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We report on the production of inclusive Υ (1S) and Υ (2S) in p–Pb collisions at √sNN = 5.02 TeV at the 
LHC. The measurement is performed with the ALICE detector at backward (−4.46 < ycms < −2.96) and 
forward (2.03 < ycms < 3.53) rapidity down to zero transverse momentum. The production cross sections 
of the Υ (1S) and Υ (2S) are presented, as well as the nuclear modification factor and the ratio of the 
forward to backward yields of Υ (1S). A suppression of the inclusive Υ (1S) yield in p–Pb collisions with 
respect to the yield from pp collisions scaled by the number of binary nucleon–nucleon collisions is 
observed at forward rapidity but not at backward rapidity. The results are compared to theoretical model 
calculations including nuclear shadowing or partonic energy loss effects.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Quarkonia are bound states of a heavy quark and its anti-quark. 
The J/ψ family is comprised of charm and anti-charm quarks and 
the Υ family of bottom and anti-bottom quarks. The former are 
commonly called charmonia and the latter bottomonia. In ele-
mentary pp collisions, the production of a quarkonium can be 
understood as the creation of a heavy-quark pair (QQ̄) followed 
by its binding into a quarkonium state with given quantum num-
bers [1]. The first step is well described by perturbative quantum 
chromo-dynamics (QCD) while the second step is inherently non-
perturbative. Three main approaches are used to describe quarko-
nium production in hadronic collisions: the Colour Evaporation 
Model (CEM) [2,3], the Colour-Singlet Model (CSM) [4] and the 
Non-Relativistic QCD (NRQCD) framework [5]. However, none of 
those models is able to satisfactorily describe simultaneously all 
aspects of quarkonium production in pp collisions [6].

In ultra-relativistic Pb–Pb collisions, quarkonia are important 
probes to study the properties of the deconfined state of partonic 
matter, the quark–gluon plasma (QGP). Such a state is predicted 
by QCD at high temperature and pressure [7,8]. Since quarkonia 
are produced at the early stage of the collision, they are expected 
to interact with the QGP throughout its evolution. In particular, in 
the colour-screening scenario [9] quarkonium states are suppressed 
in the QGP with different dissociation probabilities for the various 
mass states, depending on their binding energy. The CMS Collab-
oration at the Large Hadron Collider (LHC) has reported on the 

� E-mail address: alice-publications@cern.ch.

observation of the sequential suppression of bottomonium states 
in Pb–Pb collisions at 

√
sNN = 2.76 TeV [10,11]. However, other 

hot nuclear matter effects besides colour screening, as well as cold 
nuclear matter (CNM) effects, do complicate this simple picture. 
On the one hand, recent measurements by the ALICE Collaboration 
are compatible with a regeneration mechanism playing an impor-
tant role in the production of J/ψ in Pb–Pb collisions at the LHC 
[12–14]. Additional J/ψ are expected to be produced from decon-
fined charm quarks by kinetic recombination in the QGP [15,16] or 
by statistical hadronization at the phase boundary [17]. This addi-
tional, hot nuclear matter effect, competes with the suppression by 
colour screening. Due to the lower production cross section of bb̄
pairs compared to cc̄ pairs, the regeneration of Υ (1S) is expected 
to be smaller than that of J/ψ [18]. On the other hand, effects re-
lated to the presence of CNM can also modify the production of 
quarkonia in nucleus–nucleus collisions.

Cold nuclear matter effects can be separated into initial and 
final-state effects. Initial-state effects occur prior to the forma-
tion of the heavy-quark pair. These include the modification of the 
kinematical distribution of the partons in the nuclei compared to 
that in free nucleons [19–22] as well as parton energy loss [23–25]. 
First, the nuclear Parton Distribution Functions (nPDF) differ from 
those in free nucleons (PDF). Since the gluon fusion mechanism 
dominates the production of heavy-quark pairs in high energy 
collisions, quarkonium production is particularly sensitive to the 
gluon nPDF, which is presently not well known. Bjorken-x (xBj) is 
defined as the fraction of the hadron momentum carried by the 
parton. The gluon nPDF includes a shadowing region at low xBj
(xBj � 0.01) corresponding to a suppression of gluons, an antishad-
owing region at intermediate xBj (0.01 � xBj � 0.3) corresponding 
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to an enhancement of gluons, and an additional suppression of glu-
ons known as EMC effect at higher xBj (0.35 � xBj � 0.7). Secondly, 
if the quarkonium production is dominated by low xBj gluons, then 
the Colour Glass Condensate (CGC) model can be used to describe 
the nucleus as a coherent gluonic system that saturates at very 
large density [26]. Finally, partons can lose energy before creat-
ing the heavy-quark pair, therefore modifying the kinematic dis-
tributions of quarkonia. Final-state effects are those that affect the 
heavy-quark pair during the finite time it needs to form a quarko-
nium state or after the state has been formed [27]. The QQ̄ pair 
can interact with the nuclear matter and eventually break up. The 
break-up cross section depends on the nature of the pre-resonant 
state and is expected to be small for Υ (1S) at high energy [27–29]. 
The final-state resonance can also interact with surrounding co-
movers and lose energy or even break up [30–32]. Finally, in a 
recent approach to parton energy loss [25], it is hypothesized that 
the parton energy loss is coherent and cannot be factorized into 
initial and final state effects.

Cold nuclear matter effects can be studied in proton–nucleus 
(p–A) collisions, where the QGP is not expected to be formed. 
Charmonium states have been extensively measured in p–A col-
lisions at various collision energies up to LHC energies. Bottomo-
nium production has recently been studied thanks to the increased 
energy and luminosity available in collider experiments at RHIC 
[33,34] and the LHC [35]. Due to the larger mass of the bottomo-
nium states compared to the charmonium ones, the measurement 
of Υ production in proton–nucleus collisions allows a study of 
cold nuclear matter effects in a different kinematic regime, there-
fore complementing the J/ψ studies [36,37]. In addition, the recent 
measurement by the ALICE Collaboration in Pb–Pb collisions of a 
stronger Υ (1S) suppression at forward rapidity [38] than at mid-
rapidity has stressed the importance of understanding CNM effects 
on Υ production (since in the colour screening scenario such a be-
haviour is not expected as the energy density should be larger or 
equal at mid-rapidity than at forward rapidity).

In this Letter, we report ALICE results on inclusive Υ production 
in p–Pb collisions at 

√
sNN = 5.02 TeV, measured via the μ+μ−

decay channel. The ALICE measurement of the Υ (1S) and Υ (2S) 
production cross section in p–Pb collisions at LHC energies is pre-
sented at backward (−4.46 < ycms < −2.96) and forward (2.03 <
ycms < 3.53) centre-of-mass rapidities. The positive rapidity is de-
fined by the direction of the proton beam. The Υ (1S) production 
cross sections in p–Pb collisions are compared to those in pp col-
lisions scaled by the Pb-nucleus atomic mass number APb = 208. 
This nuclear modification factor is presented as a function of rapid-
ity. The ratio of the forward to backward yields is also discussed.

2. Experimental apparatus and data sample

The ALICE detector design and performance are extensively de-
scribed in [39] and [40]. The analysis presented here is based on 
the detection of muons in the ALICE forward muon spectrome-
ter, which covers the laboratory pseudorapidity range −4 < ηlab <

−2.5. In addition, the Silicon Pixel Detector (SPD) is used to recon-
struct the primary vertex, the VZERO detector provides a minimum 
bias trigger and the VZERO and TZERO detectors are both used as 
luminometers. A short description of these detectors is given in the 
following paragraphs.

The muon spectrometer consists of a set of absorbers, a dipole 
magnet with a 3 T m field integral, five tracking stations and 
two trigger stations. The front absorber, made of carbon, concrete 
and steel and placed between 0.9 and 5 m from the Interaction 
Point (IP), filters out hadrons, thus decreasing the occupancy in 
the tracking system. Muon tracking is performed by five stations, 
each one consisting of two planes of Cathode Pad Chambers (CPC). 

The first two stations are located upstream of the dipole mag-
net, the third one is embedded inside the magnet gap and the 
fourth and fifth are placed downstream of the dipole, just before a 
1.2 m thick iron wall (7.2 interaction lengths), which absorbs sec-
ondary hadrons escaping the front absorber and low-momentum 
muons (having p < 1.5 GeV/c at the exit of the front absorber). 
The muon trigger system is located downstream of the iron wall 
and consists of two stations, each one equipped with two planes 
of Resistive Plate Chambers (RPC). The time resolution is of the or-
der of 2 ns and the efficiency is better than 95% [41]. The muon 
trigger system delivers single muon and dimuon triggers with a 
programmable transverse momentum (pT) threshold. Throughout 
its entire length, a conical absorber around the beam pipe (θ < 2◦) 
made of tungsten, lead and steel shields the muon spectrometer 
against secondary particles produced by the interaction of large-η
primary particles in the beam pipe.

Primary vertex reconstruction is performed using the SPD, the 
two innermost layers of the Inner Tracking System [42]. It covers 
the pseudo-rapidity ranges |ηlab| < 2 and |ηlab| < 1.4, for the inner 
and outer layers, respectively.

The two VZERO hodoscopes [43], with 32 scintillator tiles each, 
are placed on each side of the IP, covering the pseudo-rapidity 
ranges 2.8 < ηlab < 5.1 and −3.7 < ηlab < −1.7. Each hodoscope 
is segmented into 8 sectors of equal azimuthal coverage and four 
equal pseudo-rapidity rings. The logical AND of the signals from 
the two hodoscopes forms the Minimum Bias (MB) trigger, also 
used as a luminosity signal. A second luminosity signal is defined 
as the logical AND of the two TZERO arrays, located on opposite 
sides of the IP (4.6 < ηlab < 4.9 and −3.3 < ηlab < −3.0). Each 
array consists of 12 quartz Cherenkov counters, read by photomul-
tiplier tubes.

The data samples used for this analysis were collected in 2013. 
The number of bunches colliding at the ALICE IP ranged from 
72 to 288. The peak luminosity during data taking was about 
1029 s−1 cm−2. The average number of visible interactions per 
bunch crossing in such conditions is about 0.06, corresponding to 
a multiple interaction (pile-up) probability of about 3%.

The trigger condition used for data taking is a dimuon-MB trig-
ger formed by the logical AND of the MB trigger and an unlike-sign 
dimuon trigger with a trigger probability for each of the two muon 
candidates that increases with pT and is 50% at 0.5 GeV/c. In 
an additional offline selection, the timing information of the two 
VZERO arrays is used to reject beam-halo and beam-gas events. 
The Zero Degree Calorimeters (ZDC), positioned symmetrically at 
112.5 m from the IP, are used offline to reject events with a dis-
placed vertex, originating from the interactions of satellite proton 
and lead bunches, as described in [40].

The two LHC beams have the same magnetic rigidity but differ-
ent projectile charge to mass ratio, which results in the two beams 
having different energies: Ep = 4 TeV and EPb/APb = 1.58 TeV. As 
a consequence, the centre-of-mass system of nucleon–nucleon col-
lisions is shifted in rapidity by �y = 0.465 with respect to the 
laboratory frame in the direction of the proton beam. In terms of 
the rapidity in the centre-of-mass frame ycms, the muon spectrom-
eter acceptance is 2.03 < ycms < 3.53 when the proton beam is 
travelling in the direction of the spectrometer (p–Pb configuration), 
and −4.46 < ycms < −2.96 in the opposite case (Pb–p configura-
tion). To access both rapidity ranges, data were taken in the two 
configurations.

About 9.3 × 106 (2.1 × 107) dimuon-MB-triggered events were 
analyzed for the p–Pb (Pb–p) configuration, corresponding to an 
integrated luminosity Lint = 5.01 ± 0.19 nb−1 (5.81 ± 0.20 nb−1). 
The determination of the integrated luminosities and associated 
uncertainties is described later.
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Fig. 1. Invariant mass distribution of opposite-sign dimuons in the rapidity regions −4.46 < ycms < −2.96 (left) and 2.03 < ycms < 3.53 (right) in p–Pb collisions. In each 
case, the full curve shows the total fit function and the dashed curves the signal component for the three Υ states (see text for details).
3. Data analysis

Muon track candidates are reconstructed in the muon spec-
trometer using the standard tracking algorithm [44]. The tracks 
are required to exit the front absorber at a radial distance from 
the beam axis, Rabs, in the range 17.6 < Rabs < 89.5 cm to reject 
tracks crossing the region of the absorber with the highest density 
material. In this region, multiple scattering and energy loss effects 
are large and can affect the mass resolution. The contribution from 
fake and beam-gas interaction induced tracks is reduced by select-
ing tracks pointing to the interaction vertex. In addition, tracks in 
the tracking system are requested to match a track segment in the 
trigger system (trigger tracklet).

The Υ signal is obtained from the invariant mass distributions 
of opposite-sign dimuons with a laboratory pair-rapidity in the 
range 2.5 < |ylab| < 4 down to zero transverse momentum. The 
raw number of Υ is obtained by fitting the invariant mass dis-
tributions. A sum of two exponential functions is used to param-
eterize the background continuum, and each Υ resonance shape 
is described by an extended Crystal Ball (CB) function [45]. The 
CB function is made of a Gaussian core and a power-law tail on 
each side and is found to reproduce the shape of the Υ peak 
obtained in Monte Carlo (MC) simulations. Since the CB tails are 
poorly constrained by the data, they are fixed from the results of 
the MC simulations. It is also necessary to fix the mass differ-
ence between states by using the PDG values [46] and to force 
the width of the Υ (2S) and Υ (3S) to scale proportionally with 
the Υ (1S) width according to the ratio of the resonance masses. 
MC simulations validated these assumptions. The Υ (1S) signal to 
background ratio (S/B)1 is between 0.8 to 1.8, allowing the posi-
tion and width of the Υ (1S) peak to be free parameters in the 
fit. The significance (S/

√
S + B) for Υ (1S) is between 6.3 and 11.6

for the rapidity bins considered in the analysis. The significance 
of the Υ (2S) in the rapidity ranges −4.46 < ycms < −2.96 and 
2.03 < ycms < 3.53 is larger than 3, which allows a reliable mea-
surement. However, due to the limited statistics, the significance 
of the Υ (3S) state is too low to separate the signal from the un-
derlying background. Fig. 1 illustrates the fitting method for the 
rapidity intervals −4.46 < ycms < −2.96 (left panel) and 2.03 <
ycms < 3.53 (right panel). The measured Υ (1S) peak position is in 
agreement with the resonance mass value from PDG [46] and the 

1 The signal to background ratio and significance numbers are always evaluated 
determining the number of signal and background counts in an invariant mass 
range centred on the Υ mass and corresponding to ±3 times the width of the 
peak.

measured width (155 ± 25 MeV/c2 in −4.46 < ycms < −2.96 and 
160 ± 22 MeV/c2 in 2.03 < ycms < 3.53) agrees with the results 
from MC simulations. A similar agreement was observed for all ra-
pidity bins considered in this Letter.

To investigate the systematic uncertainties on the signal extrac-
tion procedure, different fits were performed parameterizing the 
background continuum with the sum of two power-law functions 
and using alternative invariant mass fitting ranges. Since some pa-
rameters are fixed in the fitting procedure, the related systematic 
uncertainties were also studied. The CB tail parameters were var-
ied according to their spread obtained by several fits of the MC 
distributions in different mass ranges. The width of the Υ (2S) and 
Υ (3S) were varied according to the size of the uncertainties of 
the Υ (1S) width obtained from the fit. The latter method was 
similarly used to estimate the systematic uncertainty related to 
the fixing of the Υ (2S) and Υ (3S) peak position. The raw num-
ber of Υ (1S) and Υ (2S) in the rapidity range −4.46 < ycms <

−2.96 are 161 ± 21(stat) ± 9(syst) and 42 ± 14(stat) ± 5(syst), 
respectively. In the 2.03 < ycms < 3.53 rapidity range, they are 
305 ± 34(stat) ± 13(syst) for Υ (1S) and 83 ± 23(stat) ± 10(syst)
for Υ (2S).

The acceptance-times-efficiency of the muon spectrometer for 
the measurement of Υ , A × ε, is calculated with MC simulations. 
The pT and y distributions of the generated Υ (1S) were extrapo-
lated, with a procedure equivalent to the one adopted for the J/ψ
[47], to 

√
sNN = 5.02 TeV from existing pp measurements [48–50]. 

Nuclear shadowing calculations [51] were used to include the ex-
pected CNM effects. The systematic uncertainty was estimated by 
varying the pT and y input distributions by an amount suffi-
ciently large (based on theoretical estimations) to include the a 
priori unknown impact of CNM effects. Since the available data 
favour a zero or small polarization of Υ (1S) [52–54], an unpolar-
ized production was assumed. Particle transport is performed us-
ing GEANT3 [55] and a realistic detector response is applied to the 
simulated hits in order to reproduce the performance of the appa-
ratus during data taking. The time dependence of the tracking and 
trigger efficiencies is taken into account by incorporating in the 
MC simulations the dead channel maps obtained from the online 
detector information and the trigger chamber efficiencies obtained 
from a real data analysis. In addition, a realistic description of the 
residual misalignment of the tracking chambers is included in the 
simulations. The tracking efficiency is evaluated with data by an-
alyzing the cluster distribution of the reconstructed tracks in the 
detection chambers with the algorithm described in [44]. The same 
algorithm can be used to estimate the tracking efficiency from MC 
data. The systematic uncertainties on this value are obtained by 
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comparing the tracking efficiency estimated from real and MC data. 
The efficiency of the muon triggering system is calculated from 
data and results from the analysis of trigger tracklet distributions 
reconstructed from clusters in the four planes of the two trigger 
stations. The corresponding systematic uncertainties are obtained 
by varying the trigger chamber efficiency in MC simulations by 
an amount equivalent to the statistical uncertainties on the real 
data estimation. The quality of the matching of the tracking and 
triggering system information is ensured by a χ2 cut. In order to 
quantify the systematic uncertainties on the matching efficiency, 
the cut was varied in the same proportions while analyzing both 
real and MC data. The observed difference in the matching proba-
bilities provides the uncertainties.

The A × ε values and the corresponding systematic uncertain-
ties for Υ (1S) measured during the p–Pb and the Pb–p data taking 
periods are (29.0 ± 2.0)% and (20.1 ± 1.6)%, respectively. The value 
of A × ε is lower for the Pb–p period mainly due to a reduced 
tracking efficiency. The Υ (2S) A × ε and the corresponding sys-
tematic uncertainties were evaluated with the same method and 
the same input distributions as for the Υ (1S). The observed differ-
ences between the Υ (2S) and Υ (1S) A × ε are less than 0.5%. The 
shape variations between the different input distributions used in 
the study of the A × ε systematic uncertainties were large enough 
to cover the differences between the Υ (1S) and Υ (2S) distribu-
tions observed by LHCb in the rapidity range 2 < ycms < 4.5 in pp 
collisions [49,56,57].

The raw number of Υ (1S) obtained with the fit procedure de-
scribed previously, N[Υ (1S)], is corrected for the branching ratio of 
the dimuon decay channel, BRΥ (1S)→μ+μ− = 0.0248 ± 0.0005 [46]
and for the acceptance-times-efficiency, (A × ε)Υ (1S) . The Υ (1S) 
cross section is obtained as

σ
Υ (1S)

pPb = N[Υ (1S)]/(A × ε)Υ (1S)

BRΥ (1S)→μ+μ− × L
, (1)

where the integrated luminosity L = NMB/σMB is the ratio be-
tween the number of MB events and the MB trigger cross sec-
tion. Since the analyzed data sample is made of dimuon triggered 
events, it is necessary to use a scaling factor, F , to obtain the 
number of MB events from the number of triggered events. The in-
verse of the F factor corresponds to the probability of having the 
dimuon trigger condition verified in an MB event. Its average value 
is F = 1129 ± 2(stat) ± 11(syst) and F = 589 ± 2(stat) ± 6(syst)
for the p–Pb and Pb–p data taking periods, respectively. These val-
ues and the corresponding statistical uncertainties were obtained 
by averaging the results of two different methods, one based on 
the ratio of trigger rates and the other based on the offline selec-
tion of dimuon events in the MB data sample [36]. The systematic 
uncertainties reflect the difference between the results obtained 
with the two methods. The MB trigger cross section σMB was mea-
sured with a van der Meer scan [58] and found to be 2.09 ±0.07 b
(2.12 ±0.07 b) for the p–Pb (Pb–p) configuration, where the uncer-
tainties for the two configurations are partially correlated [59]. The 
luminosity was also independently determined, in a similar way, 
by means of the TZERO-based luminosity signal. The two mea-
surements differ by at most 1% throughout the whole data-taking 
period. Such a small variation was combined quadratically with the 
NMB and σMB uncertainties, to get a total luminosity uncertainty 
of 3.8% for the p–Pb configuration (forward rapidities) and 3.5% for 
the Pb–p configuration (backward rapidities).

4. Results

The Υ (1S) production cross sections in p–Pb collisions at √
sNN = 5.02 TeV are:

Table 1
Summary of the relative systematic uncertainties on each quantity entering in the 
calculations of the results. Type I (II) stands for uncertainties correlated (uncor-
related) with rapidity. Type II uncertainties are given as a range including the 
smallest and the largest values observed in the bins considered in this analy-
sis. Results are presented for the backward (−4.46 < ycms < −2.96) and forward 
(2.03 < ycms < 3.53) rapidity regions.

Source Backward rapidity Forward rapidity

Signal extraction: Υ (1S) 5%–6% (II) 4%–6% (II)
Signal extraction: Υ (2S) 12% (II) 12% (II)

Input MC parameterization: Υ (1S) 2%–5% (II) 4%–6% (II)
Input MC parameterization: Υ (2S) 5% (II) 5% (II)
Tracking efficiency 6% (II) 4% (II)
Trigger efficiency 2% (II) 2% (II)
Matching efficiency 1% (II) 1% (II)

σ
Υ (1S)
pp (interpolation) 11%–13% (II) 7%–12% (II)

L (correlated) 1.6% (I) 1.6% (I)
L (uncorrelated) 3.1% (II) 3.4% (II)

σ
Υ (1S)

pPb (−4.46 < ycms < −2.96)

= 5.57 ± 0.72(stat) ± 0.60(syst) μb,

σ
Υ (1S)

pPb (2.03 < ycms < 3.53)

= 8.45 ± 0.94(stat) ± 0.77(syst) μb.

The Υ (2S) production cross sections in p–Pb collisions at √
sNN = 5.02 TeV, obtained in a similar way but with

BRΥ (2S)→μ+μ− = 0.0193 ± 0.0017 [46], are:

σ
Υ (2S)

pPb (−4.46 < ycms < −2.96)

= 1.85 ± 0.61(stat) ± 0.32(syst) μb,

σ
Υ (2S)

pPb (2.03 < ycms < 3.53)

= 2.97 ± 0.82(stat) ± 0.50(syst) μb.

A summary of the different sources of systematic uncertainties 
and their relative value is given in Table 1. The uncertainties of 
type II are not fully uncorrelated with rapidity and no trivial factor-
ization in correlated and uncorrelated parts can be made. Hence, 
they are labelled as uncorrelated, but they cannot be quadratically 
combined to obtain the rapidity integrated result.

The Υ (1S) candidates were further divided in four rapidity 
ranges, namely −4.46 < ycms < −3.53, −3.53 < ycms < −2.96, 
2.03 < ycms < 2.96 and 2.96 < ycms < 3.53. Two of them are sym-
metric with respect to ycms = 0. Fig. 2 shows the inclusive Υ (1S) 
differential cross section dσ/dy as a function of rapidity. The ver-
tical error bars represent the statistical uncertainties and the open 
boxes the uncorrelated systematic uncertainties. Also shown is the 
inclusive Υ (1S)y-differential interpolated cross section in pp col-
lisions at the same centre-of-mass energy (obtained as explained 
later in the text) scaled by APb.

The CNM effects can be quantified with the nuclear modifica-
tion factor,

RΥ (1S)

pPb = σ
Υ (1S)

pPb

APb × σ
Υ (1S)
pp

, (2)

where σΥ (1S)
pp is the Υ (1S) cross section in pp collisions at 

√
s =

5.02 TeV.
Since σ

Υ (1S)
pp at 

√
s = 5.02 TeV has not yet been measured, 

it was computed using a data driven 
√

s interpolation method. 
A detailed description of the adopted procedure is given in 
[60]. The LHCb Collaboration has measured the Υ (1S) cross sec-
tion in pp collisions at 

√
s = 2.76, 7 and 8 TeV, over the ranges 
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Fig. 2. Inclusive Υ (1S) production cross section as a function of rapidity in p–Pb
collisions at √sNN = 5.02 TeV. The vertical error bars represent the statistical un-
certainties and the open boxes the uncorrelated systematic uncertainties. The cor-
related systematic uncertainty is 1.6% and is directly quoted in the figure. It is 
obtained by summing in quadrature the correlated uncertainty on the integrated 
luminosity and the uncertainty on the branching ratio of Υ (1S) to dimuon. The 
bands correspond to the inclusive Υ (1S) pp cross section obtained with the proce-
dure described in the text and scaled by APb.

pT < 15 GeV/c and 2 < y < 4.5, in 5 rapidity bins of equal size 
[49,56,57]. The LHCb results were re-binned to obtain the cross 
section in (approximately) the rapidity ranges of interest for this 
analysis: 2 < y < 3, 2 < y < 3.5, 3 < y < 3.5, 3 < y < 4.5, and 
3.5 < y < 4.5. For each bin, the cross section as a function of en-
ergy was fitted according to 21 different shapes: 15 are based on 
Leading Order CEM (LO-CEM) calculations for Υ production, corre-
sponding to various choices of PDFs and of the factorization scale; 
3 are based on the energy-dependence of bare bottom-quark pair 
production (FONLL) [61]; the remaining three are a power law, 
a linear and an exponential function. The obtained fit parame-
ters were used to compute the cross section at 

√
s = 5.02 TeV. 

In order to take into account the rather poor agreement of the 
data with the fitting functions (χ2/ndf > 2 for all fits, where 
ndf is the number of degrees of freedom), all the uncertainties 
on the fit results were rescaled by

√
χ2/ndf . Fits with χ2/ndf

values larger than three times the minimum value obtained for 
the rapidity range considered were discarded. The weighted av-
erage of the surviving results was computed (using the rescaled 
fit uncertainty as a weight) and retained as central value. The 
average (rescaled) fit-result uncertainty was evaluated for each ra-
pidity bin: it ranges from 7% to 12%. As an additional uncertainty, 
the maximum difference between the average and the individ-
ual fit results was computed: it ranges from 2% to 7%. Finally, a 
third uncertainty was considered, to take into account the shift of 
0.035 rapidity units between the ranges adopted in the interpo-
lation procedure and those used for the measurement of RΥ (1S)

pPb . 
Such an uncertainty is quantified by the maximum difference be-
tween the cross sections in the two ranges, evaluated with the 
LO-CEM and FONLL models, and amounts to 1% for the forward ra-
pidity region and 3% for the backward rapidity region. Since the 
interpolation is performed separately for each rapidity range, the 
associated uncertainties are assumed to be uncorrelated with ra-
pidity. For the forward and backward rapidity ranges used for the 
integrated results, the obtained interpolated cross-sections times 
branching ratio are 1451 ± 114(syst) pb and 770 ± 87(syst) pb, re-
spectively.

Using the interpolated values of σΥ (1S)
pp , the nuclear modifica-

tion factors are

Fig. 3. Nuclear modification factor of inclusive Υ (1S) in p–Pb collisions at √sNN =
5.02 TeV. The results are compared to those for inclusive J/ψ [36]. The vertical er-
ror bars represent the statistical uncertainties and the open boxes the uncorrelated 
systematic uncertainties (for the J/ψ , the uncorrelated and partially correlated un-
certainties have been added in quadrature). The full boxes around RpPb = 1 show 
the size of the correlated uncertainties, which in the case of the Υ include only the 
correlated uncertainty on the luminosity (see Table 1).

RΥ (1S)

pPb (−4.46 < ycms < −2.96)

= 0.86 ± 0.11(stat) ± 0.13(uncorr) ± 0.01(corr),

RΥ (1S)

pPb (2.03 < ycms < 3.53)

= 0.70 ± 0.08(stat) ± 0.08(uncorr) ± 0.01(corr).

Under the assumption of a 2 → 1 production process (gg → Υ ), 
the sampled xBj ranges are 5.5 · 10−5 < xBj < 2.5 · 10−4 and 3.6 ·
10−2 < xBj < 1.6 · 10−1 at forward and backward rapidity, respec-
tively. Thus, the measurement at forward rapidity tests the shad-
owing region and the one at backward rapidity the anti-shadowing 
region. In the case of a 2 → 2 production process (gg → Υ g) the 
covered xBj ranges are naturally expected to be enlarged. In Fig. 3
the inclusive Υ (1S) nuclear modification factor in p–Pb collisions 
at 

√
sNN = 5.02 TeV is shown in four classes of rapidity. The verti-

cal error bars represent the statistical uncertainties and the open 
boxes the uncorrelated systematic uncertainties. An additional cor-
related uncertainty is indicated by the full box around RpPb = 1. 
The RpPb shows a suppression of the inclusive Υ (1S) production 
yields at forward rapidity in p–Pb compared to pp collisions. At 
backward rapidity, the Υ (1S) RpPb is compatible with unity within 
uncertainties, and therefore does not favour a strong gluon anti-
shadowing. Also shown in Fig. 3 is the ALICE measurement of the 
inclusive J/ψ RpPb [36]. Although the uncertainties are large, it 
appears that at positive ycms the Υ (1S) and J/ψ RpPb are rather 
similar. It is worth noting that due to its larger mass, the Υ (1S) 
RpPb at forward rapidity is higher than the J/ψ one according to 
all available model calculations [25,26,28,62]. At negative rapidi-
ties, the J/ψ RpPb are systematically above the Υ (1S) one but the 
two RpPb are consistent within uncertainties. Although the rapidity 
ranges are not identical, the RpPb measured by LHCb [63] are con-
sistent with the ALICE measurements within uncertainties, albeit 
systematically larger [60].

The ratio [Υ (2S)/Υ (1S)] of the production cross section of 
Υ (2S) → μ+μ− to Υ (1S) → μ+μ− can be obtained as

[
Υ (2S)/Υ (1S)

] = N[Υ (2S)]/(A × ε)Υ (2S)

N[Υ (1S)]/(A × ε)Υ (1S)

. (3)

The branching ratio of the dimuon decay channel does not en-
ter the calculation. Additionally, since the same data sample is 
used, L cancels out in the ratio. The systematic uncertainties on 
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Fig. 4. Nuclear modification factor of inclusive Υ (1S) in p–Pb collisions at √sNN = 5.02 TeV as a function of rapidity. The vertical error bars represent the statistical uncer-
tainties and the open boxes the uncorrelated systematic uncertainties. The full boxes around RpPb = 1 show the size of the correlated uncertainties. Also shown are several 
model calculations: (left) parton energy loss [25] with and without EPS09 shadowing at NLO and CEM with EPS09 shadowing at NLO [62]; (right) CGC based [26] and CSM 
with EPS09 shadowing at LO [28]. For the latter the effect of variation in the shadowing and EMC curves is highlighted as described in the text. (For interpretation of the 
colours in this figure, the reader is referred to the web version of this article.)
the ratios were obtained by quadratically combining the system-
atic uncertainties entering in each element of Eq. (3). Nevertheless, 
since the decay kinematics of the two Υ states are close, the sys-
tematic uncertainties on tracking, trigger and matching efficiency, 
estimated for the same detector in the same working conditions, 
cancel out in the ratio. The results are:

[
Υ (2S)/Υ (1S)

]
pPb(−4.46 < ycms < −2.96)

= 0.26 ± 0.09(stat) ± 0.04(syst),
[
Υ (2S)/Υ (1S)

]
pPb(2.03 < ycms < 3.53)

= 0.27 ± 0.08(stat) ± 0.04(syst).

The same ratio has been measured by ALICE in pp collisions 
at 

√
s = 7 TeV in the rapidity range 2.5 < ycms < 4.0 [64] and 

is 0.26 ± 0.08(tot), where the uncertainty is the quadratic sum 
of the statistical and systematic uncertainties. The LHCb Collab-
oration has measured the same ratio in pp collisions at 

√
s =

2.76, 7 and 8 TeV and as a function of rapidity in the range 2.0 <
ycms < 4.5 [49,56,57]. The measured [Υ (2S)/Υ (1S)] is found to 
be, within uncertainties, independent of 

√
s and rapidity. For 

pT < 15 GeV/c (14 GeV/c for 8 TeV) the measured values in the 
range 3.0 < ycms < 3.5 are 0.22 ± 0.03(tot), 0.24 ± 0.02(tot) and 
0.25 ± 0.01(tot) for 

√
s = 2.76, 7 and 8 TeV, respectively. Our mea-

sured ratio [Υ (2S)/Υ (1S)] in p–Pb collisions is compatible with 
the same ratio in pp collisions. Within our uncertainties, there is 
therefore no evidence of a different magnitude of CNM effects for 
the Υ (2S) with respect to the Υ (1S). At mid-rapidity, however, 
the CMS Collaboration has measured the double ratio, i.e. the ra-
tio [Υ (2S)/Υ (1S)] in p–Pb divided by that in pp collisions, to be 
0.83 ± 0.05(stat) ± 0.05(syst), suggesting a stronger suppression of 
the Υ (2S) than of the Υ (1S) in p–Pb collisions [35].

The inclusive Υ (1S) RpPb integrated over the backward or for-
ward rapidity ranges, are compared to several model calculations 
in Fig. 4. In the left panel, the results are compared to a next-to-
leading order (NLO) CEM calculation using the EPS09 parameter-
ization of the nuclear modification of the gluon PDF (commonly 
referred to as gluon shadowing) at NLO [62] (blue shaded band) 
and to a parton energy loss calculation [25] with (green shaded 
band) or without (red band) EPS09 gluon shadowing at NLO. In 
the case of the CEM + EPS09 calculation, the band reflects the un-
certainties of the calculation, dominated by the ones of the EPS09 
parameterization [19]. In the cases of the parton energy loss model 

calculations, the bands represent the uncertainty from the EPS09 
parameterization or from the parton transport coefficient and the 
parameterization used for the pp reference cross section. None of 
the calculations fully describe the backward and forward rapidity 
data and all tend to overestimate the observed Υ (1S) RpPb. The 
parton energy loss with EPS09 calculation reproduces the Υ (1S) 
RpPb at forward rapidity but tend to overestimate it at backward 
rapidity. The opposite trend is found if only parton energy loss is 
considered.

In the right panel, the results are compared to a calculation of 
a 2 → 2 production model (gg → Υ g) at leading order (LO) us-
ing the EPS09 shadowing parameterization also at LO [28]. Two 
bands are shown to highlight the uncertainties linked to two dif-
ferent effects. The extent of the blue band shows the EPS09 LO 
related uncertainties in the shadowing region, i.e. at low xBj. The 
red band shows the uncertainty in the EMC region, i.e. at high xBj. 
As the authors of [28] discuss, the gluon nPDF is poorly known 
in this region and the Υ (1S) RpPb at backward rapidity could add 
useful constraints to the model calculations. It is worth noting that 
the two blue bands in the left and right panels of Fig. 4 differ by 
their central curve and the extent of the uncertainties. The two 
approaches are similar and although the production models used 
are different, most of the difference comes from the usage of the 
NLO or LO EPS09 gluon shadowing parameterizations. It can be ar-
gued that using an NLO parameterization is more appropriate than 
an LO one, however it is worth remarking that other gluon shad-
owing parameterizations [20,21] (also at NLO) are available and 
that the uncertainty band of the EPS09 LO parameterization prac-
tically includes them. Therefore, the blue uncertainty band in the 
right panel of Fig. 4 can be considered as including the uncertainty 
due to different gluon shadowing parameterizations. The backward 
rapidity Υ (1S) RpPb disfavours the strong gluon anti-shadowing in-
cluded in the EPS09 parameterization. In the right panel of Fig. 4, 
a calculation based on the CGC framework coupled with a CEM 
production model is also shown (green shaded band) for positive 
ycms. It is worth noting that this calculation, although only slightly 
underestimating the Υ (1S) RpPb, is not able to reproduce the J/ψ
RpPb in the same rapidity range [36].

The quantity RFB is defined as the ratio of the nuclear modifica-
tion factors at forward and at backward rapidities in a range sym-
metric with respect to ycms = 0. It can be computed directly from 
the ratio of the cross sections (see Eq. (1)) of Υ (1S) at forward 
and backward rapidities. RFB is therefore independent of σ

Υ (1S)
pp . 
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Fig. 5. (Left) Forward to backward ratio RFB of inclusive Υ (1S) yields compared to the J/ψ RFB [36]. The vertical error bars represent the statistical uncertainties and the 
open boxes the uncorrelated systematic uncertainties. (Right) Inclusive Υ (1S) RFB compared to theoretical model calculations. The statistical and systematic uncertainties for 
the experimental value are added in quadrature. For the calculations, uncertainties are quoted when available.
The drawback of the RFB ratio is that it can only be measured 
in the restricted rapidity range 2.96 < |ycms| < 3.53, hence los-
ing about two thirds of the number of measured Υ . The mea-
sured forward to backward ratio is RFB(2.96 < |ycms| < 3.53) =
0.95 ± 0.24(stat) ± 0.14(syst). Uncertainties are obtained by sum-
ming in quadrature the contribution of each individual element 
entering the ratio. The inclusive Υ (1S) RFB is compared in Fig. 5 to 
the inclusive J/ψ RFB [36] in the same rapidity range (left panel) 
and to several model calculations (right panel). In the rapidity 
range 2.96 < |ycms| < 3.53 the Υ (1S) RFB is compatible with unity 
and is larger than that of the J/ψ . All models describe the data 
within the present uncertainties of the measurement.

5. Conclusion

In summary, we reported the ALICE measurement of Υ pro-
duction in p–Pb collisions at 

√
sNN = 5.02 TeV at the LHC. The 

Υ (1S) production cross section and nuclear modification factor 
were presented in the rapidity ranges −4.46 < ycms < −2.96 and 
2.03 < ycms < 3.53 down to zero transverse momentum. At for-
ward rapidity, RpPb shows a suppression of Υ (1S) production in 
p–Pb compared to pp collisions. At backward rapidity, the Υ (1S) 
RpPb is consistent with unity, suggesting that gluon anti-shadowing 
is smaller than expected in the EPS09 parameterization. Models 
including the nuclear modification of the gluon PDF [28,62] or a 
contribution from coherent parton energy loss [25] tend to overes-
timate our measured RpPb and cannot simultaneously describe the 
forward and backward rapidity suppressions. A CGC based model 
[26] is in agreement with our Υ results at forward rapidity but 
cannot describe the J/ψ RpPb [36]. The forward to backward ra-
tio RFB of the inclusive Υ (1S) yields in 2.96 < |ycms| < 3.53 is 
compatible with unity within large uncertainties. Within our un-
certainties, the [Υ (2S)/Υ (1S)] ratio shows no evidence of differ-
ent CNM effects on the two states. Additional measurements with 
higher statistics are needed to further constrain the models and 
extrapolate the CNM effects to Pb–Pb collisions.
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