = ΩM,out − (ΩM,out − ΩM,in)
1− tanh ((r − r0)/(2∆r))

tanh (2∆r)
, (5.1)
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Figure 11: Shown are the 1, 2 and 3σ confidence level contours on r0 and ΩΛ,out for
the likelihood for the ΛLTB model with ns = 0.96, t0 = 13.7 Gyr and ΩK,out = 0.
On the left, the smaller panels show the contours for the independent likelihoods
per observable (supernovae, local Hubble rate, CMB and BAO). On the right, the
larger panel shows the contours for the combined likelihood. In the panel representing
measurements of the local Hubble constant, the results relative to HS06 are shown as
filled contours, and the ones relative to HR09 are indicated by black lines. The same
labeling holds for the panel relative to the combined observables. In the panel with
CMB contraints the dot-dashed contours denote confidence levels for the likelihood
marginalized over ns. Figure is from paper [I].

where ΩM,out = 1− ΩK,out − ΩΛ,out.

Figure 11 shows the likelihood contours in planes of the background ΩΛ and void
radius r0, both for individual observables and combined. We assumed ns = 0.96,
t0 = 13.7 Gyr and ΩK,out = 0 for the background. For the void we assumed
δΩ ≡ (ΩM,in − ΩM,out)/ΩM,out = −0.9 and ∆r = 0.35r0 in order to have good
fits with the supernova data. It is evident from the supernova likelihoods that
in order for the void to explain away the cosmological constant the void would
have to be almost the size of observable universe. However, this conclusion is
clearly not relevant under these priors when accounting for the other observables.
Likelihoods are shown for two results for the local Hubble rate HS06 = 62.3± 5.2
km s−1Mpc−1 [62] and HR09 = 74.2 ± 3.6 km s−1Mpc−1 [63]. For the CMB
constraints, the confidence levels are plotted also with the spectral index ns
marginalized over. This has a strong effect of widening and bending the contours
towards the pure-void region. On the other hand, the more accurate determi-
nation for the local Hubble rate HR09, which is plotted with black dashed lines
in the figure, shifts the confidence levels towards higher ΩΛ,out due to its higher
value.
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Figure 12: 1, 2 and 3σ confidence level contours on r0 and ΩΛ,out for the ΛLTB
model with parameters ns and t0 and with ΩK,out marginalized over. Labelling and
definitions as in Fig. 11. Figure is from paper [I]

Figure 12 shows also the confidence-level contours in r0 and ΩΛ,out plane for the
ΛLTB model. Priors for the void dimensions are the same. However, here the
spectral index, age of the universe and the background FLRW model spatial
curvature ΩK,out are marginalized over. Clearly, including BAO data excludes
the void models with the profile of Eq. (5.1). However, as was shown in [17]
the transversal BAO data can always be accommodated by fine tuning the den-
sity profile. It is also appropriate to note that the BAO scale is a perturbative
quantity and the perturbation theory for the LTB metric is not fully developed
yet. It is therefore reasonable to do the analysis also excluding the BAO con-
straints. In comparison to Fig. (11) the marginalization and exclusion of the
BAO constraint brought a local likelihood minimum on the pure-void axis below
the confidence-levels bringing a simple void model superficially on par with the
concordance ΛCDM model. This effect is partly explained by the relaxation of
the CMB constraints with the prior for the spectral index ns as illustrated al-
ready in the figure 11. The background curvature has significant impact on the
area distance to the last-scattering surface while also modifying the shape of the
luminosity distance-redshift relation. The age of the universe on the other hand,
essentially sets the local Hubble rate. Interplay between these effects is what
allows to find void models that are in better agreement with the data. However,
the figure shows the difficulties with accommodating a higher value for the local
Hubble rate: the most reliable determination HR09 already excludes a pure void
model on 2σ-level.
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5 COSMOLOGICAL APPLICATIONS

In the CMB anisotropy spectrum analysis we used only the positions of the first,
second and third peaks and the first through computed from the fitting functions
of Ref. [92]. It should be noted that the actual CMB constraints are somewhat
tighter. Also the parameter ∆r was not marginalized over. This was considered
natural because it was found out that the observables were quite insensitive to
changes in this parameter. Other variables than BAO are also insensitive to the
actual shape of the profile [17], so that the specific choice of Eq. (5.1) should not
significantly draw back from generality of the results in this regard. LTB model
with the cosmological constant was studied also e.g. in [88], [89], [90].

5.3 Dark energy with negligible sound speed

5.3.1 Model

Let us now study a generalization of the ΛLTB model. In ΛCDM the cosmological
constant with its equation of state w ≡ −1 is a prior. Therefore it is interesting
to study how local large-scale inhomogeneities would affect our intepretation of
cosmological observations if the prior w ≡ −1 is relaxed. To this end we first
define the adiabatic sound speed in a fluid

c2
s ≡

(
∂p

∂ρ

)
s

, (5.2)

where ρ and p are fluid energy and pressure densities respectively. The subscript s
refers to the adiabatic condition of keeping the entropy density constant. Clearly
a vanishing adiabatic sound speed for a fluid means that there are no pressure
gradients which is trivially true for dust.

Let us now consider the class of models considered in paper [II]. These models
are defined by two components: a dust component and a DE component with
equation of state

pw(t, r) ≡ w0

(
ρw(t, r)

ρw,bkg(t)

)α−1

ρw(t, r). (5.3)

Here w0 is the constant FLRW background DE equation-of-state parameter and
ρw,bkg(t) is the background DE density. Clearly, taking α = 0 yields homogeneous
pressure.

In figures 13 and 14 we have the evolution of dust and DE density contrasts for
model with initial (at redshift z = 1000) dust density contrast δM = 1.5× 10−3,
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Figure 13: Evolution of the dust component energy density (left panel) and DE
component energy density (right panel) in the case with cs = 0 (α = 0) for z =1000
(red), 100, 10, 2, 1 and 0 (blue). Figure is from paper [II]
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5 COSMOLOGICAL APPLICATIONS

r0 = 10 Mpc/h and ∆r = 0.3r0. The DE component is initially at rest with
respect to dust and initial singularity is set to simultaneous by Eq. (4.59).
The flat background model is set by equation-of-state parameter w0 = −0.8,
dimensionless Hubble parameter h = 0.7 and dimensionless present-day dust
density ΩM = 0.3. In figure 13 α = 0 giving the case with vanishing sound
speed used in the analysis of section 5.3.2. In figure 14, on the other hand,
we have α = −0.2, which corresponds to cs = 0.4 in units of light speed. In
the case with zero sound speed the DE inhomogeneity grows because there are
no pressure gradients to drive the fluid into relative motion. With appriciable
sound speed, however, the initial inhomogeneity is quickly flattened towards
the background density by the pressure. The effect on the final dust density
contrast is roughly 5% and apart from the relative velocity, evolution of other
variables remain practically unaltered between the two cases. This result shows
that, atleast within this class of models, relaxing the prior cs = 0 for the DE
component does not alter the results of paper [III] summarized in section 5.3.2.
Also the amplitude of the DE inhomogeneity is so small for plausible models that
the sound speed is not expected affect those same results.

Models with DE equation of state (5.3) were studied in paper [II]. However,
we confronted numerical problems with non-negligible sound speeds. We were
able to have results only up to α ≈ 10−10 for the case studied above. Figure
14 is previously unpublished result and illustrates the fact that the new set of
equations (4.51) derived here really is numerically more manageable.

5.3.2 Likelihood Analysis

A dark-fluid component with vanishing speed of sound can be modelled by re-
quiring that there are no pressure gradients. That is pw = pw(t) = woutρw,bkg(t),
corresponding to the special case α = 0 in Eq. (5.3), where ρw,bkg(t) is the
FLRW-background energy density of the dark fluid and wout < −1

3
the constant

equation of state parameter. Clearly for wout = −1 and a homogeneous ini-
tial dark-fluid density the cosmological constant is recovered. Thus the model
with such dark-fluid and dust components embedded in an FLRW background
is a generalisation of the ΛLTB model of the present section. Where the ΛLTB
model allowed to look for degeneracies between the value of the cosmological
constant and the dimensions of a local inhomogeneity, the generalized model al-
lows to look for degeneracies also between the e.o.s. parameter (of the particular
model) and dimensions of a local inhomogeneity. Crossing the phantom line (i.e.
for wout < −1) makes an underdensity in the dust component correspond to an
overdensity in the dark-energy component and similarily an overdensity to cor-
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Figure 15: Two-dimensional marginalized 1 and 2σ confidence-level contours for the
most interesting parameters characterizing the cosmological model endowed with a lo-
cal inhomogeneity. The left and right figures show the same information. However,
on the right panel zb and δ0 are traded in for the angular diameter that the inhomo-
geneity would have if it were located at the observer’s last scattering surface and the
temperature fluctuation that it would induce, respectively. Figure is from paper [III]

respond to an underdensity [II]. This can be understood by looking at the fluid
equation (4.43): for dust in its rest-frame, the sign of ρ̇ is determined by the sign
of K. Clearly, for phantom-like DE, initially at rest (i.e. ṽ = 0), the sign of ρ̇ is
just the opposite since in this case ρ+ p ∝ −ρ.

Figure 15 shows the two-dimensional marginalized posterior probability distri-
butions for the background dark-energy density ΩX and the size of the inhomo-
geneity, expected by the redshift to the boundary of the inhomogeneity zb and
the density contrast δ0, as well as for the equation-of-state parameter wout and
inhomogeneity dimensions. Parameters are constrained by the Union 2 compila-
tion for supernovae [70], the WMAP 7-year results for CMB [93] and the Hubble
rate of Eq. (3.3). While the model is rather specific, any appreciable degeneracy
would serve the purpose to point out that such scenario would twist our per-
ception of the dark energy when naively interpreting the observations within the
context of FLRW cosmology. Since the inhomogeneities of opposite signs have
opposing effects, marginalizing over the amplitudes mostly widens the tails for
distributions over ΩX and wout. This result (Fig. 4 in [III]) estimates how inho-
mogeneities contribute to the error budget when determining the cosmological
parameters.
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5 COSMOLOGICAL APPLICATIONS

Figure 16: Two-dimensional 1, 2, 3 and 4σ confidence-level contours for ΩX and
wout with δ0, constrained by CMB, SNe, and H0. The horizontal band corresponds to
the one-dimensional 2σ c.l. constraints on ΩX and wout for the wCDM FLRW model.
Figure is from paper [III]

In figure 16 we have likelihoods on (ΩX , δ0)- and (w0, δ0)-planes, marginalized
over other parameters, together with the 2σ contours for corresponding homoge-
neous models. This plot shows that if future data will constrain |δ0| to be large,
then the inclusion of such data will shift the best fit region towards values of w
that are far from −1. Clearly, a local inhomogeneity of order |δ0| ≈ 0.1 would
shift the best-fit region to disfavor the cosmological constant.

Figure 17 shows the CMB dipoles for an observer situated away from origin, inside
an inhomogeneity of 1 Gpc radius. On the right vertical axis the corresponding
peculiar velocity, which is derived assuming that the observed CMB dipole is
caused solely by the peculiar velocity of the observer, is listed. The magnitude of
the velocities does not exceed the magnitude of expected random velocities. The
effect does not go to zero outside the LTB patch due to the integrated Sachs-
Wolfe effect induced by the LTB structure. Both cases shown in the figure are for
models with particular parameters to give appreciable deviation from the ΛCDM.
However, the peculiar velocities induced are within the limits of the observed
dipole. Since the observed CMB dipole anisotropy is of order ∆T/T ∝ 10−3 the
analysis suggests that Gpc scale structures with δ0 ∝ 0.1 are not excluded by
present observations. For further details on how the figures were obtained see
section 4.2 in paper [III].

The probability for existence of an inhomogeneity of a given type around a given
point in space, can be approximately drawn from the almost scale-invariant power
spectrum set by the CMB observations (assuming that it is of the same primordial
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Figure 17: The CMB-dipole observed by observers at different radii d(r) in an LTB
patch with a radius of 1 Gpc, for an over-density (left) and an under-density (right).
Figure is from paper [III]

origin of course) [III]. In general drawing the probabilities is complicated due to
these probabilities being conditional to the structures not residing within larger
structures. However, since in the present case the scales of inhomogeneities are
so large, this can be done in a straightforward manner neglecting these cloud-
in-cloud, void-in-void and void-in-cloud effects. In [III] it was found that for
models with appreciable deviation from the standard model, the probability can
be up to three times the dispersion of the smoothed density field, corresponding
to almost percent level probabilities, associated with the CMB spectrum. For
further details see section 4.5 of [III].

6 Discussion

In this thesis we have illustrated the uncertainties related to the so-called preci-
sion cosmology due to our incomplete knowledge of our cosmic neighbourhood. In
particular, we have employed a series of spherically symmetric models of varying
complexity in order to address this problem. We wrote the equations of paper
[II] for a spherically symmetric metric sourced by n perfect fluid components
with indeterminate equations of state using the ADM formalism. Furthermore,
we identified numerically problematic terms in the resulting equations and were
able to handle these by introducing more convenient variables. Doing this we
ended up with numerically more manageable set of equations than the one pre-
sented in paper [II]. Moreover, we derived an approximation for initial conditions
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corresponding to simultaneous initial singularity for initially super-Hubble inho-
mogeneities. These were unpublished results.

We studied the local-void scenario for dark energy by comparing the standard
model with local-void models using the LTB model with a cosmological constant.
The supernovae, Hubble rate, CMB and BAO data was analyzed by marginal-
izing the total likelihood over the spectral index, the age of the universe (which
essentially sets the local Hubble rate) and the present-day spatial curvature of
the FLRW background. The choice of the degrees of freedom for the reduced
χ2 is neccessarily somewhat subjective since the LTB model is specified not by
free parameters, but by free functions. The analysis for the ΛLTB model pro-
vided a democratic comparison between the standard model and the local-void
scenario by setting them within the same parameter space. While these simple
void models can accommodate the major observational features suprisingly well,
the requirements for the actual nature of the structure leaves a lot to hope for; in
order for the underdensity to explain away the need for the cosmological constant
it would have to be very deep and have a radius of several Gpc’s. Furthermore,
the isotropy of the CMB would require that we happen to live very near the cen-
ter of the void, or we should happen to have a suitable peculiar motion towards
the center, which would give rise to a new type of fine-tuning problem in these
models. The initial conditions for such enormous structure would require very
large peculiar velocities at early times, which would appear incompatible with
inflationary physics, and plausible birth mechanisms for such structures remain
unknown. Observations on the kSZ-effect, set bounds on the peculiar velocities
at the wall of such a void. These bounds also severily constrain spherically sym-
metric dust solutions as a viable explanation for the dark-energy observations
[24], [71]. However, it should be noted that spherical symmetry and smooth con-
tinuous matter distribution are major simplifications, and for these reasons the
constraint based on the spherically symmetric model should be regarded with
some caution.

Results show that existence of local unvirialized structures of dimensions simi-
lar to the largest observed structures in the universe could significantly alter the
quantitative intepretation of the observational data used to set constraints on the
cosmic parameters. For ΛLTB models there was no degeneracy found between
the void radii’ and the value of the cosmological constant. However, there was an
interesting degeneracy found between the background dark-energy-equation-of-
state parameter and the inhomogeneity radius in models with vanishing speed of
sound (vanishing pressure gradient) of the inhomogeneous dark fluid. In particu-
lar, it was found out that local large-scale deviations from statistical homogeneity
of inflationary origin could significantly alter our interpration of cosmological ob-
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servations in regards to the nature of dark energy. Results of [III] shows (as in
Fig. 16) that with prior knowledge on the local inhomogeneity, due to new data
from a future survey, it could be possible to rule out the cosmological constant.
Vice versa, a hypothetical future data, ruling out the cosmological constant in
an FLRW universe, also could still be explained with a local inhomogeneity.

As the modelling and future data gets more and more precise, the uncertainty due
to large-scale structure becomes more and more important. Analysis presented
in this thesis is just a step towards more accurate reconstruction of realistic
cosmology. Anyway, already the results obtained in this thesis show that even
the talk about present-day percent-level precision cosmology might certainly be
just too optimistic.
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